Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DATA VISUALIZATION OF ASYMMETRIC DATA USING SAMMON MAPPING AND APPLICATIONS OF SELF-ORGANIZING MAPS

    Thumbnail
    View/Open
    umi-umd-2217.pdf (3.255Mb)
    No. of downloads: 4221

    Date
    2005-03-17
    Author
    Li, Haiyan
    Advisor
    Golden, Bruce L.
    Metadata
    Show full item record
    Abstract
    Data visualization can be used to detect hidden structures and patterns in data sets that are found in data mining applications. However, although efficient data visualization algorithms to handle data sets with asymmetric proximities have been proposed, we develop an improved algorithm in this dissertation. In the first part of the proposal, we develop a modified Sammon mapping approach that uses the upper triangular part and the lower triangular part of an asymmetric distance matrix simultaneously. Our proposed approach is applied to two asymmetric data sets: an American college selection data set, and a Canadian college selection data set which contains rank information. When compared to other approaches that are used in practice, our modified approach generates visual maps that have smaller distance errors and provide more reasonable representations of the data sets. In data visualization, self-organizing maps (SOM) have been used to cluster points. In the second part of the proposal, we assess the performance of several software implementations of SOM-based methods. Viscovery SOMine is found to be helpful in determining the number of clusters and recovering the cluster structure of data sets. A genocide and politicide data set is analyzed using Viscovery SOMine, followed by another analysis on the public and private college data sets with the goal to find out schools with best values.
    URI
    http://hdl.handle.net/1903/2358
    Collections
    • Decision, Operations & Information Technologies Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility