Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Real-Time Cybersecurity Situation Awareness Through a User-Centered Network Security Visualization

    Thumbnail
    View/Open
    DeValk_umd_0117N_23043.pdf (3.381Mb)
    No. of downloads: 47

    Date
    2022
    Author
    DeValk, Kaitlyn
    Advisor
    Elmqvist, Niklas
    DRUM DOI
    https://doi.org/10.13016/ccqt-obfe
    Metadata
    Show full item record
    Abstract
    One of the most common problems amongst cybersecurity defenders is lack of network visibility, leading to decreased situation awareness and overlooked indicators of compromise. This presents an opportunity for the use of information visualization in the field of cybersecurity. Prior research has looked at applying visual analytics to computer network defense, which has led to the development of visualizations for a variety of use cases in the security field. However, many of these visualizations do not consider user needs and requirements or require some predetermined user knowledge about the network to create the visuals, leading to low adoption in practice. With this in mind, I took a bottom-up, user-centered approach using interviews to gather user-desired components for the design, development, and evaluation of a network security visualization tool, called Riverside. I designed a visualization that attempts to balance providing a comprehensive view of an environment while supplying details-on-demand. Riverside’s key contribution is a data-driven, dynamic view of a network’s security state over time, meant to supplement an analyst’s real-time situation awareness of their network. Riverside’s system automatically partitions internal from external network components to visualize potential attack vectors across the entire environment. This research supports the need for further incorporation of users into the cybersecurity visualization development lifecycle. I call attention to key requirements for creating effective cybersecurity visualizations and specific use cases where visualizations can be leveraged to augment operational cybersecurity capabilities.
    URI
    http://hdl.handle.net/1903/29696
    Collections
    • Computer Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility