Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Making Forecasts for Chaotic Processes in the Presence of Model Error

    Thumbnail
    View/Open
    umi-umd-3180.pdf (4.210Mb)
    No. of downloads: 1247

    Date
    2006-02-20
    Author
    Danforth, Christopher M
    Advisor
    Yorke, James A
    Kalnay, Eugenia
    Metadata
    Show full item record
    Abstract
    Numerical weather forecast errors are generated by model deficiencies and by errors in the initial conditions which interact and grow nonlinearly. With recent progress in data assimilation, the accuracy in the initial conditions has been substantially improved so that accounting for systematic errors associated with model deficiencies has become even more important to ensemble prediction and data assimilation applications. This dissertation describes two new methods for reducing the effect of model error in forecasts. The first method is inspired by Leith (1978) who proposed a statistical method to account for model bias and systematic errors linearly dependent on the flow anomalies. DelSole and Hou (1999) showed this method to be successful when applied to a very low order quasi-geostrophic model simulation with artificial "model errors." However, Leith's method is computationally prohibitive for high-resolution operational models. The purpose of the present study is to explore the feasibility of estimating and correcting systematic model errors using a simple and efficient procedure that could be applied operationally, and to compare the impact of correcting the model integration with statistical corrections performed a posteriori. The second method is inspired by the dynamical systems theory of shadowing. Making a prediction for a chaotic physical process involves specifying the probability associated with each possible outcome. Ensembles of solutions are frequently used to estimate this probability distribution. However, for a typical chaotic physical system H and model L of that system, no solution of L remains close to H for all time. We propose an alternative and show how to "inflate" or systematically perturb the ensemble of solutions of L so that some ensemble member remains close to H for orders of magnitude longer than unperturbed solutions of L. This is true even when the perturbations are significantly smaller than the model error.
    URI
    http://hdl.handle.net/1903/3370
    Collections
    • Computer Science Theses and Dissertations
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility