Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    STOCHASTIC OPTIMIZATION: ALGORITHMS AND CONVERGENCE

    Thumbnail
    View/Open
    umi-umd-2219.pdf (417.3Kb)
    No. of downloads: 1165

    Date
    2005-03-23
    Author
    Xiong, Xiaoping
    Advisor
    Fu, Michael C.
    Metadata
    Show full item record
    Abstract
    Stochastic approximation is one of the oldest approaches for solving stochastic optimization problems. In the first part of the dissertation, we study the convergence and asymptotic normality of a generalized form of stochastic approximation algorithm with deterministic perturbation sequences. Both one-simulation and two-simulation methods are considered. Assuming a special structure on the deterministic sequence, we establish sufficient conditions on the noise sequence for a.s. convergence of the algorithm and asymptotic normality. Finally we propose ideas for further research in analysis and design of the deterministic perturbation sequences. In the second part of the dissertation, we consider the application of stochastic optimization problems to American option pricing, a challenging task particularly for high-dimensional underlying securities. For options where there are a finite number of exercise dates, we present a weighted stochastic mesh method that only requires some easy-to-verify assumptions and a method to simulate the behavior of underlying securities. The algorithm provides point estimates and confidence intervals for both price and value-at-risk. The estimators converge to the true values as the computational effort increases. In the third part, we deal with an optimization problem in the field of ranking and selection. We generalize the discussion in the literature to a non-Gaussian correlated distribution setting. We propose a procedure to locate an approximate solution, which can be shown to converge to the true solution asymptotically. The convergence rate is also provided for the Gaussian setting.
    URI
    http://hdl.handle.net/1903/2360
    Collections
    • Decision, Operations & Information Technologies Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility