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Hyperspectral band selection and band combination has become a powerful tool 

and have gained enormous interest among researchers. An important task in hyperspectral 

data processing is to reduce the redundancy of the spectral and spatial information 

without losing any valuable details that are needed for the subsequent detection, 

discrimination and classification processes. An integrated principal component analysis 

(PCA) and Fisher linear discriminant (FLD) method has been developed for feature band 

selection, and other pattern recognition technologies have been applied and compared 

with the developed method. The results on different types of defects from cucumber and 

apple samples show that the integrated PCA-FLD method outperforms PCA, FLD and 

canonical discriminant methods when they are used separately for classification. The 



     

integrated method adds a new tool for the multivariate analysis of hyperspectral images 

and can be extended to other hyperspectral imaging applications.  

Dimensionality reduction not only serves as the first step of data processing that 

leads to a significant decrease in computational complexity in the successive procedures, 

but also a research tool for determining optimal spectra requirement for online automatic 

inspection of fruit. In this study, the hyperspectral research shows that the near infrared 

spectrum at 753nm is best for detecting apple defect. When applied for online apple 

defect inspection, over 98% of good apple detection rate is achieved. However, 

commercially available apple sorting and inspection machines cannot effectively solve 

the stem-calyx problems involved in automatic apple defects detection. In this study, a 

dual-spectrum NIR/MIR sensing method is applied. This technique can effectively 

distinguish true defects from stems and calyxes, which leads to a potential solution of the 

problem. The results of this study will advance the technology in fruit safety and quality 

inspection and improve the cost-effectiveness of fruit packing processes. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 



     

 
 
 
 

HYPERSPECTRAL IMAGING AND PATTERN RECOGNITION TECHNOLOGIES 
FOR REAL TIME FRUIT SAFETY AND QUALITY INSPECTION  

 

 
By 

Xuemei Cheng 

 

 

Dissertation submitted to the Faculty of the Graduate School of the 
University of Maryland, College Park in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy  

2004 

 

 

 

 
Advisory Committee: 
 

Professor Yang Tao, Chair 
Professor Yud-Ren Chen  
Professor Hubert Montas 
Professor Nam Sun Wang 
Professor Fredrick Wheaton 
 



     

 

 

 

 

 

 

 

 

 

 

 

©Copyright by 

Xuemei Cheng 

2004 

 

 

 

 

 

 

 

 

 



   

 ii 
  
  
  

ACKNOWLEDGEMENTS 

 
 
First I would like to thank my advisor and committee chairman, Dr. Yang Tao, for his 

invaluable guidance and insight into all the aspects of this research. In addition, his 

confidence in my capability has enabled much of my creative work as well as diligent 

working habits. I would like to express sincere thanks to Dr. Yud-Ren Chen for his 

immeasurable guidance, patience, and support throughout the course of my Ph.D. 

study. I have learned much as a direct result of working with him. I would also like to 

thank Dr. Hubert Montas, Dr. Nam Sun Wang, Dr. Fredrick Wheaton, and Dr. Estelle 

Russek-Cohan for serving on my committee and for their time, support, and helpful 

advice during my research and academic development.  

 

Also, I wish to express my gratitude to Dr.M.S.Kim, Dr.A.M.Lefcourt for their 

insights, advice and valuable time on helping me with hyperspectral-sensing 

equipments. I especially thank Dr. C.Y.Wang who provided all the cucumber 

samples, storage equipments and expert opinions on our experiments. Special thanks 

to Ms. Diane Chan for her devoted time, her cooperation and great help in the 

cucumber experiments and data collection that made this research possible. I would 

like to thank all the present and former members of USDA Instrumentation and 

Sensing Lab for their support and help during my Ph.D study. 

 

I would like to express my gratitude to all present and former members of the Bio-

Imaging and Machine Vision Laboratory at the University of Maryland at College 



   

 iii 
  
  
  

Park. Special thanks to Ms. Abby Vogel for providing invaluable suggestions and 

helpful comments on the manuscript. 

 

I want to express my appreciation to all the faculty and friends in ENBE department 

at University of Maryland at College Park for their support. 

 
 
Finally, I would like to express my deepest gratitude to my family for their love and 

support during my study at the University of Maryland. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

 iv 
  
  
  

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS................................................................................................ ii 
LIST OF TABLES............................................................................................................. vi 
LIST OF FIGURES .......................................................................................................... vii 
Chapter 1 INTRODUCTION...............................................................................................1 
Chapter 2 OBJECTIVES .....................................................................................................5 
Chapter 3 REVIEW OF LITERATURE..............................................................................7 

3.1. Nondestructive methods to ensure safety and quality of fresh produce ............ 7 
3.1.1 The importance of safety and quality assurance of fresh produce............... 7 
3.1.2 The Popular Non-Destructive Techniques................................................... 9 

3.2 Near-Infrared and Mid-Infrared Technology.................................................... 10 
3.2.1 Overview of Near Infrared spectroscopy................................................... 10 
3.2.2 Typical Applications of NIR Spectroscopy............................................... 14 
3.2.3 NIR Technology in Fruits and Vegetables................................................. 17 
3.2.4 Mid-Infrared sensing and imaging Applications ....................................... 19 

3.3 On-line Automated Defect Detection of Apples............................................... 22 
3.3.1 On-line System Requirements ................................................................... 22 
3.3.2 Challenges for on-line system design ........................................................ 23 

3.4 Machine Vision System .................................................................................... 28 
3.4.1 Machine Vision as a controlled system ..................................................... 29 
3.4.2 Machine Vision as a Real-Time System.................................................... 31 
3.4.3 Future Trends of Machine Vision .............................................................. 33 

3.5 Hyperspectral Sensing and Imaging ................................................................. 35 
3.5.1 Brief Overview........................................................................................... 35 
3.5.2 Optimal Band Selection and Combination Problem.................................. 36 

Chapter 4 A NOVEL INTEGRATED PCA AND FLD METHOD OF 
HYPERSPECTRAL IMAGE FEATURE EXTRACTION FOR 
CUCUMBER CHILLING DAMAGE INSPECTION .................................39 

4.1 Introduction....................................................................................................... 39 
4.2 Material and Method......................................................................................... 41 

4.2.1 Sample Materials ....................................................................................... 42 
4.2.2 Hyperspectral Sensing System................................................................... 45 
4.2.3 Feature Extraction with Integrated PCA-FLD Method ............................. 46 

4.3 Results and Discussion ..................................................................................... 51 
4.4 Conclusions....................................................................................................... 59 

Chapter 5 COMPARISION OF PATTERN RECOGNITION METHODS FOR 
HYPERSPECTRAL IMAGING AND BAND SELECTION......................61 

5.1 Introduction....................................................................................................... 61 
5.2 Material and Method......................................................................................... 67 

5.2.1 Image acquisition ....................................................................................... 67 
5.2.2 Image preprocessing .................................................................................. 69 
5.2.3 Statistical pattern recognition .................................................................... 74 
5.2.4 Artificial neural network............................................................................ 78 

5.3 Results and Discussion ..................................................................................... 80 
5.3.1 Band Selection Method.............................................................................. 81 



   

 v 
  
  
  

5.3.2 Neural Network Classifier ......................................................................... 93 
5.3.3 Texture based feature extraction of cucumber images ............................ 101 

5.4 Conclusions..................................................................................................... 103 
Chapter 6 A NIR/MIR DUAL-SENSOR MACHINE VISION SYSTEM FOR ON-

LINE APPLE STEM-END/CALYX RECOGNITION..............................105 
6.1 Introduction..................................................................................................... 105 
6.2 Material and Method....................................................................................... 108 

6.2.1 Machine Vision System ........................................................................... 108 
6.2.2 Dual Imaging Methods ............................................................................ 110 

6.3 Results and Discussion ................................................................................... 121 
6.4 Conclusions..................................................................................................... 125 

Chapter 7 CONCLUSION ...............................................................................................126 
Chapter 8 FUTURE STUDIES........................................................................................128 
REFERENCE...................................................................................................................129 
  



   

 vi 
  
  
  

LIST OF TABLES 

Table 3.1 Applications of NIR dyes for popular technologies (Raghavachari, 2001) 17 
Table 4.1 Cucumber Sample Diversity....................................................................... 45 
Table 4.2 Samples Used for Optimal K Value Tests .................................................. 54 
Table 4.3 Samples Used for the Experiments............................................................. 56 
Table 4.4 Summary of Three Feature Extraction Methods......................................... 58 
Table 5.1 Summary of properties and parameters of input apple samples ................. 81 
Table 5.2 Best three-band combinations given by different band combination methods 

for (a) raw data set and, (b) log data set.............................................................. 86 
Table 6.1 Properties of the samples used for testing the performance of the online 

dual NIR/MIR sensing system. ......................................................................... 110 
 



   

 vii 
  
  
  

LIST OF FIGURES 

Figure 3.1 Ball-and-spring model ............................................................................... 11 
Figure 3.2 Potential energy diagrams for (a) the ball on spring model and (b) the 

quantum mechanical model of molecular vibrations. ......................................... 13 
Figure 4.1 Four levels of chilling injury (presented in the rectangular area) of 

cucumbers detected in this study. (a) trace chilling injury (b) slight chilling 
injury (c) moderate chilling injury (d) severe chilling injury. The images used 
were 800nm near infrared image. ....................................................................... 43 

Figure 4.2 The NIR reflectance images of a slightly chilling damaged cucumber and a 
good one with bumpy skin. The two images show the similarity in appearance of 
the two cucumbers. The images were taken at 800 nm. (a) A cucumber with 
slight chilling damages (b) A healthy cucumber with bumpy skin. ................... 43 

Figure 4.3 The hyperspectral reflectance effect on wholesome (bumpy good and 
smooth good) cucumbers and unwholesome (with chilling injury level of trace, 
slight, moderate, and severe) cucumbers. ........................................................... 52 

Figure 4.4 (a) The good cucumber recognition rates versus K values for four 
evalidating tests, where each test used 20 different image samples. (b) The 
Chilling injury detection rate versus K values for the same four validating tests 
as in (a)................................................................................................................ 53 

Figure 4.5 Chilling injury detection rates and good cucumber recognition rates were 
shown by using FLD, PCA and integrated FLD-PCA methods for the first 
experiment, where 20 image samples were used for training and the other 80 
image samples were used for testing. The rates were calculated based on the total 
100 testing cucumber image samples. ................................................................ 55 

Figure 4.6 Chilling injury detection rates and good cucumber recognition rates were 
shown by using FLD, PCA and integrated FLD-PCA methods for the second 
experiment, where a total 60 cucumber image samples were used as training 
samples and the same 60 cucumber images were tested..................................... 57 

Figure 4.7 Chilling injury detection rates and good cucumber recognition rates were 
shown by using FLD, PCA and integrated FLD-PCA methods for the third 
experiment, where 40 image samples were used as training samples and another 
80 image samples were used as testing samples. The rates were calculated based 
on the 80 testing image samples only. ................................................................ 57 

Figure 5.1 Model for statistical pattern recognition [Jain et al.,2000]........................ 63 
Figure 5.2 5×5 Gaussian filter with σ =1.0 ............................................................... 70 
Figure 5.3 Dimension reduction of hyperspectral image cube. (a) The original 

hyperspectral image cube and three-dimensional coordinates system, where axis 
x and y are the spatial dimension and axis s is the spectral dimension. (b) The 2D 
image representation after dimension reduction, and the 2D coordinate system, 
where axis x’ is the transformed spatial dimension and axis s is the spectral 
dimension again. ................................................................................................. 71 

Figure 5.4 The multi-layer feed forward artificial neural network used in this study. 79 
Figure 5.5 Typical apple samples used for this study. ................................................ 80 
Figure 5.6 Defect detection rate of integrated PCA-FLD projection with different K 

values for raw data and log transformed data. .................................................... 84 



   

 viii 
  
  
  

Figure 5.7 Good apple recognition rate vs. defect recognition rate of five band 
selection methods for raw data set. ..................................................................... 84 

Figure 5.8 Good apple recognition rate vs. defect recognition rate of five band 
selection methods for log data. ........................................................................... 85 

Figure 5.9  Discriminant power of three different projection methods: PCA, 
integrated PCA-FLD and FLD, when applied individually with raw data and log 
data. ..................................................................................................................... 89 

Figure 5.10 Discriminant power of different projection methods: PCA, integrated 
PCA-FLD and FLD, when compared under one large feature space with 
different input data: raw data and log data.......................................................... 90 

Figure 5.11 Good apple recognition rate and defect recognition rate using different 
projection-based methods followed by stepwise discriminant analysis with raw 
data input............................................................................................................. 91 

Figure 5.12 Good apple recognition rate and defect recognition rate using different 
projection-based methods followed by stepwise discriminant analysis with log 
data input............................................................................................................. 92 

Figure 5.13 Training curve of neural network 1 ......................................................... 95 
Figure 5.14 Relation between detection rate and number of hidden neurons in neural 

network 1. This network is trained to differentiate good and defective apples. . 96 
Figure 5.15 Training curve of neural network 2, which is used to differentiate defect 

on apples from stem/calyx. ................................................................................. 97 
Figure 5.16 Relation between detection rate and number of hidden neurons in neural 

network 2. This network is trained to differentiate defects on apples from 
stem/calyx. .......................................................................................................... 98 

Figure 5.17 Training curve of neural network 3, which is used to differentiate the 
following three classes of objects, i.e., good apples, defects, and stem/calyx.... 99 

Figure 5.18 Relation between detection rate and number of hidden neurons in neural 
network 3. This network is trained to differentiate three classes of objects, i.e., 
good apples, defects, and stem/calyx................................................................ 100 

Figure 5.19.  Comparison of various degrees of cucumber chilling damages, where (a) 
shows severe chilling damage, (b) indicates slight chilling damages, and in (c) 
there is no chilling damage. .............................................................................. 102 

Figure 5.20 Recognition rate of cucumber chilling damages vs. normal cucumber skin 
using Gabor texture features, where (a) shows the recognition rate of slight/trace 
chilling damages and (b) shows the recognition rate of normal cucumber skin.
........................................................................................................................... 103 

Figure 6.1 Schematic representation of the machine vision system for online apple 
defect inspection. .............................................................................................. 109 

Figure 6.2 Schematic representation of the relationship among the sensing objects, the 
NIR sensor and the MIR sensor. ....................................................................... 111 

Figure 6.3 Schematic representation of binary interpolation.................................... 113 
Figure 6.4 The flow chart of the on-line image processing procedure ..................... 114 
Figure 6.5 Schematic representation for the principle of spherical transformation 

method............................................................................................................... 116 
Figure 6.6 Spherical transform curves for two different sized objects. .................... 117 



   

 ix 
  
  
  

Figure 6.7  An example result of dual NIR/MIR sensing algorithm. (a) original NIR 
image, (b) background removed MIR image, (c) normalized NIR image, (d) 
resized MIR image, (e)adaptive transformed NIR image, (f) blob extracted MIR 
image, (g) blob extracted NIR image, (h)dual image combination result image. 
The boundary lines on the apples in (f), (g) and (h) were artificially added for 
visualization purpose. ....................................................................................... 122 

Figure 6.8  The test result of sample recognition rates for online dual NIR/MIR 
sensing algorithm. ............................................................................................. 124 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

 1 
  
  
  

CHAPTER 1 INTRODUCTION 

 
The United States packs over 220 million boxes of apples each year (Tao, 

1996). In a typical apple packing line, the apples are floated in a cleaning tank before 

they are elevated onto an inspection table. Apples with rot, injury, disease, serious 

bruising and other defects must be removed at this early stage (before waxing) to 

prevent cross-contamination and reduce subsequent processing cost. Workers along 

the inspection table will inspect the apples and remove the defective apples and 

foreign materials. After inspection, the apples are transferred to cleaning, waxing and 

drying lines. At the final stage, apples are sorted according to their color, size and 

shape, and then packaged into cartons according to their grades.  

Although some aspects of the packing process have been automated, much of 

it is still done manually. A key step of the apple packing process, the defect 

inspection process, is still done by hand. Workers are positioned along the apple 

conveyors to visually inspect the passing apples and remove those with defects and 

foreign materials such as branches and leaves. Working in a wet environment and 

inspecting a large amount of apples each day is a difficult and labor-intensive job. 

With tons of apples passing in front of the eyes of workers, human fatigue is 

unavoidable; there are always falsely classified apples passing through the human 

inspectors.  

An automated defect inspection system would significantly enhance the fresh 

fruit packing process. It will liberate humans from traditional hand manipulation of 

agricultural products. Moreover, it will reduce the costs of energy, labor and materials 
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as well. It can work continuously for long hours and improve the quality of fresh 

apples and the productivity of packing. 

Optical imaging techniques are among the major methods used for designing a 

non-destructive fruit inspection machine. Machines equipped with optical imaging 

sensors, in particular, multispectral imaging sensors, become machine vision systems 

that play a key role for automatic fruit quality and safety inspection. The multispectral 

imaging sensors typically collect spectral information in a few (usually two or three) 

selected discrete spectral bands. Different inspection spectra displays different 

features of the target object.  The combination of the multispectral information leads 

to faster and more efficient target identification compared with a single spectral 

inspection. However, the system design becomes more complicated. Successful 

design of a multispectral machine vision system relies on accurate selections of the 

spectral bands from a wide range of possible inspection spectra. For specific 

inspection tasks, the selection of bands differ. Optical systems designed to provide 

high resolution of spectral bands over a wide spectral range are called hyperspectral 

sensing or imaging systems. Band selection and band combination from the 

hyperspectral band data become critical to the efficiency of on-line multispectral 

inspection systems. 

 Hyperspectral sensing/imaging has been used since the 1980s in detection of 

reflective radiation and in identification of various surface targets, topological or 

geological features (Shaw and Manolakis, 2002). The hyperspectral sensors are 

developed to sample the reflective portion of the electromagnetic spectrum. The 

entire inspection spectrum spans from the visible region through the near infrared, 
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and are divided into hundreds of narrow contiguous bands. The spectrum interval can 

be as narrow as nanometers in wavelength, and as a result, over 100 spectral channels 

are usually obtained at the same time. Since image data are considered two 

dimensional, by adding a new dimension of “spectrum” information, the 

hyperspectral data can be perceived as a three-dimensional data cube.      

The rich collection of spectral responses makes it possible to identify the 

spectral reflection peaks and absorbing troughs of materials instantly. The important 

information sensed is preserved and precise differentiation and classification over the 

field of interest are possible. Of course, it is unnecessary for researchers to analyze 

the obtained image data frame by frame, since in most cases, the acquired data could 

be redundant. Usually only several or even a single spectrum signature is enough to 

uniquely characterize the materials of interest. The method for optimal band selection 

and band combination is an important topic in the field of hyperspectral data 

processing. The most common method used is the principal component analysis 

(PCA). It is a classic method in solving the dimensionality reduction problem. 

However, does this method really match our requirement of band selection? What 

should the criteria be to measure the efficiency of selected bands over the hundreds of 

spectra?  How can the selected bands be combined to reach the optimal inspection 

effects? These are questions to be answered in this research.  

When the optimal inspection band is determined and applied to the machine 

vision system for automatic apple defect inspection, however, there is another 

problem that needs to be solved: how to distinguish the stem-end and calyx from true 

defects such as bruises, rots, and limb rubs? Once the stems-end or calyx appears in 
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the field of view of a near-infrared camera, they could be mistakenly identified as 

defects, because they are similar to the true defective spots in the image and difficult 

to be differentiated even by human eyes. To address this problem, a NIR/MIR dual-

sensor imaging method was developed. The dual-spectral method combines the 

results of near infrared (NIR) and mid-infrared (MIR) images of apples that can 

effectively differentiate the stem-end and calyx from true defects (Cheng, et.al., 2002). 

Fast algorithms and a DSP hardware system are used in this research to implement 

this new method for real time apple defect inspection. 
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CHAPTER 2  OBJECTIVES 

 

The overall objective of this research is to integrate hyperspectral imaging, 

real time machine vision, dual-spectral sensing, and pattern recognition techniques for 

automatic defect inspection in fresh produce. In particular, these technologies will be 

applied for cucumber chilling damage inspection and online apple defect detection. 

The band selection and band combination method is developed based on the optimal 

band selection criteria, and the method is expected to be extended and applied to 

general band combination needs for hyperspectral data dimensionality reduction. An 

online machine vision system is developed to distinguish the stem-ends and calyxes 

from the true defects of apples. The specific objectives for this project are: 

(1)  To develop a pattern recognition method for hyperspectral band selection and 

band combination applications. Apply this method to cucumber chilling 

damage inspection and apple defect inspection and test feasibility with 

these applications. 

(2)  To assess the performance and the discriminant power of the new method in 

comparison with other classic pattern recognition methods. Further the 

study by applying different pre-processing methods to the original input 

image data.  

(3)  To develop a NIR/MIR machine vision system for online apple defect 

detection with the optimal near-infrared inspection band obtained from 

hyperspectral sensing results. To identify stems/calyxes from true defects 
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and to increase the accuracy of online apple defect inspection through this 

system.  

(4)   To apply neural network classification method for apple defect detection. 

Compare the defect detection rate and stem-calyx identification 

performance with the online dual-camera machine vision system 

performance.  

This dissertation is organized as follows. Chapter 3 describes the overview of 

this study along with background information of the technical challenges identified 

from the literature. Chapter 4 is a published journal paper devoted to objective (1). 

Chapter 5 addresses the objectives (2) and (4). Chapter 6 is another published journal 

paper that is intended to meet objective (3). The overall conclusion of the dissertation 

is presented in chapter 7, and suggestions for further study are given in chapter 8.  
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CHAPTER 3 REVIEW OF LITERATURE 

3.1. Nondestructive methods to ensure safety and quality of fresh 
produce 

 
3.1.1 The importance of safety and quality assurance of fresh produce 

 
Fresh fruits and vegetables are rich in essential vitamins and minerals, fiber, 

carbohydrates, and phytochemicals (Harvard School of Public Health, 2004). They've 

been demonstrated to have many health benefits, such as lowered risk for certain 

cancers, stroke, heart disease, and high blood pressure, etc.. Therefore, an increased 

and enriched consumption of a variety of fruits and vegetables has been encouraged 

by nutrition authorities worldwide. According to the General Accounting Office 

(GAO) report on July 2002, American’s consumption of fruit and vegetable has each 

increased by 0.2 servings between 1989-1996 (or almost ½ serving total) such that the 

average consumption is near the recommended minimum of 5 servings per day 

(GAO, 2002). However, the increased consumption of fresh produce has also raised 

concerns regarding potential safety and quality issues of fresh fruits and vegetables. 

In 1983, the Expert Committee on Food Safety convened jointly by the World 

Health Organization (WHO) and Food and Agricultural Organization (FAO) of the 

U.N. concluded that illness due to contaminated food is “the most widespread health 

problem in the contemporary world” (FAO/WHO, 1984, Safety 2002). Fresh produce 

has become a particular food safety concern since it is generally consumed raw. Both 

biological and chemical contaminations can occur in raw fruits and vegetables due to 
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natural causes or during agricultural production procedures. Biological hazards 

generally refer to food borne microorganisms such as bacteria, viruses, parasites, and 

some fungi that are able to produce toxins. Chemical hazards are mainly toxic 

chemicals and pesticides that are associated with environmental pollution. Without 

proper detection and processing procedures, those contaminations can be transferred 

to the human body and cause illness. According to the U.S. Center for Disease 

Control and Prevention (CDC), the number of fresh produce-related food borne 

disease outbreaks is increasing. In 1973-1979, only 2% of U.S. food borne disease 

outbreaks were associated with fresh produce while during 1990-1997, this 

percentage had increased to 6%. The effects of unsafe fruits and vegetables on human 

health have become one important reason for studying produce safety.  

Another complicated issue about fresh produce is quality concern. In general, 

quality of a fresh produce includes appearance (size, shape, color, gloss, and freedom 

from defects and decay), texture (firmness, crispness, juiciness, mealiness, and 

toughness, depending on the commodity), flavor (sweetness, sourness (acidity), 

astringency, aroma, and off-flavors), and nutritive value (vitamins, minerals, dietary 

fiber, phytonutrients). Although poor quality of fresh produce will not cause human 

illness, it can be negatively affected by biological agents (such as post-harvest 

diseases and post-harvest pests) causing undesirable changes in, for example, texture, 

taste, appearance, and storage life of the produce. These changes can have a strong 

adverse economic impact. The need for developing and enhancing the value of fruit 

and vegetable products has increased dramatically as a result of global competition 

and market demands. 
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3.1.2 The Popular Non-Destructive Techniques 

In order to deliver a safe and wholesome final product from the fields to the 

consumers, fruit and vegetable processors are seeking ideas and methods to improve 

safety and quality of their products in every step along this chain. In particular, an 

effective safety and quality assurance mechanism throughout the post-harvest 

handling steps becomes critical. On one hand, high levels of worker hygiene should 

be enforced to reduce the possible sources of post-harvest contamination. On the 

other hand, careful harvesting, proper packaging, storage, and transport should be 

managed to maintain good produce quality (post harvest handling).  

Non-destructive methods have been widely used in the research and 

development community to monitor quality and safety attributes of fresh produce. 

According to the literature, non-destructive inspection methods have been applied to 

fruits such as apples, oranges, strawberries, tomato, peaches, pears, etc., and 

vegetables such as mushrooms, potatoes, carrots, onions, cucumbers, etc (Brosnan 

and Sun, 2002.).  

 The availability of low-cost microcomputers and solid-state imaging systems 

have resulted in increased use of computer-aided machine vision systems to make 

non-destructive methods more reliable and efficient to ensure the safety and quality of 

produces. Different light sources and sensing methods have been reported to be used 

as non-destructive inspection tools. For instance, far-red (725-735nm) lighting from 

incandescent bulbs and high-pressure sodium lighting have been used to increase the 

greenness and prolong shelf life of greenhouse-grown cucumbers (Lin and Jolliffe, 

1996). The non-destructive measurement of fluorescence parameters have been used 
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to indicate heat injury in apples (Song et al., 2001); to distinguish maturation, 

ripeness, and senescence of apples (Song et al., 1997); and to determine the residues 

of multiple pesticides in fresh produce, such as apples, bananas, cabbages, carrots, 

cucumbers, lettuce, oranges, pears, peppers, and pineapples (Fillion et al., 2000). 

Ultrasound treatment incorporated along packing lines has been used to remove and 

destroy external pests on fruit surfaces (Hansen, 2001). Laser Doppler vibrometer has 

been used to evaluate different stages of ripeness, firmness and maturity of fruits 

(Muramatsu et al., 2000, Terasaki, S. et al., 2001).  X-ray imaging has been reported 

to detect the internal damages of sweet onions (Tollner et al., 1999.), the spit pins in 

peaches (Han et al., 1992), water core damage in apples (Kim and Schatzki, 2000) 

and pinhole damage in almonds (Kim and Schatzki, 2001, Brosnan and Sun, 2004). 

Nevertheless, for non-destructive fruit and vegetable surface defect inspection, 

infrared sensing and imaging technology are the most feasible and viable option. 

 

3.2 Near-Infrared and Mid-Infrared Technology 
 

3.2.1 Overview of Near Infrared spectroscopy 
 

The initial discovery of infrared energy was credited to Sir William Herschel, 

a British Royal Astronomer in 1800, when he dispersed sunlight through a prism and 

detected it with a sensitive thermometer. He found the energy beyond the red end of 

visible light and demonstrated that there is a relationship between temperature and 

wavelength (Spiro and Schlessinger, 1989). Since its discovery, the study of infrared 

has led to discovery of the fundamental theories and laws of thermal radiation, and 

infrared properties are important for exploring the potential structure of different 
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materials. The infrared range of the electromagnetic spectrum spans from 

approximately 0.75 um to 1000 um. The range is often further divided into near 

infrared, middle infrared and far infrared. Although there is no exact designation for 

the separation of infrared bands, the range from 700nm to 2500 nm is generally 

accepted as near infrared, from 2500 nm up to 6 um or 7 um is called middle infrared, 

and from 7 um to 15um (or 16um) bandwidth is commonly considered as far infrared 

and extreme far infrared ranges from 16um to 1mm.  

Near-infrared spectroscopy is typically used to investigate the quantitative 

measurements of organic functional groups. The NIR absorption bands can be 

considered as a consequence of molecular vibrations of chemical compounds. 

Infrared radiation absorbed by a molecule can cause a bond to vibrate similarly to a 

diatomic oscillator, or a “ball-and-spring” model (Raghavachari, 2001), as shown in 

figure 3.1.  The vibration frequency ν (cm-1) is determined by equation 3.1.  

 

Figure 3.1 Ball-and-spring model 

 

µπ
k

c
v

2
1

=         (3.1) 

where c is the speed of light and k is the force constant (5x105 dynes cm-1), and µ  is 

derived from equation 3.2:  

21

21

mm
mm

+
=µ         (3.2) 
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where 1m  and 2m  are the masses of the two nuclei. From quantum mechanics point 

of view, the “ball-on-spring” model results in an equally spaced energy level, shown 

in figure 3.2(a). That is, the molecular system can change states by only one quantum 

level a time. Equations 3.1 and 3.2 are known as “Hooke’s Law”, which is usually 

used to determine the fundamental vibration frequency of mid-IR, while near-IR is 

comprised of combination bands and overtones. Hooke’s Law is one of the two Laws 

that govern the basics of vibration spectroscopy. The other law is called Franck-

Condon Principle.  The Frank-Condon principle states that electronic transitions tend 

to take place between vibrational energy levels when nuclear kinetic energies are 

small. These small variations cause anharmonic oscillations between molecules. 

Therefore, NIR combination bands and overtones are not precise integral times of 

fundamental frequencies but the imprecise multiple of fundamentals. In reality, the 

energy curve of an oscillating molecule is more complicated than the “ball-on-spring” 

model and looks more like that shown in figure 3.2(b). Thus, it becomes possible for 

a molecule to change energy by more than one quantum level, thus resulting in higher 

energy photons that have higher frequencies and correspondingly shorter wavelengths 

than those of Mid-infrared fundamental changes. The anharmonicity is the cause of 

overtones and combination bands, and determines the occurrence and spectral 

prosperities of the NIR bands.  
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Figure 3.2 Potential energy diagrams for (a) the ball on spring model and (b) the 
quantum mechanical model of molecular vibrations. 

 
Due to anharmonicity, the NIR spectral region is dominated by absorptions 

associated with highest anharmonicity bonds involving the lightest atom hydrogen H, 

or described as XHn functional groups. The typical active NIR functional groups are 

C-H, O-H and N-H groups that occur between 4000 and 2500 cm-1.  In particular, the 

O-H functional group or stretch of NIR spectroscopy, has been widely applied in food 

analysis to determine the moisture level and the state of water in various applications.  

Typical NIR spectroscopic instruments include sources of radiation, a means 

of determining the wavelength and the energy of radiation, and detectors. The NIR 

sources of radiation varied from common incandescent lamp to tungsten halogen 

lamps, providing high energy from the visible region to approximately 2700nm.  

There are three types of NIR detectors: the silicon (Si) detectors, which are fast, low 

noise and highly sensitive from the visible to 1100nm; the lead sulfide (PbS) 

detectors, which are relatively slow, but sensitive and with high signal to noise 

properties from 1100nm to 2500nm; and the recent indium gallium arsenide (InGaAs) 

detectors, which are both fast and highly sensitive from visible region to 2300nm 
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(Raghavachari, 2001), but much more expensive than Si and PbS detectors. The NIR 

spectroscopic measurement instruments include multiple types of diffraction gratings, 

interference filters, and Fourier Transform Spectrometers (FTIRs).  

 

3.2.2 Typical Applications of NIR Spectroscopy  

 NIR spectroscopy has been widely used in many areas, including industrial 

process control, chemistry, medical sciences, and agricultural products and foodstuffs 

inspections. Near infrared spectroscopy technologies have been used in polymer and 

plastic industry for monitoring chemical reactions and product stream for quality and 

environmental protection purposes (Siesler, 1996; Fischer et al., 2000; Eisenreich et 

al., 1996).  

In basic science studies, such as chemistry, near-infrared spectroscopy has 

also become a powerful tool. Employing near-infrared spectroscopy for water content 

and sediment analysis has become a matter of keen interest. Researchers have been 

using near infrared reflectance spectroscopy to investigate the sediment composition 

(Korsman et al. 1999), pH value variations (Korsman et al. 1992), carbon, carbonate, 

nitrogen, and phosphorus contents (Malley et al. 1996, 2000; Nilsson et al., 1996) in 

water chemistry.  

Besides chemistry and industrial applications, near-infrared spectroscopy has 

been successfully applied in the biotechnology field. With the development of 

photodiodes and semiconductor lasers, near infrared techniques have made much 

progress. Using near infrared dyes, DNA and protein analysis become feasible 

(Sowell, 2002). Near infrared laser radiation and absorption characteristics have been 
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used to localize cellular DNA damage within nanometre dimensions (Meldrum et al. 

2003). A near infrared fluorescence imager has been constructed to obtain lifetime 

and intensity images for DNA sequencing gel slab applications (Lassiter et al., 2000). 

Near infrared technology has also been used in the recently emerging field of single-

molecule detection experiments. By using the less expensive diode lasers, make the 

background signals are greatly reduced in the near infrared wavelengths 

(Raghavachari, 2001). Applications ranged from the determination of single DNA 

fragments (Wabuyele et al., 2001), to imaging and analysis of activities and roles of a 

particular molecule for clinical detection purposes (Jaffer, 2004), and to the 

identification of specific genes in complex genomic mixtures (Castro and William, 

1997).  

Although applying near infrared spectroscopy in the medical sciences field is 

relatively new due to the complexity of the samples and intense water absorptions, 

NIR technology has been found very important and has been increasingly used in 

clinical chemistry, medical diagnosis and in skin and tissue studies. In the most 

exciting and elusive areas of clinical research such as gene therapy of cancer (Shah et 

al., 2004), detection of breast cancer (Chen et al., 2004), and determination of human 

blood constituents (Spanner and Niessner, 1996), near-infrared fluorescence (NIRF) 

reflectance spectroscopy, near-infrared diffuse optical spectroscopy (DOS) and 

diffuse optical imaging (DOI) show promise as noninvasive clinical techniques. In 

research on brain tissue (Raj et al., 2004), and breast tissue (Shah et al., 2004), and 

skin studies like skin wound repair (Danno et al., 2001), near infrared spectroscopy 

and instruments also play important roles.  
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Despite the rapid development of near infrared spectroscopy instruments and 

applications in different fields, the first and foremost modern near infrared 

spectroscopy application was recognized as developed in U.S. Department of 

Agriculture, Beltsville, Maryland in the mid to late-1960, largely by Karl Norris when 

measuring the composition of wheat, soy and other agriculture products. Modern 

near-infrared spectroscopy requires low-noise spectrometers, computerized control of 

the spectrometer and data acquisition, and the use of multivariate mathematical and 

statistical computer algorithms to analyze the data (Raghavachari, 2001). Karl Norris 

put all these together and the whole technology got its “kick” from that initial start. 

Now near infrared spectroscopy has become a standard method and routine analysis 

for determining protein, moisture, oil, and other contents of interest in wheat 

(Miralbes, 2003), soybeans (Bennett et al. 2003), crops and seeds (Wu, et al. 2002, 

Perez-Vich et al., 1998), grains (Delwiche et al., 1998), barley (Fontaine et al., 2002) 

and other agricultural products. Similarly, near infrared spectroscopy is also used for 

quality measurements for foodstuffs. For instances, near infrared technology is 

employed for the determination of protein, fat, lactose and total solids in milk 

(Laporte and Paquin, 1999), the identification of moisture, protein, oil and salt 

content of fish meat (Zhang et al., 2000), the measurements of the alcohol content for 

beverages such as beer (Coventry and Hunston, 1984) and wine (Burns and Gump, 

1993), and monitoring the manufacture of processed food such as cheeses (Curda and 

Kukackova, 2004), cocoa butter and chocolate (Bolliger et al., 1999).  

Beyond specific technology fields, near infrared spectroscopy and instruments 

are widely used in commercial industrial and popular technology fields. The origin of 
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near infrared absorbing dyes have been used for applications such as optical disks, 

CD-Rs, laser printers, electronic cameras, NIR cutoff filters (800nm to 1100nm), etc. 

Table 3.1 summarizes the different applications of NIR dyes for popular technologies. 

Those popular products in return have been used in different areas and served for 

different purposes.  

Table 3.1 Applications of NIR dyes for popular technologies (Raghavachari, 2001) 

Light source Characteristic Application 

Diode laser, 780-
840nm 

Thermal decomposition Optical disk, CD-R, optical card 

 Photoconductivity; charge 
generation 

OPC; laser printer; laser plate 
making 

 
photosensitivity direct plate making 

(photoengraving) 
 Thermal energy transfer Dye diffusion thermal transfer 

 
Reflection index Transparent bar code; forgery 

preventive agent 
 Sunlight (thermal 
light) 

Heat absorption Heat-shielding material 

 
Heat retention Agricultural film, heat retaining 

fiber 
 NIR absorption Sunglasses, goggles 
 Sun light absorption Photovoltaic devices 

Halogen lamp, LED 

NIR absorption (800-1100 
nm) 

Electronic camera; automatic 
photographic exposure meter; 
NIR cutoff filter for PDP 

 
Fluorescence Forgery-preventive agent; dye 

laser; probe 

 photo initiation Photoresist, photosensitizer 
 Photosensitization IR photography 

 

3.2.3 NIR Technology in Fruits and Vegetables 

 Fruits and vegetables used to be unsuitable for NIR measurements because of 

the high moisture content and relatively large size. However, with the development of 
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high-performance NIR instruments, applying near-infrared techniques to monitor the 

quality of intact fruits and vegetables has become more and more popular. According 

to literature, near infrared spectroscopy has been applied to measure the firmness and 

sugar content of sweet cherries (Peirs et al., 2002), to determine the soluble content, 

firmness and titratable acidity of Jonagold apples (Downey, 2004), to determine 

soluble solids content of peaches (Peiris et al., 1998), to evaluate the sugar content of 

fresh melons (Sugiyama et al., 1999), and similar quality measurements of various 

fruits and vegetables. Despite the quality issues such as texture, flavor, and 

appearance, there is another important factor that influences the sorting and grading 

processes of fresh products – defect inspection. Near-infrared reflection spectroscopy 

has been applied widely in fruit defect inspection.  

Usually the fruit surface will reflect only a fraction of incident near-infrared 

radiation as regular reflectance, while the remaining radiation will transmit through 

the surface. The internal cellular structure of the fruit may scatter part of the incident 

radiation into all directions and absorb a portion of the near-infrared energy at some 

wavelengths. If the internal cellular structure changes, the absorption varies. As a 

result, the near-infrared radiation reflected from a fruit changes accordingly at those 

absorption bands. For instance, when a bruise occurs, cell wall destruction and 

chemical changes in the fruit tissue may change the light scatter in the bruised area, 

leading to a difference in reflectance when compared to non-bruised fruit. Using a 

sensor to measure the reflected near-infrared radiation can provide information that 

indicates any changes of internal cellular structure, and that reveals the concealed 

quality beyond the surface of a fruit.  
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 Applying NIR to detect defects on fruits and vegetables has become popular 

in the past few decades. NIR sensing systems have been used as non-destructive tool 

to detect bruises on apples (Tao, 1996), peaches (Miller et al.,1991), potatoes 

(Scanlon et al., 1999), etc. Because of the fast speed and relatively high signal-to-

noise ratio, the NIR sensing system has been adopted by many fruit packing 

industries to improve efficiency and quality along high-speed fruit packing lines.  

 

3.2.4 Mid-Infrared sensing and imaging Applications 

 Infrared spectrum ranging from 3um to 15um is generally considered as 

middle infrared or thermal infrared radiation, and has been widely used to measure 

emitted energy of objects. By using advanced optical detectors and electro-optic 

components, the emitted energy can be converted to a temperature indicator for  

targets of interest. The relationship between the radiation intensity and the object 

surface temperature is described by the Stefan-Boltzmann law as follows: 

TE 4εσ=          (3.3) 

where E is the radiation intensity of an emitter; s  is the Stefan-Boltzmann constant  

(5.7 X 10-8 W/m2K4); e is emissivity, a material property of the object, which is often 

available in the literature; and T is the absolute surface temperature of the object. The 

intensity emitted depends on the fourth power of the surface temperature of the 

object.  

Since every object emits the maximum IR energy at specific wavelength, the 

measurement of a particular material should require an IR sensor equipped with the 

appropriate optical assembly and infrared detectors. For instance, a sensor operating 
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at 3.43um can be used to optimize the measurement of surface temperature of 

polyethylene (Harrick, 1960), while a sensor operating at 5um usually is suited for 

glass measurement (David, et al. 2002), and sensors operating at 1-micron are 

generally used to measure metals and foils (Registerm, 1998). Today, with the 

development of high quality optics, advanced microelectronics, and embedded 

software technologies, high-resolution, high-speed and high-accuracy infrared sensors 

have become available. For example, the high-performance InGaAs photon sensors 

have adjustable and calibrated emissive settings over 0.1-1.0 micron spectral 

resolution at a response time less than 1 millisecond and temperature measuring 

accuracy at 0.1 centigrade (Indigo Systems, 2000).  Thus, high speed online sensing 

and imaging applications with the high performance thermal infrared sensors are 

becoming popular. For instance, thermal infrared imaging has been used for quality 

inspections including examination of insulation settings, detection of moisture 

damage, verification of concrete integrity, evaluation of possible heat loss, searching 

for cooling system energy leaks, etc on residential buildings, plants facilities, and 

refineries. It has long been a successful tool used by the military and law enforcement 

agencies. The applications extend to day/night border patrol, coast surveillance, 

contraband detection, night vision, search and rescue, etc. Thermal infrared imaging 

has also recently been utilized in such medical applications such as blood flow 

vascular scan, blood circulation imaging, cancer research, exercise or therapeutic 

massage verification, etc.   

The non-contact characteristic of thermal infrared imaging is another 

important advantage, especially for the measurement of the surface temperature on 
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cooked and other food materials. The nondestructive, high-speed, automatic 

monitoring and accuracy make mid-infrared imaging the preferred method in food 

inspection industries. Since traditional temperature sensors could not be applied in 

microwave heating, Goedeken et al. (1991) introduced a thermal infrared imaging 

method to continuously monitor the surface temperature of food in a microwave 

oven. Cuccurullo et al. (2002) proposed a technique using IR thermography to 

measure the surface temperature of a microwave oven. Fang and Shah (1998) used 

thermal IR imaging to investigate the heat transfer through air/water and oil/water 

interfaces. Their objective was to investigate the effect of surfactant monolayers on 

the heat transfer process through the interfaces. Ibarra et al. (1999) developed a 

method using IR imaging to estimate the internal cooking temperature in chicken 

breasts.  

The thermal IR imaging technique has also been used to assess the ripeness of 

fruits. In an early work, Danno et al. (1980) used an IR vidicon camera to measure the 

surface temperature in fruits for evaluation of the grade of maturity. Based on the 

analysis of thermal infrared images, Hellebrand et al. (2001) explained that the 

transpiration process was related to the surface temperature changes of fruits, and the 

maximum value of transpiration resistance coincided with the stage of ripeness. One 

important work on apple defect detection using infrared thermal imaging was 

conducted by Varith et al., 2001. The difference in thermal conductivity, specific 

heat, thermal diffusivity, and emissivity between bruised and sound tissues caused 

divergent surface temperatures (Varith et al., 2001). Varith et al. used a 

ThermaCamTM PM390 in their experiments and indicated that, in bruises, thermal 
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diffusivity is 14.3% higher than in sound tissues, and yielding about 1-20C higher 

during 30-180 second after the beginning of heating (Varith et al., 2001). After this 

period, the surface temperature of bruised or sound tissues reached thermal 

equilibrium. They found that it was easier to detect the bruises using a heating 

treatment than a cooling treatment. However, Varith et al. (2001, 2003) was more 

focused on studying the possibility of using infrared thermal imaging to detect 

bruised issues and touched little on other persistent problems that occur during online 

apple defect inspection.  

3.3 On-line Automated Defect Detection of Apples  
 
3.3.1 On-line System Requirements  

 According to a recent National Agriculture Statistics report, in the past ten 

years (from 1994 to 2003), the United States produced an average of $1,540.7 million 

worth of apples each year, while the fresh market accounts for approximately $885 

million (USDA, 2004). In fact, the unit price of apple has continuously increased 

during the last four years. Taking statistical data from 2002 as an example, the fresh 

market utilized 5366.2 million pounds of apples, about 62.9% of the total production 

of that year. With a unit price of 18.8 cents per pound, the fresh market value 

exceeded $1,000 million (USDA, 2004). This means every 1% increase of good apple 

inspection accuracy could produce a nearly $10 million payback for the apple 

industry.  

In the industry, fresh produce like apples must go through numerous 

processing steps such as cleaning, sorting, and packing to enhance their quality and 

shelf-life before they are shipped to the consumer market. A typical apple packing 
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line can be divided into various processing stages, including dumping apples into 

water flow tank, clearing, waxing, and drying the apples, applying electronic 

inspection to apples by size, weight, color and shape, selecting apples with defects, 

and at last packing the apples into bags. Among those operations, except for the 

defect inspection process that requires human inspectors, other processes are 

automatically done by packing machines. Apple defects can be divided into more 

than ten categories: alternaria blotch, scab, rot, pox, spot, rust, flyspeck, hail injury, 

powdery mildew, blotch etc (Biggs, 1999). Some defects are not easy to accurately 

classify or be recognized by untrained eyes. Moreover, the huge number of apples 

passing through the packing lines have posed considerable difficulties for human 

inspectors, which could lead to significant inspection error. 

 
3.3.2 Challenges for on-line system design 
 

There is a strong demand for cost-effective automated defect detection 

equipment to increase the defect detection accuracy and throughput in modern apple 

packing houses. In the early 1970, Stiefvater (1970) summarized that reliable 

identification algorithms, non-destructive sensing, and high speed sorting are three 

criteria for detecting defects and bruises of apples. Since 1970s, much work has been 

performed in the area of defect detection. Brown and Segerlind (1970, 1974, 1975) 

began using a near-infrared reflectance method to detect bruises on apples. In US 

Patent No.3.867.041, they compared lights reflected from bruised and unbruised 

portions of apples and found that in the near-infrared spectrum, the reflected light 

from the bruised portion was much weaker than that from the unbruised portion. 

From then on, using optical techniques to detect apple defects became popular. 
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Although other sensing techniques like X-ray (Diener et al., 1970; Schatzki et al., 

1997), nuclear magnetic resonance (NMR) (Chen et al., 1989), and thermal infrared 

(Varith, 2001) have been explored, near-infrared sensing is the dominant method used 

in the past three decades. 

With rapid advances in optics and computer technology, use of image sensors 

and digital computers for automatic defect inspection has grown into a particularly 

active research area. Graf (1982) used a “matrix camera” to record apple images. 

Tylor, Rehakugler and Throop (1983, 1986, 1989) used digital line-scan cameras to 

detect apple defects. Digital frame grabbers were adopted later (Heinemann et al., 

1995; Tao et al., 1995; Wen and Tao, 1997). The advantages of using digital imaging 

systems for apple defect detection are that those systems are fairly accurate, 

consistent and nondestructive (Chen et al., 2002). Nevertheless, with the abundant 

apple images, effective computer algorithms dedicated to identify defective apples 

from good ones have become the focus of many studies. Image analysis algorithms 

such as image enhancement (Slaughter et al., 1986), feature extraction (Sarkar et al., 

1985; Pla et al., 1993), statistical classification (Shahin et al., 1999), and neural 

network classification (Bochereau, 1992). have been applied in apple defect 

inspection or similar areas.  

Satisfactory detection accuracy and effective image processing algorithms 

have led to the development of online real-time systems. In the middle 90s, Crowe 

and Delwiche (1996a, b) published a real-time hardware and software solution for a 

prototype apple bruise detection machine. From then on, practical challenges have 

become major topics in this research field. As Tao (2001) indicated, in practice a high 
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performance automated apple defect detection system requires: 1) complete surface 

examination of each fruit; 2) high inspection rate of 10 fruit per line per second or 

higher; 3) sophisticated segmentation and classification algorithms with adequate 

accuracy to distinguish defects; and 4) stems and calyxes of apples must be 

distinguished from true defects. Special algorithms have been developed to solve 

practical problems encountered in apple inspection. For instance, the non-uniform 

intensity distribution due to the spherical geometry of the fruit has caused high 

detection error rates. Tao (1996, 1998) developed a “spherical transformation” 

algorithm to successfully eliminate the “annoying” effect on apple reflectance images 

caused by the curved surface of the fruit.  

Another example of practical challenges is the complete surface inspection 

problem. In order to guarantee a complete surface coverage of each apple online, 

special mechanical conveying equipments and imaging system are required. Laykin et 

al. (1999) presented a prototype using a specially constructed “wire-frame” cups to 

carry the fruit. They applied three cameras to capture three different views of one 

fruit simultaneously. Therefore, most of the surface areas of the fruit can be scanned. 

The drawback of this method is the fixed structure of the “wire-frame” cup, which 

might not be suitable for possible various shapes and sizes of fruit, must be 

eliminated in the three-view images. The typical mechanical conveying solution in 

this case is to use roller conveyors. Bi-cone rollers (Crowe and Delwiche, 1996a) 

were used to rotate the fruits as they are moving along the conveyor. The roller 

conveyors have been widely accepted by the industry and have been constructed 

flexibly into single (Crowe and Delwiche, 1996a) and multiple lanes (Tao, 1996).  
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Currently, the major challenge in practical apple defect detection is how to 

distinguish defects from stem-ends and calyxes. Automated surface blemish detection 

systems for apples can be confused by the stem, calyx and concavities of the fruit. If 

the stem and calyx are incorrectly classified as blemishes or bruises, a false 

identification will occur.  

Various approaches have been investigated into this persistent problem. Wolfe 

and Sandler (1989) reported a stem detection algorithm, which utilized the prominent 

and concave shapes of stem-ends and calyxes. However, this method could be 

ineffective if a clear side view of the stems is not available. Other researchers (Miller 

and Drouillard, 1997; Davenel et al., 1988; Throop et al., 1997) utilized mechanical 

systems to orient the fruit, so that the stems and calyxes were at known positions. For 

these methods, the fruit position (as it appears within the field of view of the cameras) 

on the conveyor was critical to the final recognition process. If the positions were 

fixed or known to the imaging system, optimal performance could be achieved. 

However, on a typical packing line, fruits are found in random positions.  It is 

impossible to predict the exact positions of each fruit when they are passing the 

camera. Due to the randomness of the fruit orientation, it is more difficult when 

scanning multiple apples in the viewing area. Campins et al.(1997) concluded that it 

is impossible to use mechanical orientation methods to solve the problem for all apple 

inspection in real-time systems. Other approaches were needed to solve the problem. 

Similar solutions to other fruits were presented. Miller and Delwiche (1991) 

approached a similar problem related to automatic fresh peaches grading. The surface 

cavity of a peach was identified using the variance of gradient within a region of 
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interest. The reported classification error rate for identifying the stem-end of peach as 

a defect was about 30%. Outline views have been used to determine the orientation of 

oranges, blueberries and peppers (Pla and Juste, 1995; Wolfe and Sandler 1985), but 

in apple detection, it was difficult to locate the accurate positions of stems and 

calyxes through different views.  

Another technique was to use structured light to detect the 3D shape of apple 

surfaces (Yang, 1996; Graydon, 1999; Penman, 2001). The concavity of stems and 

calyxes could be identified by calculating laser light stripes. Actually, the light stripes 

showed not only the concavity, but convexity and occlusions as well. This method 

implied potential problems: 1) the intensity and density of stripe lights was hard to 

control; 2) the orientation of stems and calyxes could affect the efficiency of the 3-D 

information calculated through laser projection of stripe lights; 3) even if the laser 

stripe lights could locate the stems and calyxes perfectly, bruises and blemishes could 

not be identified by laser beams. In this approach, additional sensing devices (near-

infrared sensors) for defect detection were required. It could raise other difficult 

problems such as system synchronization, target tracking, and image registration; and 

4) it might not be suitable for multi-lane real-time implementations. 

Wen and Tao (2000) developed a NIR/MIR dual-camera imaging method to 

identify the stem-end and the calyx in apple defect detection. In their study, a middle 

infrared spectrum ranging from 3.4µm to 5µm or 8µm to 12µm were proved sensitive 

to stem-ends and calyxes but not to true defects, while the NIR camera, ranging 

between 700 and 1000nm was sensitive to both true defects and stem-ends and 

calyxes of apples. Both MIR and NIR images were taken for each apple at the same 
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time. True defects were extracted by combining the two images. They reported a 

100% detection of good apples, 99.34% of calyxes, 98.86% of stem-ends and 96.67% 

of defective apples. However, the effectiveness test was conducted in offline apple 

detection. For automatic online implementation of apple sorting, system integration 

and image processing techniques need to be developed to meet the requirements for 

real time packing lines.   

3.4 Machine Vision System 

Machine vision is an engineering technology that combines mechanics, optical 

instrumentation, electromagnetic sensing, digital video and image processing 

technology. As an integrated mechanical-optical-electronic-software system, machine 

vision has been widely used for examining, monitoring, and controlling a very broad 

range of applications. Graves and Batchelor (2003) summarized more than 20 

machine vision applications that were classified by tasks in the natural product 

industry, more than 15 in manufacturing industry, and 7 other machine vision tasks 

applied to various situations such as security and surveillance, medicine and health 

screening, military, and traffic control and monitoring.  

One of the most significant challenges to machine vision engineers on natural 

product inspection is the product variability. Unlike the manufactured parts 

encountered in many industrial applications, natural products have different sizes, 

shapes, colors, and textures in the captured images, and the defects on the products 

vary in terms of severity and location (Graves and Batchelor, 2003). These variability 

problems, among other challenges, should be addressed in the design of a machine 
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vision system by an integrated solution of optical, electrical, mechanical and 

algorithmic approaches.  

 

3.4.1 Machine Vision as a controlled system  

A successful machine vision system should be reliable, fast, and consistent. 

As an engineering technology, machine vision is focused controlling and optimizing 

the image sensing process, maximizing available useful information, and easing the 

subsequent image processing tasks. On the tradeoff of performance and speed, 

machine vision engineers tend to push for maximum throughput as long as the system 

performance is satisfactory according to certain criteria, such as a better error rate 

than human inspectors (Chen, 2003). In a typical machine vision system, everything 

should be under control and well designed. 

 The mechanical design for a specified machine vision system usually is 

uniquely structured to suit the inspection of a particular product. For instance, the 

conveyor belts in a poultry bone detection machine vision systems are usually flat, 

with no texture, and made of USDA approved plastic materials (Chen, 2003; Jing, 

2003). While prototype machines for chicken defect and disease inspection in the 

chicken plants use hooks to hold the birds when they are dangling from moving 

chains and passing through light beams (Chao et al., 2000). On the other hand, most 

conveyor belts for a modern apple packing line are roller conveyors made of special 

dark colored rubber (Tao, 1996).  

The lighting system, a critical part of a controlled machine vision system, 

much be carefully designed. The ultimate purpose of lighting design is to provide a 
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consistent scene eliminate the appearance of variations, and yield appropriate, 

application-specific lighting. Proper selection of lighting sources (incandescent, 

fluorescent, halogen, Xenon, LED), lighting arrangements (backlighting, front 

lighting, side lighting, structured lighting, ring lighting), and lighting geometry (point 

lighting, diffuse lighting, collimated lighting) is the “key to value” (Zuech, 2004). 

Primary factors that influence the selection is whether the object under inspection is: 

1) flat or curved; 2) absorbing, transmissive or reflective; and 3) the nature of the 

feature to be imaged in comparison with the background. For instance, backlighting is 

usually used for detecting objects that are translucent, such as hatching eggs (Das and 

Evans, 1992) or used to measure the geometric dimensions of obscured object, such 

as measuring the shoot height or root diameters of pine to estimate the pine seedlings 

(Wilhoit et al., 1994). The side light scatter can be used to determine the cellular 

granularity (Jain et al., 1991). Structured light can be used to form a 3-D shape of 

apple surfaces for stem/calyx detection (Yang, 1993). Moreover, controlled lighting 

design sometimes acts as an active sensing means that can “create” new information. 

Laser stripes of structured lights combined with X-ray imaging on deboned chicken 

meat inspection is a successful example of generating “extra” information in machine 

vision systems (Chen, 2003; Jing, 2003).  

Because of a controlled lighting system design, intelligent image processing 

technology applied to a machine vision system is normally simplified and can achieve 

high accuracy. Those algorithms tend to maximize the utilization of pre-obtained 

object properties such as the appearance, geometry, surface issues, shape, size, color, 

and positions, as well as the effect of lighting sources. Compared with computer 
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vision research in uncontrolled imaging environments, machine vision systems in 

controlled environments benefit from greatly simplified problems like image 

segmentation, classification, occlusions, and image registration. For instance, the 

rule-based decision-making method, which is quite effective under controlled 

condition (Bartlett, 1988), is rarely used in the computer vision pattern recognition 

field due to uncontrolled possibilities. In short, a major key to a successful machine 

vision application is to start with a good contrast, repeatable image that is not affected 

by ambient light or the surroundings. 

 

3.4.2 Machine Vision as a Real-Time System 

Real-time capability is an essential requirement in many machine vision 

applications. It is essential for the processing system to respond to the incoming 

image data in a timely manner, in particular, for synchronized multi-sensor systems. 

Missing a single line of image sometimes may cause image registration or hardware 

synchronization problems in the system. Laplante and Stoyenko (1996) summarized 

that real time imaging systems involves three major tradeoffs: performance versus 

image resolution, performance versus data bandwidth, and synchronization versus 

number of concurrent tasks. They pointed out that besides adopting faster hardware, 

using appropriate software architecture is usually more important to ensure reliability 

and functionality of the overall system, and to maximize the potential of the available 

hardware. The design of appropriate software architecture emphasizes the re-usability 

of shared resources between concurrent tasks and intermediate results. However, most 

of these techniques require special control in lower level software architecture. By far, 
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in most machine vision applications useful techniques such as double buffering and 

parallel processing are popular (Chen, 2003; Jing, 2003). 

Double buffering is an image processing technique using two image buffers to 

ensure data integrity without interfering with real-time image acquisition. The basic 

idea of double buffering is similar to queuing techniques in computer engineering.  

Two image buffers are assigned, one of them is used for new image grabbing while 

the other is used for processing, and the two buffers work in an interlaced manner. It 

requires that the maximum processing time for one frame is shorter than the 

minimum acquisition time for a frame; otherwise, the image data being processed 

could be contaminated. Handshaking signals are used to indicate the current status of 

buffer processing. This simple mechanism guarantees that at any time, the image 

buffer being processed is not being updated by another source, thus data integrity is 

ensured.  

To maximally exploit the hardware computing power, it is often helpful to 

process the images in a parallel manner. Parallel processing refers to the concept of 

speeding-up the execution of a program by dividing the program into multiple 

fragments that can execute simultaneously, each on its own processor core. In a 

typical real-time multi-processor imaging system, data throughput is affected by the 

following factors: 1) the acquisition frame rate of the sensor and the image grabber 

and processing speed of the onboard image processor if there is one; 2) data 

bandwidth for transferring the image stream to the host CPU(s); 3) processing speed 

of the host CPU and data bandwidth between CPU and memory. Relatively slow data 

transfer speed in the data buses usually causes a “bottleneck” effects in image 
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processing. Multi-thread and parallel processing over several processors may release 

the bottleneck crisis and use the idling time slots on the host CPUs or onboard 

processors. Computation power of the onboard processor and host CPU can be 

employed more efficiently if there are multiple processing threads working in parallel, 

and the overall throughput and responsiveness of the overall system would be 

improved with the same hardware. 

 

3.4.3 Future Trends of Machine Vision  

A typical machine vision system consists of one or more optical sensors, 

illumination sources appropriate for the specified sensing, a necessary mechanism for 

presenting the objects, one or more image digitizers to acquire images, and one or 

more digital image processors or computers to process data. With the development 

and integration of modern mechanic, electronic, computer and sensing technologies, 

traditional components of a machine vision system have been advanced along many 

fronts. Computer processor architecture has been improved dramatically. Very long 

instruction word (VLIW) architecture has been applied in media and image processor, 

where the instruction-word length has increased, so that multiple operations can be 

executed in a single cycle. The VLIW processors are usually configurable and 

optimized for targeted compact system, and are suitable for most data-centric 

applications with high performance and low cost (Managuli and Kim, 2002; Bae et al., 

2002). The sensitivity and resolution of cameras have increased. New sensing 

instruments such as uncooled infrared cameras are now commercially available. With 

the development of VLSI design, computational sensors have emerged. Analog and 
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digital integrated circuits that are sensitive to measure the outside stimulus (such as 

light) are designed, and algorithms that are developed to mimic one aspect of a 

biological system (such as vision) are integrated into one single chip. Computation 

and sensing are tightly combined to achieve a miniature, self-contained, autonomous, 

and intelligent sensing system (Brajovic, 2004; Brajovic and Kanade, 2004).  The 

micro-electro-mechanical systems (MEMS) sensor industry has made continuous 

improvements to develop reliable and low cost ‘’sensors on chip” systems (Motorola, 

1998; Shaw, 1998). Moreover, many recognition and tracking algorithms have been 

developed from 3D image matching to artificial neural networks. Technologies, such 

as wireless communication, and modern control techniques have been included in 

machine vision systems, arose from applications in biomedical engineering (Daumas 

et al., 2003; Chauhan et al., 2003; Raczkowsky et al., 2003), industrial control 

(Toyserkani et al., 2003;), home robotics(Bonizzi et al., 2003; Acosta et al., 2003), 

and agriculture (Martín-Herrero et al., 2003; Dunn et al., 2003). 

In the inspection of natural products such as vegetables, fruits and other 

biological materials, the differences in the characteristics of light absorption by the 

materials are very important (Chen, 2003). A hyperspectral imaging technique that 

combines the advantages of spectroscopy and imaging techniques will have many 

potential applications in the fresh produce inspection industry. 
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3.5 Hyperspectral Sensing and Imaging 
 
3.5.1 Brief Overview  

Hyperspectral Sensing and Imaging (HSI) exploits the fact that all materials, 

due to the differences of their molecular compositions, reflect, absorb, and emit 

electromagnetic energy in distinctive patterns at specific wavelengths. This 

characteristic is called spectral signature. In principle, the spectral signature can be 

used to uniquely characterize and identify any given material over a sufficiently broad 

spectral band (Shaw and Manolakis, 2002).  Hyperspectral data/images acquired over 

selected wavebands consist of spectral information that may cover dozens or even 

hundreds of contiguous narrow bands for the purpose of signature analysis. The 

spatially and spectrally digitized information can be considered a three-dimensional 

data cube, with two-dimension of spatial coordinates and a third dimension of 

spectral band. The development of proper processing algorithms to analyze the high-

resolution data cube has become the key to success of many hyperspectral sensing 

and imaging applications. 

The processing algorithms can be organized into four types according to their 

tasks: target detection, change detection, classification and unmixing. Target 

detection means seeking a unique spectral signature that belongs to some object or 

material. The objective of change detection is to find the significant changes between 

two hyperspectral scenes of the same geographic region. The goal of classification is 

to label each pixel in a hyperspectral image into clusters of pre-specified types of 

categories (classes). Unmixing means evaluating the fraction of the pixel area covered 
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by each material present in the scene or decompose a mixed pixel into a collection of 

constituent spectra, which is typically used in remote sensing.  

The typical procedures of HSI analysis include: 1) image display, which 

presents a view of the data set in an image space so that the analyst can explain and 

mark classes of data easily; 2) class definition, this operation is to identify the 

informational data into desired groups; 3) feature extraction, which applies algorithms 

to determine a feature subspace that is optimal for discriminating between specified 

classes defined. An initial set of data training is usually required; 4) reformatting. In 

this step, based on the feature subspace, a new data set is generated with reduced 

dimensionality; 5) initial classification. Classifiers are used to segment data cube into 

defined classes; 6) finalize training, which means to inspect the initial classification 

result and identify potential improvements. If needed, new features will be added to 

the training set; and 7) final classification. The step is to re-classify the data based on 

the new training set.  

 

3.5.2 Optimal Band Selection and Combination Problem   

 
Hyperspectral imaging has emerged as a powerful tool in earth remote sensing. 

Recently, it has also been utilized as a non-invasive inspection method in medical, 

biological, agricultural and industrial areas (Heitschmidt et al., 1998; Levenson et al., 

1998; Lu and Chen 1998; Willoughby et al., 1996). Lu and Chen (1998) pointed out 

that only two or three essential spectral bands were required for on-line imaging 

applications to identify unwholesome conditions in food products. Kim et al. (2001) 

established a laboratory-based hyperspectral imaging system that combined the 
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features of imaging and VIS/NIR spectroscopy to simultaneously acquire spectral and 

spatial information for various food commodities. These studies suggest a need for 

defining the optimal bands spectral combinations for on-line inspection 

implementations.   

The topics of band selection and combination are concentrated on establishing 

a formal methodology, which enables optimal utilization of specific spectral bands. In 

general, the selected band(s) should reduce the data dimensionality while preserving 

the most important information contained in the lower dimensional data space. 

Hyperspectral band selection and combinations have become a powerful tool 

and gained enormous research interest for safety and quality inspection of fruit and 

poultry products.  Lu and Chen (1999) used hyperspectral imaging to detect the 

bruises in apples; Kim et al. (2002a, 2002b) used the hyperspectral tool for fecal 

contamination detection on apples; Heitschmidt et al. (1998) used hyperspectral 

analysis for fecal contamination of poultry products; and Chen et al. (1998), Park 

(1998) and Windham (2001) demonstrated the methods of using VIS/NIR 

spectroscopy for detecting defects in chicken carcasses.  The common aspect of these 

studies is that the PCA method is used for optimal band selection and band 

combination over the hyperspectral bands. The optimal band(s) is defined as the one(s) 

that preserves the most energy among the hyperspectral data cube. In other words, the 

selected band(s) presents the best representations of the original data. 

However, in different applications, the definition of the “optimal band” varies. 

Accordingly, the method used in solving the band selection problem should vary too. 

For instance, in remote sensing applications, in order to obtain the optimal bands that 
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maximum the signal to noise ratio (SNR), modified PCA methods were used. Green 

et al. (1988) developed a maximum noise fraction method to maximally remove the 

noise in the selected band; Lee (1990) used a noise-adjusted PCA method to select the 

optimal band. The two methods, although with different names, are mathematically 

equivalent. Compared with the PCA, the results of the modified methods identified 

the optimal components with maximum SNR.  

Therefore, in order to select the optimal band in hyperspectral analysis, the 

first step is to define ‘optimality’. Casasent (2000, 2001) pointed out that the 

discriminating information of features was very important; therefore, minor 

components should be used for band selection and combination.  Using the 

hyperspectral imaging system developed by USDA-ISL for most food safety and 

quality applications, the optimal band(s) should preserve both the information, if not 

equally, on data cube energy and on low probability objects, or unwholesome objects. 

The optimal band is accordingly defined as the band that contains the maximum 

information and simultaneously separates the different features maximally from the 

original data. Since the PCA method in no way guarantees that the resulting 

transformation will preserve the low probability object information, a modified 

method is proposed in this study to achieve better performance in satisfying the 

optimal band selection and combination criteria.  
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CHAPTER 4 A NOVEL INTEGRATED PCA AND FLD METHOD OF 

HYPERSPECTRAL IMAGE FEATURE EXTRACTION FOR 

CUCUMBER CHILLING DAMAGE INSPECTION 

4.1 Introduction 
 

Chilling damage to produce such as cucumbers usually happens when the 

produce are stored at low temperatures. The primary cause of the chilling damage is 

thought to be the injury of plant cell membranes (Saltveit and Morris, 1990). Chilling 

damage is a result of low temperature over time. Usually, chilling injury can be 

recoverable if the produce stays below the critical temperature for only a short period 

of time. But if exposure to the low temperature is prolonged, the damage is 

irreversible.  Detection of chilling damage is difficult, especially at its early stages. 

The symptoms of injury usually develop after the produce is placed in a warmer 

environment. Sometimes symptoms develop slowly and are difficult to detect visually. 

In order to find an effective way to detect chilling injury for automated inspection of 

fruit and vegetables, a hyperspectral-imaging method is used.  

Hyperspectral sensors have been used to sample the spectral reflectance from 

objects. The rich spectral response collected provides sufficient information to 

identify the spectral reflection peaks and absorbing troughs of material (Shaw and 

Manolakis, 2002). The entire spectrum region used for sensing spans from the visible 

region through the near infrared and is divided into hundreds of narrow and 

contiguous bands. The spectral interval can be as narrow as a few nanometers in 
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wavelength.  As a result, over 100 spectral bands or channels are usually used at the 

same time. By adding a dimension of spectral information to two-dimensional spatial 

images, hyperspectral data can be perceived as a three-dimensional data cube. 

Recently, hyperspectral imaging has become a powerful tool and is of enormous 

interest to researchers in fruit safety and quality inspection. Kim et al. (2001) 

established a laboratory-based hyperspectral imaging system combining the features 

of imaging and visible/near-infrared (Vis/NIR) spectroscopy to simultaneously 

acquire spectral and spatial information for various food commodities; Kim et al 

(2002a, 2002b) used hyperspectral imaging methods for fecal contamination detection 

on apples; Heitschmidt (1998) used hyperspectral analysis for fecal contamination of 

poultry products; and Chen et al, (1998), Park (2002) and Windham (2001) showed 

methods of using hyperspectral imaging for detecting contamination of chicken 

carcasses.   

Lu and Chen (1998) found that only two or three essential spectral bands were 

required for on-line imaging applications to identify unwholesome conditions in food 

products. Hyperspectral imaging is used as a research tool to determine those 

essential bands. All the spectral data is studied. Band selection and combination 

strategies are applied. Because in commercial systems applications, two or three 

spectral bands are usually required for real-time inspection, the validity of the band-

selection and combination strategy identified by hyperspectral sensing research 

becomes important. The selected essential bands should not only maintain any 

valuable details that are needed, but also simplify the successive discrimination and 
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classification procedures. This research is focused on developing a band combination 

method that can be applied to hyperspectral research on fruit and vegetable inspection. 

A hyperspectral image cube can be considered as a high dimensional feature 

space. Each feature is represented as a spectral image, and the reflection properties 

from wholesome and unwholesome objects are associated as different patterns.  The 

hyperspectral band selection problem then can be viewed as a feature extraction 

problem in statistical pattern recognition. The well-known linear transforms or 

projection pursuit methods for feature extraction and dimensionality reduction are 

principal component analysis (PCA) and linear discriminant analysis (LDA). PCA is 

widely used in fecal-contaminated apple inspection (Kim, 2002) and quality and 

safety inspections of other fruit and vegetable. However, Talukder and Casasent 

(1998) point out that PCA, as an unsupervised method, is not necessarily good at 

drawing distinctions between patterns. In this paper, the objective is to present a new 

method that combines the PCA and the Fisher’s Linear Discriminant (FLD) methods 

to aid in the criteria development for selecting spectral bands for multispectral 

imaging applications. This new method and the individual PCA and FLD methods are 

each applied to cucumber chilling injury inspection. The detection results obtained by 

using the new method are presented and compared with PCA and FLD, respectively. 

  

4.2 Material and Method 
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4.2.1 Sample Materials 

 Cucumbers were freshly picked from a farming field. Ninety cucumbers were 

divided into 30 groups of 3 cucumbers each.  Each group was placed in a plastic bag 

punched with holes to allow for air circulation.  In temperature-controlled cold 

storage rooms, fifteen of the bags were stored at 0oC and the other fifteen at 5oC.  On 

each day over a period of 15 days, one bag was moved from each cold storage room 

to an air-conditioned laboratory room at 18-20oC.  Each day, hyperspectral images 

were collected for the 6 (2 groups of 3) newly-moved cucumbers, and also for all 

cucumbers previously moved from the cold storage. The last two groups were moved 

after 15 days in cold storage and image collection continued for 6 days afterwards.  

Chilling injury was categorized into four different damage levels: trace, slight, 

moderate, and severe. For cucumbers stored at 0oC, symptoms of trace chilling injury 

first appeared on cucumbers that had spent 4 days in cold storage and then 2 days at 

room temperature.  For cucumbers stored at 5oC, symptoms of trace chilling injury 

first appeared on cucumbers that had spent 5 days in cold storage and 1 day at room 

temperature. Early trace and slight chilling injury was observed. Some cucumbers 

that showed early trace and slight levels of chilling damage subsequently appeared to 

recover after several days at room temperature. Typical samples of these injury levels 

are shown in Figure 4.1. The dark spots on the cucumber images in Figure 4.1(c) and 

(d) represent the severe skin damage and decay developed from chilling injury.  
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       (a) Trace                (b) Slight                    (c) Moderate              (d) Severe 
 

Figure 4.1 Four levels of chilling injury (presented in the rectangular area) of 
cucumbers detected in this study. (a) trace chilling injury (b) slight chilling 
injury (c) moderate chilling injury (d) severe chilling injury. The images 
used were 800nm near infrared image. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (a) slight chilling damaged cucumber (b) bumpy good cucumber 
 

Figure 4.2 The NIR reflectance images of a slightly chilling damaged cucumber and a 
good one with bumpy skin. The two images show the similarity in 
appearance of the two cucumbers. The images were taken at 800 nm. (a) A 
cucumber with slight chilling damages (b) A healthy cucumber with 
bumpy skin. 
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A large degree of variation in both color and skin smoothness can exist 

between individual cucumbers.  These natural differences increase the difficulty of 

detecting chilling damage even during the human visual inspection process.  For 

instance, bumpy skinned cucumbers can be easily mistaken to have trace or slight 

chilling damage due to the visual similarities, as shown in Figure 4.2. It had become 

the most challenging part of our experiment for effective detection. On the other hand, 

the cucumber samples also varied in sizes and shapes in their hyperspectral images. In 

order to keep the input data consistent, only a portion of each cucumber image was 

used for the input image samples. The size of the region of interest is 45 pixels by 45 

pixels. This size covered the average spot area of chilling damage. For an individual 

cucumber sample, the different levels of chilling injury may appear on different 

portions of the cucumber skin and thus may produce different image samples for 

training or testing purposes. Data collected for the 90 cucumber samples during three 

weeks’ time provided a huge number of input image samples.  Moreover, since the 

cucumbers developed different types of chilling injuries unevenly, different numbers 

of samples were chosen for training and testing of the algorithms, as summarized in 

Table 4.1. Three experiments were conducted on testing different methods with 

different types of cucumber samples.  
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Table 4.1 Cucumber Sample Diversity 

 
Sample class Number of 

sample 
images  

Type of cucumbers Total number 
of sample 

images  
20 Trace 
50 Slight 
35 Moderate 

Defective 
Cucumber 
Samples 

35 Severe 

140 

90 Good with bumpy skin  Good Cucumber 
Samples 50 Good smooth  

140 

 

4.2.2 Hyperspectral Sensing System 

A laboratory-based hyperspectral sensing and imaging system established by 

the USDA Instrumentation and Sensing Lab (ISL) was used to scan each sample. For 

a detailed description of this equipment, please refer to Kim et al (2001, 2002a). In 

this study, only reflectance measurements were analyzed. The illumination for 

reflectance imaging was provided by two 150 W halogen lamps. The equipment was 

operated in a line-by-line scan mode at a line length of 460 pixels. The scanned 

wavelengths ranged from 447.3 nm to 951.2 nm with a 4.5 nm interval, for a total of 

112 spectral bands. Once a single line was scanned, a 112x460 (spectral by spatial) 

pixel image was generated.  Due to the maximum length of the cucumber samples, 

300 lines were accumulated for each cucumber. During the scanning process, the 

system was operated in a darkened room to prevent interference from ambient light.  

Each pixel value in the 1x112 spatial-by-spectral image is proportional to 

reflectance factors of the sample at that pixel position. The reflectance factor was 

defined by dividing the reflected radiation intensity at each pixel position of a sample 
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by that of a known reference under the same illumination situation. For system 

calibration, a white Spectralon panel (Labsphere, Inc.) with nearly 99% reflection 

ratio was used as the reference. To obtain a proper dynamic range of the image data, 

the reflectance factors were expanded by a fixed number and then assigned to be the 

pixel values of the spatial by spectral image.  

 

4.2.3 Feature Extraction with Integrated PCA-FLD Method 

 Principal component analysis (PCA), also known as the Karhunen-Loeve 

transform, uses orthogonal axes for dimensionality reduction by performing an eigen-

decomposition of the spectral covariance matrix of the data.  Let St represents the 

covariance matrix, and St can be obtained by: 
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where µ  is the mean vector of a pixel set, and N is the sample size. The dimension of 

St is NxN. The eigen-decomposition transform is to maximize the energy of the 

projected samples, denoted as: 

Epca = mt
T
m S φφ                                                                                  (4.2) 

where, mφ is the one of the transform vectors that was used to project the data samples, 

and m=1… N. Each eigenvector corresponds to a unique combination of bands and 

the set of eigenvectors is orthogonal. By performing the eigen-decomposition of the 

covariance matrix, it can be demonstrated that the transformed data, compared with 

the original data, has minimized residual mean square error. More specifically, the 
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first eigenvector corresponding to the largest eigen value, explains more of the 

variance of the data than any single band of the original image. Similarly, the first 

two eigenvectors explain more of the data’s variance than any pair of the original 

bands, and so on for large number of eigenvectors and bands. The magnitude of the 

eigenvalue indicates the energy residing in the data along the direction parallel to the 

corresponding eigenvector. The larger the eigenvalue, the higher the energy it 

represents. Hence, to reduce the original N-dimensional data to a lesser dimension, M, 

one can project the original data to the M eigenvectors corresponding to the largest M 

eigenvalues.  By taking the first few significant compositions, this transform results in 

a lower-dimensional multivariate feature vector, that still preserves most of the 

energy in the original, higher-dimension system.  

Fisher’s Linear Discriminant (FLD) method is an effective, class-specific 

method that projects the scatter of data to make them more reliable for classification. 

Two matrices are introduced in the FLD: one is the between-class scatter matrix, 

denoted as Sb, and another is the within-class scatter matrix Sw. The between-class 

scatter matrix Sb is defined as (Belhumeur et al., 1997): 
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and the within-class scatter matrix is defined as: 
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where iµ  is the mean vector of class i, µ  is the mean of total samples, c is the 

number of classes, iχ  represents the ith class and iχ is the number of samples in class 
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i. The optimal data projection can be obtained by choosing the transform-vectors mφ  

that maximizes the ratio of the projected between-class samples to the projected 

within-class samples, denoted as Efld, and defined: 

Efld=
∑
∑
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Note that the PCA method does not guarantee the representation of the feature 

class separability of the selected band. On the other hand, the FLD method, though is 

effective in class segmentation, is sensitive to noise and may not convey enough 

energy from the original data.  

In order to design a set of transformation vector-basis that can provide 

supervised classification information well, and at the same time, preserve enough 

energy from the original data cube, a new method is proposed to combine the 

equation (4.1) to (4.4) to construct an evaluation equation called Integrated PCA-FLD 

Method. A weight factor K is introduced to adjust the degree of classification and 

energy preservation as desired. The constructed evaluation equation is given as: 
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where K ]1,0[∈ , and I is the identity matrix. In equation (4.5), if the within scatter 

matrix Sw becomes very small, the eigen-decomposition becomes inaccurate. 

Equation (4.6) overcomes this problem. If the previous situation happens, by 

adjusting the weight factor K toward 1, the effects of Sw can be ignored, which means 

the principal components are more heavily weighted. On the other hand, if the K 

value is chosen small, which means more differential information between classes is 
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taken into account, the ratio between Sb and Sw dominates. The integrated method 

magnifies the advantages of PCA and FLD and compensates the disadvantages of the 

two at the same time.  

 In fact, the FLD and PCA methods represent the extreme situation of 

equation (4.6). When K=0, only the discrimination measure is considered, and the 

equation is in fact equal to FLD (equation (4.5)). If K=1, only the representation 

measure is important, and the evaluation equation is equivalent to PCA method 

(equation (4.2)). To find the transform that provides equally well on representation 

and discrimination, one can find the set of mφ  that maximizes equation (4.6) where 

K=0.5. The solution of mφ  is called the generalized eigenvector that was obtained by 

setting the derivative of equation (4.6) with respect to mφ  to be zero. We have,  
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Where, λm represents the eigenvalues, and mφ  is the corresponding generalized 

eigenvector.  

For the hyperspectral dimensionality reduction, suppose that the original 

feature space is with N dimensions, then the reduced M (M<N) dimensional features 

can be formed by selecting the M generalized eigenvectors corresponding to the M 

largest eigenvalues obtained from equation (4.7). Note that K value changes between 

0 to 1, which shifts the weight between PCA and FLD. For a given K value, a 

maximized (6) is supposed to give an optimal projection on the original feature space. 

The projected samples become the best in representation and classification at the 

proportion determined by K. For any application, an optimal proportion between PCA 
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and FLD exists, and by searching the K value from 0 to 1, one can find the optimal K 

that achieves the best classification rate of the samples. The changes of the 

classification rate by different K will be discussed in the next section. 

The transformation matrix T (NxM) is formed by selecting M generalized 

eigenvectors as the column vectors in the matrix.  The linear transform is defined as: 

Y= TTX              (4.8) 

Where X represents the original feature space with the given NxJ dimension. N 

represents the features and J is the sample size. Y is the transformed feature space 

with MxJ dimension. Y consists of the new features (or bands) that obtained from the 

linear combination of all the original features/bands for all pixels. Since T consists of 

M eigenvectors that are corresponding to the M largest eigenvalues, Y can provide a 

better classification and representation ability than any subset of M bands of the 

original data set X.  

In this study, M=1 is chosen. Only the eigenvector corresponding to the 

largest eigenvalue of (7) is used in the feature extraction. In this case, Y represents a 

single feature vector (we call it the first principal feature vector) that is generated by 

linear combination of original N features by using the integrated PCA-FLD method. 

Similarly, by applying PCA or FLD method individually, one may obtain the first 

principal feature vector for PCA or FLD, respectively, wherein PCA the first 

principal feature vector is in fact the first principal component. Though the physical 

meaning of the first principal feature vector in the integrated PCA-FLD method is 

less clear, it may provide the best discriminative feature compared with any 

individual feature in the original N feature space.  
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All methods mentioned above aim to establish a good transformation matrix 

to define the similarity or difference among patterns. When the original hyperspectral 

data cube is transformed, spectral feature vectors are obtained for each image sample 

selected. A classifier is designed to determine the category of input image samples.  

For spectral feature vectors that belong to one image sample, both mean and standard 

deviation of the feature vectors are calculated. The ratio of the standard deviation 

over the mean is used as the numerical input variable to a k-Nearest Neighbor 

classifier algorithm. The k-Nearest Neighbor algorithm is used to determine the k 

samples in the training set that are closest to the Xth unknown sample in the testing set. 

Because patterns with similar attributes should be assigned to a same class, samples 

with closer ratios are classified as the same category. Therefore, if a majority of the k 

nearest neighbors belongs to the “good cucumber” class, then the Xth sample is 

classified as a good cucumber, otherwise it is classified as an injured one. We used 

k=15 in the classifier.  

 

4.3 Results and Discussion 
 

Figure 4.3 shows the averaged reflectance intensity over the wavelength 

curves for six types of cucumbers. The main difference lay in the visible range from 

500 nm to 580 nm, and near infrared range above 700 nm (the visible range 

represents the color of cucumber pigment).  As shown in figure 4.3, cucumbers with 

severe and moderate chilling injury had greater absorbance within this spectral range 

and were easier to distinguish from the wholesome ones. On the other hand, the 

cucumbers with trace or slight damages showed little difference from the healthy 
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cucumbers. In particular, over most of the spectral range, the curves of bumpy-skin 

good cucumbers were mixed together with those of trace or slightly injured 

cucumbers. It became much more challenging to differentiate them prior to band 

combination.  

 

The Average Reflectance Intensity of cucumbers
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Figure 4.3 The hyperspectral reflectance effect on wholesome (bumpy good and 

smooth good) cucumbers and unwholesome (with chilling injury level of 
trace, slight, moderate, and severe) cucumbers. 

 



   

 53 
  
  
  

K sensitivity Test Result
Good Cucumber Recognition Rate

45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
K values

R
ec

og
ni

tio
n 

R
at

e

Group One test 1 Group Two test 1
Group One test 2 Group Two test 2

 
(a) 

 

K sensitivity Test Result 
Chilling Injury Detection Rate

45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
K values

R
ec

og
ni

tio
n 

R
at

e

Group One test 1 Group Two test 1 Group One test 2 Group Two test 2
 

(b) 
 

Figure 4.4 (a) The good cucumber recognition rates versus K values for four 
evalidating tests, where each test used 20 different image samples. (b) The 
Chilling injury detection rate versus K values for the same four validating 
tests as in (a). 
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In the new method, the K value was used to adjust the balance between the 

representative and classification abilities of the projection matrix, and therefore 

increased the flexibility of the method. For different image samples, however, the 

optimal K values should differ. An effective method for K value selection was needed. 

In this study, we searched the K value from 0 to 1 at a step of 0.05.  When the K 

value was changed, the recognition rates varied. As an example, figure 4.4 showed 

the sensitivity of K value versus the classification rates for two groups in a total of 

four tests using a small set of only 20 image samples. The samples used for the four 

tests are shown in table 4.2. The overall classification rate changed gradually over the 

K values.  For different samples, the optimal K values differed. In group 1 tests, 

where the defective cucumbers were easier to distinguish from the good ones, the 

optimal K values were in the range of 0.35 to 0.95. In group 2 tests, since the two 

classes of image samples were similar, the optimal K values were in the range of 0.05 

to 0.60. The overlapping range of optimal K was from 0.35 to 0.60. In most cases of 

this study, a K value in this range gave the best performance. But as shown in figure 

4.4(b), in the test of detecting the trace-injured cucumbers from the bumpy good ones, 

the optimal K value was from 0.05 to 0.25. A K between 0.35 and 0.6 resulted in 

classification errors.  

Table 4.2 Samples Used for Optimal K Value Tests 

Sample 
Group 

Test Type of Cucumbers Image Sample 
Total Number 

Test 1 Moderate and smooth good  20 One 
Test 2 Severe and smooth good  20 
Test 1 Slight and bumpy good  20 Two 
Test 2 Trace and bumpy good 20 
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In general, by choosing the optimal K values, both the representation and 

classification effects were properly weighted for the testing samples. The small set 

sample tests can be considered a validating process before the training and the testing 

process. Those image samples were called validating image samples, which were 

used to determine the variable parameters (in our experiments, the optimal K value) 

in the method before final application to the training and testing processes.  

 

Figure 4.5 Chilling injury detection rates and good cucumber recognition rates were 
shown by using FLD, PCA and integrated FLD-PCA methods for the first 
experiment, where 20 image samples were used for training and the other 
80 image samples were used for testing. The rates were calculated based 
on the total 100 testing cucumber image samples. 

The image samples used for these experiments are listed in table 4.3. In the 

first experiment, 50 good smooth-skinned cucumber images and 50 badly injured 

(with moderate and severe degrees of damage) ones are selected.  From among these, 

20 good cucumber image samples and 20 injured ones are used for training and then 

tested together with the remaining 60 samples. The total 100-sample testing results 
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shown in figure 4.5 are obtained by choosing the optimal K value at 0.60. The result 

indicated that the PCA method and the integrated PCA-FLD method achieved a 

similar better performance compared with the FLD method. Note that the sample 

classes used in the first experiment were well separated ones. The solution was 

dominated by the principal components. So the PCA method becomes good at 

classifying data that are well distinguishable, and this is consistent with Kim’s (2002) 

result. On the other hand, since FLD maximizes the Efld ratio shown in equation (4.5), 

which is small in this case, it becomes unreliable and noise sensitive, and leading to 

the poor performance in this situation. 

Table 4.3 Samples Used for the Experiments 

 
Experiment 

No. 
Sample Type  Image 

Sample 
Num. 

Training Set Testing Set 

Good smooth 50 20 50 
Moderate 25 10 25 

High 
Contrast 

Test Severe 25 10 25 
Good with bumpy 

skin 
30 30 30 

Trace 10 10 10 

Low 
Contrast 

Test 
Slight 20 20 20 

Good with bumpy 
skin 

60 20 40 

Trace and Slight 40 10 30 

Mixed 
Contrast 

Test 
Moderate and 

Severe 
20 10 10 
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Figure 4.6 Chilling injury detection rates and good cucumber recognition rates were 
shown by using FLD, PCA and integrated FLD-PCA methods for the 
second experiment, where a total 60 cucumber image samples were used 
as training samples and the same 60 cucumber images were tested. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Chilling injury detection rates and good cucumber recognition rates were 
shown by using FLD, PCA and integrated FLD-PCA methods for the third 
experiment, where 40 image samples were used as training samples and 
another 80 image samples were used as testing samples. The rates were 
calculated based on the 80 testing image samples only. 
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More challenging samples were trained and tested in the second and third 

experiments as listed in table 4.3. The recognition results are shown in figure 4.6 and 

figure 4.7, respectively. In the second experiment, 60 samples were used for training 

and the same samples were used for testing, therefore the recognition rates for both 

good and injured cucumbers were high. In this case, the K value was chosen at 0.20. 

Since these two classes had very similar spectral characteristics, the differentiating 

information played a more important role in classification. Therefore, FLD solution 

showed better performance than PCA. By using the FLD method, the defect 

recognition rate achieved 90%, and the good sample recognition rate was 100%, 

which were, respectively, 5% and 2% higher than those of using PCA method.  

In the last experiment, 40 samples were used for training, and an additional 80 

samples were tested. The samples were diversified and covered all types of injured 

cucumbers mentioned before. In this case, the K value was selected at 0.20. The 

combined PCA-FLD solution got 93.3% injured cucumber recognition rate and 

88.3% good cucumber recognition rate. In all these experiments, the integrated PCA-

FLD solution got the best recognition results compared with those of the other 

methods.  

Table 4.4 Summary of Three Feature Extraction Methods 

Method Property Comments 
PCA Linear Transform, 

eigenvector-based 
Good representative, good for high-

contrast data classification 
FLD Linear Transform, 

eigenvector-based 
Good for discrimination on low 

contrast data classification 
Integrated 
PCA-FLD 

Linear Transform, 
eigenvector-based 

Good for both representation and 
discrimination, need to choose proper 

K values 
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Table 4.4 summarizes the three methods discussed above. All these methods 

are considered transformation-based feature extraction methods. The original features 

are linearly combined to produce new projected features at a lower dimension. The 

new projected features compared with any subset of original features at the same 

dimension have a better performance in some aspects. For instance, the new projected 

features generated by the PCA method are good at pattern representation, and also 

good at differentiating the obviously separated patterns. But for similar patterns, the 

FLD method performs better in classification purpose. However, since the 

distinguishing information between two classes in FLD is more heavily weighted, 

FLD is more sensitive to noise and less stable than PCA. The integrated PCA-FLD 

method overcomes the drawbacks of the previous two methods while it preserves the 

advantages of both. Moreover, the new method provides more flexibility in dealing 

with different sample patterns by adjusting the K value properly.  

4.4 Conclusions 

 In this study, we proposed a novel integrated PCA-FLD method for 

hyperspectral feature extraction and applied it to cucumber chilling injury detection. 

The integration process was neither a simple combination of the two methods nor 

using them sequentially during the entire procedure. The new method was derived 

based on a constructed evaluation equation that combined the representation and 

classification effects together. Based on our sample data, better recognition 

performance was achieved by using the new method.  

We concluded that for hyperspectral band combination, integrated effects of 

both representation and classification should be taken into account. The principal 
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components preserved the most energy of the original data, and provided good 

performance in recognizing obviously separated classes. The discriminant analysis 

contributed to classifying similar patterned classes. By properly adjusting the weight 

factor K, the integrated PCA-FLD method was more flexible in processing with 

different sample patterns and the result became robust to noise. This method can be 

extended to other hyperspectral imaging applications for safety and quality 

inspections. 
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CHAPTER 5 COMPARISION OF PATTERN RECOGNITION 

METHODS FOR HYPERSPECTRAL IMAGING AND BAND 

SELECTION 

5.1 Introduction 

 
Hyperspectral imaging technology has been used in many areas, including 

remote sensing (Landgrebe, 2002), microscopic analysis (Schultz, et al, 2001; 

Huebschman, et al, 2002), genetic analysis (Sinclair, et al, 2004), homeland security 

(Houser, 2002; Vogel, 2003), food safety (Kim, et al, 2000; Kong, et al, 2004) and 

fruit/vegetable inspection (Mehl, et al, 2004; Lu and Peng, 2004). More and more 

research interests have been put on advanced hyperspectral imaging systems and 

pattern recognition methods for hyperspectral data analysis. 

In a typical hyperspectral imaging system, the reflection image data for each 

pixel is captured over various spectral bands, forming a so called image cube for the 

subject and background, i.e., for each pixel in the view, both spatial (two dimensions) 

and spectrum (one more dimension) information are acquired and recorded by the 

imager. The vast amount image data can provide more information about the object 

than ordinary monochrome or multi-spectral imaging methods. Due to its superior 

performance in terms of spectral resolution, hyperspectral imaging technology is 

becoming more and more popular in many inspection applications.  

It is obvious, however, that the overwhelming information captured by 

hyperspectral imaging system can be used only if it can be processed and/or 
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understood, so that useful insights can be drawn from the hyperspectral image. In a 

complete hyperspectral inspection system, if we think of the hyperspectral imaging 

subsystem as the eye of a human, which captures rich information of the subject at 

various spectra, then the pattern recognition subsystem would represent the visual 

cortex of the brain, which processes the incoming information, understands the 

context, and makes decision. The field of pattern recognition itself is a well-

established one and there has been many pattern recognition methods proposed for 

different applications, each could lead to a unique recognition performance. It is self-

evident that in order to successfully apply hyperspectral technology in the application 

of produce inspection, it is important to adopt appropriate pattern recognition 

methods to draw sensible conclusions from the vast amount of image information 

yielded by the hyperspectral imaging system. In this paper, the main interest is to 

study the pattern recognition aspects of hyperspectral inspection techniques, 

specifically hyperspectral inspection of fruit and vegetables. 

In general, the major tasks of a typical pattern recognition system include data 

preprocessing, feature extraction/selection, and pattern classification, as shown in 

Figure 5.1. In the training mode, the system will pre-process the incoming training 

patterns, extract and select the features which can lead to a reasonable recognition 

performance, and then learn the classification rule from these training samples. On 

the other hand, in the testing mode, the test patterns will go through the preprocessing 

step first, then certain features will be calculated, and at last the pattern will be 

assigned a label based on the classification rules learned during the training phase. 
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Figure 5.1 Model for statistical pattern recognition [Jain et al.,2000]. 

 

In the following part of this section, some of the most popular methods for 

pre-processing, feature extraction, feature selection, and pattern classification will be 

briefly reviewed.  

1) Pre-processing. For hyperspectral imaging applications, depending on the 

nature of the image data, preprocessing can involve many possible processing tasks, 

including noise removal, image enhancement, intensity calibration, and any other 

operations which could lead to a better representation of image patterns. In practice, 

problems such as random noise and optical distortion with the original data can often 

pose severe adverse affects to the subsequent processing stages, thus appropriate 

preprocessing steps are necessary to correct or relieve these issues. For example, 

image noise is usually inevitable even for the most advanced imaging devices and 

noise in the hyperspectral images can cause difficulties or errors in the downstream 

processing stages. Depending on the nature of image noise, various two dimensional 
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filters can be used to smooth the original image and remove or suppress the 

embedded image noise.  

2) Feature extraction. The purpose of feature extraction and selection 

operations is to construct and select the most salient features from the original feature 

space. Features, also known as attributes or measurements, are used to represent the 

patterns. If a pattern is represented by a set of d features, it will be processed as a d-

dimensional feature vector. Generally, in image processing fields, if the object of 

interest can be separated from the background through segmentation, the features can 

be defined using the geometric characteristics of the object, such as the size, length, 

and width etc. In the application of hyperspectral imaging, since there are so many 

spectral bands involved, the dimensionality of the original feature space is often very 

large (usually more than 100), which requires highly efficient feature extraction and 

extraction methods to reduce computation complexity and minimize classification 

error. For this propose, researchers often use some other feature extraction methods 

especially the projection based methods, such as principal component analysis which 

can conveniently and dramatically reduce the dimensionality of feature space to less 

than 10 while still preserving most of the image energy.  

In many hyperspectral applications, it is desirable to extract the texture 

features for pattern recognition. In image processing, texture refers to replications, or 

symmetry of certain patterns. In a set of hyperspectral images, the difference of image 

texture often implies a change in the physical and chemical properties on or 

underneath the surface. The study on texture analysis has been an active and vast 

research topic, and many methods were proposed over the years. Representative 
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texture analysis methods include the co-occurrence method, Gaussian Markov 

random field method and Gabor wavelet method. The co-occurrence method 

computes the relative frequencies of co-occurrence of grayscale pairs in the 

neighboring pixels. The co-occurrence method performs well in many applications, 

and it is believed that the demanding computational complexity is its main drawback. 

Another typical texture analysis method is called the Gaussian Markov random field 

(GMRF) method, which models neighborhood of any pixel in the textured image as a 

Gaussian Markov random field using random process theories, then estimates the 

parameters of the model and discriminates different textures based on the estimated 

parameters. The third method for texture analysis is based on Gabor functions, which 

can be related to biological vision systems. It is reported that Gabor functions were 

successfully applied to model the response of simple cells in the visual cortex 

(Daugman, 1985) and it is found by many researchers that the Gabor wavelet based 

texture analysis can provide very good performance compared to other texture 

analysis methods (Tuceryan and Jain, 1990; Tsatsanis, et al, 1992; Laine and Fan, 

1993; Dunn, et al, 1994; Heeger, et al, 1995;  Bashar, et al, 2003; Deng, et al, 2003; 

Deng, et al, 2004; Xiang, et al, 2003). 

3) Pattern classification. As shown in figure 5.1, the final stage in a typical 

pattern recognition system is the pattern classifier, which assigns the incoming pattern 

to one of several (or more) categories, based on the d-dimensional feature vector of 

the pattern and one or more decision rules. There have been many types of pattern 

classifiesr developed for different applications and some of them can be used in the 

application of hyperspectral inspection of agricultural produce. The choice of a 
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pattern classifier is crucial to the overall performance of the pattern recognition 

system, because it can make a significant difference in terms of final recognition 

results, even for the same set of samples and the same representation of feature 

vectors.  

To date there has been numerous research efforts on pattern classifiers, and it 

is not possible to cover the scope of pattern recognition in its entirety in this paper; 

however, an overview of various pattern classifier is necessary. The large number of 

pattern classifiers can be categorized in different ways, including whether learning is 

using labeled samples (supervised versus unsupervised), and whether the decision 

rules are generated directly (geometric approach versus probabilistic density based 

approaches).  

If the learning process of a pattern classifier is based on labeled samples, the 

process is called supervised learning, otherwise it would be unsupervised learning. 

Typical examples of pattern classifiers working in the supervised mode include many 

methods of discriminant analysis, cluster analysis is one typical unsupervised method. 

In many applications, if the labels of the categories are available, it is possible to train 

the classifier to learn about the structure of the patterns, and to generate a 

classification boundary. On the contrary, if the information about the labels is not 

available, the training process of the classifier would be unsupervised. In some cases 

of unsupervised learning, even the number of the classes is not known before hand, 

thus need to be estimated during the learning phase.  

An important and unique class of pattern recognition methods is artificial 

neural networks, which itself has evolved to a well established discipline.  Artificial 
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neural networks can be further categorized as feed forward networks, feedback 

networks, and self-organization networks. Compared with the conventional pattern 

recognition methods, artificial neural networks have several advantages. Firstly, 

neural networks can learn the intrinsic relationship by example. Secondly, neural 

networks are more fault tolerant than conventional computational methods; and 

finally, in some applications, artificial neural networks are preferred over statistical 

pattern recognition because they require less domain related knowledge of the 

specific application.  

In this paper, the research interest is focused on the effects of various methods 

of preprocessing, feature extraction and pattern classification on the final recognition 

results in hyperspectral imaging inspection applications. In the following chapter, the 

various methods of pattern recognition experiments are described first, and the 

experimental results are presented later.  

 

5.2 Material and Method 

5.2.1 Image acquisition 

 
Golden delicious apple samples and fresh picked cucumber samples were used 

in this study. Samples were stored in cold storage rooms before performing the 

experiments. Samples selected for testing were placed on a tray on a conveyor, and 

passed along a fixed path at constant speed while being line-scanned by the 

hyperspectral sensing system. Because the hyperspectral system was designed as a 

line-scan device, for each single scan, a two dimension line-spectrum data set was 
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generated with one dimension of line pixels and the other dimension of spectral band. 

Accordingly, assume a sample image was assigned with N rows, then for each apple 

or cucumber sample, N-number of two dimensional line-spectrum data were collected 

by a computer connected with the hyperspectral sensing system. Those data were the 

original three-dimensional hyperspectral data. In this way the hyperspectral sample 

data were captured for each apple and cucumber testing samples. The detailed 

systematic specs of reflectance mode of the system were introduced in the 

“hyperspectral sensing system” section in Chapter 4.   

For a better data illustration and many other presentation and research 

purposes, a software tool was designed to re-arrange the original three-dimensional 

hyperspectral data into a conventional hyperspectral data cube. In the three-

dimensional data space, each datum represented the reflectance radiation intensity of 

a particular spectral band at a particular pixel position. The data should be normalized 

by a standard references under the same illumination setup to form a reflectance 

factor at each pixel position. The normalization process can be expressed as, 

10000
)z,y,x(I

)z,y,x(I)z,y,x(I
)z,y,x(R

ref

dark
factor ×

−
=    (5.1) 

where I(x,y,z) represents the reflectance radiation intensity of spectral band z at pixel 

position (x,y); Idark (x,y,z) represents the random noise of the sensor at band z and 

pixel position (x,y) when no light reflectance; I ref(x,y,z) represents the radiation 

intensity of a white Spectral panel with a known reflectance factor at band z and pixel 

position (x,y) under the same illumination situation. Rfactor(x,y,z) is the normalized 

reflectance factor that is used for each pixel (x,y) at band z. In Equation (5.1), the 

scaling factor 10000 was used to boost the dynamic range of the reflectance effects.  
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 The re-arranging and normalization processes are called the calibration 

process of the original hyperspectral data. After the calibration, the 3-D data cube is 

considered a 3-D image cube.  

 

5.2.2 Image preprocessing  

After the hyperspectral images of the cucumbers and apples are recorded, the 

image data need to be preprocessed prior to subsequent processing steps.  

5.2.2.1 Noise removal 

The image noises in the hyperspectral images can lead to difficulties, even errors, 

in the downstream processing steps. It is noteworthy that the image normalization 

mentioned above cannot remove the image noise, because although the process of 

image normalization changes the grayscale of each pixel, it cannot change the 

intrinsic image patterns composed of adjacent pixels. In general, the image noises can 

be removed or significantly suppressed using 2D filters. In this study, the calibrated 

images are processed with a 3×3 median filter and a 5×5 2D Gaussian filter 

sequentially to remove the image noise. The median filter is defined as  

I’(x,y)=median(N(x,y))      (5.2) 

Where (x,y) are the coordinates of a image pixel, N(x,y) is its 3×3 neighborhood, and 

I’(x,y) is the grayscale at the pixel after filtering. Median filter is known for excellent 

performance of removing salt-and-pepper image noise. 

The general form of a 2D Gaussian filter kernel is 

2
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where σ  is the standard deviation of Gaussian distribution. Choosing σ =1.0 and 

truncating the kernel to a 5×5 square block (since the distribution outside the block is 

effectively zero), for numerical implementation, the convolution kernel of the 

Gaussian filter is represented by the 5×5 matrix (tile): 

 

Figure 5.2 5×5 Gaussian filter with σ =1.0 

 
5.2.2.2     Dimension Deduction 

The collected hyperspectral image data are in the form of a three dimensional 

image cube, with two spatial dimensions (horizontal and vertical) and one spectral 

dimension (from band 1 to band 112 in this study). In order to make it convenient for 

subsequent processing steps, the spatial dimensions are reduced from two to one by 

cascading the rows in the hyperspectral image cube, as shown in figure 5.3. As shown 

in figure 5.3, if the original hyperspectral image cube (in figure 5.3 (a)) has ncol 

columns, nrow rows and ns distinct spectra, the 2D representation after dimension 

reduction will have ncol×nrow pixels, and each pixel has ns spectra. This 2D 

representation makes it convenient for later feature extraction operations. 
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Figure 5.3 Dimension reduction of hyperspectral image cube. (a) The original 
hyperspectral image cube and three-dimensional coordinates system, 
where axis x and y are the spatial dimension and axis s is the spectral 
dimension. (b) The 2D image representation after dimension reduction, 
and the 2D coordinate system, where axis x’ is the transformed spatial 
dimension and axis s is the spectral dimension again. 

 
 
5.2.2.3 Log transform 

After the image cube is reduced to 2D representation, each pixel is taken through 

a log transform, which is defined by: 

L(x’,s)=log10[I(x’,s)+1]      (5.5) 

Where I(x’,s) is the pixel grayscale in the 2D representation of hyperspectral 

image, and L(x’,s) is the log transformed pixel grayscale. The major motivation of 
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adopting log transform is that complicated algebraic operations (such as 

multiplication, division, power and root operations) of original grayscales at different 

spectral bands can now be modeled using simple algebraic operations (addition and 

subtraction) of the transformed grayscale.   

 

5.2.2.4 Gabor wavelets for texture analysis 

As mentioned above, texture features can be useful in certain hyperspectral image 

processing applications. If the area of interest, such as a patch of fruit defect, shows 

little grayscale difference from normal surface areas in the hyperspectral image, but 

manifests a subtle and unique pattern of textures, we can use texture analysis methods 

to distinguish it from the normal neighborhood. In the case of cucumber chilling 

damage detection (refer to Chapter 4 ), although the severely damaged area can be 

identified using intensity based method fairly easily due to significant grayscale 

variation, the mildly and trace damaged areas remains challenging. Fortunately, this 

problem can be addressed using texture analysis, because of the texture abnormality 

in the mildly and trace damaged areas.  

 
In this section, the Gabor wavelet method is selected to preprocess the images in 

order to enhance the texture information. The procedures are introduced as follows. 

The two dimensional Gabor function g(x,y) can be defined as (Manjunath and Ma, 

1996) 
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where xσ and yσ  are the standard deviation of x and y, respectively, and W is the 

phase shift on the direction of x. The Fourier transform of g(x,y) is    
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where xu 2/1 πσ−=σ and yv 2/1 πσ−=σ . 

Then using g(x,y) as the mother wavelet function, a class of self similar functions 

called the Gabor wavelets can be obtained through dilations and rotations of g(x,y) 

using the following generating function: 

gmn(x,y)=a-m g(x’,y’)        (5.8) 

where a>1, m and n are integers, x’= a-m(x cos θ +y sin θ ) , y’=a-m(-x sin θ +y cos θ ), 

θ =n π /K, and K is the total number of orientations (Manjunath and Ma, 1996). For a 

given image I(x,y), the Gabor wavelet transform is  

∫ −−= ∗
1111mn11mn dydx)yy,xx(g)y,x(I)y,x(W     (5.9) 

where * stands for complex conjugate. For the purpose of classification, for each 

region of interest, we use the mean mnµ and standard deviation mnσ  of the transform 

coefficients to construct the feature vectors, where 

∫∫=µ dxdy)y,x(Wmnmn  and 

∫∫ µ−=σ dxdy))y,x(W( 2
mnmnmn . 

As mentioned above, the total number of orientations is K, and if the total number of 

scales is S, then the feature vector can be defined as:   

f =[ µ 00, σ 00,µ 01, σ 01,… , µ 0,K-1, σ 0,K-1,… , µ S-1,K-1 , σ S-1,K-1]  (5.10) 

which has 2KS elements in total. 
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5.2.3 Statistical pattern recognition 

The general steps of statistical pattern recognition include feature extraction, 

feature selection, and classification. In this study, different methods of feature 

extraction/selection are adopted, and their results are fed to different classifiers.   

 
5.2.3.1 Feature extraction and selection 
 

In the feature extraction stage, several projection-based methods are studied, 

including principal components analysis (PCA), Fisher linear discriminant (FLD), 

and integrated PCA/FLD (Cheng et al, 2004) methods. The PCA method maximizes 

the energy: 

Epca= mt
T
mS φφ  , m=1,… , N       (5.11) 

where mφ is the mth projection vector,  N is the total number of spectra, which is equal 

to ns (see figure 5.3), and St is the total scatter matrix defined as  

T
k

n

1k
kt )x()x(S µ−µ−= ∑

=  
      (5.12) 

where n is the total number of samples, xk is a N dimensional sample vector, and  µ  

is the mean vector of all of the xk sample vectors.  

The FLD method maximizes the energy: 

Efld=
∑
∑

=

=

φφ

φφ
M

1m mw
T
m

M

1m mb
T
m

S

S
        (5.13) 

where M is the a desired number of dimensions (certainly M ≤ N), and Sb is the 

between scatter matrix, defined as 

T
ii

c

1i ib ))((S µ−µµ−µχ= ∑ =        (5.14) 
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where c is the number of classes of the samples, iχ is the collection of samples in the  

ith class, iχ  is the number of samples iχ , and iµ  is the mean of all samples in the ith 

class.  

Sw in equation 3.2.12 is the within scatter matrix, defined as 

∑ ∑= χ∈
µ−µ−=

c

1i x
T

ii,kii,kw
ii,k

)x)(x(S
     

(5.15) 

The integrated PCA/FLD method maximizes the following energy 

Eevl=∑
= φ−+φ

φ−+φM

1m mw
T
m

mbt
T
m

]S)K1(KI[
]S)K1(KS[

      
(5.16) 

Where constant K∈
 
[0,1], and I is the N×N identity matrix. More details of the above 

feature extraction methods can be found in (Cheng, et al, 2004). 

Another projection based feature extraction method is called Fisher’s 

between-within method, and is often referred to as canonical discriminant analysis 

(Johnson, 1998). The canonical discriminant analysis uses a dimension reduction 

technique to find one or more linear combinations of the original features (or 

prediction variables) to provide maximum separations between the sample classes 

(Johnson, 1998). The coefficients of the linear combination(s) are the eigenvector(s) 

of the largest eigenvalue(s) of the matrix (Sb+Sw)-1Sb, where Sb is the between scatter 

matrix and Sw is the within scatter matrix.  
 

After applying any of the above projection methods, the features are extracted. 

In order to select the suitable features, two kinds of selection index are tested in this 

study, i.e., eigenvalue criterion and discriminatory power.   

If an eigen analysis method, such as the above mentioned PCA or FLD based 

method, is used to extract the features, then the eigenvalue criterion can be adopted to 
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the select feature, i.e., the features with the largest eigenvalues are selected. This 

criterion is straightforward and convenient to apply if eigenvalues are available.  

  

Another important feature extraction method is based on discriminatory power 

criterion, where in general, the features with the most discriminatory power will be 

selected. In this study, the discriminatory power of a specific feature is measured by 

its F value in an analysis of variance (ANOVA) or an analysis of covariance 

(ANCOVA) (Johnson, 1998). ANOVA is used if the feature is the only one under 

consideration, and ANCOVA is in order if there are other feature(s) serving as 

covariate in the discriminant analysis. In this study, we use a stepwise selection 

procedure instead of exhaustive search to find the desired features. Although an 

exhaustive search method could guarantee the optimal solution, its demanding 

computation complexity at large number of possible features makes it unfeasible for 

this study. For the stepwise selection method, the features are included in or excluded 

from the selected feature pool step by step based on the F values in ANOVA or 

ANCOVA. In the beginning, several threshold values need to be set for significance 

levels. At the first step, the features with the largest F value in ANOVA will be 

selected as long as it is statistically significant at the predetermined level. In each of 

the following steps, the features already in the selected feature pool will first be tested 

for statistical significance, and the insignificant ones will be omitted. Then all the 

features outside the selected feature pool will be tested for statistical significance, and 

those with a significance level higher than the predetermined threshold will be 

included in the selected feature pool. The selection process will stop if no more 

features can be omitted from or added to the pool (Johnson, 1998). 
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5.2.3.2  Classification 
 

In this study several types of popular pattern classifier are implemented on the 

hyperspectral imaging samples, and the results are compared with each other. The 

classifiers tested in this study are a k-means classifier, a linear discriminant classifier, 

and a feed forward neural network. It is noteworthy that the k-means method is the 

typical unsupervised statistical classifier, the linear discriminant method is a typical 

supervised statistical classifier, and the feed forward network is a typical artificial 

neural network, in other words, we are comparing the classification performances of 

the typical unsupervised/supervised statistical classifiers and artificial neural network 

in this study.  

5.2.3.2.1 K-means classifier 
 

The k-means classifier is a typical unsupervised classifier. In general, the k-means 

method assumes that the samples belong to k disjoint classes, and the centroids of 

each of the classes in the feature space can be found in an iterative manner. K-means 

method will attempt to minimize the following target function (Jain et al., 2000) 

J=∑∑
= =

µ−
k

1i

n

1n

2

in,i

i

x         (5.17) 

Where iµ is the mean of the feature vectors of the samples in the ith class, xi,n is the 

feature vector of the nth sample in the ith class, and ni is the total  number of samples 

in the ith class. Details of the iterative searching algorithm used in the k-means 

method can be found in (Duda et al., 2000). In this study, the number of classes is two, 

thus k=2 here for the k-means method. 

5.2.3.2.2 Linear discriminant 
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Linear discriminant method is another widely used method for pattern 

classification, and it is adopted in this study to classify different patterns. Linear 

discriminant method can effectively discriminate two multivariate normal populations 

with equal variance-covariance matrices. For the linear discriminant method in two-

class case, the classification rule can be stated as (Johnson, 1998): 

 Given a sample feature vector x,  

 Choose class 1 if b’x-k>0 and choose class 2 otherwise 

where vector b= )( 21
1 µ−µΣ− , vector k= )()( 21

1
21 µ+µΣµ−µ − /2, Σ is the variance-

covariance matrix of the population, and 1µ , 2µ are the mean vectors of class 1 and 2 

respectively. During the training phase, b and k are learned from the training samples. 

 

5.2.4 Artificial neural network   

The statistical pattern recognition method uses statistical properties and criteria to 

differentiate data patterns. Another type of pattern recognition method which has 

been widely utilized is the artificial neural network method. Neural networks are 

designed to have the ability to learn complex nonlinear input-output relationships, 

using sequential training procedures, and adapt themselves to the input data.  

The artificial neural network (ANN) used in this study is a multilayer feed 

forward network with one hidden layer (Hu and Hwang, 2002), and trained using the 

supervised back propagation approach. The designed neural network is fed with the 

preprocessed intensity and log data, and is trained to differentiate good apples, 

defective apples and stem-calyxes from the hyperspectral data cubes. 
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Figure 5.4 The multi-layer feed forward artificial neural network used in this study. 

 
 

As shown in figure 5.4, this ANN has ninput nodes for input, nhidden nodes in the 

hidden layer, and one node for output. In this study, various selections of ninput and 

nhidden are tested and compared. 

Input 

…
 

…
 

…
 

Output 

ninput  
nodes nhidden  

nodes 
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5.3 Results and Discussion 
 

A total of 96 golden delicious apples were selected as testing samples in this 

study. Those apples were evenly divided into 16 groups. Among the six apples in 

each group, there was at least one good apple; one apple was positioned to show its 

stem-end, one to show its calyx, and the remaining of the apples were defective ones. 

A typical group of apple samples is shown in figure 5.5.  

 

Figure 5.5 Typical apple samples used for this study. 

 
During the experiments, patches of apple images were extracted and used as image 

input samples to pattern recognition algorithms. Table 5.1 summarized the properties 

and parameters of the apple samples used for this study.  

 

 

Good 
Stem-end & 
Calyxes 

Defects 
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Table 5.1 Summary of properties and parameters of input apple samples 

 

 
5.3.1 Band Selection Method  

5.3.1.1 Direct Comparison 

From a statistical pattern recognition point of view, four band selection 

methods are applied. Those methods are PCA, FLD, integrated PCA-FLD, and 

canonical analysis method.  In order to compare the performance of those methods, a 

direct way is to compare their detection rates.  

The PCA, FLD, Integrated PCA-FLD, and canonical methods are projection-

based methods. The original high dimensional dependent images data are projected to 

an orthogonal lower dimensional space in a way that desired properties are 

emphasized. For the PCA method, the designed property is the representation of the 

total energy of the original data. The FLD method focuses on the discriminant 

Features Parameters 

Sample Type Golden Delicious Apple 

Total number 96 

Image Patches Total number: 199 
Patch size: 60x60, 40x40, 20x20 

Good Sample Patches 27 

Stem-end Patches 18 

Calyx Patches 22 

Defective Sample Patches 132 

Defects Type Bruise, insect holes 
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property only. The integrated PCA-FLD method weights the representation and 

classification properties by different K values. The canonical method is similar to the 

FLD method that emphasizes the discriminant properties of the original data. The 

difference is that the FLD method directly compared the between and within sample 

effects, while the canonical method combines “between sample” and “within sample” 

effects in the comparison. From a practical point of view, it is possible that the within 

matrix in the FLD method becomes singular if the sample size is not big enough, 

however, combined with between matrix in the denominator of the canonical method, 

the singularity problem is largely alleviated.  

Figure 5.6 shows the test results of the sensitivity of the K values versus the 

defect classification rate for the integrated PCA-FLD method. Two pre-processing 

methods were applied to the original image data cube and produce two input data sets: 

one is the raw image data; the other is log transformed image data.  The defect 

classification rate changes dramatically with raw data but little with log data. The 

optimal K value is in the range of 0.1 to 0.5 for raw data input. While when using a 

simple nonlinear log transform, the optimal K value expends from 0.1 to 0.9. The log 

data set results in a consistently higher detection rate compared to the raw data results.    

Figures 5.7 and 5.8 compare the four projection-based methods by presenting 

the good sample detection rate and defective sample detection rate from raw data set 

and log transformed data set, respectively. According to these figures, the PCA 

method yields lowest detection rate for both raw and log input data sets, while the 

FLD and the integrated PCA-FLD methods tend to present the best detection 

performances.  
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The detection rates shown above were the results of using the first principal 

feature vector (Cheng et al., 2004) as the projection vector for feature extraction and 

utilizing the K-means method as the classifier. The extracted feature is a new vector 

that linearly combined all the original feature bands. The first principal feature vector 

coefficients represent the “contribution” of individual feature band towards the final 

extracted feature, therefore, the most distinguished feature bands can be selected by 

sorting the absolute values of the coefficients of the first principal feature vector. 

Table 5.2 (a), (b) shows the selected three most distinguished feature bands and their 

linear combination coefficients by different methods from two input data sets, 

respectively. The selected feature bands from different methods are mostly 

overlapped, which means the discriminant power of the original data are mainly 

concentrated to those feature bands. The coefficients differ dramatically, which 

means the projection directions of those feature data are the major difference between 

different methods.  

Unlike the previous projection-based methods, the stepwise discriminant 

analysis method tries to solve the band selection problem from a totally different 

point of view. It is a search-based method, a more straightforward solving strategy to 

this problem. The search criterion is based on the p-value of the selected bands. 

Similarly, if selecting only three feature bands, for different input data sets: raw or log, 

defect detection rate and good apple detection rate are shown in figure 5.7 and figure 

5.8 respectively. The selected feature bands and their coefficients are presented in 

Table 5.2.   
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Figure 5.6 Defect detection rate of integrated PCA-FLD projection with different K 

values for raw data and log transformed data. 
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Figure 5.7 Good apple recognition rate vs. defect recognition rate of five band 
selection methods for raw data set. 
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Figure 5.8 Good apple recognition rate vs. defect recognition rate of five band 
selection methods for log data. 
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Table 5.2 Best three-band combinations given by different band combination methods 
for (a) raw data set and, (b) log data set. 

 

Method Selected Components Coefficients 
 
PCA 12 13 14 0.218744 0.22561 0.22582 
 
Integrated  
PCA-FLD 12 18 23 0.11278 0.34067 0.15609 
 
 
FLD 12 18 23 0.094359 0.28502 0.13059 
 
 
Canonical 12 18 23 0.008171 0.015944 0.006428 
 
Stepwise 
Analysis 12 21 27 - - - 

(a) 
 

Methods Selected Components Coefficients 
 
PCA 

 
16 17 23 0.254402 0.236239 0.225929 

 
Integrated 
PCA-FLD 17 18 23 0.181449 0.167734 0.179259 
 
 
FLD 12 18 23 0.094359 0.28502 0.13059 
 
 
Canonical  2 18 23 0.21057 0.31442 0.39212 
 
Stepwise 
Analysis 1 13 21 - - - 

(b) 
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5.3.1.2 Discriminant power comparison 
 

The stepwise discriminant analysis method can be considered as an integrated 

process of feature selection and pattern classification. In this process, the most 

distinguished features vectors (or variables) are selected based on their discriminant 

power, and the patterns are classified using linear discriminant rules. 

Despite the detection and classification results, most importantly, the stepwise 

discriminant analysis provides a byproduct -- the discriminant power to indicate the 

individual feature vector from the input feature space. If the input feature space is 

formed by extracted feature vectors are obtained by different projection methods, the 

stepwise discriminant analysis method can provide the discriminant power of each 

extracted feature vector. Therefore, in this study, the stepwise discriminant analysis 

method is used as an alternative way to compare the discriminant power of the 

previously mentioned four different projection methods.  

Because the canonical method is very similar to FLD method, only PCA, FLD 

and integrated PCA-FLD methods are compared for discriminant power. Assume that 

for each projection method, the projected feature space contains N extracted feature 

vectors, and for the integrated PCA-FLD method, K value ranging from 0.1 to 0.9 are 

considered. Therefore, with the three methods, a total of eleven N feature spaces are 

examined as the input to the stepwise discriminant analysis, where N = 112. If one 

applies the PCA, FLD or integrated PCA-FLD method (with different K values each 

time, K=0.1 to 0.9) individually, followed by stepwise discriminant analysis, the first 

principal feature vectors in each method are associated with the highest discriminant 

powers compared with other extracted features in its own feature space. The second 
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and third principal feature vectors are associated with the second and third highest 

discriminant powers, respectively. Figure 5.9 shows the discriminant power (the F 

value) of the first principal feature vector of each method with different input data 

sets: raw data and log data.  

If we combine all the 11 feature spaces into one large feature space and use it 

as the input to a stepwise discriminant analysis, the discriminant power of each 

extracted feature can be compared. Figure 5.10 presents the results of the discriminant 

power for the first principal feature vector in each method with two different input 

data sets. The result shows that using the PCA method, the discriminant power of the 

first principal feature vector (that is first principal component) is much lower 

compared with other extracted features using the other two methods. While 

simultaneously, the first principal component still remains the highest discriminant 

power among other principal components in the PCA.  

Figures 5.11 and 5.12 give the results of defect recognition rate and good 

sample recognition rate using different feature extraction methods with two different 

data set inputs. Both results show that the integrated PCA-FLD method and the  FLD 

method have over 98% recognition rates on both defects and good samples, while in 

PCA method, except for the defect detection rate with log transformed input that is 

slightly above 90%, all other conditions produce detection rates blow 90%.  
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Figure 5.9  Discriminant power of three different projection methods: PCA, 
integrated PCA-FLD and FLD, when applied individually with raw data 
and log data.  
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Figure 5.10 Discriminant power of different projection methods: PCA, integrated 

PCA-FLD and FLD, when compared under one large feature space with 
different input data: raw data and log data.  
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Figure 5.11 Good apple recognition rate and defect recognition rate using different 
projection-based methods followed by stepwise discriminant analysis 
with raw data input.
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Figure 5.12 Good apple recognition rate and defect recognition rate using different 
projection-based methods followed by stepwise discriminant analysis 
with log data input. 
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5.3.2 Neural Network Classifier 

 
In order to test the feed-forward neural network classifier, three scenarios are 

analyzed. In the first scenario, a neural network is used to differentiate good apples 

from defects. In the second situation, a neural network is used to differentiate apple 

defects from calyxes/stems. In the third scenario, three-class samples are trained and 

classified by a neural network. The three classes are good apples, apple defects, and 

calyxes/stems.  

In this study, all the input samples for the neural networks are hyperspectral 

image pixel values. Due to the continuity of the hyperspectral sensing, without losing 

the generality, 28 spectra out of the 112 available spectra were selected. The spectra 

were “downsampled” at 1:4 ratio, that is, spectra 1, 5, 9, … , 109 were selected to 

form the pixel value vector. Thus the training and testing samples for the neural 

network are sets of 28-element vectors (the network has 28 input nodes). In order to 

further explore the impacts of input data characteristics on neural network behavior, 

two types of inputs are tested separately for the neural network, i.e., the original pixel 

grayscale values and the log transformed grayscales values. The training and testing 

of the neural network in the three scenarios are summarized in the following.  

 In the case of good apples vs. defects, the training curve of the feed forward 

network with one hidden layer of 500 hidden neurons is shown in figure 5.13, where 

the training performance is defined as the mean squared error (MSE) between the 

actual neural network output Oactual and the desired network output Odesired , and the 

training curves under raw intensity input and log transformed input are shown in the 

same graph. As shown in figure 5.13, both networks converges after 300 epochs of 
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training, while the network with log transformed input learns faster than the one with 

intensity input, because as shown in the graph, the slope of log curve reduces 

significantly at around the 110th epoch while the change happens to the intensity one 

as late as the 150th epoch. 

 For the feed forward neural network, the number of neurons in the hidden 

layer (referred as hidden neurons in this study) is an important parameter determining 

the learning and generation ability of the neural network (Freeman and Skapura, 

1991). In order to explore the relationship between the classification performance and 

the number of the hidden neurons, detection rates of neural networks with number of 

hidden neurons from 1 to 500 are collected using the testing samples. As shown in 

figure 5.14, in the problem of classification between good apples and defects, for both 

the log input and the intensity input networks, the detection rate rises rapidly to a 

level of about 97% when the number of hidden neurons passes 8. It is interesting to 

note that when the number of hidden neurons gets larger and larger, the detection rate 

doesn’t improve much, and after certain point, specifically, after 180 neurons for the 

intensity input network and 300 neurons for the log input network, the detection rate 

actually starts to decline. This phenomenon can be explained as over training of the 

neural network, which often happens when there are too many neurons in the hidden 

layer (Russell and Norvig, 2002).  

 For the classification of apple defects vs. calyxes/stems, the training curve is 

shown in figure 5.15, and the detection rate of different number of hidden neurons is 

show in figure 5.16. Similar to the good apple vs. defects problem, the network with 

log input learns faster than the one with intensity input. According to figure 5.16, the 
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detection rate of both input types show a loose correlation with the number of hidden 

neurons, where the detection rate reaches the peak when the number of hidden 

neurons is around 80. 

In the three-class classification case, again the network with log input learns 

faster than the one with intensity input (as shown in figure 5.17). In this case, as 

shown in figure 5.18 the detection rates for both input types rise to a platform of 

about 80% when the number of hidden neurons exceeds certain threshold (11 for 

intensity input and 30 for log input), and then start to decline after the mark of 200 

neurons. 

 

Training curve of neural network 1
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Figure 5.13 Training curve of neural network 1 
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Figure 5.14 Relation between detection rate and number of hidden neurons in neural 
network 1. This network is trained to differentiate good and defective 
apples. 
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Figure 5.15 Training curve of neural network 2, which is used to differentiate defect 
on apples from stem/calyx. 
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Figure 5.16 Relation between detection rate and number of hidden neurons in neural 
network 2. This network is trained to differentiate defects on apples 
from stem/calyx. 
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Figure 5.17 Training curve of neural network 3, which is used to differentiate the 
following three classes of objects, i.e., good apples, defects, and 
stem/calyx. 
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Figure 5.18 Relation between detection rate and number of hidden neurons in neural 
network 3. This network is trained to differentiate three classes of 
objects, i.e., good apples, defects, and stem/calyx. 
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5.3.3 Texture based feature extraction of cucumber images 

 
 In some hyperspectral imaging applications the pixel grayscale information is 

not sufficient to capture the difference between the areas of interest (such as the 

defects) and the background (such as the normal fruit surface). For example, 

grayscale features can be used effectively to detect apple defects and severe/moderate 

chilling damage on cucumbers (Cheng, et al., 2004), but for trace and slight chilling 

damages of cucumbers, the grayscale features are no longer suitable, as shown in 

figure 5.19. In the latter cases, the damages show little grayscale difference from the 

normal cucumber skin, thus the feature vectors based on grayscale information will 

provide little help in the subsequent processes. On the other hand, it is observed that 

the trace and slightly damaged areas show a unique texture pattern, which make it 

possible to use texture based feature vectors to detect these challenging defects.  

 Gabor wavelet features are used in this study to capture the texture 

information. As mentioned previously, for a 40x40 hyperspectral image patch, Gabor 

wavelet transform are calculated for 3 scales and 8 directions, and the values of mean 

and standard deviation of each transform are used to form a vector with 48 (=3x8x2) 

elements.  After the projection process using the PCA, FLD or integrated PCA-FLD, 

the transformed feature vectors are provided to a k-means classifier to differentiate 

the hyperspectral image patches of slight/trace damaged areas and normal areas. The 

recognition rates of slight/trace chilling damage using grayscale features and Gabor 

texture features are compared in figure 5.20. It is shown that the texture feature can 

improve recognition performance on the challenging detection problems, and in terms 



   

 102 
  
  
  

of projection methods, the integrated PCA-FLD method and FLD method always 

outperforms the PCA method.   

   
(a)    (b)      (c)  

Figure 5.19.  Comparison of various degrees of cucumber chilling damages, where (a) 
shows severe chilling damage, (b) indicates slight chilling damages, and 
in (c) there is no chilling damage. 
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Figure 5.20 Recognition rate of cucumber chilling damages vs. normal cucumber skin 
using Gabor texture features, where (a) shows the recognition rate of 
slight/trace chilling damages and (b) shows the recognition rate of 
normal cucumber skin. 

 

 

5.4 Conclusions 
 

In this study, at each stage of the processing, various techniques are applied 

and their performances are compared. In data preprocessing, logarithmic transform 

and wavelet transform are adopted to reveal intrinsic information of input image data. 

For band selection, the searching-based stepwise method and the projection-based 

statistical pattern selection methods are compared.  K means method and artificial 

neural network approach are used as classifiers to identify different feature patterns. 
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According to the experimented results, the conclusions of this study can be 

summarized as follows: 

1. For the different sample inputs, Log transform can improve the discriminant 

performance.  

2. The results show that the integrated PCA-FLD method outperformed the PCA or 

FLD method. The reason is that both the representation information and class 

specific information are included in the integrated PCA/FLD feature.  

3. Fisher linear discriminant analysis provides the highest discriminant power of any 

feature vector. The feature vectors extracted by using integrated PCA-FLD 

method have 99% of the highest discriminant power.  

4. The first principal component of PCA presents the highest discriminant power 

among other principal components. Compared with FLD and integrated PCA-

FLD, the first principal component has the lowest discriminant power, and 

occupies 22% of the highest discriminant power. 

 

5. Neural network classification method achieves over 95% detection rate to 

differentiate good samples from defective ones and stems/calyxes. The detection 

rates are below 90% in classifying the defects and stems/calyxes.  

6. Gabor wavelet preprocessing method provides better classification accuracy for 

slightly-damaged cucumber sample identification compared with raw data inputs. 
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CHAPTER 6 A NIR/MIR DUAL-SENSOR MACHINE VISION 

SYSTEM FOR ON-LINE APPLE STEM-END/CALYX 

RECOGNITION 

6.1 Introduction 
 

Apple defect inspection is an important procedure that affects the sorting or 

grading result in the fruit industry. Because the traditional visual apple-by-apple 

inspection is labor intensive and prone to human errors and variability, a machine 

vision system for automatic online defect inspection is needed to speed up the 

inspection procedure and reduce costs.  

Near-infrared (NIR) spectroscopy has been widely used in fruit quality studies 

because it is quick and noninvasive. Previous research has shown that in the near 

infrared range between 700 nm and 2200 nm, the reflectance from bruised areas, 

stem-ends and calyxes of apples is less than that of the non-bruised areas of apples. 

Therefore, machine vision systems equipped with near infrared imaging sensors have 

been widely used in research on apple defect inspection and quality estimation. 

Throop et al. (1995) developed an algorithm to identify both old and new bruises for 

the 'Red Delicious' apples from NIR images. Bollen et al. (1999) compared methods 

for estimating the size of apple bruises. Paulus and Schrevens (1999) used image 

processing tools to quantify the average shape of randomly chosen apple. Leemans et 

al. (1999) exploited a color vision imaging system and a Bayesian classification 

method to segment apple defects. One of the persistent obstacles in the 
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implementation of automatic apple defect detection identified in these studies is how 

to identify the apple stem-end/calyx. These natural parts on apples normally present 

similar intensity levels as the true defects in a near infrared image. As such, a 

computer-based automatic vision system confuses the natural parts of the apple with 

true defects. This is a serious issue in apple sorting automation, because the 

orientations of apples along a transportation packing line are unpredictable during the 

inspection process. The possibility of misclassification is high and unacceptable.  

To address this problem, researchers have proposed several possible solutions. 

Wolfe and Sandler (1985) developed an image-processing algorithm to extract both 

long and short stems and calyxes. Miller and Delwiche (1991) proposed an 

orientation algorithm to recognize the surface concavities on three-dimensional 

information. Yang (1993) used a structured lighting system, in which controlled 

illumination and cameras were used to reconstruct a stereovision image of objects.  

Crowe and Delwiche (1996 a, b) designed a real-time defect detection system using 

structured illumination to detect the stem-ends and calyxes. Most of these methods 

focused on detecting the natural concave shape or reconstructing the three 

dimensional information of stem-ends or calyxes which is computationally intensive 

and time-consuming. In the application of a multi-lane detection system, these 

methods might not be suitable due to the requirement of real-time speed and accuracy.  

Compared with the single-spectrum inspection method that provides limited 

information for distinguishing the stem-ends and calyxes, multi-spectral detection 

provides richer information of multiple images from different spectral bands for the 

same object. Wen and Tao (1996, 1998 a, b, 2000), and Tao and Wen(1999) 



   

 107 
  
  
  

discovered that by using a middle infrared (MIR) camera with a spectrum range 

between 3µm and 5µm, bruised areas of fruit were no longer sensed and only the 

stem-ends and calyxes of apples remain sensitive to the sensor. A dual-wavelength 

sensing method was developed and found capable of discrimination of apple stem-

ends and calyxes. However, in the dual-wavelength sensing system, the two image 

sensors are limited to be placed at the same viewing position. In general, for typical 

online applications, two sensors are usually mounted at adjacent but different 

positions. The shift between sensing positions leads to differences in pixel registration 

between the MIR and NIR images. Thus, there is a need for developing dual-image 

registration and combination/processing algorithm for an online processing purpose.   

The objective of this research was to study the feasibility of applying the dual-

wavelength method and develop image-processing algorithms for online apple defect 

inspection. In general, apples are stored in a low temperature environment (usually 3-

40C) before being inspected. This study is applied only to apples from cold storage. 

The algorithms, including dual image registration, image normalization, inverse 

image transformation, and dual image combination, were applied to eliminate the 

effect of apple stem-ends and calyxes from the true defect during inspection.  These 

algorithms were studied to expand the dual wavelength method along with the dual 

image registration and synthesis strategies so that online defect identification 

accuracy can be improved.  
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6.2 Material and Method 
 
6.2.1 Machine Vision System 

 The machine vision system for apple defect inspection consists of a dual-

spectrum infrared sensing system and a computer controlled image-grabbing system. 

A lighting chamber made by Agri-Tech, Inc is used to provide uniform illumination 

for the infrared sensors. The 120(W) x 100(L) x 25(H) cm chamber is made of lattice-

patterned sheet metal, and the V-shaped interior surface of the chamber is painted flat 

white to provide diffuse light reflection and eliminate shadows (Tao 1995). Lighting 

is provided by ten warm-white fluorescent lamps, equipped uniformly around a v-

shaped surface right above the conveyor. One side of the whole chamber can be 

opened to allow camera mounting. Two image sensors are mounted inside on the top 

center of the chamber.  

The near-infrared sensor utilized in the system is a Hitachi KP-MI CCD 

monochromatic camera attached with a Corrion’s 700nm interference long-pass filter. 

The focal length of the camera is 16mm. The middle infrared sensor is an Indigo 

uncooled thermal camera with a sensitive spectrum range from 7.5 to 13.5 microns. 

This camera consists of a Boeing Gen II FPA incorporating a 320x240 matrix of 

microbolometer detectors. The pixel size of the detector is 51 mµ x51 mµ  and the 

standard focal length is 25mm. The two infrared sensors are synchronized to obtain 

the image at the same pace. Both near infrared images (NIR image) and middle 

infrared images (MIR image) are captured, processed, and analyzed by a host 

computer equipped with an imaging board (Matrix Meteor/RGB).  
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A roller conveyor belt is constructed to support and move apples for up to six 

lanes. The apples are rotating and moving when they are passing through the field of 

view of the image sensors. The online imaging system grabs the images at a rate of 30 

frame/sec, which guarantees that the whole surface of each apple will be covered and 

processed. A drive controller and speed controller are connected with an optical 

encoder providing timing signals for both on-line mechanical and electrical 

synchronization. The system configuration is shown schematically in figure 6.1. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1 Schematic representation of the machine vision system for online apple 
defect inspection. 

 
Test samples for both good and defective ‘Red delicious’ apples were used to 

verify the effectiveness of the on-line processing algorithms. The properties of the 

test samples are given in Table 6.1. A total of 155 apples (19 good apples and 136 

defective apples) were selected for the test. Samples were refrigerated at about 40C of 

NIR/MIR 
Cameras 

Camera cable and power cable 

Drive Controller Frame Grabber 

Video Monitor 

Computer 

Speed Controller 

Light chamber 

Conveyor Belt 

Lights 
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storage temperature before they were tested. Shortly after they were taken out of the 

cold storage (less than 5 minutes), the samples were randomly placed on the roller 

conveyor.  

Table 6.1 Properties of the samples used for testing the performance of the online 
dual NIR/MIR sensing system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
6.2.2 Dual Imaging Methods 

6.2.2.1 Dual-image Registration 
 

Due to the sensor differences in the dual-wavelength sensing system, two 

images do not have a point-by-point correspondence. Coordination and resolution 

differences exist between the two sensor images. The near infrared image is at a size 

of 640x480, while the middle infrared one is 320x240. Proper registration is needed 

to enable effective information comparison/processing. 

A schematic representation of the relationship between the NIR sensor, the 

MIR sensor and the sensed object is shown in figure 6.2.  

 

Features Parameters 

Sample Type Red Delicious Apple 

Total number 155 

Sample Sizes Radius 79-81 mm 
Radius 68-70mm 

Good Samples 19 

Defected Samples 136 

Defects’ Type Bruise, insect holes 
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Figure 6.2 Schematic representation of the relationship among the sensing objects, the 
NIR sensor and the MIR sensor. 

 
In figure 6.2, both sensors, camera A and camera B, are focused on object C. 

The horizontal distance between camera A and camera B is the camera gap and is 

represented by constant d.  Let h represent the height from the lens to the conveyor 

belt and r the radius of the object. Assume the object on the conveyor belt is 

spherical shaped. Points ‘a’ and ‘b’ are two points on the spherical that represent the 

tangent limit points of the view of camera A and camera B. If l0 represents the 

horizontal distance between the object’s center and the lens of camera A, then l0+d 

is the horizontal distance from the object to camera B. θ is the angle between points 

‘a’ and ‘b’, which represents the ‘blind’ area between sensor A and sensor B. In the 

‘blind’ area, the object is only visible to one of the sensors. θ is determined by the 

following equation: 

d 

  h 
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In our application, h >>d, h>>r, h>>l0, then θ ≈ 0, which means the blind area 

between the dual sensors can be ignored. Both NIR and MIR sensors effectively 

cover the same sensing range on the object.  

A two-dimensional (2-D) image-coordinate transformation is necessary to 

map objects in the original MIR image (OMI) to those in the original NIR image 

(ONI). The transformation is global since it is applied to the entire image. Suppose 

pixel (x,y) in the OMI is corresponding to pixel (u,v) in ONI, then 
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where, F is the 3x2 transformation matrix. Elements a, b, c, d in F  are the factors 

related to the possible scaling and rotation of the two coordinate systems. The 

elements x0 and y0 represent the displacements in x- and y- axes respectively. F can 

be solved by picking at least six points in the middle infrared image plane, and 

obtaining at least six sets of x,y,u,v values for equation (6.2). 

The different focal lengths of the two sensors in the system cause the 

resolution differences (NIR image resolution is 1.09mm/pixel; MIR image resolution 

is 1.27mm/pixel) between the original near-infrared and middle infrared images. 

Consequently, the same object appears to have different sizes in the middle infrared 

and the near-infrared images. In our system, the image size of an object in a middle 
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infrared image is smaller than that in a near-infrared one.  A bilinear interpolation 

method is used to rescale the middle infrared image.  In this way, the system 

resolution is unified at 1.09mm/pixel. Suppose that the scaling factors in the x and y 

directions are xd  and yd  respectively, as shown in figure 6.3.  

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Schematic representation of binary interpolation 

Bilinear interpolation takes the weighted average of a 2x2 pixel neighborhood 

as the assigned value to evaluate the interpolated pixel. Weights are determined by 

measuring the distance from the interpolated pixel to its nearest four surrounding 

pixels. The value of the interpolated pixel P in figure 6.3 can be evaluated as follows, 
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where, 1p , 2p , 3p  and 4p  represent the pixel values in the 2x2 pixel neighborhood of 

the interpolated pixel P. p is the interpolated value at P. 12p  and 34p  are the 

intermediate pixel values used to derive the value of p . 

 

6.2.2.2 Dual-Image Processing  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.4 The flow chart of the on-line image processing procedure 
 
 Figure 6.4 shows the flow chart of the dual sensing image preprocessing and 

combination schemes developed in this study. Separate processing methods were 

applied to the dual sensor images, then images were combined after registration and 

the combination results were evaluated.  

 

    Image Acquisition 

NIR Image Processing MIR Image Processing 

1. Brightness normalization 
2. Adaptive spherical transform 
3. Blob extraction 

1. Background removal 
2. Re-scaling and bilinear interpolation  
3. Blob extraction 

Dual images correlation 

Result Output 
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6.2.2.3     NIR Image Normalization 
 

In the near-infrared spectrum from 700 to 1000nm, a dark-colored fruit has a 

lower reflectance than a bright-colored fruit. Different brightness levels cause 

detection errors, especially for bright-colored defective apples and dark-colored good 

apples. To avoid these kinds of errors, a normalization operation is applied to the 

original NIR image (ONI). The details of the method can be found in Wen and Tao 

(1998). The normalized NIR image (NNI) can be obtained from ONI by eliminating 

the effect of the brightness variations in ONI: 

),(
),(

),(
max

0 yxI
yxONI

cyxNNI =        (6.4) 

where )),(max(),(max yxONIyxI =  for all x, y, and 0c  is a constant equal to 255 in 

this application (all image intensity levels are encoded using 8-bit of data); maxI is 

generated by a recursive calculation represented by the following formulation: 

BIkk DyxDyyxxyxByyxxIyxI ∈∈−−+−−= − ),(;)','()','()','(max{),( 1maxmax } 

(6.5) 

...3,2,1);,(),( 0max == kyxONIyxI       (6.6) 

where B is an all-zero 3x3 mask matrix; DI and DB are domains of Imax and B, 

respectively. 
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6.2.2.4 Adaptive Spherical Transform for NIR Image 

Apples are considered to have essentially spherical shapes. The curved apple 

surface causes inconsistent reflection of the light.  As a result, in an NIR image, the 

intensity distribution on the sensed apples is not uniform. Pixels around the boundary 

of the apple appear at a much lower intensity than the central pixels. On the other 

hand, the defect portion of the apples appears at a low intensity in the NIR image. The 

intensity levels of the two kinds of pixels may be comparable.  

 

 

 

 

 

 

 

  

 

 

Figure 6.5 Schematic representation for the principle of spherical transformation 
method 

An effective method called “adaptive spherical transform method” is used to 

distinguish them. The detailed description of this method can be found in Tao (1996) 

and Wen and Tao (1999). The idea of this method is to transform the edges of 

spherical objects to an intensity level near the intensity of the center, and thus, to 

generate a pseudo-plane object image with uniform intensity without losing defect 

information on the objects. The basic principle can be represented as shown in Figure 

6.5.  There are three images involved in the transformation process: a normalized 

near-infrared image ONI/NOI ( NNI ), an inversed image INI ( 1−
NNI ) and a 

ONI/NOI 

INI 

TNI 
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synthesized image. The inversed image(INI) is a mirror image of NNI with the same 

shape and image size but without any defects.  INI is generated by the following 

equation:  

}),,(),());,(;(1{),( 0 dN SsyxNOIyxyxsRcyxINI ⊂⊂−=    (6.7) 

where ‘s’ represents the size of the apples. Sd is a subset of size variation in pixels. 

RN[s;(x,y)]=OOI(s;x,y)/Imax(s;x,y) is the reflection correction function. The light 

reflectance on the curved surface differs from point to point. The inversed image INI 

can be considered as a group of transformation curves varied by different sizes of the 

objects. The transformation curves of two different sized objects are shown in figure 

6.6. The TNI is obtained by combining NNI and INI together: 

isyxyxINIyxNNIyxTNI ⊂+= ),(),,(),(),(      (6.8) 

where is  represents the pixels within the range of interest in NNI.  
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Figure 6.6 Spherical transform curves for two different sized objects. 
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6.2.2.5 Global Threshold on MIR Image  

The mid-infrared sensor is sensitive to detecting the temperature differences 

on the objects within its field of view.  Low temperature objects present less intensity 

in the mid-infrared image than high temperature objects.  According to the different 

material characteristics and concave shape on both stem-ends and calyxes of apples 

the temperature in these areas of the apple is lower than in other parts of the apple 

surface after being refrigerated. As a result, stem-ends or calyxes appear differently 

from the other part of the apple by presenting a lower intensity level in the MIR 

image.  On the contrary, defects show the same intensity levels as the non-defective 

parts on the apples.  

To extract the stem-ends and calyxes from the original MIR apple images, the 

background is removed and only the object of interest is considered. A global 

threshold is used for the original MIR image to obtain the MI image as:  





=
0

),(
),(

yxOMI
yxMI     

;
),( 1

others
TyxOMI <

   (6.9) 

where 1T  is the global threshold value.  

6.2.2.6 Blob Analysis on NIR and MIR 

Blob analysis is performed to the TNI and MI images separately to classify 

the pixels into different regions (or blobs). To apply blob analysis, two steps are 

needed: blob identification and blob labeling. Blob identification is used to categorize 

pixels into groups according to the similarity of certain features. Blob labeling is used 

to segment the identified pixels into different blobs according to their spatial positions.  
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Pixels with similar features are classified into the same group. Feature vectors 

are used to describe those features. For instance, let kx  be the feature vector for pixel 

k .  Mathematically, kx  is represented as x k  = [xk1,xk2,...,xkm]T. Similarly, jx  is the 

feature vector for pixel j , and can be expressed as jx   = [ 1jx , jmj xx ...,2 ]T.  To judge 

the similarity of the two pixels, the Euclidean distance between two feature vectors, 

jkE , is calculated as: 

22
22

2
11 )(...)()( kmjmkjkjjk xxxxxxE −++−+−=            (6.10) 

If a threshold feature vector 0x is given, all pixels in the image can be separated into 

two groups. 

In both TNI and MI, the feature of a pixel is simply equal to the grey level of 

the pixel. For TNI, the pixels are segmented into non-defective and defective 

(including stem-ends and calyxes) groups. In MI, pixels are also segmented into two 

groups: stem-ends/calyxes and blobs, where the blob represents the other portion of 

the apple. For a given feature vector 0x , the segmented image is called the blob 

identification image (BII), which can be obtained by: 
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),( kk yxBII    
others

EE thk <0     (6.11) 

Here, thE  is a threshold value for Euclidean distance.   

Blob labeling is used to identify the connected component in BII. The 

algorithm seeks to identify connected groups of pixels in BII that all have the same 

binary value 1, by scanning the entire image from top to bottom and from left to right. 
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Let ),( yxr  represents the blob-labeling image. When the BII(x,y)=1, the process of 

the algorithm used to determine the ),( yxr can be described as follows: 
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      (6.12)  

After performing the two steps of blob analysis to TNI and MI, blob-extracted 

NIR images (BNI) and blob extracted MIR images (BMI) are obtained.  

 

6.2.2.7 Dual-image Synthesis 
 

The BNI and BMI images are compared to remove stem-ends and calyxes 

from true defects in the results. The combination of BNI and BMI is used to decide 

which blob extracted in BNI represents the stem-end or calyx.  In the final combined 

image (CI), the blobs that represent the stem-ends or calyxes are eliminated, and only 

the blobs of true defects remain. CI is generated by an iterative calculation as shown 

below:   
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where, Nk ,...1= , represents the  N number of blobs in BNI. 
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6.3 Results and Discussion 
 
 A series of the intermediate images and the final result image are presented in 

figure 6.7. Figure 6.7(a) represents the original NIR image output from the NIR 

sensor. The one located on the lower right is a non-bruised apple, which was used as 

the control.  Each of the other three apples has at least one defect (the apple in the 

upper-left has two defects). Note that except for the apple on the upper left, each of 

the other three apples has the stem-end shown in the original near-infrared image. The 

brightness levels of the apples are not uniform. The maximum grey level in the 

original near-infrared image is typically around 190, and the minimum grey level is 

25. The dynamic range of the image is 165.  

 The normalized NIR image is shown in Figure 6.7(c). Notice that the 

brightness levels of the apples were adjusted to be the same.  The maximum grey 

level of the image became 255. Thus, the dynamic range of image was widened to be 

the maximum. However, the boundaries around the apples showed an obvious lower 

grey levels compared with the center parts.  

 The adaptive spherical transformation method via equations (6.7) & (6.8) is 

used to address this problem. As shown in Figure 6.7(e), the grey levels around the 

boundary area of the apples are boosted to be the same as the center areas. The non-

bruised area of the apples is in the same grey level plane, while the grey levels in the 

defective areas remain unchanged. It becomes much easier to apply the blob feature 

extraction analysis to the transformed NIR image than to the raw NIR image. The 

extracted blobs contained true defects, stem-ends and noises that are shown in Figure 
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6.7(g). Noises are usually small sized blobs, ranging from one to three pixels in area. 

These small blobs can be eliminated by morphological operations. 

    

 
(a)   (c)   (e)   (g) 

 
 
 
 

    
 
 

(b)   (d)   (f)   (h) 
 

Figure 6.7  An example result of dual NIR/MIR sensing algorithm. (a) original NIR 
image, (b) background removed MIR image, (c) normalized NIR image, 
(d) resized MIR image, (e)adaptive transformed NIR image, (f) blob 
extracted MIR image, (g) blob extracted NIR image, (h)dual image 
combination result image. The boundary lines on the apples in (f), (g) and 
(h) were artificially added for visualization purpose. 

 
  

Small sized defects with three or four pixels in area (3/4 mm2) are sometimes 

confused with the noises. Applying the morphological operations to eliminate the 

noises required the proper threshold value to measure the blob size of the noise. If the 
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recognition accuracy of small sized defects is important, the threshold value should 

be small, such as two pixels. If the good apple classification rate is crucial, the 

threshold value should be larger, such as four pixels. A good tradeoff value should be 

determined according to different applications.  

For the middle infrared thermal sensor, the sensed image is different from the 

near-infrared one. Figure 6.7(b) shows the image of the same four apples sensed by 

the thermal camera. The background information removed is shown in Figure 6.7(b). 

It can be observed that the sizes of the objects in the image are smaller compared with 

those in the ONI image (Figure 6.7(a)). The registration of the two images involves 

the operations of coordinate transformation and linear interpolation. The result is 

shown in Figure 6.7(d), where the objects are of the same sizes as those in the NIR 

images. In the MIR images, the grey levels of stem-ends are lower compared with the 

other surface areas of the apples. The defective areas become ‘invisible’ to the sensor. 

The blob analysis on the MIR image results in the recognition of only the stem-ends 

of the apples, as shown in Figure 6.7(f).  

Based on the given information in Figures 6.7(f) and 6.7(g), the images are 

combined, compared, and compensated to produce the final result image as shown in 

Figure 6.7(h). Only true defects are obtained in the result.  

During the testing, a total of 36 stem-ends and 48 calyxes are sensed within 

the field of view for each camera. The final classification rates for the stem-end and 

calyx are shown in Figure 6.8. About 94% recognition rate of stem-end and 92% 

recognition rate of calyx are achieved on the test samples.  
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Figure 6.8  The test result of sample recognition rates for online dual NIR/MIR 
sensing algorithm. 

 
All of the nineteen good apples were classified as good during the test. The 

classification accuracy of 100% was obtained for good apple inspection on the test. A 

92% defective apple classification rate was achieved. The recognition rates on both 

good apples and defective apples showed the feasibility and efficiency of the dual-

sensor method. The misclassification usually happened in two situations. One is when 

the stem-end or calyx appeared near the edge of the observed apple surface. The other 

is when small defects appeared very near the stem-ends or calyxes. The first situation 

could be improved by adjusting the threshold values in the imaging algorithms, while 

the second situation could be improved by refining the morphological operations.  

Another factor that might affect the inspection results is the temperature 

distribution on the surface of the test samples. The thermal camera is sensitive to 
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temperature changes above 0.10C. It is impossible to implement absolutely uniform 

temperature distribution during the processes of the online test. Some apple samples 

have nonuniform surface temperature distributions. As a result, in the MIR images, 

nonuniform changes of grey levels were observed. Fortunately, the nonuniform 

distributions of grey levels in the MIR image were not significant, and the proper 

selection of the global threshold of the MIR algorithm, by a user, would minimize 

their influences.   

6.4 Conclusions 
 
 An on-line dual-sensor NIR/MIR imaging method was proposed and 

presented in this article. The sensing effects of the dual spectrum system were 

examined and over 92% classification accuracy was achieved for online apple defect 

recognition.  Using the 700-750 nm wavelength sensor, both defects and stem-ends 

on the apple were detected. The thermal sensor with 7.5-12.5 microns spectrum was 

demonstrated to be effective in identification of the stem-ends and calyxes of the 

apples.  

 The statistical results on the performance of the algorithms show the feasibility of 

the dual-sensing methodology. The 100% recognition rate on good apples shows that the 

system is sensitive on type-I errors. The test result shows that the method of image 

registration and dual-image combination reduces the possible misclassification rate of the 

stem-end and calyx to 6% and 8%, respectively. The methodology and algorithms can also be 

considered as an extension to common inspection strategies and may also be used for other 

fruits or similar objects.  
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CHAPTER 7 CONCLUSION 

 
The overall objective of this research has been achieved. The following 

conclusions are drawn from the research: 

1. The testing results show that the integrated PCA-FLD method outperformed 

the PCA, FLD, canonical, and stepwise discriminant analysis method when 

they are applied separately on both cucumber chilling damage inspection and 

apple defect detection. Both representation and classification information are 

included in the integrated PCA/FLD feature, which are necessary in 

classifying different patterns in hyperspectral band combination applications.  

2. The discriminant power analysis shows that the first principal feature vector 

of FLD has the highest discriminant power, while the first principal feature 

vector of integrated PCA-FLD has a discriminant power 1% lower than the 

highest discriminant power of FLD. The first principal component of PCA 

presents the highest discriminant power among other principal components. 

Compared with FLD and integrated PCA-FLD, the first principal component 

has the lowest discriminant power: 22% of the highest discriminant power of  

FLD. 

3. The hyperspectral sensing research shows that the spectral band at 758nm is 

best for apple defects detection. Using the 700nm band in an online machine 

vision system, results in 100% of good apple detection rate and 92% of 

defects detection rate. Using NIR/MIR dual camera sensing system, the online 

machine vision system achieves over 92% of stem/calyx detection rate.  
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4. Within the range of near-infrared spectra studied (700nm-954nm), the neural 

network classification method achieved over 95% detection rate to 

differentiate good samples from defective ones and identify stems/calyxes. 

The detection rates are below 90% in classifying the defects and 

stems/calyxes. 

5. Log transformed input data sets can improve the classification performance 

for most of the pattern recognition methods used in this study.  

6. It is concluded that the integrated PCA-FLD method is highly suited to defect 

detection in fresh produce.  

7. It is concluded that automated, real-time, produce defect detection, 

classification and grading is a real possibility today. 
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CHAPTER 8 FUTURE STUDIES 

The suggestions for the future work that need to be done are: 

1. In hyperspectral band selection and combination research, both projection based 

method and search based method have been applied separately. The research 

was focused on projection based statistical pattern recognition methods. Search-

based methods and the optimal combination of search-based and projection 

based techniques need to be explored in future studies.  

2. In the hyperspectral research, the log-transformed input data was found to 

perform better in most of pattern recognition methods in this study (compared 

with non-transformed input data). This suggests that nonlinearity factors affect 

the classification results. In future studies, nonlinear methods or nonlinear 

transformations should be further investigated.    

3. For an online apple defect inspection machine vision system, in order to further 

improve the speed and detection rates of the whole system, fast algorithms and 

dedicated hardware techniques are needed, their development and application 

should be investigated in the future studies.    

4. The methods presented in this study can be modified and extended to other 

image analysis applications, such applications should be pursued in future 

studies to further test their efficiency, accuracy and feasibility.  
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