Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    RETRIEVALS OF ANTARCTIC SEA ICE PHYSICAL PROPERTIES FROM SATELLITE RADAR ALTIMETRY

    View/Open
    Fons_umd_0117E_21752.pdf (30.54Mb)
    (RESTRICTED ACCESS)
    No. of downloads: 4

    Date
    2021
    Author
    Fons, Steven William
    Advisor
    Carton, James
    Kurtz, Nathan
    DRUM DOI
    https://doi.org/10.13016/ehii-gkia
    Metadata
    Show full item record
    Abstract
    Satellite observations have been used in sea ice research throughout the last 40+ years and have brought to light substantial changes in the global sea ice coverage. More recently, satellite altimetry has become a valuable tool to estimate the thickness of sea ice - a parameter that plays an important role in the Earth System by moderating heat and moisture fluxes between the polar ocean and atmosphere. While radar altimetry has been effective in providing estimates of Arctic sea ice thickness, the complex snow stratigraphy and uncertain snow depth on Antarctic sea ice have precluded sea ice thickness retrievals in the Southern Ocean, leading to a decade-long gap in the thickness record spanning the lifetime of ESA’s CryoSat-2 satellite. This dissertation will address the need for Antarctic sea ice thickness estimates from CryoSat-2 through the development and assessment of new retrievals of sea ice physical properties that enable the estimation of sea ice thickness.The first part of this dissertation is aimed at developing a CryoSat-2 retrieval algorithm that is less dependent on uncertain returns from the snow-ice interface of Antarctic sea ice. This method exploits observed scattering of Ku-band radar pulses from the snow surface and snow volume atop sea ice and uses a physical waveform model and optimization approach to retrieve the air-snow interface elevation and snow freeboard. Building off the initial development, the second part of this work offers improvements to – and assessments of – the retrieval process though comparisons with coincident snow freeboard measurements from NASA’s ICESat-2 laser altimeter. The final part of this dissertation uses the retrieval process to estimate snow depth and ice freeboard, enabling first estimates of Antarctic sea ice thickness that span the CryoSat-2 mission. Potential applications for use of this method over Arctic sea ice are also explored. The studies within this dissertation represent new possibilities for CryoSat-2 data and lay a foundation for the development of a combined laser-radar altimetric record of Antarctic sea ice thickness.
    URI
    http://hdl.handle.net/1903/27994
    Collections
    • Atmospheric & Oceanic Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility