Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    HYPERSPECTRAL IMAGING AND PATTERN RECOGNITION TECHNOLOGIES FOR REAL TIME FRUIT SAFETY AND QUALITY INSPECTION

    Thumbnail
    View/Open
    umi-umd-2133.pdf (1.070Mb)
    No. of downloads: 5530

    Date
    2004-12-14
    Author
    Cheng, Xuemei
    Advisor
    Tao, Yang
    Metadata
    Show full item record
    Abstract
    Hyperspectral band selection and band combination has become a powerful tool and have gained enormous interest among researchers. An important task in hyperspectral data processing is to reduce the redundancy of the spectral and spatial information without losing any valuable details that are needed for the subsequent detection, discrimination and classification processes. An integrated principal component analysis (PCA) and Fisher linear discriminant (FLD) method has been developed for feature band selection, and other pattern recognition technologies have been applied and compared with the developed method. The results on different types of defects from cucumber and apple samples show that the integrated PCA-FLD method outperforms PCA, FLD and canonical discriminant methods when they are used separately for classification. The integrated method adds a new tool for the multivariate analysis of hyperspectral images and can be extended to other hyperspectral imaging applications. Dimensionality reduction not only serves as the first step of data processing that leads to a significant decrease in computational complexity in the successive procedures, but also a research tool for determining optimal spectra requirement for online automatic inspection of fruit. In this study, the hyperspectral research shows that the near infrared spectrum at 753nm is best for detecting apple defect. When applied for online apple defect inspection, over 98% of good apple detection rate is achieved. However, commercially available apple sorting and inspection machines cannot effectively solve the stem-calyx problems involved in automatic apple defects detection. In this study, a dual-spectrum NIR/MIR sensing method is applied. This technique can effectively distinguish true defects from stems and calyxes, which leads to a potential solution of the problem. The results of this study will advance the technology in fruit safety and quality inspection and improve the cost-effectiveness of fruit packing processes.
    URI
    http://hdl.handle.net/1903/2154
    Collections
    • Environmental Science & Technology Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility