Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    GENOME WIDE DISCOVERY OF DISEASE MODIFIERS

    Thumbnail
    View/Open
    Auslander_umd_0117E_19261.pdf (11.63Mb)
    No. of downloads: 113

    Date
    2018
    Author
    Auslander, Noam
    Advisor
    Ruppin, Eytan
    DRUM DOI
    https://doi.org/10.13016/M2D50G17Q
    Metadata
    Show full item record
    Abstract
    Disease modifiers are genes that when activated can alter the expression of a phenotype associated with a disease. This can be done directly through affecting the expression of another gene that is causing the disease, or indirectly by affecting other factors that contribute to the phenotype’s variability. Identification of disease modifiers is of great interest from both treatment and genetic counseling perspectives. We set here to develop computational approaches to identify and study disease modifiers. We focus on two research avenues for studying disease modifiers: (1) One aimed at identifying and investigating modifiers of cancer, a complex disease influenced by multiple genetic and environmental factors, and (2) the other focuses on the identification of disease modifiers for monogenetic disorders which involve a single disease causing gene. Towards the first aim of studying cancer modifiers we take four complimentary approaches. (a) First, we developed a computational approach to identify metabolic drivers of cancer that when applied to colorectal cancer, successfully identified FUT9 as a gene that strongly modifies tumors aggressiveness. (b) Second, to study metabolic pathway-level modifications in cancer, we developed an algorithm that summarizes cancer modifications to generate pathway compositions that best capture cancer associated alterations, which, as we show, enhances cancer classification and survival prediction. (c) Third, to identify modifiers of cancer immunotherapy treatment, we developed a new computational approach that robustly predicts the response to immune checkpoint blockage therapy. (d) Fourth, to identify modifiers of cancer radiotherapy treatment we built a robust predictor of rectal cancer patients’ response to chemo-radiation-therapy (CRT), identifying a signature of genes that may serve a potential targets for modifying patients’ response to CRT. Towards the second aim of studying genetic modifiers of Mendelian diseases, we developed a computational approach for identifying a specific expression pattern associated with genes that are modifying disease severity. We show that we can successfully prioritize genes that are modifying disease severity in cystic fibrosis and spinal muscular atrophy, where we have identified a new modifier and validated it experimentally. As will become evident from reading my dissertation, my work has naturally focused on developing a variety of computational approaches to analyze research questions that were of interest to me. Obviously, my work has greatly benefited and has been significantly enriched by close collaboration with many experimental labs that have kindly embarked on testing the predictions made, and to whom I am indebted. In sum, we developed methods to identify and study disease modifiers for both cancer and Mendelian diseases. The applications of these methods generates a few promising leads for advancing the treatment for these diseases and improving clinical decision-making.
    URI
    http://hdl.handle.net/1903/21297
    Collections
    • Computer Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility