Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Electron Acceleration during Macroscale Non-Relativistic Magnetic Reconnection

    Thumbnail
    View/Open
    Arnold_umd_0117E_21380.pdf (1.248Mb)
    No. of downloads: 102

    Date
    2021
    Author
    Arnold, Harry
    Advisor
    Drake, James
    DRUM DOI
    https://doi.org/10.13016/zc8d-fumf
    Metadata
    Show full item record
    Abstract
    In this thesis we developed the new model {\it kglobal} for the purpose of studying nonthermal electron acceleration in macroscale magnetic reconnection. Unlike PIC codes we can simulate macroscale domains, and unlike MHD codes we can simulate particles that feedback onto the fluids so that the total energy of the system is conserved. This has never been done before. We have benchmarked the model by simulating Alfv\'en waves with electron pressure anisotropy, the growth of the firehose instability, and the growth of electron acoustic waves. We then studied the results of magnetic reconnection and found clear power-law tails that can extend for more than two decades in energy with a power-law index that decreases with the strength of the guide field. Reconnection in systems with guide fields approaching unity produce practically no nonthermal electrons. For weak guide fields the model is extremely efficient in producing nonthermal electrons. The nonthermals contain up to $\sim80\%$ of the electron energy in our lowest guide field simulation. These results are generally consistent with flare observations and specifically the measurements of the September 10, 2017, flare.
    URI
    http://hdl.handle.net/1903/27242
    Collections
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility