Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    COLD ATMOSPHERIC PRESSURE PLASMA SURFACE INTERACTIONS WITH POLYMER AND CATALYST MATERIALS

    Thumbnail
    View/Open
    Knoll_umd_0117E_19264.pdf (6.229Mb)
    No. of downloads: 268

    Date
    2018
    Author
    Knoll, Andrew Jay
    Advisor
    Oehrlein, Gottlieb S
    DRUM DOI
    https://doi.org/10.13016/M2RB6W57K
    Metadata
    Show full item record
    Abstract
    Cold atmospheric pressure plasma (CAP) is an excellent source of reactive species because they are able to produce these species cheaply, in a variety of configurations, and in a way that can be distributed easily but there needs to be more understanding of how they specifically interact with surfaces. The goals of this dissertation are to understand what the critical reactive species reaching a surface are for particular applications. As a first step we find that a plasma in direct electrical contact with a polymer material shows high etching rate and non-uniform treatment whereas a remote regime treatment can lead to a relatively uniform treatment over the exposed to plasma area. The interaction of vacuum ultraviolet (VUV) light with polymer surfaces was found to be critical under conditions where local oxygen is displaced by noble gas flow. This VUV flux is also dependent on plasma source type, being highest for high voltage sources using noble gas flow. For a surface microdischarge (SMD) source we find high activation energy compared with atomic oxygen etching suggesting less reactive species reaching the surface are causing surface modification. However, for an atmospheric pressure plasma jet (APPJ) source we find that the activation energy changes over treatment distance, decreasing below the value expected for atomic oxygen as the jet gets closer to the surface. Additionally we find evidence of directional etching for the close distances which becomes less directional for further distance treatments suggesting we have a contribution from high energy species at closer distances despite there being no visible contact between the plasma plume and the polymer surface. Nickel catalyst materials interacting with plasma can be enhanced to show increased breakdown of methane and production of different product species such as CO compared to just the catalyst. This catalyst material also shows carbon deposition by CO and COO- groups by plasma treatment, though increased plasma power and temperature can then remove these groups as well.
    URI
    http://hdl.handle.net/1903/21320
    Collections
    • Materials Science & Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility