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Chapter 1: Introduction

1.1 Magnetic Reconnection

Although the world we live in is primarily made up of liquids, solids, and

gases, there is a fourth state of matter called plasmas. In fact, observations of the

universe suggest that 99.999% of all observable matter is plasma [1]. This makes

studying plasma extremely important for understanding the universe that we live

in. While the physics of plasmas covers a large amount of material, in this thesis

we concern ourselves with a process called magnetic reconnection. During magnetic

reconnection magnetic fields that are initially pointing in opposite directions can

”reconnect” as illustrated in Fig. 1.1. The field lines flow towards the so called

”X-line” where the in-plane magnetic field vanishes in a current layer between the

two regions of oppositely pointing magnetic fields. After reconnection the new field

lines are highly bent, as can be seen in Fig. 1.1 on the right and left sides, and move

outwards at a characteristic speed called the Alfvén speed. As the field lines move

their magnetic tension pushes the plasma analogous to a stretched rubber band

snapping forward. This process then heats the plasma and can accelerate particles

to extremely high energies.

Magnetic reconnection plays an important role in many different phenomena
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Figure 1.1: A schematic of magnetic reconnection. Initially oppositely directed

magnetic field lines reconnect and form bent field lines. Reprinted from [2]
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that affect life on Earth. It is responsible for the sawtooth crash seen in tokamaks

that dissipates magnetic energy and disrupts magnetic confinement of high temper-

ature plasma. This is a strong obstacle that needs to be overcome to make fusion

economically feasible. Reconnection is also responsible for solar flares and coronal

mass ejections. These events typically release 1027 ergs/sec or about 10 million nu-

clear bombs exploding every second. While this process occurs on the Sun, human

society can be affected if Earth is hit by the radiation associated with this event.

While that energy diffuses as it travels outward from the sun, a direct hit on Earth

can still disrupt everyday life: On March 10, 1989 the effects of a flare were pow-

erful enough to knock out Quebec’s electrical grid and trigger northern lights that

could be seen as far south as Cuba. Additionally, the radiation from solar flares can

threaten the lives of astronauts, especially if humans attempt interplanetary travel.

In this thesis we focus on the development of a new computational model that can

be used to explore electron acceleration during magnetic reconnection in macroscale

systems and apply it to understand particle acceleration in solar flares.

1.2 Observations of Macroscale Reconnection

Observations of solar flares suggest that a large fraction of the energy released

appears as energetic electrons and ions [3–5]. Solar observations also indicate the

highest energy electrons are closest to the inferred position of the x-line [6]. In

recent observations of over-the-limb flares the limb of the sun blocked the intense

emission from the chromosphere, which enabled direct measurement of the high
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corona where magnetic energy was released in the flare [7,8]. The surprise was that

a large fraction of the electrons in the high emission region were in the energetic

component, indicating that most electrons in the region underwent acceleration.

Such observations are consistent with the large number of accelerated electrons seen

in flares. Further, the total pressure of these energetic particles was comparable

to that of the magnetic field. That energetic electrons can be efficiently produced

during reconnection is not limited to flares. During in situ satellite measurements

in the distant magnetotail energetic electrons in excess of 300 keV were produced.

They were broadly peaked around the reconnection x-line rather than localized

in boundary layers, suggesting that electrons were able to wander over a broad

region [9].

The observations pose significant challenges to models of electron and ion ac-

celeration during magnetic reconnection. These challenges include: large numbers

of electrons undergoing strong heating in flares with the pressure of the energetic

component approaching that of the reconnecting magnetic field; the energetic elec-

trons peaking in a broad region around the x-line and not in localized boundary

layers; and the particle spectra exhibiting a power-law form at high energy.

These observations rule out the classical picture in which reconnection-driven

particle acceleration takes place in a boundary layer associated with a single, large-

scale reconnection site. Such a single x-line model can not explain the large number

of energetic particles produced during reconnection nor their broad spatial distribu-

tion. Further, reconnected magnetic field lines release most of their energy as they

expand downstream of the x-line rather than in the diffusion regions around the
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x-line where the topological change in magnetic structure takes place.

On the other hand, it is also now established that current layers typically

spawn multiple magnetic islands, bubble like objects encircled by a magnetic field

line, in 2D systems [10, 11] or become turbulent due to the generation of multiple

x-lines with variable tilt angles in 3D systems [12–16], especially in the presence

of strong magnetic fields in the out-of-plane direction, or guide field, in Fig. 1.1.

Observations of flux transfer events (FTEs) at the magnetopause [17], flux ropes in

the magnetotail [18,19] and downflowing blobs during reconnection in the corona [20,

21] support the multi-island, multi-x-line picture of reconnection. That reconnection

becomes turbulent is also consistent with recent solar flare observations in which

the production of energetic electrons was correlated with the onset of turbulent

flows [22].

1.3 Electron energy gain

Observations suggest that reconnection-driven particle acceleration takes place

in a multi-island or turbulent reconnecting environment rather than in a single, large-

scale reconnection site. To understand particle acceleration in such an environment,

recall that as particles travel along a magnetic field line they also orbit the field

centered on a point called the guiding center. Thus we can average over the gyration

and write the basic equation for the rate of energy gain of particles in a guiding center

system after summing over all particles in a local region [23].

dW

dt
= E||J|| +

P⊥
B

(
∂B

∂t
+ vE · ∇B

)
+ (P|| + np||v||)vE · κ (1.1)
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where W is the total kinetic energy density, vE = cE × B/B2, v|| and p|| are

the bulk parallel velocity and momentum, and the curvature of the magnetic field is

κ = b·∇b with b the unit vector along B. The parallel and perpendicular pressures

are P|| and P⊥ and n is the density. The equations apply to any species for which the

guiding-center approximation is valid. However, for ions an additional term, the dot

product of the polarization drift into the electric field, is required since the kinetic

energy associated with the E×B drift is not negligible. The first term in Eqn. (1.1)

is the acceleration by the parallel electric field. The second term corresponds to

perpendicular heating or cooling due to the conservation of the magnetic moment µ

(Betatron acceleration). The third term drives parallel acceleration and arises from

the first-order Fermi mechanism [24–26]. Freshly reconnected field lines downstream

from a reconnecting x-line accelerate as a result of the tension force that causes

them to ”straighten”. Particles that reflect from this moving field line receive a

Fermi ”kick” and thereby gain energy. This is illustrated in Fig. 1.2. The bent field

line moves outwards at the Alfvén speed, CA, and the particle streams towards the

bent filed line at a speed v0. But in the frame of the magnetic field line the particle

moves at a speed v0 + CA and reflects off the field line just as a ball bounces off a

wall, thus the particle leaves moving at the same speed. When you go back to the

”laboratory” frame where the field line is moving at the Alfvén speed the particle

is moving at v0 + 2CA and has gained energy.

Betatron acceleration is typically not important during reconnection since the

release of magnetic energy leads to a reduction of B and therefore the perpendicular

temperature [27]. Depending on the strength of the ambient guide field either E|| or

6



Figure 1.2: A bent field line moving at the Alfvén speed, CA, with an incoming

particle with an initial speed v0. After receiving a Fermi kick and gaining energy

the particle leaves at the speed v0 + 2CA.
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Fermi reflection dominates electron heating during reconnection. Fermi reflection

dominates for weak to modest guide fields while E|| dominates for large guide fields

[27]. A recent important discovery is that energetic electron production plunges in

the strong guide field limit where E|| dominates and therefore E|| is an inefficient

driver of energetic particles [16, 28]. This result also suggests that high frequency

waves, such as double layers and electron solitary waves, which have been identified

in both observations and simulations of reconnection [29], are not a major driver

of energetic electrons during reconnection. Importantly, in a regime where Fermi

reflection dominates, particle energy gain and magnetic energy release are directly

linked (consistent with flare observations) [10, 30], energetic particles spread over

broad regions and are not localized in narrow boundary layers [15, 16], and large

numbers of particles undergo acceleration.

However, it is known that a large-scale parallel electric field (not localized in

boundary layers) facilitates electron energy gain by confining electrons within the

reconnection exhaust such that they undergo multiple Fermi kicks [31–34]. Thus,

it is of interest to include this large scale parallel electric field in our model to

properly model the energy gain of low energy electrons. This potential is not,

however, important to the dynamics of very energetic electrons. This field arises

from parallel gradients in the electron pressure and points away from the current

sheet in the reconnection exhaust. In an open system it drives a return current of

cold electrons that balances the current associated with escaping hot electrons to

maintain zero net parallel current.
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1.4 Limitations of Common Plasma Models

There are several existing models for plasma simulations. Each model has

advantages and disadvantages and no model can perfectly simulate a plasma. The

reason for this inherent limitation is because in order to perfectly simulate a plasma

the positions and velocities of every particle needs to be known at every time.

Further every particle will generate electric and magnetic fields that then effect every

other particle. To simulate this system would be very computationally expensive

and is impractical since the time required to perform a simulation scales like the

number of particles squared, N2. Thus, broadly speaking, various simplifications

have led to two sorts of models.

The first is called a particle-in-cell (PIC) model. This model treats the plasma

as ”macro-particles”. Each macro-particle represents a density of particles and has a

position and velocity. The electric and magnetic fields are then determined at regular

intervals on a grid due to the positions and motion of all the macro-particles in the

corresponding grid cell. Then the fields accelerate the particles through the Lorentz

force. This drastically reduces the number of computations during the simulation,

resulting in the required time scaling like Nlog(N). This model is excellent when

studying kinetic-scale effects since a PIC model needs to resolve the smallest physical

scales. The second kind of model is called a magnetohydrodynamic model (MHD).

This model treats the plasma as a fluid by taking moments of the Vlasov equation.

In this model small scales are averaged out and individual particles do not exist.

Thus, studying large scale systems, such as the Earth’s magnetosphere, are possible
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in this model. The motion and energization of particles can be studied in these

models through a ”test particle” approach. However, the test particles do not feed

back onto the MHD fluid and fields and therefore the total system, including the

test particles, does not conserve energy.

Energetic particle spectra in heliospheric observations typically take the form

of high energy power-law tails. On the other hand, the particle spectra in PIC

simulations of reconnection in the non-relativistic regime (Alfvén speed much smaller

than the velocity of light) typically do not form power-laws [16,27] except in the limit

in which the upstream plasma pressure is much lower than that of the magnetic field

(extremely low plasma β) [35]. Simple “particle-in-a-box” models in which energy

drive and loss mechanisms are included exhibit power-law spectra [30, 36]. The

hardest spectra from such models have distribution functions f that scale as v−5,

which correspond to the upper limit so that the integrated particle energy remains

finite. The particle fluxes at this limit scale as ε−1.5 with ε the particle energy.

Electron fluxes that scale as ε−1.5 have been observed in solar flares [37]. Ion fluxes

typically scale as ε−1.5 in the solar wind [38] and in the outer heliosphere [39, 40].

Thus, simulations of reconnection-driven particle acceleration that are large enough

to include realistic loss mechanisms appear to be required to explain observations.

The fundamental question is how to explore particle acceleration in macro-scale

reconnecting systems such as the solar corona where the separation between kinetic

scales and macro-scales approaches 1010 (the Debye length is less than a centime-

ter for n ∼ 1010/cm3 and Te ∼ 100eV while macro-scales approach 104km). The

development of Parker-like transport equations that describe reconnection-driven
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particle acceleration illuminate the important physical processes that control spec-

tra (pressure anisotropy, feedback on the Fermi drive, particle loss versus energy

gain times) [30, 41–43]. They also yield guidelines on the range of spectral indices

that are possible in reconnecting systems. However, such models are not able to

directly describe the reconnection dynamics of a given event such as an impulsive

flare in the sun’s atmosphere even when they are paired with the MHD description

of the system – scattering in such models is assumed to be strong enough so that

the energetic particles are tied to the local fluid and so are unable to stream along

ambient magnetic field lines [43]. Such strong scattering, however, is inconsistent

with solar flare observations [44].

Exploring the dynamics of test particles in the MHD fields produces useful

information about how particles gain energy [45–48]. However, the energy going

into the energetic particles can run away since there is no feedback on the MHD

fields. It is also possible to embed PIC models into large-scale MHD descriptions

at selected locations where reconnection takes place [49]. However, such models

presume that particle energy gain is highly localized in space around isolated x-

lines, which is not consistent with the description of particle energy gain during the

development and interaction of macro-scale magnetic islands or the development of

turbulence in large-scale current layers.

The problem with conventional PIC codes in the context of modeling large-

scale systems is that the Debye length has to be resolved to avoid non-physical

heating of the electron macro-particles. Implicit PIC models avoid this constraint

but still need to resolve the electron and ion inertial scales [50]. Conventional hybrid
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codes (fluid electrons and macro-particle ions) can not model electron acceleration

and must still resolve the ion inertial scale and the ion Larmor radius and therefore

can not be used to explore energetic particle spectra in macroscale systems.

The fundamental question is whether kinetic scale boundary layers play an

essential role in the development of particle energy gain during impulsive flares

in macro-scale systems such as the sun’s corona. The rate of reconnection in ki-

netic descriptions corresponds to inflows that are around 0.1CA where CA is the

Alfvén speed based on the upstream reconnecting magnetic field [51–53]. On the

other hand, MHD descriptions of reconnection at low resistivity generate multiple

magnetic islands and yield reconnection rates that, while somewhat slower than

in kinetic models, are, nevertheless, insensitive to plasma resistivity [54–56]. The

inclusion of current-driven resistivity can boost MHD reconnection rates to values

comparable to kinetic models. Kinetic boundary layers control the regions where E||

is non-zero [57,58]. However, it is Fermi reflection and not E|| that is the dominant

driver of energetic particles. Particle energy gain from Fermi reflection takes place

over macro-scale regions where magnetic fields are releasing energy and takes place

even where E|| = 0. Physically, particles moving along bent field lines have curva-

ture drifts along the reconnection electric field and therefore gain energy as long as

κ · vE is positive. The conclusion therefore is that including kinetic-scale boundary

layers is not required to describe the dynamics of energy gain of the most energetic

particles in macroscale systems. The MHD model is a reasonable description of heat-

ing during magnetic reconnection – either through the formation of switch-off slow

shocks in anti-parallel reconnection or a combination of rotational discontinuities
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and slow shocks in the case of reconnection with a guide field [59].

We conclude therefore that we can explore particle acceleration during mag-

netic reconnection in macroscale systems without resolving the kinetic scale bound-

ary layers that limit traditional kinetic models. Here we present a novel compu-

tational model that combines the MHD description of the plasma dynamics with

a macro-particle description but in which all kinetic scales are ordered out of the

system of equations. The macro-particles can be small in number density but can

contribute a pressure that can be comparable to the pressure of the reconnecting

magnetic field. They move within the MHD grid and are advanced in parallel with

the fluid equations using the guiding center equations based on the MHD electric

and magnetic fields. The particles feed back on the MHD fluid through their gy-

rotropic pressure tensor. The entire system conserves the total energy, including

that of the MHD fluid (ions and the bulk electrons), the magnetic field and the ki-

netic energy of the macro-particles. In the early phase of exploration of this model,

we are treating only electrons as macroparticles but the ions can also be similarly

treated.

There have been earlier efforts to couple the MHD equations to a gyro-kinetic

model for studying the stability of Alfvén waves [60] and the internal kink mode in

tokamaks [61]. However, the gyrokinetic model orders out Fermi reflection, which for

exploring particle acceleration during reconnection is essential. The basic ordering

that we adopt is consistent with that discussed by Kulsrud in which Fermi reflection

is retained [62]. Overall energy conservation was not discussed in this previous work.

Others have coupled the MHD equations to a general kinetic particle description [63].
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The importance and challenge of producing a set of equations that conserves energy

exactly has been discussed previously [64].

The kglobal simulations produce power-law spectra of energetic electrons that

extend nearly three decades in energy and at the same time produce the super-

hot thermal electrons that characterize flare observations [7, 8, 65]. Consistent with

observations, the total energy content of the nonthermal electrons can exceed that

of the hot thermal electrons even though the number density of the nonthermals is

less than the hot thermals. The simulations have been carried out with a variety

of values of the initial ambient out-of-plane guide field and reveal that the strength

of the guide field strongly impacts the energy content of the nonthermal electrons

and their power-law index. Specifically, a guide field that exceeds the reconnecting

magnetic field suppresses nonthermal electron acceleration by increasing the effective

radius of curvature of reconnecting magnetic field lines and therefore suppresses the

dominant Fermi drive mechanism and the production of nonthermal electrons. In

contrast, the size of the global system has relatively little influence on the production

of nonthermal electrons.

1.5 Outline of Thesis

In Chap. 2, we describe the kglobal model in detail and present tests of the

model that verify its capabilities. The model consists of an MHD backbone with

macroparticle electrons distributed on the MHD grid. The guiding center equations

with the MHD electric and magnetic fields describe the motion and energy gain
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of the macroparticle electrons. These electrons feedback onto the MHD fluids and

fields and conserve energy. We show that kglobal correctly simulates Alfvén waves in

the presence of a pressure anisotropy, which is crucial for modeling Fermi reflection

since pressure anisotropy can reduce magnetic field tension and the associated Fermi

drive mechanism. Specifically, we demonstrate that the model reproduces the correct

growth rate of the linear firehose instability, which onsets when the local field-line

tension goes to zero.

In Chap. 3, we describe the addition of a large scale parallel electric field in

the kglobal model. This stems from parallel gradients in the electron pressure tensor

and points away from the current sheet in the reconnection exhaust. It is believed

that this electric field is capable of reflecting low energy electrons back into the

reconnection exhaust to receive multiple Fermi kicks and gain energy. This parallel

electric field also develops to drive a return current to maintain zero current when

energetic electrons escape along open field lines. We then benchmark kglobal against

a PIC model and correctly match the Landau damping rate of the electron acoustic

mode, which onsets as energetic electrons stream outward on open field lines.

In Chap. 4, we present results from 2D magnetic reconnection using the new

kglobal model. Reconnection begins from particle noise and produces multiple islands

(or flux ropes since they consist of an axial magnetic field wrapped by the inplane

magnetic field) that merge, forming larger islands and accelerating electrons. The

pressure anisotropy from the electron macroparticles becomes large enough to elim-

inate the magnetic tension force along outflow exhausts and within islands when

electron acceleration is strong. Clear power-law tails extending nearly 3 decades
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in energy develop for weak guide fields. Importantly, the power-law index depends

strongly on the guide field such that for low guide fields a hard spectrum is observed.

An analytic model is presented that reproduces the spectral indices obtained in the

simulations and reveals the strong dependence on the guide field. Unsurprisingly, for

low guide fields, i.e. harder spectra, more energy is concentrated in the nonthermal

electrons. Finally we compare our results with observations of solar flares.

In Chap. 5 we present conclusions, discuss the results in the context of previ-

ous efforts to explore reconnection-driven electron acceleration, and suggest future

extensions of this work.
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Chapter 2: A computational model for exploring particle accelera-

tion during reconnection in macroscale systems

In this chapter we describe the kglobal model. Testing shows that the model

correctly describes the propagation of an Alfvén wave in the presence of an electron

pressure anisotropy and the linear firehose instability. These are two important

benchmarks since the bent, reconnected magnetic field lines travel at the Alfvén

speed and reconnection is throttled by the suppression of field-line tension as a

plasma approaches firehose marginal stability. We include a fourth order hypervis-

cosity term to prevent grid scale instabilities and to cutoff the firehose instability

at high k. The material in this chapter has been adapted from [23] with permission

from the authors.

2.1 Basic Equations and Conservation Properties

We treat a system with three distinct classes of particles: ions of density n and

temperature Ti, cold electrons with density nc and temperature Tc and energetic

electrons with density nh = n − nc. The hot electrons will be treated as macro-

particles that are evolved through the MHD grid by the guiding center equations.
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Momentum equations can be written down for each of the three species, the ions

min
dvi

dt
= neE +

ne

c
vi ×B−∇Pi, (2.1)

the cold electrons

menec
dvec

dt
= −neceE−

nece

c
vec ×B−∇Pec, (2.2)

and the hot electrons

∂(nehp̄eh)

∂t
= −neheE−

nehe

c
v̄eh ×B−∇ · Teh. (2.3)

vi, vec and v̄eh are the ion and electron cold and hot velocities and p̄eh is the

average hot electron momentum (an average of the local momenta of individual par-

ticles). The hot electron stress tensor Teh includes both the pressure and convective

derivatives and as a consequence the inertia term in Eq. (2.3) does not include the

convective derivative. The hot electron stress tensor is given by

Teh =

∫
dpe

pepe
meγe

f (2.4)

with pe the hot electron momentum with distribution f and γe is the relativistic

Lorentz factor. The form of Teh for guiding center particles and the reason for

writing the hot electron momentum equation in this form will be clarified later.

These equations are formally exact if there are mechanisms for maintaining the

isotropy of Pi and Pec. The usual challenge in deriving the MHD equations from the

multi-fluid equations is that the electric field and Lorentz force terms are formally

larger than the other terms in the equations. In Eq. (2.1), for example, taking

vi ∼ VA and d/dt ∼ VA/L, the inertia term is of order di/L� 1 and therefore small
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if the ion inertial length di = VA/Ωi is much smaller than the system scale length

L. The usual procedure is then to sum the two fluid equations or in the present

case the three fluid equations, which eliminates the electric field completely and

reduces the Lorentz forces to the J×B/c force of the usual MHD equation. Since

J ∼ cB/4πL ∼ neVA(di/L) � neVA, the inertial and J × B terms in the MHD

equations are the same order.

In the present system we carry out the same procedure while discarding the

electron inertial terms, which are small as long as L � de with de the electron

inertial length. We emphasize that we are discarding only the inertia of the bulk

flow associated with the hot electrons and not the inertia associated with individual

hot electrons. The dominant motion of individual hot electrons in the guiding center

limit is parallel to the ambient magnetic field. The perpendicular motion arises from

vE with the various perpendicular gradient drifts being much smaller. The large

parallel velocities of the hot electrons largely cancel when summed to produce a large

parallel pressure but not a large streaming velocity. Because we are discarding the

electron fluid inertia, in summing the three momentum equations we also discard the

parallel electric field and the parallel pressure gradient of the hot electrons. The hot

electrons are unable to couple to the MHD fluid along the ambient magnetic field

through their parallel pressure gradient. Their parallel motion is instead controlled

by the inertia of individual particles and electromagnetic forces. They act only on

the MHD fluid through their forces perpendicular to B. An extension of such a

model to include a finite macroscale parallel electric field is discussed at the end of
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the chapter. Thus, summing the three momentum equations yields

ρ
dv

dt
=

1

c
J×B−∇P − (∇ · Teh)⊥ , (2.5)

where we have suppressed the subscript so that v is the fluid velocity with mass

density ρ and P = Pi + Pec. The energetic particles act on the MHD fluid through

their stress tensor. It is convenient, however, to express this force in terms of the hot

electron current JehT⊥ driven by the stress tensor. This current is obtained from

the hot electron momentum equation by first subtracting the dominant current

associated with vE (which cancels that of the ions and cold electrons) from Jeh.

This yields

JehT⊥ =
c

B
b×∇ · Teh (2.6)

We now proceed to simplify the form of Teh for guiding center electrons. The

stress tensor can be written in two distinct components associated with the averaged

hot electron convection and the pressure. In the direction perpendicular to B,

the dominant perpendicular motion of the hot electrons is given by vE with other

drifts being smaller in the ratio of the Larmor radius to the macroscale L. For

vE ∼ VA the inertia associated with this perpendicular motion is negligible as long

as me/mi � βeh⊥ ∼ 1. In this limit the stress tensor takes the usual gyrotropic

form

Teh = Teh||bb + Peh⊥(I− bb), (2.7)

where I is the unit tensor, Teh|| is the stress tensor along the magnetic field B and

Peh⊥ is the usual perpendicular pressure,

Peh⊥ =

∫
dpe

p2e⊥
2meγe

f, (2.8)
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where in the frame drifting with vE, f = f(x, pe||, pe⊥, t) since there is no other

mean drift perpendicular to B. Teh|| includes the mean parallel drifts of the hot

electrons and can be written as a combination of the usual parallel pressure Peh||

plus the mean parallel convection terms,

Teh|| =

∫
dpe

p2e||
meγe

f = Peh|| + nehp̄eh||v̄eh|| (2.9)

with

Peh|| =

∫
dpe(pe|| − p̄eh||)

(
pe||
meγe

− v̄eh||
)
f. (2.10)

The hot electron parallel bulk streaming terms in Eq. (2.9) are nominally much

smaller than the parallel pressure since

nhp̄eh||v̄eh|| ∼
meJ

2
||

ne2
∼ B2

4π

d2e
L2
∼ Peh||

d2e
L2
� Peh||. (2.11)

On the other hand, we demonstate below that exact energy conservation requires

that this nominally small contribution to Teh|| be retained since these contributions

appear in the expression for electron energy gain given in Eq. (1.1). With the form

of the stress tensor given in Eq. (2.7), the hot electron current can be expressed

as [66]

JehT⊥ =
c

B
(Teh|| − Peh⊥)b× κ+

c

B
b×∇Peh⊥. (2.12)

An equivalent form for the hot electron current is

JehT⊥ =
c

B
b×

(
Peh⊥∇ ln(B) + Teh||κ

)
− c

(
∇× Peh⊥b

B

)
⊥
, (2.13)

where the first term on the right is the gradient B drift, the second is the curvature

drift and the third is the magnetization current [67]. The MHD equation with
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energetic electron feedback can then be written as

ρ
dv

dt
=

1

c
J×B−∇P − 1

c
JehT⊥ ×B. (2.14)

The calculations leading to Ohm’s law in this three species system parallel that of

the electron-ion system. As discussed previously, the dominant terms in Eqs. (2.2)-

(2.3) are the electric field and Lorentz terms. Adding the two electron equations

and discarding the pressures and stress tensor, we obtain

E =
1

nc
(necvec + nehveh)×B =

1

nec
J×B− 1

c
v ×B ' −1

c
v ×B, (2.15)

where we have added and subtracted nv in the Lorentz force and again used the fact

that J � nev to eliminate the J×B or Hall term in Ohm’s law. Thus, Ohm’s law,

which determines E in terms of v is unchanged from the usual MHD prescription.

The equations for the pressure P and mass density ρ are also unchanged.

The model is completed by the guiding-center equations for the hot electrons

[68]

d

dt
pe|| = pe||vE · κ−

µe
γe

b · ∇B (2.16)

with pe|| the parallel momentum of a macroparticle electron with its magnetic mo-

ment given by

µe = p2e⊥/2B. (2.17)

pe⊥ is determined from the conservation of µe. The particle velocity is given by vE

and the parallel streaming veh|| = peh||/(γeme) along B, the curvature and gradient

B drifts being smaller in the ratio of the Larmor radius to the macroscale L. The

ordering of the hot electron drifts and their energy gain in Eqs. (2.16)-(2.17) are
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equivalent to Kulsrud’s guiding center description [62]. A critical goal in developing

a credible set of equations to describe particle acceleration is to establish energy

conservation. By taking the dot product of Eq. (2.14) with v and integrating over

space the energy conservation relation takes the form

d

dt
WMHD = −

∫
dx Jh · E = − d

dt
Wh

= −
∫
dx

[
Teh||vE · κ+

Peh⊥
B

(
∂B

∂t
+ vE · ∇B

)]
(2.18)

where WMHD is the usual energy in the MHD description, including the kinetic

energy of the bulk flow, the thermal energy and magnetic energy. dWh/dt is the

rate of change of the energy of the hot electrons. dWh/dt in Eq. (2.18) is equal to

the spatial integral of the rate of energy gain in Eq. (1.1). We again note that the

convective terms in the curvature in Eq. (2.18) are nominally small since d2e/L
2 �

1 but must be retained so that the energy gain in Eq. (1.1), which follows from

Eq. (2.16) and the conservation of µe, matches that in Eq. (2.18). Having equations

that exactly conserve energy facilitates testing the model and is desirable [64].

The equations presented above provide a complete self-consistent system for

exploring the production of energetic electrons in macroscale systems. Since the

electrons are evolved in the fields from the MHD equations, the artificial heating

associated with the PIC model when the Debye length is not resolved is not an issue.

Similar equations can be written down that also include energetic ions although the

neglect of their inertia requires that their number density be small. Beyond energy

conservation, an important consideration is whether the equations properly describe

the feedback of the energetic component on the MHD fluid. It is straightforward
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to show that the inclusion of an ambient pressure anisotropy in the hot component

through Teh yields the correct firehose stability criterion. In the case of magnetic

reconnection the firehose stability boundary plays an important role in throttling

reconnection [25, 26] and in controlling the spectral index of the energetic particles

resulting from reconnection [30]. The firehose stability boundary will act similarly in

this model if the pressure in the energetic component is too high. With these equa-

tions the production of energetic particles in realistic macroscale systems can be ex-

plored where realistic losses can be included and the realistic spectra of synchrotron

emission from the volume and Bremsstrahlung emission at system boundaries can

be calculated for direct comparison with X-ray observations from satellite missions

such as Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and ground-

based radio observatories such as the Nobeyama Radioheliograph (NoRH) [69] or

the Extended Owens Valley Solar Array (EOVSA) [70].

2.2 Tests of the kglobal model

As discussed in the previous section, the pressure anisotropy of the energetic

electrons plays an important role in throttling magnetic reconnection and limiting

the energy gain of those particles [25, 26, 30]. Thus to ensure the model correctly

describes the impact of pressure anisotropy on magnetic field dynamics we bench-

mark the code with two simple wave modes that are evolved in a system with an

imposed initial pressure anisotropy: the linear propagation of stable, circularly po-

larized Alfvén waves; and the linear growth of firehose modes. The correct solutions
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of both of these tests are, of course, well known [71].

The new computational model was constructed by merging the fluid evolution

equations of the f3d code [72] (with the Hall terms in Ohm’s law removed) and the

particle treatment in the p3d code [73], modified to step the particles in the guiding

center limit. Time stepping is with a second order trapezoidal leapfrog scheme with

a fourth order viscosity added to each of the fluid equations to prevent the buildup

of noise at the grid scale.

In this new model the magnetic field strength, B0, and density, n0, define the

Alfvén speed, VA =
√
B2

0/4πmin0. Since there are no kinetic scales that enter the

equations, lengths and times are normalized to a macroscale length, L, and Alfvén

crossing time, τA = L/VA. This normalization allows us to set the physical distance

of the longest dimension in our simulations to 2πL where L can be any macroscopic

scale length. Electric fields and temperatures are normalized to VAB0/c and miV
2
A ,

respectively. A fourth order hyperviscosity, ν∇4, is included for every quantity

evolved on the grid (magnetic field, ion density, momentum and pressure and cold

electron pressure).

The tests were carried out in a system with two space dimensions with Bx =

B0. The ion to hot electron mass ratio is set to 25 (the cold electrons are massless).

For a given hot electron pressure and density the mass ratio controls the streaming

velocity of electrons through the system. For linear waves with an imposed initial

pressure anisotropy the evolution of the pressure does not enter the equations so the

value of electron mass does not influence the dynamics. The temperature of the ions

and the cold electrons was 1/12. For the hot electrons, the temperature was varied
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to control the magnitude of the anisotropy of their pressure tensor. The box size

was varied from 256 x 64 cells to 512 x 256 cells and there were 160-320 particles

per grid cell.

In the first benchmark of the model we propagated a circularly-polarized

Alfvén wave along a magnetic field in a system with an imposed hot electron pressure

anisotropy. We initialized the simulations with a perturbation with a wavelength

equal to the size of the box. After propagating the wave for a time τA, we measured

its speed. Our equations yield the phase speed Vp of an Alfvén wave:

Vp = VA

√
1− 4π

P|| − P⊥
B2

≡ VAα, (2.19)

where α =
√

1− 4π(P|| − P⊥)/B2. This result is identical to that from the Chew-

Goldberger-Low (CGL) equations since in the linear limit of the system the pressure

remains unperturbed. In Figure 2.1 the wave phase speed Vp is plotted as a function

of the anisotopy parameter α. The agreement with linear wave theory is excellent.

In our second benchmark we explored the linear growth of the firehose insta-

bility with an imposed initial unstable pressure anisotropy with α2 = −0.16. We

initialized the simulation with small sinusoidal perturbations for 18 values of the

wavenumber, k = m/2πL, where m = 1, 2, ... is the mode number, and the viscos-

ity was ν = 6.0 · 10−5. The theoretical growth rate is given by γ = kVA|α| − νk4.

The viscosity controls the cutoff of the instability at short spatial scales. In Figure

2.2 we plot the theoretical (solid red line) and numerical growth rates (black stars)

for the range of unstable wave numbers. For m > 18 the modes are stable. There is

excellent agreement between the new model and what one would expect from linear
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Figure 2.1: For each of ten simulations we plot the measured phase speed of the

Alfvén wave Vp versus the anisotropy parameter α. The solid line is what we expect

from our model, which is the same as that of the linearized CGL equations. The

dotted lines show where the isotropic Alfvén wave lies and separates the region

where P|| is greater than P⊥ from where it is smaller.
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Figure 2.2: Normalized growth rate, γτA, verus the mode number, m = 2πkL, for a

range of unstable values of m. The numerically determined values of γτA are marked

with black stars and the theoretical growth rate as a red line.

theory.

2.3 Summary and Discussion

The enormous separation between kinetic scales (the Debye length, the elec-

tron and ion inertial scales and Larmor radii) in the solar corona (as small as a

centimeter) and the energy release scales ( 104km), mean that modeling the release

of energy in flares in the solar corona and other astrophysical systems using a PIC

model, which needs to resolve the Debye scale, is not feasible even with projected

increases in computational power. Recent advances in our understanding of the

mechanisms for particle acceleration [15, 16], suggest that these boundary layers,
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which control the structure of parallel electric fields, play only a minor role in the

production of the most energetic particles. Particle acceleration is controlled by the

large-scale dynamics of magnetic fields through the merging of magnetic islands in

2D systems and the turbulent interactions of x-lines in the more physically realis-

tic 3D systems. We have presented here a new model in which we have ordered

out all of the relevant kinetic boundary layers. The result is a model that is scale

independent and therefore capable of modeling macroscale systems.

The model consists of an MHD backbone in which macroparticles (electrons)

move through the MHD grid using the guiding center equations with electric and

magnetic fields given by the usual MHD prescription. Importantly, the energetic

electrons feed back on the MHD fluid through the perpendicular currents associated

with their anisotropic stress tensor. The consequence is that energy is conserved

exactly. Further the development of pressure anisotropy of the energetic compo-

nent (with P|| > P⊥) properly describes the reduction in magnetic tension that

drives reconnection and therefore controls the feedback of the energetic particles on

the dynamics of reconnection. The equations describing the full system consist of

Eqns. (2.7)-(2.17) with the energy conservation relation given in Eqn. (2.18). A code

has been developed to solve these equations by merging the basic algorithms of the

f3D Hall MHD and p3d PIC codes. The resulting model has been benchmarked with

the propagation of Alfvén waves and firehose modes in a system with a specified

initial pressure anisotropy.

In the following chapters we describe how the addition of a large-scale parallel

electric field can develop as a result of electron pressure gradients in reconnecting
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systems [31,32,34]. Both electrons and ions are heated as they enter the reconnection

exhaust. Because the thermal motion of electrons is so much greater than that

of the ions, especially for mass-ratios that approach realistic values, electrons try

to escape on the reconnected field lines threading the exhaust, which extend into

the upstream plasma that has not yet entered the exhaust. Charge neutrality, of

course, prevents the electrons from streaming upstream and the result is a parallel

potential that traps electrons in the exhaust. This potential is not large enough to

significantly impact the most energetic electrons in the system. However, electrons

that first enter the exhaust drop down the potential and boost their parallel velocity.

This energy increase facilitates subsequent energy gain through Fermi reflection

[32, 34]. The parallel electric field associated with the charge neutrality constraint

can be calculated from the electron parallel force balance, obtained from the sum

of the electron momentum equations ((2.2) and (2.3)) projected along the magnetic

field direction with the total inertia of the electrons neglected [34]. The resulting

expression for E|| is given by

E|| = −
1

ne

(
b · ∇Pec + B · ∇

menecv
2
ec||

B
+ b · (∇ · Teh)

)
. (2.20)

Note that the individual streaming velocities of the cold and hot electrons and their

associated inertias could be large but the constraint on the total parallel current

requires that the sum of the streaming velocities be small. This is a traditional

return current picture in which hot electrons stream outwards from a region where

magnetic energy is being released but drive a return current of cold electrons that

eliminates the net electron current and prevents charge separation of the two species.
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The physics argument leading to Eq. (2.20) is similar to that presented by Kulsrud

to calculate E|| [62]. He argued that the parallel electic field would develop to

maintain charge neutrality in the system. His expression for E|| includes corrections

associated with ion dynamics, which are of order me/mi smaller than those retained

in Eq. (2.20). In our model the Debye length is ordered out so the system must

remain charge neutral. The ion density is calculated with a standard continuity

equation with a velocity given by the MHD momentum equation. The energetic

electron density is calculated by mapping the energetic electrons onto the MHD

grid with an appropriate interpolation scheme. The cold electron density is then

calculated by requiring that the sum of the cold and hot electron densities match

that of the ions. The physics leading to charge neutrality is the strong parallel

motion of the cold electrons that fills in for the hot electrons motion along the

ambient magnetic field.

Thus, our goal is to extend the present model by incorporating the parallel

electric field into the equations and then to proceed with a comparison of electron

heating in simple 2D reconnecting systems using the new model and standard PIC.
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Chapter 3: Large-Scale Parallel Electric Fields and Return Currents

in a Global Simulation Model

In this chapter we discuss the addition of a large-scale parallel electric field.

This electric field plays an important role in nonthermal electron gain by prevent-

ing low energy electrons undergoing acceleration in the reconnection exhausts from

escaping, allowing them to receive multiple Fermi kicks and therefore gain energy

more rapidly. We develop the equation describing this parallel electric field and test

its properties by measuring the speed and damping rate of electron acoustic modes

and comparing with analytic results based in linear kinetic theory. These modes

mediate the interplay between the fast electrons leaving the reconnection exhaust

and the cold electron return current. The material in this chapter has been adapted

from [74] with permission from the authors.

3.1 The kglobal model with E||

Since the parallel electric fields that develop in kinetic scale boundary lay-

ers [57,58] are ineffective drivers of energetic electrons during reconnection [16,27,28],

we have formulated a model in which all kinetic scale boundary layers are elim-

inated [23]. This new model includes the key physics necessary to produce high
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energy particles without having to resolve kinetic scales. We do this by representing

hot electrons as particles and cold electrons and ions as an MHD fluid. The hot

electrons are evolved using the guiding center equations and they feed back on the

fluid through their gyrotropic pressure tensor in the ion momentum equation. The

electric and magnetic fields are evolved in the usual way from the MHD fluid. [23]

presented in detail the derivation of this model. Crucially, this model conserves

energy, which prevents the electron energy from running away. The dominant feed-

back is through the development of pressure anisotropy of the energetic electrons

– a strong increase of the parallel electron pressure weakens the magnetic tension

that drives reconnection, thereby throttling magnetic energy release. MHD codes

are able to achieve normalized rates of reconnection that are of the order of 0.01

through the formation of multiple plasmoids. This rate is smaller than typical rates

from PIC simulations [52, 75]. However, through the introduction of artificial re-

sistivity and hyperviscosity fast rates of reconnection can be achieved in the MHD

model [76]. Care must be taken, however, that artifical dissipation does not suppress

multi, x-line reconnection, which is required to produce a non-thermal particle spec-

trum. Our plan is to explore various approaches to achieve fast reconnection while

minimizing the impact on multi x-line formation. We should be able to correctly

capture the physics of the acceleration of suprathermal electrons in a macroscale sys-

tem with none of the constraints associated with including kinetic-scale boundary

layers – there are no kinetic-scale boundary layers in the model. This kglobal code

is operational and preliminary tests of its capabilities have been described in [23].

It correctly describes an Alfvén wave in the presence of a pressure anisotropy and
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reproduces the linear growth rate of the firehose instability.

The large-scale parallel electric field is obtained by combining the parallel

momentum equations for the three species (ions, cold electrons and hot electrons)

into a single equation for the total parallel current. Because of constraints on this

current, the driver of the current must be small and therefore can be set to zero,

which yields a constraint equation for the parallel electric field. The details of the

calculation are shown in the Appendix of this chapter 3.4. The resulting expression

for the parallel electric field is given by

E|| =
−1

nie

(
B · ∇

(
mencv

2
||c

B

)
+ b · ∇Pc + b · ∇ ·Th

)
(3.1)

where me is the electron mass, nc, nh, ni = nc+nh, v||c, v||h, and v||i are the densities

and flow speeds (parallel to the magnetic field) of the two electron species and the

ions respectively, Pc is the scalar pressure of the cold electron fluid, B is the magnetic

field, b is a unit vector along B, and Th is the gyrotropic stress tensor of the hot

electron particles, including their inertial contributions [23],

Th = Teh||bb + Peh⊥(I− bb), (3.2)

where I is the unit tensor, Teh|| is the stress tensor along the magnetic field B and

Peh⊥ is the usual perpendicular pressure,

Peh⊥ =

∫
dpe

p2e⊥
2meγe

f, (3.3)

where in the frame drifting with vE = cE×B/B2 there are no perpendicular flows

so f = f(x, pe||, pe⊥, t). Teh|| includes the mean parallel drifts of the hot electrons,

Teh|| =

∫
dpe

p2e||
meγe

f, (3.4)
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with pe|| the hot parallel electron momentum with relativistic factor γe. The nor-

malizations for kglobal described in [23] remain unchanged. However, we now have a

separate normalization for the parallel electric field, E|| ∼ meC
2
Ae/eL0 = miC

2
A/eL0

where CAe is the electron Alfvén speed, and L0 is the length scale of the domain.

The normalization for E|| comes from parallel force balance. Compared with the

usual scaling for the perpendicular electric field E⊥ ∼ CAB0/c, the parallel electric

field satisfies E||/E⊥ ∼ di/L0 � 1. Thus we only keep the parallel electric field for

motion along the field lines and it can therefore be neglected in Faraday’s equation

when evolving the magnetic field. The addition of this electric field modifies the

momentum equation for the ions and the guiding center equation for the particle

electrons from [23] in the following way:

ρ
dv

dt
=

1

c
J × B − ∇Pi − ∇⊥Pc − (∇ · Teh)⊥ + eniE||b − mencv

2
||cκ (3.5)

d

dt
pe|| = pe||vE · κ−

µe
γe

b · ∇B − eE|| (3.6)

where κ = b · ∇b is the magnetic curvature and µe = p2e⊥/2meB is the magnetic

moment of the electron. Note that in Eq. (3.5) the gradients of the cold electron

pressure and hot electron stress tensor are now in the perpendicular direction only.

See the Appendix of this chapter 3.4 for a derivation of Eq. (3.5). Since the parallel

electric field is the same order as the pressure terms in Eq. (3.5), thermal particles

are reflected by this electric potential, which prevents heated electrons from escaping

from the reconnection diffusion region and the exhaust [32,34]. The consequence for

electrons is that they can undergo multiple Fermi reflections within the reconnection

exhaust, which facilitates the initial energy gain of electrons.

35



With the inclusion of a large-scale parallel electric field, kglobal should correctly

describe the dynamics of hot electrons escaping along the ambient magnetic field

in an open system and the development of a return current of cold electrons. The

large-scale parallel electric field suppresses the escape of hot electrons and drives a

return current of cold electrons. In its most basic form this dynamic can be reduced

to that of an electron acoustic mode, which can exist in plasmas with separate and

distinct electron populations [77]. In the electron acoustic mode the electrons slosh

back and forth on a short time scale so that the ions are practically stationary.

Thus, we benchmark kglobal by simulating this process.

3.2 Testing

Since electron acoustic waves only involve electron motion parallel to the mag-

netic field, the only non-zero gradients are along the magnetic field. Thus, the per-

turbed distribution function, f̃ , of the hot electrons is only a function of v|| and x||.

We obtain

∂tf̃ + v||∇||f̃ −
e

me

Ẽ||∂v||f0 = 0. (3.7)

Similarly, by enforcing charge neutrality and taking the cold electron pressure from

the constancy of Pc/n
5/3
c , Eq. (3.1) becomes

Ẽ|| = −
1

nie

(
5

3
∇||Tcñh +∇||T̃h

)
. (3.8)

By assuming that the unperturbed hot electron distribution function is a Maxwellian,

we can solve Eq. (3.7) for f̃ and take the moments to obtain the first order correc-

tions to the hot electron density and pressure. After some algebra the dispersion
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function for the electron acoustic wave is:

n0c

n0h

= Z ′(ζ)

(
5

6

T0c
T0h
− ζ2

)
(3.9)

where n0c is the unperturbed density of the cold electrons (fluid), n0h is the un-

perturbed density of the hot electrons (particles), T0c is the unperturbed tempera-

ture of the cold electrons, T0h is the unperturbed temperature of the hot electrons,

ζ = ω/kvth, vth is the thermal speed of the hot electrons, and Z ′(ζ) is the derivative

of the plasma dispersion function. Note that this result matches that of [77] in the

long wavelength limit k � kDe where k−1De is the Debye length. For T0c � T0h and

n0c � n0h the phase speed of the wave is small compared with vth and the mode is

only weakly damped and has a characteristic frequency

ω = kvth

√
n0c

n0h

+
5

6

T0c
T0H

. (3.10)

We numerically solved this equation for various values of the density and temper-

ature ratios and obtained the frequency and decay rates of these waves. For each

value of the two parameters, we initialized kglobal with a sinusoidal perturbation in

the electron density and temperature and measured the corresponding frequencies

and decay rates of the resulting disturbance. The results of the linear theory and

the simulation results are plotted in Fig. 3.1. The damping rate of the mode is con-

trolled by the Landau resonance with the energetic component which is accurately

captured by the code, a remarkable result. A similar argument can show that kglobal

can damp ion acoustic waves with Landau damping as well.

In our final test we compare a simulation with kglobal to a simulation with the

PIC code p3d [73]. We set up a simplified version of what we expect to see in a
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Figure 3.1: In panel (a) the electron acoustic wave phase speed versus the cold to

hot density ratio of the electrons. In panel (b) the electron acoustic wave damping

rate versus the cold to hot density ratio of the electrons. The stars are taken from

the simulations and the lines are from the linear theory. Note that the phase speed

is normalized to the thermal speed of the hot electrons and the damping rate is

normalized to the time a thermal particle requires to travel one wavelength.
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reconnection exhaust. The initial conditions consist of a constant magnetic field, a

constant density made up of 75% particle electrons and 25% fluid electrons, and a

temperature profile for the particle electrons that increases sharply in the center to

twenty times the asymptotic value as can be seen in Fig. 3.2(a). This value of the

hot to cold electron density ratio was chosen to quicken the dynamics since we know

from Fig. 3.1(b) that the larger the ratio the larger the damping rate. To convert

this setup to a PIC version, we had to make sure that the smallest length scale in

kglobal was much larger than the Debye length since this scale is not resolved in

kglobal. Thus we equated the transition width between the two regions of hot and

cold electrons to 30 times the Debye length.

In both simulations we utilized a large spatial domain in the parallel direction

so there is space for the hot electrons to expand. A small domain in the perpendic-

ular direction was included so that the data could be averaged over this direction

to decrease particle noise. For kglobal we had a domain of 2048 x 64 cells and for

p3d, 8192 x 64. In both simulations the electron to ion mass ratio was 1/1836 and

the speed of light was 300 times the Alfvén speed. For p3d a uniform background

with constant density and a temperature corresponding to the cold electron fluid in

kglobal was included along with an electron population with the same temperature

profile as the hot species in kglobal. The results from these simulations are shown

in Fig. 3.2. The PIC simulation is in solid black, kglobal is in red, and the result

from kglobal without a parallel electric field is in dashed red. We added the latter

so we could determine how the addition of the parallel electric field influenced the

dynamics. First, the temperature profiles from p3d and kglobal with E|| match very
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Figure 3.2: Profiles of the total electron temperature for the PIC code p3d (black),

the kglobal code with the included parallel electric field (red) and without the parallel

electric field (dashed red). In panel (a) at t/tth = 0. In panel (b) at t/tth = 0.12

where tth is the time a hot thermal electron requires to travel the length of the box.
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well over most of the domain. In contrast, the temperature in kglobal with E|| = 0

spreads much more rapidly, demonstrating that E|| does inhibit electron thermal

transport and that the the model for E|| in kglobal correctly describes transport

suppression.

Figure 3.3: The log of the particle distribution functions from the PIC code p3d

(black) and the kglobal code (red) taken at x/L0 = 0.25. Notice the dip in the

kglobal distribution function around v/CA = −30.

While kglobal is able to capture the overall dynamics of the temperature profile,

it does not produce the short scale spatial oscillations seen in the p3d data. These

oscillations are plasma waves driven unstable by a bump-on-tail velocity distribution

that smooths out the plateaus in the temperature visible in the kglobal data around

0.3 < x/L0 < 0.4 and 0.6 < x/L0 < 0.7. Fig. 3.3 displays the distribution functions
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from p3d in black and from kglobal in red at x/L0 = 0.25 at the time shown in

Fig. 3.2 panel (b). Note that for kglobal a Maxwellian with density and temperature

equal to that of the cold electron fluid was added to the hot electron distribution

function so that we could directly compare cuts to p3d. There is a sharp dip visible

in the velocity distribution from kglobal around v/CA = −30 that is not seen in

the data from p3d. In the p3d simulation, the faster particles have lost energy to

plasma oscillations and filled in this dip, forming a plateau in phase space. This

result is not seen in the kglobal data because this model does not support plasma

waves, which require a violation of charge neutrality to exist. Electron sound waves

can be driven unstable by structures in velocity space, but the phase speed of these

waves is fixed by the local plasma parameters (see Eq. (3.9)) and so will typically

not be resonant with electrons in the bump region shown in Fig. 3.3.

3.3 Conclusion

The kglobal code [23] has been upgraded to include a macroscale E|| that

develops as a result of gradients in the plasma pressure parallel to the ambient

magnetic field. The upgraded model now captures the dynamics of electron acoustic

waves and accurately describes the suppression of transport of hot electrons parallel

to the ambient magnetic field, a process that is important in the early phases of

electron acceleration in magnetic reconnection [33, 34]. The inclusion of the large

scale E|| is also important in describing the development of return currents that form

as hot electrons escape from regions of electron acceleration in macroscale energy
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release events such as flares in the solar corona. This new capability combined with

the ability of the model to describe the impact of pressure anisotropy on magnetic

field dynamics (e.g., firehose instability), which is critical for describing the feedback

of energetic particles on reconnection dynamics, suggest that the kglobal code can

be used to accurately simulate nonthermal electron acceleration during magnetic

reconnection.

Our next step is to begin to explore the energization of electrons during mag-

netic reconnection with kglobal and to determine whether the reconnection dynamics

in a macroscale system can produce the power-law distributions that are ubiquitous

in observations [65, 70]. Because kglobal is a macroscale model, the dynamics of

particle acceleration can be explored in a much larger domain than with a tradi-

tional PIC model. In addition, we will include particle loss in a realistic manner

to establish whether or not it is the balance between reconnection drive and the

escape of energetic particles that leads to powerlaw distributions [30, 78]. Finally,

in a macroscale simulation model the inclusion of a synthetic diagnostic to describe

synchrotron emission and bremsstrahlung emission will be possible.

3.4 Appendix

3.4.1 Energy Conservation

We start with the momentum equations for the three species, the ions

ρ
dvi
dt

= neE +
ne

c
vi ×B−∇Pi, (3.11)
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the cold electrons

∂(mencv||cb)

∂t
= −nceE−

nce

c
vc ×B−∇Pc

− bB · ∇
mencv

2
||c

B
−mencv

2
||cκ (3.12)

and the hot electrons

∂(menhv̄||hb)

∂t
= −nheE−

nhe

c
v̄h ×B−∇ ·Th, (3.13)

where ρ and v are the ion mass density and velocity, from charge neutrality n =

nc + nh and the electron inertia has only been retained in the direction along the

ambient magnetic field. In writing the electron momentum equations we have for

simplicity assumed that the mean drifts of both species are not relativistic. The

individual electron fluxes can be of order nCAe while the ion flux is of order nCA.

However, we show below that the total current is much smaller than the contribution

from each species of particle and this yields a constraint on the total driver of the

current. To see this we divide the momentum equations along the field lines by their

respective masses and subtract Eqs. (3.12) and (3.13) from Eq. (3.11), which yields

1

e

∂J||
∂t

=
nieE||
me

+ b ·
(

1

me

∇Pc +
1

me

∇ ·Th

)
+ B · ∇

(
ncv

2
||c

B

)
(3.14)

All of the terms on the right hand side of this equation act as drivers of J||. How-

ever, the parallel current driven is constrained by the structure of the magnetic

field which is produced by this current. This constraint follows from Ampère’s law

J|| ∼ cB/4πL, where L is the macroscopic characteristic perpendicular scale of the

magnetic field. Comparing the time derivative of this current, given by cA/L, with
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the characteristic scaling of the terms on the right, e.g., the gradient of the hot ther-

mal electrons, which scales as nhTh/meL, we find that the ratio of the left to the

right side of the equation scales like
√
me/mi(de/L)� 1. Thus, the time derivative

of the current can be discarded. This tells us that

v||c =
1

nc
(niv||i − nhv||h). (3.15)

Note that this constraint equation for v||c includes the ion motion. That the ions

must also be included in the constraint follows because the mean drift speed asso-

ciated with the current (from the previous scaling for J||) scales like nCA(di/L) �

nCA, the characteristic current carried by the ions. This constraint on the parallel

flows is consistent with the conclusions of [62] and yields the equation for E|| in

Eq. (3.1). If the mean flows of the electrons becomes relativistic, corrections to

Eq. (3.1) of order v||h/c must be included.

A further consequence of this result is that the sum of the fluxes of the two

electron species is limited to a scale of the order of the ion flux. The consequence is

that when the three momentum equations are summed, the electron inertia arising

from the time derivative can be discarded, which yields the ion momentum equation,

ρ
dv

dt
=

1

c
J×B−∇(Pi + Pc)−∇ ·Teh − bB · ∇

mencv
2
||c

B
−mencv

2
||cκ, (3.16)

which is equivalent to the form shown in Eq. (3.5). To explore energy conservation

of Eqs. (3.5) and (3.6) along with the usual fluid equations, we take the dot product
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of Eq. (3.5) with v and use the ion continuity equation to obtain

∂

∂t

ρv2

2
+∇ · ρvv

2

2
+ v · ∇Pi = (J⊥ − J⊥c − J⊥h) · E⊥

− (J||c + J||h)E|| = J⊥ · E⊥ − (Jc + Jh) · E, (3.17)

where we have used the perpendicular components of Ohm’s law E⊥ = −v×B/c, the

perpendicular components of the two electron momentum equations and Eq. (3.15)

for v||c. From Faraday’s law we find

∂

∂t

B2

8π
+

c

4π
∇ · (E×B) + J⊥ · E⊥ = 0, (3.18)

which, when combined with Eq. (3.17), yields the conservation law

WMHD +Wc +Wh = constant, (3.19)

where we have discarded terms corresponding to the divergence of the various energy

fluxes. The MHD energy, WMHD, includes the ion bulk kinetic and thermal energies

and the magnetic energy, the cold electron energy includes both the kinetic energy

associated with parallel streaming and the thermal energy,

Wc =
mencv

2
||c

2
+

1

Γ− 1
Pc (3.20)

with Γ the ratio of specific heats. The hot electron energy is the sum of the parallel

kinetic energies of all hot electrons as well as the energy associated with their per-

pendicular gyro motion. It does not include the kinetic energy associated with the

perpendicular bulk flow, which is negligible.
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Chapter 4: Electron Acceleration during Macroscale Non-Relativistic

Magnetic Reconnection

In this chapter we discuss results from simulations of 2D magnetic reconnection

with the kglobal model and compare with observations of solar flares, specifically fo-

cusing on a flare that took place on September 10, 2017, that was well-diagnosed by

remote observations from multiple spacecraft and ground-based facilities [70,79–81].

Magnetic reconnection is facilitated by including a hyper-resistivity in Faraday’s law.

Reconnection starts from particle noise and proceeds to produce multiple small is-

lands that merge into larger islands and accelerate electrons. Fermi reflection is

responsible for accelerating electrons to nonthermal energies. We show, however,

that a strong guide field drastically suppresses the production of these nonthermals.

This is because the guide field reduces the curvature of the magnetic field. We

present an analytic model that describes electron energy gain in a finite-length cur-

rent layer with merging magnetic islands and convective loss. The spectral indices

that result from this model, including the dependence on the guide field, compare fa-

vorably with results of kglobal simulations. Further, we evaluate the number density

of nonthermal electrons and their integrated energy content and the number density

of hot thermal electrons and their temperature increment versus guide field and
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system size. Large guide field simulations produce almost no nonthermal electrons.

In contrast, the temperature increment of the hot thermal electrons is relatively

insensitive to the guide field. Finally, we carry out a detailed comparison between

the predictions of kglobal and the observations of the September 10, 2017, solar flare.

The material in this chapter has been adapted from [82] with permission from the

authors.

4.1 Numerical Simulations Setup

The 2D simulations presented here are carried out with the kglobal model,

which consists of a magnetohydrodynamic (MHD) backbone with fluid ions and

electrons as well as particle electrons that are distributed as macroparticles on the

MHD grid. The two electron species combine so that charge neutrality is preserved

at all times [23, 74]. However, since the equations governing energy gain in the

electron fluid are incomplete (e.g., Fermi reflection is not included), any change in

the energy of the electron fluid will be neglected in the analysis of the electron

energy gain. The upstream reconnection magnetic field, B0, and the ion density, n0,

define the Alfvén speed, CA0 = B0/
√

4πmin0. Since no kinetic scales are resolved,

lengths are normalized to an arbitrary macroscale L0. Times are normalized to

τA = L0/CA0 and temperatures and particle energies to miC
2
A0. The perpendicular

electric field follows an MHD scaling, CA0B0/c. The parallel electric field scales like

miC
2
A0/L0e and is small compared with the perpendicular component. However,

the energy associated with the parallel potential drop acting over the scale L0 is of
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order miC
2
A0, which is comparable to the available magnetic energy per particle.

The simulations are initialized with constant densities and pressures in a force-

free current sheet and periodic boundary conditions. Thus, B = B0 tanh (y/w)x̂+√
B2

0 +B2
g −B2

0 tanh2 (y/w)ẑ. The temperatures of all three species are uniform

and isotropic with Ti = Te,part = Te,fluid = 0.0625miC
2
A0, leading to an initial

plasma β of 0.25 (based on B0). While the initial β is higher than typical coronal

values, electron heating and acceleration is insensitive to this choice as well as to

the chosen fraction of particle electrons (25% of the total electrons). The domain

size for all simulations is Lx × Ly = 2πL0 × π/2L0. The magnetic field evolution

equation includes a hyper-resistivity ν to facilitate reconnection, while minimizing

dissipation at large scales [83]. The effective Lundquist number Sν = CAL
3
0/ν

associated with this hyper-resistivity is varied to change the effective system size

(ratio of the macro to the dissipation scale). We also include fourth and second order

viscosity terms and some electron particle diffusion to prevent a numerical instability

associated with trapping electrons in small perpendicular electric field fluctuations.

Reconnection begins from particle noise and proceeds to produce multiple flux ropes

whose number depends on Sν , with larger values of Sν producing more initial flux

ropes. However, our late-time results are relatively insensitive to Sν and therefore

the effective system size. Thus, unless otherwise stated we focus on simulations with

Nx ×Ny = 2048× 512 grid cells, 100 particles per cell, time step dt = 0.0001τ0 and

Sν = 9.5× 107. The mass ratio is mi/me = 25. The results are not sensitive to this

value. The speed of light is c/CA0 ≈ 60. We use guide fields Bg/B0 = 0.1, 0.25, 0.4,

0.5, 0.6, 0.8, and 1.0.
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4.2 Simulation Results

Since magnetic reconnection in our simulations is triggered by particle noise,

the dynamics begins with the growth of many small islands, which subsequently

undergo mergers and eventually approach the system scale. This behavior is seen in

Fig. 4.1 from a simulation with Bg/B0 = 0.25. The energy per particle of the particle

electrons, < W > (energy density divided by number density), is shown in the x−y

plane at three times, t/τA = 2.5, 5, and 8 in panels (a), (b), and (c). Magnetic field

lines are superimposed. The particle electron energy is nearly constant along field

lines because of the high electron mobility parallel to the magnetic field.

The firehose parameter, 1− (P|| − P⊥)/4πB2, is plotted in Fig. 4.1(d) at late

time from a simulation with Bg/B0 = 0.1. Large regions within the magnetic islands

are near marginal stability (with some unstable regions) so that the local magnetic

tension, which drives particle energy gain, is largely suppressed within flux ropes in

this simulation. Thus, electron feedback on the MHD fluid is essential in regimes

where electron energy gain is significant. Models based on test particle dynamics

neglect the feedback of particles on the dynamics and can therefore lead to runaway

electron energy gain.

The spectrum of nonthermal electrons is calculated from the simulations by

summing the total number of particle electrons within a specified energy range

over the entire simulation domain. This ensures that we maximize the count rate

of the electrons at the highest energies to improve the statistics of the measured

distribution. In Fig. 4.2(a) we plot the differential electron number density F (W ) =
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Figure 4.1: In (a), (b), and (c): < W > for a simulation with Bg/B0 = 0.25 in the

x− y plane at t/τA = 2.5, 5, and 8 with magnetic field lines overplotted. In (d): the

firehose stability parameter at late time from a simulation with Bg/B0 = 0.1.
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dN(W )/dW versus the normalized energy, W/miC
2
A0, on a log-log scale at several

times for the case Bg/B0 = 0.25 shown in Fig. 4.1. F (W ) takes the form of a

power-law (a straight line in the log-log plot) as time progresses. The power-law

index δ′ reaches a constant value at low energy early and extends to higher energy

over time.

The inset in Fig. 4.2 shows the late-time F (W ) for several values of the guide

field corresponding to times during the simulations when approximately the same

amount of magnetic flux has reconnected. As the guide field decreases, δ′ decreases

so the spectrum becomes harder and more high-energy electrons are produced. In

Fig. 4.2(b) we plot the late time spectrum of F (W ) for several values of Sν . Larger

values of Sν correspond to larger systems. Thus, Fig. 4.2(b) demonstrates that the

slope of the power-law of nonthermal electrons is relatively insensitive to the size

of the system. However, the total energy contained in the nonthermal electrons

increases with reconnected flux, and thus a larger system produces a more extended

power-law.

The dependence of δ′ on the guide field is plotted in the curve marked by

the stars in Fig. 4.3(a). A strong guide field produces a soft nonthermal particle

spectrum. The solid red curve is from the theoretical model discussed in the next

section. Plotted in Fig. 4.3(b) is the time dependence of the energy of a typical

electron that populates the power-law tail versus the x-position from a simulation

with Bg/B0 = 0.25. Early in time the electron makes several passes through the

system with little change in energy. Once reconnection produces flux ropes, the

electron is captured by a flux rope and, as it contracts and merges with other flux
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Figure 4.2: In (a): a log-log plot of F (W ) versus energy at multiple times for the

Bg/B0 = 0.25 simulation. Inset in (a): the late time F (W ) for several guide fields.

In (b): the late time F (W ) for Bg/B0 = 0.25 with various values of Sν (effective

system size). The dashed line in both (a) and (b) is a power-law with δ′ = 3.3.
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Figure 4.3: In (a): δ′ (black) versus guide field and the fit from the theoretical model

(red). In (b): the energy versus x position of an electron that becomes a part of

the nonthermal distribution. In (c): a schematic depicting the flux rope merging

mechanism that leads to electron power-law distributions.

ropes, the electron undergoes Fermi reflection, gaining energy with each bounce.

Fig. 4.3(c) is a schematic of the island-merging process that leads to the power-law

tail (discussed in the following section).

In exploring the power-law distribution of nonthermal electrons, we averaged

over the entire computational domain to improve the statistics of the number of

electrons with very high energy. However, an important question in understanding

particle energy gain during reconnection concerns the relative numbers and energy

content of nonthermal electrons (those in the power-law tail) versus those that dis-
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play a thermal or nearly thermal distribution. The observations suggest that the

nonthermals often contain more energy than the hot thermals in large flares [84–86].

To explore these questions we analyzed data from more limited spatial domains that

include both hot thermal and nonthermal electrons but exclude electrons that have

not yet gained energy from reconnection. We focus, therefore, on the interior of

magnetic islands where the electron temperature has increased and where there are

significant numbers of nonthermal electrons. The goals are to establish whether a

characteristic effective temperature is associated with the hot thermal electrons and

what fraction of the electrons can be categorized as hot thermal versus nonthermal.

Specifically, we explore the region between the two white ellipses within the

middle flux rope in Fig. 4.1(c). In Fig. 4.4(a) we show F (W ) (black line) from

the region between the two ellipses. The high-energy electrons form a power-law

distribution even in this localized region within a single flux rope. In Fig. 4.4(b)

we display the same data, but on a linear-linear scale focused on the lower energies

to reveal the hot thermal population. These two plots reveal that localized regions

within magnetic islands contain a mixture of electrons with a range of energies so

that the characteristics of the hot thermal and nonthermals can be explored.

To model the distributions in Fig. 4.4 we use the sum of a Maxwellian and

a kappa distribution. The kappa distribution fits the power-law tail of nonthermal

electrons and the Maxwellian supplements the Maxwellian component of the kappa

distribution at low energy, producing a good fit to the hot thermal electrons. The

fitting procedure is discussed in detail in the appendix of this chapter 4.5. The

outputs of the fit to the electron distribution is the spectral index of the nonthermal
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electrons, and the number density and total energy content of the nonthermal and

thermal electrons.

The results of fitting for all of the guide fields appear in Fig. 4.4, (c) and (d).

Shown in (c) is the percentage of the total density (red) and energy (black) of the

nonthermal electrons as defined in the appendix of this chapter 4.5 as a function of

the guide field. Each distribution that formed the basis of this data came from a

region within an island similar to the one shown in Fig. 4.1(c). For a small guide

field the energy content of the nonthermal electrons is ∼ 80% of the total particle

electron energy and ∼ 20% of the total electron particle density. As the guide field

increases, the number of nonthermal electrons and their energy content becomes

small. In (d) is the total energy per particle of the particle electrons (black) and the

corresponding energy per particle, or (3/2)Tth, of the hot thermal electrons (red),

with the initial energy shown as a dotted line. This is further evidence that the

nonthermal electrons dominate the total electron energy at low guide fields where

the Fermi drive is strong. On the other hand, the energy of the hot thermal electrons

is relatively insensitive to the guide field and is likely controlled by slow shocks (see

4.5) rather than by Fermi reflection.

4.3 An analytic model for nonthermal electron acceleration

We present a model for electron acceleration in a current layer with merging

magnetic flux ropes that captures the essential results of the kglobal simulations,

including an expression for the power-law index of the nonthermal electrons and its
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Figure 4.4: In (a): F (W ) (black) along with the fit (red) described in the appendix

of this chapter 4.5 versus energy on a log-log scale. In (b): the same data on a linear-

linear scale, zoomed in to low energies to reveal the hot thermal electrons. In (c):

the percentage of energy (black) and density (red) of nonthermal electrons versus

guide field. In (d): the average energy per particle of particle electrons (black) and

thermal electrons (red) versus guide field. The dotted line is the energy from the

initial Maxwellian distribution of particle electrons.
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dependence on the ambient guide field. The model includes the convective loss of

electrons injected into large, inactive flux ropes.

The model is based on electron energy gain during the merging of flux ropes.

The dominant heating, parallel to the local magnetic field [16, 27], results from

the shortening of field lines during flux rope mergers [30] as shown in Fig. 4.3(c):

merging field lines contract from the figure-eight configuration on the left to the

circle on the right. Parallel heating results from the invariance of the parallel action∮
v‖dl. Thus, the change in the energy during the merger of two flux ropes can

be calculated by evaluating the geometry of the magnetic field before and after the

merger. The calculation presented in the appendix of this chapter 4.5, results in the

rate of energy gain

.

W =
d

dt
W = W

g

τr
, (4.1)

with τr ∼ ri/RcAx the merger time of a flux rope of initial radius ri, where R ∼

0.1 is the normalized rate of merger of the flux ropes in the current layer, and

cAx is the Alfvén speed based on the reconnecting magnetic field Bx. The factor

g = (1 + 2B2
g/B

2
x)
−1 arises from the dependence of the radius of curvature of the

reconnecting magnetic field on the guide field [16, 25, 28]. With the energy gain in

Eqn. (4.7), an equation can be derived for the number density F (x,W, t) of electrons

per unit energy undergoing reconnection-driven acceleration in a one-dimensional

current layer and experiencing convective loss,

∂

∂t
F +

∂

∂x
vx(x)F +

∂

∂W

.

WF −D ∂2

∂x2
F =

1

τup
Fup (4.2)

where vx(x) describes the convective loss of electrons as they are ejected at the
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Alfvén speed out of the current layer and we include a simple constant diffusion of

electrons within the current layer. The electrons are injected into the layer with an

initial distribution Fup which is taken as a low-temperature Maxwellian. Although

the simulations carried out here are periodic and particles are therefore not lost, the

large flux ropes that emerge at late time and no longer participate in the reconnection

process act as sinks for energetic electrons [15,87]. For a low upstream temperature

and strong diffusion D, the steady state solution to Eqn. (4.2) is given by

F0 ∝
1

W
W−cAxτr/gL ∼ W−(1+ri/gRL). (4.3)

The energetic electron spectrum is a power-law with a spectral index that depends

on the rate of reconnection R, the ratio of the characteristic radius ri to the half-

width L of the current layer and the relative strength of the guide field. A strong

guide field for which g ∼ (2B2
g/B

2
x)
−1 produces a very soft electron spectrum. This

scaling relation is compared with data from our simulations in Fig. 4.3(a). The best

fit of the model with the data has ri/L = 0.22, which is consistent with the typical

scale of islands in the simulations.

4.4 Comparison with Observations

The standard model for a solar flare comes from [88]. It includes an erupting

flux rope that produces a large reconnecting current sheet with a cusp-shaped flare

arcade below. As reconnection proceeds, more small flux ropes are produced in the

current sheet and flow either up toward the erupting flux rope, or down toward the

arcade. The solar flare of September 10, 2017, was observed by several instruments
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[70,79–81]. The gyrosynchrotron spectrum revealed relativistic electrons throughout

the reconnecting current sheet, with an increase in intensity where the current sheet

meets the arcade. The observed power-law indices, δ‘, for this region fell in the range

3.5-6.5. The RHESSI observations for this event revealed both a footpoint and an

extended coronal source [70]. The coronal source had a photon spectral index near

4.4, which for thin target emission corresponds to a particle spectral index δ′ = 3.9.

Late in the flare the temperature of the hot thermal electrons in the coronal current

sheet was analyzed with the EIS Fe XXIV/Fe XXIII ratio [79]. The hot thermal

electron temperature had a broad peak near 2.5keV.

Our simulations reveal that the spectral index of nonthermal electrons and

the number of the nonthermals depends strongly on the ambient guide field. The

September 10, 2017, flare was modeled with MHD simulations, and the magnetic

field profiles in the corona were compared with those inferred from analysis of the

gyrosynchrotron emission of energetic electrons [80]. MHD simulations with various

guide fields produced the best agreement with a guide field that was 30% of the

reconnecting magnetic field. Based on the data from Fig. 4.2, our simulations pre-

dict a power-law index near 3.5, within the range measured from gyrosynchrotron

emission and very close to the RHESSI measurement.

We can also compare the temperature jump of the hot thermal electrons in

our simulation with the measured 2.5keV from the EIS data. At the time the EIS

data was analyzed the measured maximum outflow speed in the current sheet was

∼ 800km/s [89]. However, it is likely that this value is a lower bound for the Alfvén

speed since flows can suffer from projection effects. Further, in situ measurements

60



at 1AU indicate that for a weak guide field the outflow speed is around 2/3 of the

upstream Alfvén speed [90]. The simulation data in Fig. 4.4(d) suggests that the hot

thermal electrons should have a temperature jump near 0.04miC
2
A0. Using 1200km/s

for CA0, we calculate a hot electron temperature of 0.6keV . This is a factor of 4

smaller than the EIS measurement. Thus, further exploration of the scaling of the

hot thermal temperature is needed. One possibility is that collisions thermalize the

low energy nonthermal electrons thereby increasing the hot thermal temperature.

Observations of large numbers of flares have revealed that the energy in non-

thermal electrons exceeds that of the thermal electrons in ∼ 80% of events, suggest-

ing that solar flares are extremely efficient at accelerating nonthermal electrons [85].

The efficiency of nonthermal electron acceleration was greatest in large flares [86]

although recent evidence from NuSTAR suggests that such results might extend to

smaller flares [91]. Such results are consistent with Fig. 4.4(c) for Bg/B0 < 0.4.

The simulations (Fig. 4.2(b) further suggest that even small flares might be efficient

sources of nonthermal electrons.

4.5 Appendix

4.5.1 Electron energy gain

As has been reported in previous PIC simulations we have monitored the three

mechanisms by which the particle electrons gain energy as a function of time: Fermi

reflection, the parallel electric field, and betatron acceleration [27]. The data for

guide fields Bg/B0 = 1.0 and 0.1 are shown in Fig. 4.5(a) and (b), respectively.
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As in earlier simulations, electron energy gain is bursty, which reflects the periodic

merger of finite size flux ropes. In the case of a weak guide field Fermi reflection

dominates energy gain during the entire simulation while acceleration by the beta-

tron mechanism (corresponding to the conservation of the magnetic moment V 2
⊥/B)

and the parallel electric field are negligible. For a strong guide field betatron accel-

eration is again negligible while acceleration by the parallel electric field becomes

comparable to the Fermi mechanism at late time. Notably, there is an increase in

heating due to E|| toward the end of the simulation for Bg/B0 = 1. This is likely

due to the development of the large scale E|| that forms after the electrons injected

into the reconnection exhaust gain significant energy. At this point the resulting

potential drop can heat electrons entering the exhaust as documented in PIC sim-

ulations [32, 34]. This effect is subdominant in comparison to Fermi reflection for

the case of a small guide field. Note, however, that the overall electron heating rate

for the strong guide field case is more than an order of magnitude lower than in the

case of a weak guide field.

In Fig. 4.5(c) the parallel electric field is shown at late time. The large-

scale electric field points away from the current sheet in the outflow exhausts as

expected since the parallel electric field serves to prevent hot electrons from escaping

upstream [32–34]. To see that the electric field points away from the current sheet,

note that Bx is positive above the current sheet and negative below so that By is

positive on the left side of the left-most flux rope. Thus, E‖ ∼ Ey is positive above

the current sheet and negative below. The unusual vertically oriented structures in

E‖ correspond to the locations of slow shocks that propagate to the left and right
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in the simulation. The kglobal model correctly describes the potential drop across

the slow shock that maintains charge neutrality. The slow shocks produced during

reconnection are not effective in driving the nonthermal electrons [92]. However, the

electron distribution across the slow shock reveals electron reflection and acceleration

that likely causes heating of the thermal electrons and leads to the thermal energy

gain seen in Fig. 4(d). This heating can also be observed in the upstream region in

Fig. 4.5(d), which shows the average parallel energy per particle electron and has

been overexposed to show the upstream heating associated with the slow shocks.

This heating process will be explored in a future paper.

4.5.2 Fitting procedure of the particle electron distributions

To model the electron distribution functions in Fig. 4 we use the sum of a

Maxwellian and a kappa distribution. The functional forms of the two distributions

are shown in Eqn. 4.4. Since the kappa function only has two free parameters, we

include the Maxwellian component to capture the power law index, the thermal

temperature, and the relative number of nonthermal electrons.

Ffit(W ) = Fκ(W ) + FM(W ) =[
Nκ

(πκθ2)3/2
Γ(κ+ 1)

Γ(κ− 1/2)

(
1 +

W

κθ2

)−(κ+1)

+

NM

(
me

2πTM

)3/2

e−W/TM

]
4π

√
2W

m3
e

(4.4)

where Ffit(W ) is the fit to the total electron differential density, Nκ is the density

of the kappa function, θ is the most probable speed in the kappa function, Γ is

the Gamma function, NM is the density of the Maxwellian function, me is the
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Figure 4.5: In panel (a): the heating of the particle electrons due to Fermi reflection

(blue), the large scale parallel electric field (red), betatron acceleration (green), the

sum of the previous three (dashed black), and the measured heating (black) versus

time for Bg/B0=1.0. In panel (b): the same but for Bg/B0 = 0.1. In panel (c) and

(d): the parallel electric field with field lines overplotted and < W|| > respectively

at late time for Bg/B0 = 0.025 and initial electron temperature 0.02.
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electron mass, TM is the temperature (in energy units) of the Maxwellian, and W

is the energy. Note that
∫
Ffit(W )dW = Nκ + NM . Since the kappa function is a

Maxwellian in the limit of low energy, we can further break up Ffit into a Maxwellian

component, FM(W ), a Maxwellian component from the kappa function, FκM(W ),

and a nonthermal component from the kappa function that includes the power-law

tail, FκNT (W ). To do this we follow the method laid out in [8]. We define a second

Maxwellian temperature, TκM ≡ (1/2)meθ
2, and set FκM(TM) = Fκ(TM). This gives

us an expression for the relative density and energy of the nonthermal electrons:

NNT = Nκ −NκM =

Nκ

(
1− 2.718

Γ(κ+ 1)

Γ(κ− 1/2)
κ−3/2

(
1 +

1

κ

)−(κ+1)
) (4.5)

< WNT >=< Wκ > − < WκM >=
3

2
Tκ −

3

2
TκM (4.6)

where Tκ = (1/2)meθ
2[κ/(κ−3/2)]. Ffit is overlaid in red on top of the particle data

(in black) in the log-log plot in Fig. 4(a). In (b) Ffit is again overlaid in red over the

particle data, but on a linear-linear scale zoomed in to low energies to more clearly

see the thermal population. The dual Maxwellian-kappa function fits both the low

and high energy particle data very well and can therefore be used to explore the

relative numbers of hot thermal versus nonthermal electrons and the characteristic

temperature of the hot thermals.

4.5.3 Analytic model of electron acceleration in a current sheet

We present a model for electron acceleration in a current layer with merging

magnetic flux ropes that captures the essential results of the kglobal simulations,
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including an expression for the power-law index of the nonthermal electrons and its

dependence on the ambient guide field. The model includes both diffusion along the

current layer as well as the convective loss of electrons injected into large, inactive

flux ropes.

We first calculate electron energy gain during the merging of two flux ropes

of radius ri, azimuthal magnetic Bθi and guide field Bg as shown in Fig. 3(c).

Consistent with extensive PIC simulation results that the dominant electron heating

is parallel to the local magnetic field [16, 27], we neglect plasma compression and

associated betatron acceleration. Parallel heating results from the invariance of the

parallel action
∮
v‖dl as merging field lines contract from the figure-eight on the

left of Fig. 3(c) to the circle on the right. Thus, the change in the energy during

the merger of two flux ropes can be calculated by evaluating the geometry of the

magnetic field before and after the merger. For an incompressible merger, the radius

of the final flux rope is rf =
√

2ri and the flux is preserved rfBθf = riBθi [30]. The

effective field line length of the initial state is twice the length of a single flux rope,

si = 2πriBi/Bθi, where B2
i = B2

g +B2
θi, since a reconnecting field line wraps around

both flux ropes as can be seen by the recently reconnected field line in Fig. 3(c),.

The final field line length is sf = 2πrfBf/Bθf . Thus, invoking the invariance of

the parallel action, the final electron parallel energy Wf is given by Wis
2
i /s

2
f . The

energy change can be re-written as a rate equation for electron energy gain

.

W =
d

dt
W = W

g

τr
, (4.7)

with τr ∼ ri/RcAx, where R ∼ 0.1 is the normalized rate of merger of the flux ropes
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in the current layer, cAx the Alfvén speed based on the reconnecting magnetic field

Bx of the current layer, and the factor g = (1 + 2B2
g/B

2
x)
−1. The factor g describes

the increase of the effective radius of curvature of the magnetic field in the presence

of a guide field, which reduces the strength of Fermi reflection and associated energy

gain during reconnection [16,25,28].

With the energy gain in Eqn. (4.7), we can write down an equation for the num-

ber density F (x,W, t) of electrons per unit energy undergoing reconnection driven

acceleration in a one-dimensional current layer and experiencing convective loss,

∂

∂t
F +

∂

∂x
vx(x)F +

∂

∂W

.

WF −D ∂2

∂x2
F =

1

τup
Fup (4.8)

where vx(x) describes the convective loss of electrons as they are ejected at the

Alfvén speed out of the current layer and we include a simple constant diffusion of

electrons within the current layer. The electrons are injected into the layer with an

initial distribution Fup which is taken as a low-temperature Maxwellian. Although

the simulations carried out here are periodic and particles are therefore not lost, the

large flux ropes that emerge at late time and no longer participate in the reconnection

process act as sinks for energetic electrons [15,87].

Further, as magnetic flux continues to be added to these flux ropes, electrons

trapped in the islands become disconnected from the current layers. As in the

classical problem of diffusive shock acceleration, the boundary condition on f at the

injection point into the flux rope is zero slope.

The steady state solution of Eqn. (4.8) can be written as a sum of harmonics

of F ∼
∑

n Fn cos(nπx/L), where we take the current layer to be centered at x = 0
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and the injection in the large flux ropes to take place at x = ±L at the Alfvén

speed cAx. However, the problem is simplified if the diffusion D is large so that the

harmonics Fn with n 6= 0 are small. In this limit Eqn. (4.8) can simply be integrated

over x to obtain an expression for F0,

L
∂

∂W

Wg

τw
F0 + cAxF0 =

L

τup
Fup. (4.9)

This equation is readily inverted for F0,

F0 =
1

τup

τr
gW

W−cAxτr/gL

∫ W

0

dWW cAxτr/gLFup(W ). (4.10)

For low upstream temperature the energy integral can be extended to infinity and

F0 has the scaling

F0 ∝
1

W
W−cAxτr/gL ∼ W−(1+ri/gRL). (4.11)

The energetic spectrum takes the form of a power-law with a spectral index that

depends on the rate of reconnection R, the relative size of the merging flux ropes

that drive electron energy gain compared with the half-width of the current sheet

L and the strength of the guide field.
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Chapter 5: Conclusion

5.1 Summary

In this thesis we developed the new model kglobal for the purpose of studying

nonthermal electron acceleration in macroscale magnetic reconnection. Unlike PIC

codes we can simulate macroscale domains, and unlike MHD codes we can simulate

particles that feedback onto the fluids so that the total energy of the system is

conserved. This has never been done before. However, an important limitation

of kglobal is, just like with MHD codes, the physics near the x-line, where the

breaking of field lines takes place, is not correctly captured. This is because in

the ion and electron diffusion regions, where reconnection takes place, the plasma

species are no longer frozen into the magnetic field, and our assumptions are invalid.

However, since the diffusion regions are not where most of the energy release of the

magnetic field during reconnection takes place and in macrosystems the diffusion

regions are negligible in size, particle energy gain should not depend on the details of

the diffusion region. It has now been well established that the rate of energy release

during reconnection in large systems is fast even in the MHD description. This is a

consequence of the breakup of long current layers and multi-island reconnection in

large systems [54–56,93]
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We have benchmarked the model by simulating Alfvén waves with electron

pressure anisotropy, the growth of the firehose instability, and the growth of electron

acoustic waves. Fermi reflection occurs when electrons reflect off of bent magnetic

field lines travelling at the Alfvén speed. They then gain energy and induce a return

current of cold electrons as they leave the reconnection exhaust, mediated by the

electron acoustic wave. As more electrons are accelerated parallel to the magnetic

field line via Fermi reflection, pressure anisotropy increases until reconnection is

throttled as the plasma approaches the firehose stability boundary, eliminating the

magnetic tension that drives reconnection. Thus, the model includes all of the es-

sential physics that is needed to study nonthermal electron acceleration in magnetic

reconnection.

We then studied the results of magnetic reconnection and found clear power-

law tails that can extend for more than two decades in energy with a power-law

index, δ′, that decreases with the strength of the guide field. Reconnection in systems

with guide fields approaching unity produce practically no nonthermal electrons. For

weak guide fields the model is extremely efficient in producing nonthermal electrons.

The nonthermals contain up to ∼ 80% of the electron energy in our lowest guide

field simulation. These results are generally consistent with flare observations and

specifically the measurements of the September 10, 2017, flare.

An important characteristic of kglobal simulations is the clear power-law tails

in the electron distribution. While power-law tails do develop in PIC simulations,

they are more well developed in relativistic simulations [36, 78, 94–96] than in non-

relativistic simulations where they extend only around a decade in energy [87]. The
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reason why kglobal easily reproduced observed power-law tails is two-fold. Firstly,

the electrons in kglobal are assumed to always be magnetized. This is a valid assump-

tion since the Larmor radius of energetic electrons with energies between 1-10MeV

and a typical solar flare magnetic field of 1-10G is 0.1-10m [97]. This is much

smaller than the typical current sheet thickness in a solar flare which is likely 100-

1000m [97] and is smaller than the magnetic islands that dominate magnetic energy

release. Even in PIC simulations that are able to produce a power-law, energetic

electrons become demagnetized and no longer gain energy [87]. This can be un-

derstood by first noting that the electrons corresponding to the upper edge of the

power-law tail in [87] with an ion to electron mass ratio of 25, have a Larmor radius

of ∼ 0.75di, which is close to the initial current sheet width of 1di, and are therefore

demagnetized. Further, the turbulence spectrum shown in [87] shows strong turbu-

lence at the scale of the energetic Larmor radius resulting in scattering and leading

to isotropic energetic electrons. [30] showed that isotropic electrons no longer gain

energy via Fermi reflection in magnetic reconnection. Thus, a power-law tail ex-

tending to higher energies is prevented once electrons become isotropic. This is the

likely reason that PIC simulations are unable to produce the extensive power-laws

seen in klgobal. However, if a PIC simulations could be run with realistic mass ratios

and in much larger domains the Larmor radii of energetic electrons could be reduced

below the characteristic island sizes and a more extended energetic tail would likely

be produced. However, such simulations are not presently feasible.

A second problem with the PIC model is that the parallel electric field has been

shown to suppress energy gain of nonthermal electrons [87]. In PIC simulations the
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electric field in kinetic-scale boundary layers occupies a non negligible area near the

x-line and along the separatrices. However, in an actual solar flare these boundary

layers occupy a vanishingly small volume in comparison with the region of electron

acceleration during island growth and merger. Thus, the artificially wide boundary

layers and associated electric fields in the PIC model very likely also inhibit electron

power-law formation.

Finally, there has been recent work suggesting that turbulence in MHD plasma

follow a Kolmogorov-like cascade until they reach a critical length scale at which

point current sheets undergoing magnetic reconnection are formed [98, 99]. The

work presented in this thesis suggests that in collisionless, low β plasma with a small

guide field, the energy will be released via Fermi reflection in a macroscale region

downstream of the x-line. This is seemingly in contrast to the conventional picture of

an energy cascade to small scales where dissipation takes place. However, as is noted

in the scaling taken by [98], the guide field is likely large at these small scales. Thus,

if reconnection is taking place at the small scale end of a turbulent cascade, we expect

very few, if any, non-thermal electrons to be produced. A power-law distribution

can likely only be formed via magnetic reconnection at larger macroscales, with only

a small guide field where Fermi reflection dominates the energy conversion.

5.2 Future Work

Several questions remain to be answered that kglobal can help to answer. Fur-

ther exploration of the slow shocks seen in our 2D reconnection simulations is needed
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to explain thermal electron heating. Importantly, the heating mechanism is both

independent of the guide field and the initial electron temperature. These shocks

are seen in all of our simulations as well as those from MHD codes [43].

Further modifications to kglobal would also be helpful in continuing the ex-

ploration of particle acceleration. We intend to include pitch-angle scattering of

energetic electrons since gyrosynchrotron observations require strong perpendicular

heating that we do not see in our simulations [70]. A likely source of scattering is

self-generated, off-angle whistler waves [100] which are not included in our model.

However, we are developing a whistler-driven scattering operator that we hope to

implement in kglobal to capture this important physics. Additionally, we intend to

expand the model to include particle ions. This will allow us to study nonthermal

ion acceleration, since ions account for a significant fraction of the energy released

in solar flares [84,101].
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