Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Rapid Resource Transfer for Multilingual Natural Language Processing

    Thumbnail
    View/Open
    umi-umd-3004.pdf (1.903Mb)
    No. of downloads: 1820

    Date
    2005-12-02
    Author
    Kolak, Okan
    Advisor
    Resnik, Philip
    Metadata
    Show full item record
    Abstract
    Until recently the focus of the Natural Language Processing (NLP) community has been on a handful of mostly European languages. However, the rapid changes taking place in the economic and political climate of the world precipitate a similar change to the relative importance given to various languages. The importance of rapidly acquiring NLP resources and computational capabilities in new languages is widely accepted. Statistical NLP models have a distinct advantage over rule-based methods in achieving this goal since they require far less manual labor. However, statistical methods require two fundamental resources for training: (1) online corpora (2) manual annotations. Creating these two resources can be as difficult as porting rule-based methods. This thesis demonstrates the feasibility of acquiring both corpora and annotations by exploiting existing resources for well-studied languages. Basic resources for new languages can be acquired in a rapid and cost-effective manner by utilizing existing resources cross-lingually. Currently, the most viable method of obtaining online corpora is converting existing printed text into electronic form using Optical Character Recognition (OCR). Unfortunately, a language that lacks online corpora most likely lacks OCR as well. We tackle this problem by taking an existing OCR system that was desgined for a specific language and using that OCR system for a language with a similar script. We present a generative OCR model that allows us to post-process output from a non-native OCR system to achieve accuracy close to, or better than, a native one. Furthermore, we show that the performance of a native or trained OCR system can be improved by the same method. Next, we demonstrate cross-utilization of annotations on treebanks. We present an algorithm that projects dependency trees across parallel corpora. We also show that a reasonable quality treebank can be generated by combining projection with a small amount of language-specific post-processing. The projected treebank allows us to train a parser that performs comparably to a parser trained on manually generated data.
    URI
    http://hdl.handle.net/1903/3182
    Collections
    • Computer Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility