Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of the translaminar circuits in the mouse cortex

    Thumbnail
    View/Open
    Deng_umd_0117E_21084.pdf (10.32Mb)
    (RESTRICTED ACCESS)
    No. of downloads: 0

    Date
    2020
    Author
    Deng, Rongkang
    Advisor
    Kanold, Patrick O
    DRUM DOI
    https://doi.org/10.13016/xc37-bcai
    Metadata
    Show full item record
    Abstract
    The elaborated connections among cortical neurons form the cortical circuits, which are essential mechanisms underlying various cortical functions such as sensory perception, motor control, and other cognitive functions. The cortical circuits are composed of excitatory neurons and GABAergic interneurons. Excitatory neurons send excitatory connections to cortical neurons, while inhibitory neurons send inhibitory connections. Building the neural circuits is no easy task involving complex genetic programs and the influence of the environment through sensation. Malformation of the cortical circuits during development is implicated in causing neurological disorders, but our knowledge about the developmental process is scarce. The work in this dissertation uses in vitro electrophysiology in brain slices from transgenic mice to investigate how the excitatory connections onto GABAergic interneurons in the primary auditory cortex develop during the first two postnatal weeks. Furthermore, this dissertation explores the mechanisms that could regulate the early development of the cortical circuits by testing the requirement of sensory epithelium and N-methyl-D-aspartate receptors (NMDARs) in the early postnatal development of the neural circuits in the primary sensory cortex and temporal association cortex (TeA), respectively. Results from these studies fill crucial gaps in our understanding of how GABAergic interneurons are integrated into the cortical circuits and highlight the importance of sensory epithelium in the normal development of excitatory connections onto cortical GABAergic interneurons. My results also showed impaired development of GABAergic connections onto excitatory neurons lacking functional NMDARs in the TeA, suggesting an essential role of NMDARs for the early development of inhibitory circuits in the cortex.
    URI
    http://hdl.handle.net/1903/26652
    Collections
    • Biology Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility