Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Practical Algorithms for Resource Allocation and Decision Making

    Thumbnail
    View/Open
    McElfresh_umd_0117E_22025.pdf (14.63Mb)
    No. of downloads: 144

    Date
    2021
    Author
    McElfresh, Duncan
    Advisor
    Dickerson, John P
    DRUM DOI
    https://doi.org/10.13016/wlch-jwc3
    Metadata
    Show full item record
    Abstract
    Algorithms are widely used today to help make important decisions in a variety of domains, including health care, criminal justice, employment, and education. Designing \emph{practical} algorithms involves balancing a wide variety of criteria. Deployed algorithms should be robust to uncertainty, they should abide by relevant laws and ethical norms, they should be easy to use correctly, they should not adversely impact user behavior, and so on. Finding an appropriate balance of these criteria involves technical analysis, understanding of the broader context, and empirical studies ``in the wild''. Most importantly practical algorithm design involves close collaboration between stakeholders and algorithm developers. The first part of this thesis addresses technical issues of uncertainty and fairness in \emph{kidney exchange}---a real-world matching market facilitated by optimization algorithms. We develop novel algorithms for kidney exchange that are robust to uncertainty in both the quality and the feasibility of potential transplants, and we demonstrate the effect of these algorithms using computational simulations with real kidney exchange data. We also study \emph{fairness} for hard-to-match patients in kidney exchange. We close a previously-open theoretical gap, by bounding the price of fairness in kidney exchange with chains. We also provide matching algorithms that bound the price of fairness in a principled way, while guaranteeing Pareto efficiency. The second part describes two real deployed algorithms---one for kidney exchange, and one for recruiting blood donors. For each application cases we characterize an underlying mathematical problem, and theoretically analyze its difficulty. We then develop practical algorithms for each setting, and we test them in computational simulations. For the blood donor recruitment application we present initial empirical results from a fielded study, in which a simple notification algorithm increases the expected donation rate by $5\%$. The third part of this thesis turns to human aspects of algorithm design. We conduct several survey studies that address several questions of practical algorithm design: How do algorithms impact decision making? What additional information helps people use complex algorithms to make decisions? Do people understand standard algorithmic notions of fairness? We conclude with suggestions for facilitating deeper stakeholder involvement for practical algorithm design, and we outline several areas for future research.
    URI
    http://hdl.handle.net/1903/28356
    Collections
    • Computer Science Theses and Dissertations
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility