Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The agarase system of saccharophagus degradans strain 2-40 : analysis of the agarase system and protein localization

    Thumbnail
    View/Open
    umi-umd-3010.pdf (1.334Mb)
    No. of downloads: 3411

    Date
    2005-12-05
    Author
    Ekborg, Nathan Alexander
    Advisor
    Weiner, Ronald
    Hutcheson, Steven
    Metadata
    Show full item record
    Abstract
    Saccharophagus degradans (formerly "Microbulbifer degradans") strain 2-40 is a Gram-negative marine bacterium isolated from the Chesapeake Bay. Analysis of 16s rDNA sequence indicated that S. degradans is related to a group of marine proteobacteria adept at degrading complex polysaccharides (CPs). S. degradans can depolymerize at least ten CPs including agarose. Agarose, an algal galactan, is degraded by few organisms. The agarase system of S. degradans was shown to be composed of five enzymes AgaA, AgaB, AgaC, AgaD and AgaE. These proteins contain glycoside hydrolase domains GH16, GH50 and GH86. S. degradans is the only organism known to collectively encode agarases with at least one of these domains. Unusual for agarases, AgaB and AgaE also contain multiple type-six carbohydrate binding modules. Furthermore, AgaE contains four thrombospondin type-three repeats whose function in prokaryotic proteins were unknown. The predicted agarases were characterized using a variety of methods including genomics, biochemical assays, proteomics and a newly described mutagenic technique. Agar degradation by S. degradans includes two depolymerases, AgaB and AgaC, a B-agarase II (AgaE) and a possible a-neoagarobiose hydrolase (AgaA). AgaB was found to be freely secreted while AgaC and AgaE were surface associated. AgaC is a predicted lipoprotein while AgaE did not have domains characteristic of surface localization. The Tsp-3 repeats, which are similar to repeats found on other cell surface enzymes, are the proposed cell surface anchoring sequences of AgaE.
    URI
    http://hdl.handle.net/1903/3188
    Collections
    • Cell Biology & Molecular Genetics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility