
  

 

ABSTRACT 
 
 
 

Disease modifiers are genes that when activated can alter the expression of a 

phenotype associated with a disease. This can be done directly through affecting the 

expression of another gene that is causing the disease, or indirectly by affecting other 

factors that contribute to the phenotype’s variability. Identification of disease 

modifiers is of great interest from both treatment and genetic counseling perspectives. 

We set here to develop computational approaches to identify and study disease 

modifiers. We focus on two research avenues for studying disease modifiers: (1) One 

aimed at identifying and investigating modifiers of cancer, a complex disease 

influenced by multiple genetic and environmental factors, and (2) the other focuses 

on the identification of disease modifiers for monogenetic disorders which involve a 

single disease causing gene.  

 

Towards the first aim of studying cancer modifiers we take four 

complimentary approaches. (a) First, we developed a computational approach to 
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identify metabolic drivers of cancer that when applied to colorectal cancer, 

successfully identified FUT9 as a gene that strongly modifies tumors aggressiveness. 

(b) Second, to study metabolic pathway-level modifications in cancer, we developed 

an algorithm that summarizes cancer modifications to generate pathway compositions 

that best capture cancer associated alterations, which, as we show, enhances cancer 

classification and survival prediction. (c) Third, to identify modifiers of cancer 

immunotherapy treatment, we developed a new computational approach that robustly 

predicts the response to immune checkpoint blockage therapy. (d) Fourth, to identify 

modifiers of cancer radiotherapy treatment we built a robust predictor of rectal 

cancer patients’ response to chemo-radiation-therapy (CRT), identifying a signature 

of genes that may serve a potential targets for modifying patients’ response to CRT. 

 

Towards the second aim of studying genetic modifiers of Mendelian diseases, 

we developed a computational approach for identifying a specific expression pattern 

associated with genes that are modifying disease severity. We show that we can 

successfully prioritize genes that are modifying disease severity in cystic fibrosis and 

spinal muscular atrophy, where we have identified a new modifier and validated it 

experimentally. 

 

As will become evident from reading my dissertation, my work has naturally 

focused on developing a variety of computational approaches to analyze research 

questions that were of interest to me. Obviously, my work has greatly benefited and 

has been significantly enriched by close collaboration with many experimental labs 



  

that have kindly embarked on testing the predictions made, and to whom I am 

indebted. In sum, we developed methods to identify and study disease modifiers for 

both cancer and Mendelian diseases.  The applications of these methods generates a 

few promising leads for advancing the treatment for these diseases and improving 

clinical decision-making.  
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Preface 

  

My long term research interests are in the development of computational approaches 

to identify and investigate disease modifiers that may improve the treatment for these 

diseases. I aim to develop approaches that can be robustly validated (using existing 

data or experimentally) and that are easily interpretable for our experimental 

collaborators and potential users from the biological fields. 

In this dissertation I present five computational approaches, designed to answer five 

research questions with one common objective to identify factors that can modify the 

expression, severity and prognosis of a disease. My main research focus has been 

studying modifiers for cancer, with one exceptional project in which I investigated 

disease modifiers for monogenetic disorders. Each computational approach presented 

here utilizes computational tools via specific data representation, designed to 

particularly answer each research question considering the relevant data in 

availability. 

Initially, I was interested in cancer driver genes identification, a well-studied and 

important problem, for which the main obstacle is distinguishing the genes that are 

driving cancer from these that are just associated with it (termed ‘passenger’ 

alterations). To this end, I utilized Genome Scale Metabolic Modeling that enables 

perturbation simulations and can be used to prioritize (metabolic) genes alterations 

that results with the transcriptional profile observed in tumors (and may hence be 

truly causal for the cancerous state). 
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As I became interested in the field of machine learning, a major part of my work was 

focused on developing machine learning solutions for biological problems that were 

interesting to me. For this, I investigated machine learning algorithms and data 

representation to solve different research questions; Studying pathway-level 

aggregation, I learned that aggregating gene expression via canonical pathway 

prohibits simple cancer classification.  I hence developed a data-driven algorithm that 

aggregates gene expression for pathway composition that optimally differentiate 

between healthy and tumor tissues, which also enables cancer survival prediction. 

Later on, I was interested in predicting response to cancer treatment. Studying 

checkpoint blockage therapy (ICB) response prediction, I learned that while a few 

central features (immune checkpoint genes) play a key role in these treatments, the 

expression of these genes is a poor predictor of response. I hence developed a 

predictor that compares the expression of pairs of immune activators and inhibitors 

genes that can robustly predict ICB response and can be easily transferred across 

datasets. Then, Working with Thomas Ried at the NCI, I learned that approximately 

one third of rectal cancer patients (currently treated with neoadjuvant chemo-radiation 

treatment (CRT) followed by surgery) are tumor-free after CRT and might be equally 

well treated by a “watch and wait” strategy instead of surgery. I hence developed a 

predictor of response to CRT that specifically spots those complete responders and 

can be used to identify patients that may be spared from unnecessary surgery. 

Finally, I became interested in disease modifiers for monogenetic diseases. I found 

that existing approaches require the utilization of large sequencing data, which is 

scares or completely absent for most of these diseases. I hence developed an approach 
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that can prioritize potential modifiers using healthy tissues gene expression by 

characterized genetic interactions patterns associated with such modifiers. 

In sum, I have been studying different disease aspects and developed computational 

approaches adjusted to each research question considering the data availability. 

Working in close collaboration with different experimental labs on each of these 

projects provided me a better understanding of the research questions, which 

motivated the computational approaches I developed to answer each question. I 

believe that much of this work can be used in future studies to advance the 

development of treatments and improve clinical decision-making for these diseases.   
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Background 

 
Identification of cancer driver genes 

Major tumor sequencing projects have been conducted and initiated in the past few 

years to identify genes that are frequently mutated and thereby are expected to have 

primary roles in the development of tumor 1–3. Most common methods identify genes 

that are mutated more frequently than expected from the background mutation rate 4,5. 

Other methods attempt to identify genes that exhibit other signals of positive selection 

across tumor samples, such as a high rate of non-silent mutations compared to silent 

mutations 5,6. Nevertheless, driver genes mutated at low frequency are still difficult to 

detect with this approaches. Other methods hence attempt to identify genes that 

exhibit other signals of positive selection across tumor samples, such as a high rate of 

non-silent mutations compared to silent mutations 2,7 or a bias towards the 

accumulation of functional mutations (FM bias) 8. 

 

Genome-scale metabolic modeling (GSMM) approaches to study human metabolism 

and cancer 

A Genome Scale Metabolic Model (GSMM) is a computer program built around a set 

of reactions that comprise a metabolic network, accompanied by a mapping of genes 

and proteins to the reactions they catalyze within the network 9. GSMM of human 

metabolism has become feasible in recent years thanks to the publication of the first 

full-fledged genome-scale human metabolic models (Recon110,11). In addition to a 

network of more than 3000 metabolic reactions, Recon1 contains Boolean mappings 
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of approximately 1500 metabolic genes through their encoded enzymes to these 

reactions, sub-cellular compartmentalization of processes and pathways, and 

manually curated reaction stoichiometry and membrane transporters. A key critical 

merit of GSMM modeling is that it does not require the explication of detailed 

enzymatic kinetic information (which is yet unknown on a network scale) as it 

describes the metabolic state of cells at steady state. GSMM enables the integration of 

omics data collected at specific conditions to provide a genome wide view of their 

corresponding metabolism; that is, the prediction of the likely metabolic fluxes across 

the network, including uptake and secretion rates, cell proliferation and more. 

GSMMs can also be used to predict the phenotypic effects of genetic and 

environmental perturbations on the cell’s flux distribution and viability. Such 

modeling studies have been employed in recent years to describe human metabolism 

10 in general and in cancer 12–16. 

 

Aggregating metabolic pathway information for cancer classification 

Metabolism is universally conceptualized through the abstraction of pathways, which 

are groups of enzymatic reactions thought to operate coherently 17. Undoubtedly, this 

abstraction is very useful and underlies many studies 18. Hu et al. 19 showed that 

changes in the aggregate expression of canonical metabolic pathways that occur in 

individual tumors are reproducible in independent samples of the same tumor. On the 

other hand, it has also been observed that the canonical pathways abstraction does not 

capture the complexity of the metabolic network in full; Bordbar et al. 20 recently 

presented an algorithm for deriving metabolic pathways based on the principle of 
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parsimonious use of cellular components. They showed that it produces pathways that 

are more biologically plausible than the human defined ‘canonical’ pathways present 

in databases such as KEGG, EcoCyc, YeastCyc, and Gene Ontology.  

There has been a considerable interest in cancer classifiers that utilize network- and 

pathway-based meta-features 21–24. However, recent studies reported that many of 

these classifiers do not outperform models trained over single gene features 25–27.  

 

Checkpoint blockade  immunotherapy in cancer 

Cancer immunotherapy using immune-checkpoint blockade (ICB) has created a 

paradigm shift in the treatment of advanced-stage cancers. The promising 

antitumour activity of monoclonal antibodies targeting the immune-checkpoint 

proteins CTLA-4, PD-1, and PD-L1 led to regulatory approvals of these agents for 

the treatment of a variety of malignancies. Patients might experience clinical 

benefits from treatment with these agents, despite unconventional patterns of 

tumour response that can be misinterpreted as disease progression, warranting a 

new, specific approach to evaluate responses to immunotherapy. However, only a 

subset of patients benefit from these treatments, while others may incur 

considerable side-effects and costs. Hence, predicting the patients’ responsiveness 

to ICB is being extensively investigated in recent years. 

 

Predicting clinical outcome of cancer and identification of prognostic biomarkers 

It has been previously established that gene expression profiling can be used to 

predict the clinical outcome in different cancers; e.g., predicting patients survival in 
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breast cancer 28, predicting recurrence of treated patients 29 and predicting distant 

metastasis 30.  

In rectal cancer, many studies have attempted to identify a clinically useful and 

reproducible gene expression signature capable of predicting response to neoadjuvant 

chemo radiation treatment (nCRT) using microarrays 31–36. Most studies have focused 

on the identification of predictive signatures to distinguish “good” responders from 

“bad” responders and were primarily interested in the identification of patients who 

would benefit the most from nCRT and spare others from the potential toxicity of 

CRT. However, definition of “good” response to nCRT may not be straightforward; 

significant variations in definitions of responders and non-responders, in addition to 

the intrinsic subjectivity of these definitions, may be critical in this setting. Moreover, 

most of these studies include only few dozen of patients, perform the feature selection 

alongside with the training procedure and have very small test set. As a result, many 

of the identified signatures were found not reproducible and none these has been 

integrated into the clinic for prognostic use to this day 37. 

 

Identification of genetic modifiers for monogenetic disorders 

Strategies used to show the role of genetic factors in phenotypic expression are often 

classified into three categories depending on the type of data available 38: (1) 

Association studies of case-control data, which is the most widely used strategy in the 

search for modifier genes, probably as it requires sampling patients only, rather than 

collecting familiar data. In association studies, the distribution of marker genotypes is 

compared in patients with different levels of the phenotype 39,40. (2) Linkage studies, 



 

 xii 
 

which require available data from affected siblings. Linkage analysis compares the 

number of alleles shared identical by descent by affected siblings between 

phenotypically-concordant and discordant sibling pairs 41,42. (3) Blind search - 

Systematic genome-wide screens, which consists in searching for the genetic factors 

involved in the phenotype of interest over the whole genome, to identify individuals 

that are resilient to mutations causing the phenotype of interest 43. 
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Chapter 1: Identification tumor modifying metabolic genes. 

Published as  “An integrated computational and experimental study uncovers FUT9 

as a metabolic driver of colorectal cancer”, Molecular Systems Biology 201744  

 

Introduction 

Altered metabolism is a core hallmark of cancer and yet, surprisingly, very few 

metabolic cancer genes are known to play a causal role in tumorigenesis. Here we 

present an integrated computational approach that combines a large-scale genomic 

analysis with a genome-scale metabolic modeling (GSMM) approach to identify new 

metabolic tumor suppressor genes. At the first step, our computational pipeline uses 

standard genomic approaches to identify potential candidates presenting tumorigenic 

molecular properties in patients’ tumors. In a second step, we present a new GSMM 

method that identifies a subset of these genes that are likely to play a causal role in 

transforming the metabolic state of healthy colon tissue to a cancerous one. Our 

analysis predicts FUT9, as a causal metabolic driver of advanced stage colon cancer 

whose inhibition is predicted to modify the tumorigenic metabolic state from that of 

early colorectal tumors to that of late ones. The experimental testing of FUT9 

inhibition reveals its complex dual role in this malignancy; while the knockdown of 

FUT9 enhances proliferation and migration of the bulk of colon cancer cells in 

monolayers, it suppresses colon cancer cells expansion in tumorspheres and inhibits 

tumor development in a mouse xenograft models, testifying on its context dependent 

modifying role in this malignancy.  
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Results 

Pipeline:  

An integrated genomic-modeling analysis predicts a modifying causal role of 

FUT9 in colorectal cancer 44 

We developed a two-step computational approach to predict metabolic tumor 

suppressors, that is, genes whose downregulation promotes cancer. Applied to 

study colon cancer, the first step employs a straightforward genomic analysis 

of the Cancer Genome Atlas (TCGA) database45,46 to identify metabolic genes 

that are downregulated in colorectal cancer (Figure 1A). Subsequently, we 

performed a novel metabolic modeling analysis to identify, among the genes 

identified as associated with tumorogenesis in the first step, those whose 

downregulation is indeed most likely to result in the metabolic alterations 

observed in colorectal tumors and thus are more likely to play an actual causal 

role in the transformation of normal to cancerous tissues (Figure 1B). A 

detailed overview of each step follows. 

Genomic identification of 34 candidate metabolic tumor suppressor genes in 

colorectal cancer: This step consists of three sub-steps that are applied 

sequentially, analyzing gene expression, Copy Number Variation (CNV), and 

survival data from 272 colorectal cancer samples and 42 matching healthy 

colon tissues samples in the TCGA45,46: (1) First, analyzing the 

transcriptomics data of these samples we identified 4593 genes that are 

significantly downregulated in colon cancer (one-sided Wilcoxon Rank-sum 
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test with multiple hypothesis correction (alpha=0.001)). (2) Second, 328 of 

these downregulated genes have significantly lower copy number in the 

tumors compared to the healthy samples (Q-values < 0.25). (3) Finally, a 

Kaplan Meier survival analysis further narrowed down this list to 177 

candidate tumor suppressors whose downregulation is negatively correlated 

with patient survival (and thus, likely to enhance tumor progression; see 

Methods, Figure 1A). Reassuringly, the resulting list includes several known 

colon tumor suppressors such as APC47,48, TCF7L249,50, MCC51,  PTEN 52,53, 

and SMAD4 54,55. It also includes 34 metabolic genes that are present in the 

human metabolic model, and which we further studied in the next modeling 

step.  
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Figure 1. Two-step pipeline for predicting metabolic tumor suppressors. (A) 

Genomic analysis of three types of data yields an initial list of potential tumor 

suppressors. (B) GSMM-based approach of the potential tumor suppressors 

identifies metabolic genes whose knockdown may play a causal role in 

tumorogenesis. 

FUT9 tumorigenic properties 

To predict metabolic genes whose downregulation may play a causal role in 

colorectal cancer, we utilized a GSMM analysis approach termed the 
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Metabolic Transformation Algorithm (MTA)56. This algorithm was previously 

developed and used to successfully identify life-extending metabolic genes in 

yeast 56 and is employed here for the first time to search for metabolic tumor 

suppressors in cancer.  MTA is a generic algorithm that aims to identify 

metabolic gene knockouts that are capable of driving a transformation from a 

given metabolic state to another, defined target state. The inputs to MTA are 

the pertaining transcriptomic measurements of these two given and targets 

states. Its output is a ranked list of metabolic genes whose inactivation has the 

potential to induce the transformation from the given to the target states 

(Methods)56. In our case, the given metabolic state is the healthy, non-

malignant state, and the target state is the cancerous one, and correspondingly, 

the inputs to the algorithm are a set of gene expression data from matched 

healthy and tumor colon samples.  

 

While the original publication of MTA has mainly focused on its testing and 

validation in a known collection of gene knockouts in microorganisms, it 

already showed that MTA correctly identifies fumarate hydratase as a gene 

whose knockdown may cause the metabolic transformations observed in 

HLRCC57,58.  We now tested and validated that MTA successfully identifies 

the knockdown of succinate dehydrogenase (SDH) as a likely cause of the 

metabolic alterations observed in hereditary paraganglioma59. To further test 

the ability of MTA to identify the genes that where knocked down in 

mammalian screens from the pertaining transcriptomics data, we further 
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mined the literature to assemble a collection of 19 datasets of metabolic genes 

for which we found mouse or human gene expression data before and after the 

knockdown of each of these genes. For each of these knockdowns, we gave 

MTA these transcriptomics data as inputs and applied it to predict the most 

likely genes whose knockdowns may account for the transcriptomic changes 

observed in these experiments.  MTA correctly predicted the experimentally 

knocked down genes in 13 of the 19 cases studied in the top 20% of the 

predictions (binomial P-value = 5.8266e-06, and its performance remains 

robust at multiple threshold setting, Appendix), validating MTA’s predictive 

ability in mammalian tissues. 

   

We then turned to apply MTA to identify metabolic genes that, when 

downregulated, can transform a healthy tissue to a cancerous one.  We 

analyzed three independent transcriptomic datasets including 27 paired 

healthy/tumor samples from TCGA, 17 paired healthy/tumor samples from 

Khamas et al.60 and 32 paired healthy/adenoma samples from Sabates-Bellver 

et al.61. In the first step, we ran an MTA analysis on each pair of matched 

healthy and tumor gene expression samples, yielding a ranked list of genes 

according to their oncogenic transformation scores (OTS) (Methods). OTS 

scores denote the likelihood that a gene knockout in the healthy cells can 

transform their metabolic state to a cancerous one. Following that, in a second 

step, an aggregate OTS was assigned to each metabolic gene by considering 

its scores across all samples and then, in a third step we aggregated the OTS 
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scores of each gene across all three datasets analyzed. We additionally 

analyzed colon polyp data from Sabates-Bellver et al61, which includes 32 

matched healthy and polyp samples. This data enabled us to perform two 

complementary MTA analyses, one predicting metabolic genes whose 

knockdown may cause the transformation to the polyp state, and one 

predicting metabolic genes whose inactivation may cause a further malignant 

transformation into colon cancer. (Methods). 

  

The distribution of the resulting OTS scores of the 34 metabolic genes 

examined via these MTA analyses is presented in Table 1. While all 34 genes 

present genomic patterns that associate them with a tumorigenic state (using 

expression, copy number and survival data), only few are predicted by MTA 

to causally transform the metabolic healthy state to that of a cancerous one. As 

evident, only the knockdown of PTEN and FUT9 is predicted to transform the 

metabolic state of healthy cells as well as that of adenoma cells to that of 

colorectal tumors with high OTS scores (Methods). FUT9 is the most highly 

scored gene and is also strongly supported by the earlier genomic analysis: Its 

expression is strongly downregulated in colon cancer (Rank-sum P-value = 

1e-22, Figure 2A), it is significantly deleted in colon cancer while not in other 

cancer types (Q-value = 0.0356, Figure 2B), its low expression is associated 

with poor survival in colon cancer (Kaplan-Meier (KM) ∆AUC = -0.1206, 

Figure 2C) (Table 1) (The resulting KM log-rank P-value is 0.1942, likely due 

to the small sample size of patients expressing FUT9 (only ~15% of 
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patients)). Interestingly though, while MTA highly scores FUT9 for all three 

transformations, FUT9 is not significantly downregulated at early stage colon 

adenomas using paired gene expression of healthy/adenoma samples from 

Sabates-Bellver et al.61 (Paired student t-test, P-value = 0.47, Appendix Figure 

S1). This suggests that its inactivation may play a significant role only at later 

stages of colon cancer progression. Bearing this observation in mind, we set to 

study the role of FUT9 further, first computationally and then experimentally. 

 

Gene 

𝐡𝐞𝐚𝐥𝐭𝐡𝐲

→   𝐜𝐚𝐧𝐜𝐞𝐫  𝐎𝐓𝐒  𝐬𝐜𝐨𝐫𝐞   

Healthy→

adenoma 

OTS 

score 

Adenoma

→cancer 

OTS 

score 

Differenti

al 

expressio

n P-value 

CN Q-

value 

KM 

∆AUC 

FUT9    8.54 3.02 2.99 5.06E-24 0.0356 

-

0.120669

976 

AKR7A2  6.91 4.55 0.06 2.15E-14 3.46E-05 

-

0.198482

955 

CAT     5.78 0 0 5.76E-19 0.215 

-

0.124211

074 

PTEN    4.91 0.09 2.67 2.08E-19 0.00494 

-

0.009581

467 

PIK3CD  4.3 0 0.2 1.79E-11 0.00205 

-

0.048812
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134 

FUCA1   4.07 0 0 1.27E-23 3.46E-05 

-

0.114652

506 

PLCE1   3.47 1.3 0 3.33E-23 0.0458 

-

0.104694

133 

STS     2.86 0 0.1 1.49E-08 0.0136 

-

0.080255

382 

SDHB    2.81 2.4 0 3.72E-16 3.46E-05 

-

0.106186

688 

MAN1C1  2.6 0 0.2 9.61E-12 3.78E-05 

-

0.023167

238 

MTHFR   2.14 0.21 0 2.06E-14 0.00205 

-

0.162335

156 

PIGN    2.1 0 0 1.41E-09 0.187 

-

0.029340

173 

FH      2.03 1.73 1.2 3.27E-11 1.24E-68 

-

0.033206

093 

PLA2G2

D 1.66 0.9 0 3.48E-09 0.000147 

-

0.010922

122 

SLC18A2 1.48 0 0.73 3.27E-15 0.19 

-

0.095652

366 
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LIPC    1.22 0.9 0 1.26E-19 0.215 

-

0.005134

395 

CYP2C18 1.2 1.64 0 1.43E-12 0.09 

-

0.048710

276 

HMGCL   1.2 1.09 0 1.40E-20 3.46E-05 

-

0.118954

367 

ACADS   1.11 2.4 0.12 2.73E-24 0.102 

-

0.065005

732 

PANK4   1.02 2.11 1.2 8.29E-13 0.0341 

-

0.044198

756 

COX6B2  0.82 0.76 0.1 1.88E-11 0.0397 

-

0.024199

841 

PDE4D   0.8 2 0 1.01E-17 0.00629 

-

0.076789

143 

ECHS1   0.71 1.2 0 5.59E-12 0.172 

-

0.054802

279 

INPP5A  0.32 3 0 2.59E-22 0.0599 

-

0.031649

119 

ITPKA   0.2 1.01 0.8 2.28E-18 0.172 

-

0.077477

859 

SLC25A4 0.2 0.2 0 4.23E-12 0.00872 -
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0.227357

666 

HS3ST5  0.11 0 0 1.28E-09 0.0676 

-

0.034265

55 

FECH    0 1.53 0 4.80E-17 0.227 

-

0.102888

235 

ME2     0 1.88 0 6.93E-17 0.0273 

-

0.083078

298 

NADK    0 0.96 0.01 2.27E-14 0.0815 

-

0.172031

059 

NDUFB8  0 1.5 0 2.10E-11 0.234 

-

0.023126

419 

NMNAT1  0 0.98 0 8.38E-19 0.0062 

-

0.124354

125 

PAFAH2  0 0.1 0 3.67E-21 3.47E-05 

-

0.021012

791 

PC      0 2.76 0 1.44E-16 0.0341 

-

0.214743

894 

 

Table 1. Predicted tumor suppressors properties. For each metabolic predicted 

tumor suppressor, the table displays: (1) the OTS scores for the three 

transformations, and genomic properties (2) differential expression P-value, 
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(3) Copy Number (CN) deletion Q-value (P-value that has been adjusted for 

the False Discovery Rate), and (4) Kaplan-Meier survival ∆AUC. 

 

GSMM analysis of the metabolic implications of FUT9 inactivation: FUT9 

belongs to the glycosyltransferase family and catalyzes the last step in the 

biosynthesis of Ley glycolipids in the carbohydrate antigen Lex62,63. This 

reaction takes place in the Golgi compartment, and the product is transported 

to the cytosol and secreted out from the cell64. The Ley glycolipid was 

previously reported to inhibit the procoagulant activity and metastasis of 

human adenocarcinoma65–67. The loss of FUT9 in the metabolic model 

prevents Ley glycolipid formation and secretion. To chart the network-wide 

metabolic alterations induced by FUT9 inactivation, we performed a 

Minimization Of Metabolic Adjustment (MOMA)68 analysis to predict the 

metabolic state after FUT9 KD in late stage  colorectal cancers, simulated by 

the Gene Inactivity Moderated by Metabolism and Expression (GIMME) 

algorithm 69 (Methods). This pinpoints reactions whose flux is predicted to be 

most afflicted by FUT9 inactivation in advanced stage cancer. We found that 

the loss of FUT9 in late stage colorectal cancers is predicted to cause an 

increase in the flux of 25 reactions, and a decrease in the flux of 6 reactions. 

The flux is predicted to increase in reactions associated with Glucose 

metabolism, and particularly TCA cycle (hyper-geometric P-value = 1.3676e-

09, Figure 2D). We find that the expression of metabolic genes associated 

with reactions predicted to increase following FUT9 loss is significantly up-
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regulated in stage 4 vs. stage 3 colon tumors when compared by their 

expression in TCGA data (hyper-geometric P-value = 0.0046). Experimental 

evaluation of these predictions using the Human Glucose Metabolism, RT² 

Profiler™ PCR Array revealed a good correlation with our computational 

prediction (Fig. 2D). In particular, 12 genes, including FH and SDHD proved 

to be upregulated in FUT9 silenced cells as expected from our computational 

analyses. 

 

To evaluate the effect of FUT9 knockdown (KD) and overexpression (OE) on 

biomass production, Glucose consumption, Lactate production and Oxygen 

consumption in the benign colon adenoma state, we (1) simulated the wild-

type metabolic state associated with colon adenoma. This was done by 

incorporating adenoma gene expression data from Sabates-Bellver et al.61 

using the GIMME algorithm.  (2) We then sampled 100 flux distributions in 

the resulting predicted adenoma wild-type state. In each such sample we 

applied the MOMA68 algorithm to predict the metabolic state after FUT9 KD 

and OE in adenoma, summing up the results overall 100 samples (Methods). 

We find that the biomass production predicted is significantly higher under 

FUT9 OE than its KD, as well as Lactate secretion rate (Wilcoxon rank-sum 

P-value = 0.0081 and 0.0173, respectively, Figure 2E). While Oxygen 

consumption rate is significantly higher under FUT9 KD (Wilcoxon rank-sum 

P-value = 6.79e-8, Figure 2E).  These predictions imply that FUT9 activity is 

required for supporting cancer proliferation in the adenoma state, which are 
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consistent with the genomic findings we reported above that while FUT9 

expression is strongly downregulated in colon cancer is not significantly 

downregulated at early stage colon adenomas. 

 

We next evaluated the metabolic effects of FUT KD and OE in the colon 

tumor state. To this end we performed a similar analysis as described above 

for adenoma, while first inferring the likely metabolic state of colon tumors 

(Methods). Strikingly, we find that the predicted biomass production in the 

cancerous state is significantly higher under FUT9 KD than its OE (Wilcoxon 

rank-sum P-value = 0.0245, Figure 2F), and that lactate production rate is also 

increased under FUT9 KD (Wilcoxon rank-sum P-value = 0.0859, Figure 2F), 

opposite to the observed in simulated colon adenoma state. These predictions 

imply that the loss of FUT9, while hampering the growth of adenomas, is 

required for the proliferation of colon tumors, while its overexpression 

significantly reduces proliferation in that state. 

 

Given the opposite predicted effects of KD perturbation in colon adenomas vs. 

tumors, we performed an additional GSMM analysis to study whether FUT9 

inactivation at early colorectal cancer stages can induce the metabolic state 

observed at advanced tumors, or only its inactivation at late stages can induce 

this transformation. To this end we first inferred the likely metabolic state of 

advanced colorectal tumors using the GIMME algorithm69, as done above in 

the adenoma analysis. We then predicted the likely metabolic states after the 
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loss if FUT9 in each of the four different stages of colorectal cancer 

progression, asking how similar is the metabolic state induced after the loss of 

FUT9 in each of these stages to the advanced, late cancerous state. The 

metabolic state after the KD of FUT9 in each stage-specific context was 

predicted using the MOMA algorithm68 (Methods). This analysis revealed that 

the loss of FUT9 at early stages does not bring the metabolic state close to that 

observed in advanced cancer. Rather, for the FUT9 loss to cause such an 

effect, it has to occur in later stages of the disease (Figure 2G). This indicates 

that FUT9 downregulation is a tumor-transformative event only if occurs at 

later stages of tumor progression. To study this further from a genomic 

perspective, we analyzed the correlation between FUT9 copy number and the 

copy number levels of known early and late genetic markers of colorectal 

cancer. We find that FUT9 expression levels negatively correlate with the loss 

of the early markers APC and MCC (Spearman rho = -0.1726 and -0.1707, P-

value < 0.05, respectively), while it is positively correlated with the loss of 

TP53, a marker of the advanced stage, 70,71 (Spearman rho = 0.1759, P-value 

<0.05, Figure 2H).  
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Figure 2. Tumorigenic attributes of FUT9. (A) A boxplot describing the 

expression of FUT9 in tumor vs. healthy colon tissues. (B) Q-value for CN of 

FUT9 in 12 different cancer types, the dashed line represents a significance 

threshold of 0.25. (C) Kaplan-Meier survival curve for FUT9 expression (top 

and bottom 0.5 quartiles). (D) The TCA cycle and its associated enzymes that 

are increased in stage 4 colorectal cancer (red), predicted to increase following 
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FUT9 KD (yellow) and increase following FUT9 KD experimentally (green). 

(E) Boxplot showing the distribution of biomass production, Glucose 

consumption, Lactate production and Oxygen consumption in adenoma state 

when FUT9 is knocked-down (KD) and overexpressed (OE). (F) Boxplot 

showing the distribution of biomass production, Glucose consumption, 

Lactate production and Oxygen consumption in cancer state when FUT9 is 

knocked-down (KD) and overexpressed (OE). (G) Boxplots sowing the 

MOMA scores obtained by the knock-down of FUT9 in stages 1-4. (H) Upper 

panel: Colorectal Adenoma-carcinoma sequence. Middle panel: the emerging 

role of FUT9 in colorectal tumor progression. Lower panel: Correlation heat-

map of FUT9 copy number (CN) and early and late stage prognostic markers 

of colorectal cancer. 

 

Experimental work  

The experimental testing of these predictions shows that FUT9 plays a 

complex dual role in this malignancy. On one hand, the knockdown of FUT9 

enhances proliferation and migration of the bulk of colon cancer cells in 

monolayers, pointing to a suppressive role (Figure 3). On the other hand, its 

knockdown suppresses colon cancer cells expansion in tumorspheres and 

inhibits tumor development in a mouse xenograft models, testifying to a tumor 

promoting role (Figure 4). These results suggest that FUT9’s inhibition may 

have a differential effect on different types of tumor cells: its knockdown 

attenuates tumor initiating cells (TICs), which are known to dominate 

tumorspheres and early tumor seeding and growth, but promotes bulk tumor 

cells. In agreement, we find that FUT9 silencing decreases the expression of 

the colorectal cancer TIC marker, CD44 (Figure 4). Taken together, these 
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computational and experimental results testify that FUT9 acts first as an 

oncogene in TICs and enhances early stages of tumor formation, but later it 

acts as a tumor suppressor in bulk tumor cells and is hence lost at later tumor 

stages.  

 

 

Figure 3. Knockdown of FUT9 expression increases aggressiveness of colon 

cancer cells. (A) HCT116 and DLD1 control and FUT9 knockdown cells were 
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seeded evenly in 96 well plates and the number of viable cells after 72 hours 

was analyzed using Resazurin absorbance reading. The graph represents the 

mean ± s.e. from three independent replicates normalized to the control cells. 

Six wells per replicate were analyzed. (B) The same cells from (A) were 

seeded in soft agar and cultured for 28 days. The number of colonies formed 

were quantified relative to the control cells. The mean ± s.e. from two 

independent replicates are represented. (C) The fold change in gene 

expression for the FUT9 knockdown and FUT9 overexpressing cells were 

analyzed using RT-qPCR. The graphs represent the mean ± s.e. fold change 

from three independent replicates. (D) HCT116 and DLD1 FUT9 knockdown 

cells were seeded at very low densities in a 24 well dish and cultured for 10 

days. The number of colonies formed in each well were counted. The graph 

represents the mean ± s.e. of two independent replicates. Three wells were 

analyzed per replicate. Representative images of one well for each condition 

are shown. (E) The same colony formation assay as in (D) was performed and 

analyzed using FUT9 overexpressing cells. Representative images for each 

condition are shown. (F) HCT116 control and FUT9 knockdown cells were 

each seeded to form a confluent monolayer. A scratch was made in each 

monolayer and the width of the scratch monitored by imaging the same areas 

of each scratch (2 per scratch) at the time of scratching (0h) and 24, 48 and 72 

hours later.  The graph depicts the mean ± s.d. of two independent 

experiments and represents the percentage of scratch open at each time point 

relative to the 0h point. For optimal presentation, individual scratch images 
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are shown at different brightness and contrast settings. (G) The wound-healing 

assay was performed with HCT116 control and FUT9 overexpressing cells 

and analyzed as in (F). The graph summarizes the mean ± s.d. of two 

independent experiments and represents a percentage of scratch open at each 

time point relative to the 0h point. For optimal presentation, individual scratch 

images are shown at different brightness and contrast settings. * P < 0.05, 

Student's t-test 

***Figure 3 and the work presented in it is generated by the Franco J. 

Vizeacoumar and his lab members 44 

 

Our genomic analysis revealed that, while FUT9 is strongly downregulated at 

later stages of colon cancer development, it is still present in colon polyps and 

early adenoma, indicating that FUT9 activity may be required at the initial 

stages of tumor initiation. Thus, while FUT9 downregulation benefits the bulk 

of tumor cells as shown above, its activity may support the subpopulation of 

cancer stem cells or tumor initiating cells (TICs) that play a central role in 

tumor development. To study this hypothesis, HCT116 with FUT9 

knockdown and matching control cells were cultured as tumorspheres, which 

are predominantly formed by TICs 72–75. Consistent with our expectations, 

FUT9 knockdown reduced expansion of HCT116 cells in tumorspheres, while 

FUT9 overexpression produced enhanced proliferation of tumorsphere-

forming cells (Figure 4A-B). On a molecular level, this was accompanied with 

the reduced expression of OCT4 transcription factor in FUT9 silenced cells. 
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Since OCT4 has been shown to support TIC formation 76,77, this observation 

provides a mechanistic explanation for FUT9 effect in supporting TIC 

activity. These results show that, in contrast to the anti-proliferative effects of 

FUT9 activity in the bulk of colon cancer cells (Figure 3A-D), FUT9 activity 

may actually be required for the efficient expansion of TIC populations. This 

was further confirmed by flow cytometry analysis, showing that FUT9 

silencing decreases the expression of a prominent colorectal cancer TIC 

marker CD44 72,78  in HCT116 cells (Figure 4C).  

Since TIC cells are essential for tumor initiation, tumor maintenance and 

tumor growth79–84, increased TIC activity is expected to accelerate tumor 

growth in vivo79,83,84. To test the effect of FUT9 on this process, we generated 

a xenograft model of colorectal cancer in immune-deficient NOD/SCID 

gamma mice. HCT116 cells with silenced FUT9 expression or control cells 

transduced with non-targeting shRNA were injected subcutaneously in equal 

numbers into the flank of the immuno-deficient mice and the growth of the 

resulting tumors was monitored. In agreement with its inhibitory effect in 

tumorspheres, FUT9 silencing also significantly reduced growth of xenograft 

tumors (Figure 4D). This may reflect the dual functionality of FUT9 where it 

supports tumor development by enhancing TIC activity (Figure 4E), while 

inhibiting the expansion of the bulk of tumor cells (Figure 3).  
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Figure 4. Expression of FUT9 supports tumor development. (A) HCT116 

FUT9 knockdown and matching control cells were seeded in ultra-low 

attachment plates and cultured for one week. The resulting tumorspheres were 
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collected, dissociated, and the total number of cells counted. The graph 

represents the mean ± s.e. of two independent replicates normalized to the 

number of control cells. Each replicate represented tumorsphere cells 

collected from 24 independent wells. Representative images are shown. Scale 

bar, 1000 µm. (B) FUT9 overexpressing and control cells were cultured as 

tumorspheres and analyzed as in (A). Two independent replicates and 

representative pictures are depicted. (C) CD44 expression in FUT9 

knockdowns (in red) and shRFP control (in blue) in HCT116 cells were 

assessed using anti-CD44 and flowcytometry and representative histograms 

were overlayed (second panel). Isotype controls were also plotted and 

overlayed (first panel). Median fluorescent intensity (MFI) values derived 

from the software are plotted as bar chart. The graph represents the mean ± 

s.e. of two independent replicates. (D) HCT116 FUT9 knockdown or control 

cells were injected subcutaneously into the right flank of NOD/SCID mice 

and monitored for tumor formation. Each tumor was measured using calipers 

and the mean volume for the FUT9 knockdown and control tumors were 

graphed (first panel). The graph represents two independent experiments with 

a minimum of 11 mice analyzed per experimental condition. Mean tumor 

volumes ± s.d. are shown. Upon experiment termination, tumors were 

extracted, weighed, and the mean tumor weights ± s.d. are shown in the 

second panel. (E) A schematic showing the abundance of FUT9 positive cells 

over the course of colon cancer development. * P < 0.05, Student's t-test 
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***Figure 4 and the work presented in it is generated by the Franco J. 

Vizeacoumar, Andrew Freywald and their lab members 44 

 

Methods 

Kaplan-Meyer survival analysis of potential tumor suppressors.  

For each gene found to be significantly lowly expressed and deleted through 

gene expression and copy number data, we applied Kaplan-Meyer survival 

analysis to examine the association of its downregulation with poor patient 

survival. We use TCGA COAD survival and gene expression data, and 

separate the expression of each gene to ‘high’ and ‘low’ bins by its median 

level. We calculate the ∆𝐴𝑈𝐶 resulting from the two Kaplan-Meyer curves 

and select only genes with ∆𝐴𝑈𝐶 < 0 indicating that their low expression is 

associated with poor survival. 

 

A constraint-based model of metabolism.  

A metabolic network consisting of 𝑚 metabolites and 𝑛 reactions can be 

represented by a stoichiometric matrix 𝑆, where the entry 𝑆!" represents the 

stoichiometric coefficient of metabolite 𝑖 in reaction 𝑗. A Constraint-Based 

Model (CBM) imposes mass balance, directionality and flux capacity 

constraints on the space of possible fluxes in the metabolic network's reactions 

through a set of linear equations 
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𝑆 ∙ 𝑣 = 0 (1) 

𝑣!"# ≤ 𝑣 ≤ 𝑣!"# (2) 

 

Where 𝑣 is the flux vector for all reactions in the model (i.e. the flux 

distribution). The exchange of metabolites with the environment is 

represented as a set of exchange (transport) reactions, enabling a pre-defined 

set of metabolites to be either taken up or secreted from the growth media. 

The steady-state assumption represented in Equation (1) constrains the 

production rate of each metabolite to be equal to its consumption rate. 

Enzymatic directionality and flux capacity constraints define lower and upper 

bounds on the fluxes and are embedded in Equation (2). In the following, flux 

vectors satisfying these conditions will be referred to as feasible steady-state 

flux distributions.  Gene knockdowns are simulated by constraining the flux 

through the corresponding metabolic reaction to zero. Similarly, 

environmental perturbations are simulated by constraining the flux through 

the associated exchange reaction to zero.  

For each of the dataset analyzed here, we simulated the same media that was 

used in the experiment (DMEM). For modeling human metabolism we have 

used Recon1. 64 

 

Metabolic Transformation algorithm (MTA).  

MTA receives as input the gene expression measurement of two distinct 

metabolic states, termed source and target states. Next the algorithm executes 
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the following steps: (1) determine the flux distribution that corresponds to the 

source state using integration Metabolic Analysis Tool (iMAT) ; (2) identify 

the set of genes whose expression have significantly elevated or reduced 

between the source and targets states, and the set of genes whose expression 

remained relatively constant between the states. Next, the algorithm searches 

for perturbations that can alter the fluxes of the changed reactions in the 

observed direction, while keeping the fluxes of the unchanged reaction as 

close as possible to their predicted source state. Finally, MTA outputs a 

ranked list of candidate perturbations according to their ability to transform 

from the source to the target metabolic state.  

 

The Transformation Score 

Relying on the optimization value obtained by MTA to rank the 

transformations induced by different perturbations is suboptimal, since the 

integer-based scoring of the changed reactions is coarse-grained and does not 

distinguish between solutions achieving large flux alterations and those 

obtaining flux changes barely crossing the 𝜀 threshold. Therefore, we chose to 

quantify the success of a transformation by a scoring function based on the 

resulting flux distributions rather than on the optimization objective values 

themselves. First, we denote the resulting flux distribution obtained in a given 

MIQP solution (for a given reaction knock-out) as 𝑣!"#. Second, reactions 

found in 𝑅! and 𝑅! are classified into two groups 𝑅!"##$!! and 𝑅!"#!$!"##, 

denoting whether they achieved a change in flux rate in the required direction 
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(forward or backward) or not. The following scoring function is then used to 

assess the global change achieved by the employed perturbation: 

          
!"# !!

!"#!!!
!"# !  !"!!"##$!! !"# !!

!"#!!!
!"#

!"!!"#!$$%##

!"#(!!
!"#!!!

!"#)!"!!
           (*)   

The numerator of this function is the sum over the absolute change in flux rate 

for all reactions in 𝑅!"##$!!, minus a similar sum for reactions in 𝑅!"#!$$%##. 

The denominator is then the corresponding sum over reactions in 𝑅! (the 

reactions which should stay untransformed). Following, perturbations 

achieving the highest scores under this definition are the ones most likely to 

perform a successful transformation by both maximizing the change in flux 

rate for significantly changed reactions, and minimizing the corresponding 

change in flux of unchanged reactions. Using an alternative scoring function 

based on the Euclidean distance instead of absolute values yielded similar 

results.  

While we believe that the TS score (Equation (*)) is the right one to pursue 

from a biological point of view, optimizing it directly is a very difficult 

mathematical task. To accomplish that one would need to develop a novel 

optimization algorithm for solving a mixed non-linear programming problem, 

whose objective function is non-smooth and non-differentiable, requiring non-

smooth optimization tools. Attempting such a solution directly would greatly 

complicate the problem as one would need to add many variables and 

constraints. Furthermore, the specific form of this ratio is actually dependent 

on the solution itself (as it evaluates 𝑅!"##$!! and 𝑅!"#!$$%## separately) 

making the entire task infeasible. In light of these evident difficulties we have 
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chosen to take a two-step approach in this study that is sub-optimal but yet 

tractable. While the wild-type solution always achieves maximal values in 

terms of the original proxy objective function used in step 3 (by definition), it 

does not necessarily achieve high transformation scores (step 4). This is 

because the wild type solution is the least constrained, and hence most of the 

solutions found in step 3 can be satisfied by achieving only a minimal epsilon 

change; Those are obviously non-optimal from a biological standpoint as they 

do not really come close to the desired objective, and hence their TS score (in 

step 4) is sub-optimal in many of the cases, correctly ruling them out as 

biologically viable solutions. MTA analysis is established upon learning the 

regulatory effects of the knockdown of metabolic genes via the direct 

stoichiometric flux coupling of the reactions they encode to other reactions in 

the human metabolic network (which are inherently embedded in the reactions 

stoichiometric matrix it includes). 

 

Aggregated oncogenic transformation scores (OTS).  

MTA scores each reaction according to the extent of which its knockout is 

predicted to cause the observed transformation from normal to cancer. For 

each reaction  𝑖 (𝑅𝑋𝑁!) we define the aggregated OTS score by: 

 

𝑂𝑇𝑆(𝑅𝑋𝑁!) =    𝐼!"
!  ∈  !"#$!!"  !"#$%&

×(1− 𝑃 𝐼!" = 1 ) 
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Where 𝐼!" is one when reaction 𝑖 was scores higher than random (MTA score 

when no perturbation is simulated) and zero otherwise. 𝑃(𝐼!" = 1) is a 

reaction’s probability to be scored higher than random in matched pair 𝑗 

(which is the number of perturbation that are scored higher then no 

perturbation in pair 𝑗). Thus, paired samples in which fewer reactions received 

a significant score are more heavily weighted.  

 

Reaction-to-gene mapping of OTS.  

OTS is assigned to each reaction in the metabolic model. Each metabolic gene 

is assigned the highest score assigned to one of its associated reactions, using 

the reaction-to-gene mapping defined by the Recon1 metabolic model. 

 

Colon polyp and colon tumor gene expression normalization.  

To apply MTA from polyp to tumor, we applied quantile normalization to the 

1496 metabolic genes present in Recon1 metabolic model.  We used 27 colon 

samples from TCGA that were used for the paired-MTA analysis and 32 colon 

adenoma sample, when the reference distribution is the mean expression of 

these 1496 metabolic genes across all 272 colon tumors in TCGA. 

  

Utilizing MOMA and GIMME algorithms to predict the pathway-level 

effect of FUT9 inactivation in late stage colon cancer.   

To investigate FUT9 role in tumorigenesis in the metabolic model, we set to 

discover which metabolic flux alterations are induced by the loss of FUT9 in 



 

 30 
 

late stage colon cancer. To this end, we utilized the GIMME algorithm to 

simulate metabolic flux of stage 3 colon tumors. To evaluate FUT9 effect on 

metabolic fluxes at that stage, we then utilize the MOMA algorithm and 

sample 100 flux distributions with and without FUT9 knockdown. For each 

reaction, we compare the MOMA sampled flux distributions with and without 

FUT9 KD using one-sided Wilcoxon rank-sum test. We define the set of 

reactions that are increased following FUT9 knockdown as reactions whose 

sampled flux is increased when FUT9 knockdown is simulated vs. WT 

(Wilcoxon rank-sum P-value<0.05) and the set of reactions that are decreased 

following FUT9 knockdown as reactions whose sampled flux is decreased 

when FUT9 knockdown is simulated vs. WT (Wilcoxon rank-sum P-

value<0.05).  

 

Utilizing the MOMA algorithm to evaluate the effect of FUT9 knockdown 

and over-expression on biomass production, Glucose consumption, 

Lactate production and Oxygen consumption.  

To predict the effect of FUT9 levels on Biomass production, Glucose 

consumption, Lactate production and Oxygen consumption we utilized the 

GIMME algorithm to simulate metabolic flux of (1) colon adenoma state 

using the 32 adenoma samples from Sabates-Bellver et al.61 (2) Colon cancer 

state using 268 cancerous samples from the TCGA. For each of the adenoma 

and cancer predicted flux distributions, we sampled 100 flux distributions for 

FUT9 KD and another 100 for FUT9 OE (defined by setting the lower bound 
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of FUT9 associated reactions to 80% of their maximum), using MOMA 

algorithm, aiming to minimize the metabolic adjustments after FUT9 

perturbations, from the initial adenoma or cancerous metabolic state. In both 

cases we set the lower bound of the biomass reaction to be at least 80% of its 

optimal rate to simulate proliferating cells and restrict variability in the 

resulting fluxes. 

 

Utilizing MOMA algorithm to predict stage specific context in which the 

loss of FUT9 is tumorigenic.  

To predict the context in which the loss of FUT9 drives the oncogenic 

transformation, we used colorectal cancer gene expression measurements 

from the TCGA database. For each sample, we predict a flux distribution 

using the GIMME algorithm69 (the mean flux distribution over 100 sample 

points was used) and the metabolic model in which FUT9 is knocked down. 

We then predict a flux distribution typical for stage 4 samples (using the 

GIMME algorithm69, genes are considered downregulated with FDR corrected 

P-value <0.05, compared to all other stages). Then, we compute the MOMA 

score obtained when aiming to minimize the metabolic adjustment from each 

sample to the metabolic state predicted for stage 4 samples. Finally, we 

compare the MOMA score distributions obtained for samples in each of the 

stages (1-4), describing for each such sample the extent to which the KO of 

FUT9 is predicted to bring the metabolic flux distribution closer to that of 
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stage 4. A similar analysis was repeated when using iMAT instead of GIMME 

to predict flux distributions, yielding similar results. 

 

Cell lines and transfections.  

HCT116 and DLD1 colon cancer cell lines were selected based on expression 

data for FUT9. Both cell lines were cultured in McCoy's 5A medium 

supplemented with (Fisher Scientific, SH3020001) supplemented with 10% 

(v/v) FBS (Life Technologies, 12483020), 100 units/mL penicillin-

streptomycin solution (Thermo Scientific, SV30010) at 37°C with 5% CO2. 

HEK293T cells were used to generate lentivirus and cultured in DMEM 

(Fisher Scientific, SH3024301) containing 10% (v/v) FBS and 100 units/mL 

penicillin-streptomycin at 37°C with 5% CO2. Cells were passaged using 

0.25% trypsin-EDTA at 70% confluency. 

Transfections were done using X-tremeGENE 9 (Roche, 6365809001) as per 

the manufacturer's instructions. Lentivirus was generated by transfecting 

HEK293T cells cultured in 100 mm dishes with psPAX2, pMD2.6, and 

pLKO.1-shRNA or pLX304 expression plasmids. Media was replaced after 24 

hours with DMEM containing 2% (w/v) bovine serum albumin (BSA) (Fisher 

Scientific, BP9703100) and lentivirus was harvested after 24 and 48 hours and 

pooled. 

To generate the FUT9 knockdown cells, HCT116 and DLD1 cells were 

transduced with lentivirus containing shRNA sequences specific to FUT9. 

Two shRNA sequences for FUT9 were used, which were transduced 
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separately or, in subsequent experiments, pooled and transduced together. An 

shRNA sequence specific to RFP (Sigma) was used as a non-targeting control. 

For each transduction, 0.5 mL of each shRNA lentivirus was added to 2x105 

cells in a 35 mm dish in a final volume of 3 mL with 8 µg/mL of polybrene 

(Sigma, 107689). Twenty-four hours after transduction, the media was 

removed and replaced with media containing 2 µg/mL puromycin (Fisher 

Scientific, BP2956100) for selection. Cells were selected for a minimum of 48 

hours before use in experiments. Knockdown cells were passaged a maximum 

of five times. The FUT9 overexpressing cells were generated by transducing 

HCT116 cells with lentivirus containing pLX304-FUT9 (DNA SU, 

HsCD00444887) using the same transduction method as above. After 

transduction, cells were selected using 4 µg/mL of blasticidin (VWR, 89149-

988) for 14 days. Cells were maintained with 1 µg/mL of blasticidin. 

 

Quantitative real-time PCR (RT-qPCR) analysis.  

RNA was isolated from cell pellets using RNeasy mini kit (Qiagen, 74104) 

according to the manufacturer’s instructions including DNase treatment 

(Qiagen, 79254). RNA quantification was performed using a NanoDrop 2000c 

spectrophotometer (Thermo Scientific) and RNA integrity was verified 

spectrophotometrically by A260/A280 ratios between 1.8 to 2.0 and 

A260/A230 ratios greater than 1.7. Equal quantities of RNA were used to 

generate cDNA using the RT2 First strand kit (Qiagen, 330401) according to 

the manufacturer’s instructions.  
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FUT9 expression levels were evaluated using TaqMan real-time PCR gene 

expression assay (Life Technologies, 4369016 and 4331182, assay ID: 

Hs00276003_m1). The fold change in gene expression was analyzed using the 

∆∆CT method. Human Glycosylation-related gene expression was evaluated 

using RT2 Profiler human glycosylation PCR array (Qiagen, 330231 PAHS-

046ZA) according to the manufacturer’s instructions. Data analysis was 

performed using the ∆∆CT method as described in the manufacturer’s web 

portal (SABiosciences). 

 

Cell viability assay.  

Equal numbers of Fut9 knockdown and control cells were seeded in 96 well 

plates (5x103 cells per well). After 72 hours, the abundance of viable cells was 

analyzed using Resazurin (Fisher Scientific, AR002). Resazurin was added to 

each well at a concentration of 10% (v/v) and the plates were incubated at 

37°C and read using SpectraMax M5 microplate reader (VWR) after one, two, 

three, and four hours. An increased number of viable cells reflects increased 

cell expansion.  

 

Growth on soft agar.  

The ability of FUT9 knockdown and control cells to grow in low-anchorage 

conditions was determined by seeding cells in a soft agar medium. Cells were 

trypsinized and 2.5x104 cells suspended in 0.35% agar-media supplemented 

with 10% (v/v) FBS and 4% (v/v) minimum essential medium vitamin 
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solution (Life Technologies, 11120052) and layered on a 0.6% agar-media 

bottom layer in 6 well plates. Cells were allowed to grow for 28 days and 

colonies were imaged using an EVOS FL Cell Imaging System microscope at 

40x magnification (Life Technologies) and the density of colonies was 

quantified using ImageJ software. 

 

Colony formation assay.  

The ability of individual cells to form colonies was shown by seeding a low 

density of cells (50 to 200 cells per well) in a 24-well culture plate. After ten 

days, the colonies were fixed with 100% cold methanol for 10 minutes and 

stained using 1% crystal violet. The numbers of visible colonies were counted. 

 

Wound-healing assay.  

Cells were cultured in 6-well plates and allowed to grow to a confluent 

monolayer. A scratch was made in each well by scraping with 100 µL pipette 

tip across the cell monolayer (time point zero of the experiment). Wells were 

rinsed with PBS three times to remove floating cells. The same areas of each 

scratch (2 per scratch) were imaged at the time of scratch (0 hours), 24, 48, 

and 72 hours using an EVOS FL Cell Imaging System microscope at 100 x 

magnification. The width of scratch in each image was measured using 

PowerPoint software. 

 

Tumorsphere culture and tumorsphere-forming cell counts.  
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For tumorsphere culture, 2 x 103 cells from monolayer cultures were seeded 

into 96-well Ultra-Low attachment plates (Corning, 07-200-603) in complete 

Mammocult medium (Stemcell Technologies, 05620), prepared according to 

the manufacturer’s instruction. Cells were cultured for seven days, 

tumorspheres in each well were imaged with an EVOS FL Cell Imaging 

System microscope. Tumorspheres were then collected, dissociated, and cells 

were counted using a hemocytometer. For each replicate in this experiment, 

tumorspheres from 24 independent wells were collected into a 15 mL tube and 

centrifuged at 300 x g for 5 minutes. Collected tumorspheres were dissociated 

into a single cell suspension in 500 µL of pre-warmed Trypsin-EDTA. Cells 

were washed with tumorsphere culture medium containing 2% FBS and 

resuspended in serum-free tumorsphere culture medium for cell counting. 

 

Xenograft models.  

All animal experimental procedures were reviewed and approved by the 

University of Saskatchewan Animal Research Ethics Board. Mice used in the 

present study were from our established colony of NOD SCID gamma mice at 

the Laboratory Animal Services Unit (LASU), University of Saskatchewan. 

Mice were maintained at the LASU during the course of the experiments. 

Control shRFP and shFUT9 knockdown HCT116 cells were trypsinized and 

resuspended in ice cold PBS. Cells were mixed 1:1 with Matrigel (Corning, 

CB-40234) and 3 x 106 cells in a total volume of 100 µL and injected 

subcutaneously into the left flank of 6 to 8 week old immunodeficient 
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NOD/SCID gamma mice. At least five mice that developed tumors were used 

in our analysis for each experimental condition in each biological replicate. 

One of the mice in the control group was excluded from the analysis of the 

last two time points due to lethality. Tumors were measured every 3 to 4 days 

using a digital caliper, and the tumor volume was calculated using the tumor 

ellipsoid formula A/2*B2 where A and B represent the long and the short 

diameter of the tumor respectively. Upon experiment termination, tumors 

were extracted, fixed in 10% formalin, and weighed. 

 

FACS analysis.  

Cells were harvested and washed 3 times with ice-cold PBS containing 0.25% 

FBS. Cells were incubated with FITC-conjugated mouse-anti-human CD44 

antibody (BD, 555478) or FITC-conjugated mouse IgG2b antibody (BD, 

555742) for 30 min at 4ºC in the dark. Cells were then washed thrice with 

PBS, run through a Beckman Coulter CytoFLEX flow cytometer at 488 nm, 

and analyzed using CytExpert V1.2 software. 

 

Discussion 
 

We present a novel approach for identifying metabolic tumor suppressors that 

leads to the discovery of the complex, multi-faceted role of FUT9 in colon 

cancer. On the methodological side, we show here that a metabolic modeling 

MTA analysis can successfully identify metabolic genes that play a causal 

role in cancer initiation and progression from an initial list of genes that are 
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formed via a standard genome-wide analysis. Such an analysis may be thus 

performed to further identify causal metabolic cancer genes given any list of 

candidate cancer drivers emerging from a genomic analysis, in other cancer 

types.  

 

 The role of FUT9 in colorectal cancer appears to be rather complex. 

Our results indicate that FUT9 activity promotes the expansion of TICs, while 

its downregulation supports expansion and aggressiveness of bulk of tumor 

cells. TICs represent a higher proportion of the overall cell population in a 

tumor at earlier stages of tumor development. At later stages however, TICs 

are gradually outgrown by the rest of the tumor cells (Figure 4E), but they are 

still required for efficient tumor growth and maintenance79–84. Since our 

experimental data suggests that FUT9 provides an advantage for TIC 

populations, while its reduced activity benefits other tumor cells, its relative 

abundance should be expected to gradually drop with tumor progression, 

mirroring a decrease in the proportional representation of TICs. Notably, in 

accordance with that, we found that FUT9 expression is maintained in earlier 

tumors: colorectal polyps and colorectal adenoma at the levels observed in 

healthy colon tissue (studied in paired, matched samples; Appendix Figure 

S1), while FUT9 levels progressively decrease from the M0 to M1 stages 

(Appendix Figure S5). Reduced FUT9 expression at the M1 metastatic stage 

also matches our observations, suggesting that FUT9 downregulation 

enhances migration of colorectal cancer cells.  This further supports a notion 
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that as tumors develop, FUT9 activity is switched off in the bulk of tumor 

cells to enhance their aggressiveness, which should negatively affect patient 

survival. In agreement, our computational analysis showed a positive 

correlation between FUT9 expression and survival of colorectal cancer 

patients.  

 

 This study is focused on the identification of tumor suppressor genes, 

as simulating a gene’s knockdown in the metabolic model is very well 

defined, while simulating the over-expression of genes is more complex and 

challenging. Thus, developing an MTA approach to identify causal metabolic 

oncogenes whose overexpression is transforming the metabolic state remains 

an open challenge. Cancer evolution usually involves a sequence of genetic 

and environmental events; indeed, while our computational analysis points to 

the central role that FUT9 plays in generating a tumorigenic metabolic state in 

colon cancer, we find that its role depends on the overall genomic context, 

such as the cell types in which it occurs and the staging of the tumors. In 

agreement, our experimental data reveal that, while FUT9 activity enhances 

OCT4 expression, and is essential for the formation of tumor initiating cells, it 

also show that FUT9 downregulation enhances the invasive behavior of bulk 

colon cancer cells, which hence contributes at later stages following tumor 

initiation. Hence, our results should be viewed bearing this reservation in 

mind. 
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 Overall, our findings support a dual role for FUT9 in colorectal cancer. 

They suggest that it may act in this malignancy in a manner similar to the 

reported actions of the EphB2 receptor, a known hallmark of colorectal cancer 

TICs85 that is also downregulated to allow colorectal cancer tumor 

progression86. Our description of this complex action of FUT9 identifies an 

entirely new player in colorectal cancer and adds another intriguing member 

to the rather short list of metabolic genes that have been shown to play a 

critical role in tumor biology. 
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Chapter 2: Cancer pathway modifiers. 

Published as “Data-driven metabolic pathway compositions enhance cancer survival 

prediction” PLOS Computational Biology, 2016 87 

Introduction  
 
Altered cellular metabolism is an important characteristic and driver of cancer. 

Surprisingly however, we find here that aggregating individual gene expression using 

canonical metabolic pathways fails to enhance the classification of noncancerous vs. 

cancerous tissues and the prediction of cancer patient survival. This supports the 

notion that metabolic alterations in cancer rewire cellular metabolism through 

unconventional pathways. Here we present MCF (Metabolic classifier and feature 

generator), which incorporates gene expression measurements into a human 

metabolic network to infer new cancer-mediated pathway compositions that enhance 

cancer vs. adjacent noncancerous tissue classification across five different cancer 

types. These data-driven pathways, in contrast to the canonical literature-based 

pathways, successfully generate clinically relevant features that are predictive of 

breast cancer patients’ survival in an independent dataset. 

Results 

MCF pipeline  

We first tested if the use of canonical pathways enhances the accuracy of cancer 

classification. We overlaid gene expression data derived from 3611 samples 

across ten datasets of five cancer types (including breast, lung, colon, prostate and 

head and neck squamous cell carcinoma) onto canonical metabolic pathways 
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defined in the RECON1 human metabolic model 10 and quantified the expression 

of every metabolic pathway based on the sum of the expression of all genes 

associated with this pathway (Methods, which in this case yields better 

performance than using the mean expression). We then trained SVM classifiers of 

cancer vs. adjacent noncancerous tissue samples using either the expression of 

individual metabolic genes (henceforth, MGE-SVMs) or human canonical 

metabolic pathways’ expression (Methods). Testing the classifiers in five-fold 

cross validation we found that using the canonical pathway expression leads to 

inferior performance in these classification tasks compared to using the individual 

metabolic gene expression. These findings motivated us to identify pathways 

whose activity may better reflect the altered rewiring of metabolism in cancer and 

enhance cancer prediction.  

To this end we developed a new data-driven algorithm, called the Metabolic 

classifier and feature generator (MCF): (1) We first define a differentially 

expressed reaction as a reaction whose ranked expression level within a sample is 

significantly different in noncancerous vs. cancerous samples (using a Wilcoxon 

rank-sum p-value with 𝛼 = 0.05, Methods). (2) The next step of MCF follows the 

concept of reporter metabolites 88 - it identifies metabolites that participate in 

differentially expressed reactions between the noncancerous and cancerous 

samples. (3-4) The key novelty of MCF is to use these reporter metabolites as 

centerpieces for building novel composite pathways leading from each reporter 

metabolite s to a group of target metabolites Ts that show consistent differential 

expression between the cancerous and noncancerous states. These pathways are 
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(by construction) predictive of the cancer vs. non-cancer states. (5) We then build 

a support vector machine (SVM-MCF) ensemble classifier of cancer vs. 

noncancerous tissue based on the gene expression of the new composite pathways 

as classification features. We apply a five-fold cross validation procedure to test 

the classification rate (accuracy) and area under the cover (AUC) for each dataset 

studied (Methods). The main steps of MCF are outlined below and in Figure 5 

(see Methods for a formal description): 

(1) Rank-transform the gene expression data: We first rank-transform the gene 

expression data and convert it biochemical reaction expression values using 

the human model’s genes-to-reactions mapping. This results in patient specific 

weighted metabolic networks in which the weights of each reaction edge 

correspond to the rank assigned to this reaction for a certain patient.  

(2) Identify seed reporter metabolites: For computational tractability, we limited 

the search to simple paths in which the first reaction is differentially expressed 

between the two states. To this end, we identify metabolites that are substrates 

in a large number of reactions that are differentially expressed between 

cancerous and noncancerous samples.  

(3) Assigning ‘expression weights’ from each seed reporter metabolite on the 

paths to all other metabolites in the network: We calculate the heaviest 

distances (i.e. the weight of a simple path with the largest sum of reactions’ 

expression values) from each seed metabolite to all other metabolites in the 

network. For the purpose of identifying the new composite paths, the 

metabolic network hypergraph is transformed to a regular graph 
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representation having metabolite nodes and (directed) edge connecting any 

two metabolites that participate in a given reaction as a substrate and a 

product, respectively (if the reaction is directed).  

(4) Identify the most differentially expressed (‘heaviest’) pathways: For each 

source metabolite s we find the L=10 target metabolites Ts such that the 

heaviest distance from s leading to each of the targets in Ts differs most 

between the noncancerous and cancer training sets.  

(5) Building an SVM classifier: For each of the N source metabolites s we train 

an independent SVM classifier to distinguish cancerous from noncancerous 

samples using the weight of the L selected paths from s to Ts  as features. This 

results in an ensemble of N SVMs. A test sample is then classified by a 

majority vote over the N classifiers.  
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Figure 5. Overview of the MCF algorithm.  

MCF predictive performance  

We compared the accuracy of the MCF to MGE-SVMs classifiers that are 

based on individual metabolic gene expression by comparing their AUC and 

mean accuracy scores in a five-fold cross validation on various cancerous vs 

noncancerous classification tasks. We find that MCF performs as well as 
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MGE-SVM in all 10 datasets studied spanning five different cancer types, and 

significantly outperforms MGE-SVM in five of these datasets. 

 

As MCF aggregates transcriptional information in network-based manner, we 

hypothesized that it will be more robust than MGE-SVM when trained on data 

of the same cancer type but aggregated from multiple studies. To test this we 

merged the available tumor/tissue samples expression (rank-transformed, 

Methods) data from both GEO and TCGA, producing a combined dataset for 

each of the five different cancer types studied. We compared the performance 

(AUC and accuracy) of MCF and MGE-SVM on each of the five combined 

datasets using a standard five-fold cross-validation procedure. Combining 

datasets in this manner accentuated the higher predictive performance of MCF 

vs. MGE-SVM across all cancer types studied (Figure 6), including colon 

cancer where no significant performance difference was observed previously. 
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Figure 6. Comparing the performance of MCF to MGE-SVM across 

integrated cancer-type datasets. (A) A bar plot describing the predicted AUC 

obtained over the combined datasets of the same cancer type using a five-fold 

cross validation procedure for MGE-SVM (red bars) and MCF (blue bars) 

classifiers. AUC denotes the area under the curve. Error bars represent one 

standard deviation, and p-values are for a one-sided, paired-sample t-test for 

the AUC of each of the five folds. (B), (C) present the receiver operating 

characteristic (ROC) curves obtained in the classification of the lung and 

breast cancer combined datasets, respectively.  
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Notably, source metabolites that strongly differ in usage between 

noncancerous and cancerous tissues may constitute interesting cancer 

biomarker candidates. We find that there is a small set of such source 

metabolites that recur in multiple cancer types, and they vanish in randomly 

shuffled data. These include currency energy metabolites (e.g., NAD+ and 

ATP), a finding consistent with the large alterations seen in energy 

metabolism in cancer. We examined the target metabolites Ts that contribute 

most to ATP being differentially utilized.  As the paths leading to them from 

ATP are most differentially expressed, this may testify that the consumption 

of ATP to produce each of these metabolites is altered in cancer (and may 

possibly serve as correlate to their overall production levels). These target 

metabolites are specific for cancer type (Table 1, a pattern that remained 

robust to the introduction of noise to the data (See Methods). This suggests 

that while ATP is differentially utilized between tumors and their 

noncancerous tissues counterparts in all cancer types, there exists considerable 

variance in the ways it is utilized. 

  

prostate Breast Colon head&neck lung 

↑ 

3alpha,7alpha,1

2alpha 

-Trihydroxy-

5beta 

-cholestanoyl-

CoA(S)  ↑ dADP                                           

↓ O-

Acetylcarniti

ne         ↑ CTP  

↑ Hydroxy-

methylglutaryl 

-CoA 
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↑ 

3alpha,7alpha- 

Dihydroxy-

5beta 

-cholest-24-

enoyl-CoA  

↑ Oxidized 

thioredoxin                                      

↑ 5-Phospho-

beta 

-D-

ribosylamine ↑ dATP ↑ Spermine                  
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3alpha,7alpha,2

6 

-Trihydroxy-
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↓ Hydrogen 
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3alpha,7alpha,1
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-26-al  

  ↓ 

Hydrogen 

peroxide                                         ↑ GMP                       ↑ dITP ↑ Diphosphate               
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3alpha,7alpha, 
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-Tetrahydroxy-
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-cholestane     ↓ Iodine                                                    

↓ retinoyl 

glucuronide          ↑ dTTP 

↑ UDP-D 

-glucuronate         
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↑ 5-Amino-1 

-(5-Phospho-D-

ribosyl) 

imidazole-4-

carboxamide        ↓ UDP                             

↑ Phospho 

enolpyruvate       

    

↑ 

Leukotriene 

B4        ↓ Oxalate                   

 

 

Table 2. Target metabolites selected for MCF. The target Ts metabolites that 

MCF selected when it choses ATP as a seed (↑ denotes increased formation 

from ATP in cancer and ↓ denotes decreased formation from ATP in cancer 

compared to noncancerous tissue counterpart, Methods). The table shows one 

instance of each selected target although in some cases the same target 

metabolite was identified in multiple compartments (e.g. UDP in the cytosol 

and in the mitochondria).  

  

Several of the target metabolites are known to be associated with their 

respective cancers: Oxalate has been studied as a survival marker in lung 

cancer 89; spermine has been observed to be differentially expressed in lung 

and colon cancer 90–92; Carnitine was shown to slow down tumor development 

in colon cancer 93; and blockage of Leukotriene B4 was reported to suppress 

cell proliferation in colon cancer patients 94. Thus, MCF identifies key 
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metabolites that take part in metabolic processes that are altered in the specific 

cancers they occur. 

 

MCF prediction of patients’ survival 

As we have shown, MCF generates new composite pathways that show more 

power than traditional pathways in classifying normal versus cancer samples. 

To evaluate the clinical significance of these new features we examined 

whether they are also predictive of a different objective, the prediction of 

survival of breast cancer patients. Furthermore, to test whether the clinical 

utility of MCF pathways carried between datasets, we trained and tested the 

pathways on independent datasets. For training we used the combined GEO 

and TCGA breast cancer data. For testing, we used an independent dataset 

(METABRIC, 95) that includes gene expression measurements from 1,981 

cancer patients and their corresponding survival information. Remarkably, we 

find that out of the 80 pathways that MCF identified as differentially 

expressed in the original classification task on the combined TCGA and GEO 

data (L=10 targets from 8 identified source metabolites), 58 pathways are 

predictive for survival in the METABRIC data using Kaplan-Meier estimator 

96 (FDR corrected Kaplan-Meier log-rank p-value < 0.05; methods). In 

marked contrast, the expression levels of none of the canonical metabolic 

pathways defined by Recon1 are predictive of survival in this dataset. This is 

in line with our previous observation that the activity of the canonical 
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metabolic pathways is not helpful in distinguishing between cancerous vs. 

noncancerous samples.  

 

To evaluate the aggregate predictive power of the set of pathways selected by 

MCF as a whole, we compared patients predicted by MCF to have the best 

and worst prognosis (top and bottom 10%, respectively; Methods) and found 

that they indeed have a marked difference in their survival as predicted 

(Figure 7A, delta-AUC = 0.2436, and Kaplan-Meier log-rank P-value < 1.0e-

30). In contrast, when aggregating information across the canonical human 

metabolic model pathways in a similar manner we find that pathways 

predicted to have best and worst prognosis show no difference in survival  

(Figure 7B, delta-AUC = 0.0176, and Kaplan-Meier log-rank P-value = 

0.4282). We then examined whether the aggregated pathway score can be 

used as a survival model for the METABRIC dataset, using the conventional 

concordance index (C-index) 97. We find that while the pathways selected by 

MCF are predictive of patients survival, the canonical human metabolic model 

pathways do not show such predictive power (C-index = 0.69 vs. 0.52, 

respectively). Interestingly we find that the predictive power of individual 

MCF selected pathways in the original task of predicting cancer vs. 

noncancerous samples (i.e. the AUC obtained from the cross validation 

procedure on the combined datasets from TCGA and GEO) markedly 

correlates with their predictive power for survival in the METABRIC dataset 

(Spearman 𝜌 = 0.58, p-value <1.4e-09). This finding explains their predictive 
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power across these different tasks and datasets, and further testifies to their 

clinical significance. 

  

Finally, we performed a canonical pathway enrichment analysis over the 

reactions participating in the MCF composite pathways identified in breast 

cancer that are predictive of survival. We find that the most enriched 

canonical pathways emerging in this analysis are already known to be 

associated with cancer initiation and progression, such as fatty acid related 

metabolic pathways 98–100, the citric acid cycle 101,102 and cholesterol and 

steroid metabolism 103 (Figure 7D). Hence, even though aggregated gene 

expression through canonical pathways does not show survival predictive 

power, the composite alterations in cancer do rewire its metabolism using 

components of these traditional pathways, albeit via different composition.  
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Figure 7. MCF survival prediction. MCF pathway utilization predicts the 

survival of breast cancer patients, while canonical pathways show no such 

signal. Shown in (A) and (B) are the Kaplan-Meier survival curves for 

patients predicted by MCF and canonical pathways respectively to have the 

best and worst prognosis (top and bottom 10% of patients scores, respectively; 

Methods). (C) A scatter plot showing the correlation between the prediction 

classification accuracy achieved using each individual MCF pathway in the 

combined breast cancer data from TCGA and GEO (where they are identified) 

(X-label) and the C-index obtained using each such pathway in predicting 
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patients’ survival on the (unseen) METABRIC data. (D) The canonical 

pathway enrichment of the reactions participating in the MCF composite 

pathways predictive of survival. The dashed line represents a significance 

threshold of 0.05 (corrected for multiple hypotheses testing). 

 

Methods 

Gene expression datasets  

We focused on five cancer types, and for each one utilized datasets from 

TCGA 45 and GEO 104, as summarized in Table 3. 

 

 TCGA data GEO data 

Cancer type 

TCGA 

designation  

sample 

count 

(N/C)  GEO accession 

sample count 

(N/C)  

Prostate  PRAD  487/52 GSE32448 105 40/40 

Lung adeno-

carcinoma 

 LUAD  58/490 GSE19804 91 60/60 

Colon  COAD  41/273 GSE32323 60 17/17 

Head&neck 

 HNSC  43/498 GSE6631 106 22/22 

Breast  BRCA  111/1098 GSE10780 107 140/42 
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Table3. Summary of the datasets utilized for five cancer types. N and C stand 

for number of normal and cancerous samples in the data, respectively. 

 

 

In addition, we used the METABRIC breast cancer database by Curtis et al. 95 

to test the predictive power of MCF pathways with respect to patient survival. 

 

Evaluation of classifiers 

Throughout this study, we evaluate classifier performance by computing the 

AUC and average accuracy in a five-fold cross-validation procedure. We 

repeated 100 times the following: 

• Down-sample either the cancerous or normal groups: Assume that the 

data has N normal samples and C cancerous samples and |N|>|C|. We 

randomly chose |C| samples out of the normal group and excluded the 

rest. Similarly, if the data had more cancerous samples than normal 

ones, we down-sampled the cancerous group to the size of the normal 

group. This ensures that the accuracy statistic is not biased due to an 

over-representation of one of the groups, which occurs in many of the 

datasets studied here. 

• 5-fold cross validation: We split the chosen samples into 5 folds, each 

time training on 4/5 of them and testing by computing the AUC or 

accuracy on the remaining 1/5. 
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The AUC and accuracy shown here is the average of the 100 repetitions, and 

the paired t-test p-values are from the resulting vector of 100 AUC or 

accuracy values for each such random selection. 

 

Metabolic gene expression SVMs (MGE-SVMs)  

To classify cancer vs. normal samples according to metabolic gene 

expression, we trained a support vector machine (SVM) using the expression 

of 1,496 metabolic genes as features. We denote these machines MGE-SVMs. 

Metabolic genes are defined in this study as the set of 1,496 genes annotated 

in Recon1 10 a well-curated reconstruction of the global human metabolic 

network.  

We observed that SVMs trained on this reduced set of gene expression 

features consistently outperformed SVMs trained on the expression of all 

genes. This is not surprising seeing that the metabolic subset has roughly one-

order of magnitude smaller dimensionality, and yet remains highly 

informative because of the key role of metabolic adaptations in cancer 108–110. 

Applying further dimensionality reduction on the set of 1,496 metabolic genes 

(e.g., through PCA) had little effect on the results. In addition, we observed 

that training MGE-SVMs with ranked expression values (that we use for 

MCF) achieves similar, but slightly inferior, results to the ones obtained using 

the expression values themselves. 
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Converting gene expression into biochemical reaction expression  

Recon1 defines a mechanistic genotype-phenotype relationship through 

Boolean rules that encode gene-protein-reaction (GPR) associations. To 

convert ranked gene expression to biochemical reaction expression, we 

evaluated the Boolean GPR rule of that reaction while replacing the “AND” 

and “OR” operators with “min” and “max”, respectively as described in 111. 

Differential expression between biochemical reaction is determined by a 

Wilcoxon rank sum test with a significance threshold of 0.05, Bonferroni-

adjusted for multiple hypotheses where appropriate. 

 

Computing metabolic pathway expression  

Classification based on metabolic pathways relied on the pathway definitions 

embedded in Recon1, which associates every reaction with a single pathway 

out of a total of 99 pathways defined based on the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) LIGAND database. To compute a pathway 

expression, we first converted the ranked gene expression to ranked reaction 

expression as described above, and then summed the ranked expression of all 

the reactions associated with the pathway. An alternative methods of 

computing pathway in which for each pathway we use the sum the ranks of all 

its associated genes showed inferior performance comparing to the method 

presented here, as well as using the mean of ranked reaction expression 

instead of the sum. 
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Identifying seed reporter metabolites  

MCF builds metabolic pathways that have highly differential expression 

between the two target states (i.e., cancerous and non-cancerous). However, 

identifying the most differentially expressed pathways between two groups of 

weighted networks is a NP-hard problem by reduction from the problem of 

finding the longest-path 112 (Given a directed weighted graph G, let w be the 

smallest weight in G. Create a copy G’ of G with all edge weights set to w-c 

for some constant c>0. The most differentiating path between G and G’ is the 

heaviest (i.e., longest) path in G). For computational tractability, we limited 

the search for simple paths in which the first reaction is differentially 

expressed between the two states. We chose source metabolites that are 

substrates in at least k>=5 differentially expressed reactions with Wilcoxon 

rank-sum p-value corrected for multiple hypothesis.    

 

Building the classifier 

To build a classifier based on the differential expression of the pathway from 

source metabolite s to L=10 target metabolites, we do the following: we 

compute the heaviest distances (i.e. the weight of a simple path with largest 

sum of reactions expression values) from s to the all other metabolites in the 

network in all of the train samples. For the purpose of computing paths, we 

followed the common approach 113,114 transforming the hypergraph into a 

digraph and limiting ourselves to pathways that are simple directed paths in 

the digraph. The metabolic hypergraph is viewed as a standard graph with 
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metabolite nodes and a directed edge (u,v) connecting any two metabolites 

such that u and v participate in some reaction as a substrate and a product, 

respectively. We then select a set Ts of L target metabolites for which the 

paths from s were most differentially expressed. I.e., for every target 

metabolite t we compute the Wilcoxon rank sum p-value when comparing the 

heaviest distance from s to t in the normal vs. the cancer samples, and we 

finally choose the Ts with L metabolites that obtained the smallest p-values 

out of all possible targets. The distances from s to the chosen L metabolites 

(denoted Ts) are used as features for an SVM.  

 

Let N be the number of source metabolites detected. MCF repeats the 

procedure described above for each of the source metabolites s, and for each s 

a distinct SVM is trained. This results in an ensemble of N SVMs. A test 

sample is then classified by the majority vote of the N individual classifiers 

(no ties ever occurred in the present study). 

 

MCF classification score 

The MCF classifier is an ensemble of N SVMs (for each detected source 

metabolite). The MCF classification score for classifying observation 𝑥 is the 

sum of N scores assigned to 𝑥 by the N SVMs. Therefore: 

𝑀𝐶𝐹!"#$% ! =    𝑓! 𝑥
!

!!!
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Where 𝑓! 𝑥  is the predicted response of 𝑥 for the trained classification 

function 𝑓! (trained on the features selected for source metabolite 𝑖) 

𝑓! 𝑥 =    𝛼!,!

!

!!!

𝑦!,!𝐺 𝑋! ,𝑋 + 𝑏! 

Where (𝛼!,!…𝛼!,!, 𝑏!) are the estimated parameters, 𝐺 𝑋! ,𝑋  is the dot product 

in the predictor space between 𝑋  and the support vectors and the sum indicates 

training set observations. 

 

Predicting patient survival by canonical or MCF pathways 

To train the model and select the features we use the combined GEO and 

TCGA breast cancer datasets and train it on the original classification task of 

separating noncancerous from cancer tissues (when all samples are used). This 

results in 80 composite pathways that are generated and selected by MCF (for 

comparison, the human metabolic network defines 99 different pathways). We 

then use the METABRIC dataset and calculate the weights of the 80 selected 

pathways for this dataset (by generating a weighted metabolic graph for each 

sample in the MTABRIC dataset and calculating the heaviest distance 

between each seed metabolite and the target metabolites selected for it for the 

combined dataset from GEO and TCGA) as well as the weight of the 99 

human metabolic network pathways. In the two pathways sets, we define the 

weight of each patient for every pathway by the sum of ranks of the reactions 

associated with the pathway. For every pathway we evaluated the KM log-

rank p-value taking top 10% and bottom 10% weighted pathways.   
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To calculate an aggregated pathway score using either the 80 MCF selected 

pathways or the 99 canonical model pathways we calculate the weights of 

these pathways using the METABRIC gene expression data. We compute for 

each patient’s tumor two aggregate scores (one over the MCF pathways and 

over the model pathways) as follows:  

 

𝑠𝑐𝑜𝑟𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡! =   
𝑤𝑒𝑖𝑔ℎ𝑡!!∈!! (𝑝)
𝑤𝑒𝑖𝑔ℎ𝑡!!∈!! (𝑝) 

 

When 𝑤𝑒𝑖𝑔ℎ𝑡!(𝑝) is the weight of pathway p for patient i. 𝑃! is the set of 

pathways (either MCF selected pathways of canonical pathways) in which 

high expression levels were associated with cancer state, and 𝑃! is the set of 

pathways in which high expression levels were associated with noncancerous 

healthy state. Both 𝑃! and 𝑃! are determined by analyzing the two breast 

cancer datasets from TCGA and GEO (the mean of each pathway was 

evaluated for noncancerous and cancer samples to decide whether a pathway 

is in 𝑃! or in 𝑃!). These 𝑃! and 𝑃! set of pathways were then used to predict 

the patients survival an independent METABRIC breast cancer dataset, by 

assessing 𝑤𝑒𝑖𝑔ℎ𝑡!(𝑝) for every sample based on its transcriptomics and 

computing 𝑠𝑐𝑜𝑟𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡!   accordingly. A KM analysis is then employed to 

examine the survival difference of high score versus low score patients’ 

samples. 
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MCF Robustness to gene expression noise 

To test MCF’s robustness, we introduced noise into every sample’s gene 

expression vector by adding random Gaussian noise with distributions N(0,1), 

N(0,2) and N(0,3). We then trained MCF classifiers based on the perturbed 

data and evaluated the source and target metabolites MCF selected.  

 

Discussion 
  

We present a novel method termed MCF that identifies data-driven pathway 

compositions that best differentiate the metabolic alterations occurring in 

cancerous vs. noncancerous tissues.  MCF leverages a priori knowledge on the 

structure of the human metabolic network (ignoring its conventional 

decomposition to canonical pathways) to inform the analysis of cancer vs. 

noncancerous gene expression. It detects key hubs of metabolic alterations 

and infers the composition of non-standard pathways altered in a specific 

cancer type. Applied across five different cancer types, we find that MCF 

outperforms standard methods in the basic task of cancer vs. noncancerous 

classification. Remarkably, MCF derived pathways successfully predict 

patients’ survival in an independent dataset while standard metabolic 

pathways fail to do so, testifying on the robustness and utility of the metabolic 

features learned by MCF.  

 

Meta-learning is of great relevance to cancer classification as it can potentially 

exploit one of the hallmarks of cancer, deregulation of pathways and cellular 
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processes, by taking knowledge on relations between genes and pathways into 

account in the classifier 24,115,116. However, recent studies have reported that 

many of these methods do not outperform a model trained over single gene 

features 25–27,117. MCF offers a solution to some of the main issues that 

hampered previous methods. First, some previous studies are based on pre-

defined gene sets 118 or networks 119 characterizing healthy cells while cancer 

may rewire many functions, and in particular its metabolism. To this end, 

MCF performs unsupervised pathway generation and selection that captures 

key metabolic alterations occurring in cancer. Second, some studies relied on 

the topology of a pre-defined biological network such as a co-expression 

network 119, cellular pathway map 120 or protein–protein interaction (PPI) 

network 121 that have been inferred from high-throughput studies. In 

difference, MCF relies on a manually curated metabolic network that is 

extensively supported by experimental evidence 10. The metabolic network is 

thus less noisy, while still highly informative due to metabolism’s role in 

cancer growth and development. Third, it has been shown that structural and 

directional information improves the predictive power of meta-features over 

single genes 117; In accord, the metabolic network is directional and highly 

structured which allows MCF to infer pathways of biological relevance.  

 

While metabolic reprogramming is a substantial part of cancer biology, the 

methodological insights obtained from developing MCF are general, and 

could potentially be built into path-centric approaches that would involve 
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other cellular networks. This could lead to stronger predictors based on 

reliable models of signaling and regulatory networks on a genome scale. 

Second, finding the most separating paths in differently weighted graphs is an 

NP-complete problem. Here, we only offer a heuristic solution that is 

obviously sub-optimal. This could be improved upon by employing more 

exhaustive and/or efficient weighted path searching methods. We can expect 

that follow-up work will advance the identification of top separating pathways 

in differentially weighted metabolic graphs, potentially improving the power 

of MCF further.  

 

 

 

 
 
 
 
 
 

 

Chapter 3: Cancer immunotherapy treatment modifiers 

Accepted to Nature Medicine as :”Robust prediction of therapeutic response to 
immune checkpoint blockage therapy in metastatic melanoma” 122 
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Introduction 

Immune checkpoint blockade (ICB) therapy provides remarkable clinical gains, 

where melanoma is at the forefront of its success. However, only a subset of patients 

with advanced tumors currently benefit from these therapies, while incurring 

considerable side-effects and costs. Hence, constructing predictors of patient’s 

response is of crucial value, and such accurate predictors are yet absent. This is a 

serious challenge due to the complexity of the immune response and the lack of large 

ICB-treated patient cohorts with omics and response data, which handicaps the 

construction of robust predictors that are transferable across different datasets. Here 

we build an immune-centered predictor of ICB-response that utilizes immune 

checkpoints’ transcriptomic relations mediating spontaneous tumor regression. It 

robustly predicts melanoma patients ICB-response and can capture almost all true 

responders while sparing treatment for more than half of the non-responders. It 

achieves an overall accuracy of 0.83 over 11 datasets spanning 297 samples including 

unpublished data, outperforming existing predictors.  

Results 

NB Spontaneous regression and ICB response in melanoma  

We hypothesized that an immune-based predictor of spontaneous regression 

may capture the immune activity and could thus be used more generally to 

predict response to ICB for patients with melanoma. To test this hypothesis, 

we built a predictor of spontaneous regression in NB, analyzing the 
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transcriptomics data of 108 patients, who include both spontaneously 

regressing (patients considered as low risk NB and with no tumor progression) 

and high risk progressing patients (i.e., without spontaneous regression, 

Methods)123. As we are interested in predicting the response to ICB, we 

focused on 28 immune checkpoint genes collected from literature reports that 

were included in all RNA-sequencing (RNA-seq) datasets available to us. To 

capture the predictive relations based on these immune checkpoint genes, we 

based the NB predictor on pairwise relations between the (normalized) 

expression levels of these genes. Each predictive feature compares the 

expression of two checkpoint genes A and B, capturing a logical relation 

between their transcriptional levels (e.g., A > B). We performed a feature 

selection procedure searching for a subset of these features that best separates 

patients with the spontaneously regressing NB from patients with non-

regressing NB, resulting in 15 most predictive features (Methods). Based on 

these features, the prediction of spontaneous regression of a tumor sample 

from its expression data is simply made by counting the number of predictive 

feature pairs that are fulfilled (true) in that sample. This number, ranging from 

0-15, denotes its IMmuno-PREdictive Score (IMPRES), with higher scores 

predicting spontaneous regression. The resulting predictor obtains an accuracy 

of 0.9 (in terms of the Area Under the Receiver Operator Curve (AUC)) in the 

NB dataset. Reassuringly, examining tumors derived from patients with 

melanoma who were not treated with ICB124, we find that the IMPRES scores 

for patients denoted as ‘high immune response’ are significantly higher than 
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that of other subtypes (Rank-sum p-value = 9.6E-5 and 0.05 for the test and 

validation datasets, Figure 8A). Additionally, we find that IMPRES is 

significantly and positively associated with higher overall survival in these 

datasets124 (Figure 8B), testifying to its ability to capture immune activity that 

is associated with improved melanoma prognosis in the absence of ICB 

treatment. 

 

We next turned to investigate whether there are similarities between the 

cellular processes mediating the immune response in melanoma and those 

mediating spontaneous tumor regression in NB. To this end, we collected 9 

gene expression and ICB response datasets including patients treated with 

anti-CTLA-4, anti-PD-1 or their combination125–130.  First, we identified 

immune related, Consistently Differentially expressed Pathways (termed 

CDPs) in ICB responders versus non-responders (evaluated separately for 

patients treated with anti-PD-1 or anti-CTLA-4 treatments, Methods). We find 

seven CDPs across all anti-PD-1 datasets and four CDPs across all anti-

CTLA-4 datasets (an overlap which is significantly higher than expected, 

permutation P-value=0.001 for anti-PD1 and P-value=0.03 for anti-CTLA-4 

datasets respectively). Second, we find that the CDPs are also differentially 

expressed in a similar manner in the ‘high immune response’ melanomas 

compared with other subtypes (Binomial P=0.003 and 0.0623 for the test and 

validation sets)124 and in spontaneously regressing vs high risk progressing 

NB tumors (Binomial P=0.009, Figure 8C) (Methods). To test the relation 
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between the features identified in NB and the activity of the CDPs, we 

computed the correlations between the expression ratios of each of these 

features with each CDP expression. As evident from Figure 8D, these 

associations are consistently maintained across the four groups studied (All 

pairwise comparisons hypergeometric P-values < 0.01).  

 

 



 

 70 
 

Figure 8. NB regression association with melanoma immune response. (A) 

Boxplots showing IMPRES of high vs low immune response in test and 

validation datasets of non-ICB treated melanoma patients124; p-values are 

computed via a Rank-sum test. (B) Kaplan-Meier survival curves of patients 

with high versus low IMPRES (computed over the combined test and 

validation datasets124). The median IMPRES is used to define the “Low 

IMPRES” and “High IMPRES” subgroups. (C) Upper Panel: Heatmaps 

showing the enrichment P-values for CDPs that are up (orange) or down 

(green) regulated in responders versus non-responders across the anti-PD-1 

(encapsulated in the left rectangle) and the anti-CTLA-4 melanoma 

datasets125,127,128,130 (right rectangle). The lower Panel displays the enrichment 

P-values for these CDPs in high immune response vs other subtypes in non-

ICB treated melanoma, and in spontaneous regression vs non-spontaneous 

regression in the NB dataset. (D) Heatmaps showing the rank correlation 𝜌 

between expression levels of each CDP and each of the IMPRES features 

ratios, computed separately over the anti-PD-1 datasets, the anti-CTLA-4 

datasets, the non-ICB treated melanoma datasets and the neuroblastoma 

dataset. White-colored entries denote non-statistically significant associations. 

 

IMPRES predictor  

We turned to apply IMPRES to predict the responses of melanoma patients to 

ICB treatments, without any further training. To this end, we analyzed 256 

samples from 6 studies including patients treated with anti-CTLA-4, anti-PD-
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1 or their combination125–130. We first computed the IMPRES of each 

melanoma sample based on its expression data and used that for the respective 

Receiver Operator Characteristic (ROC) classification curves. IMPRES 

achieves an AUC= 0.77 for van Allen et al.125 (anti-CTLA-4); AUC = 0.83 for 

Hugo et al.127 (anti-PD-1); AUC = 0.8 for TCGA SKCM128 (anti-CTLA-4); 

AUC = 0.96, 0.77 and 0.80 for Chen et al126 (on-treatment with anti-PD-1; 

pre-treatment with anti-PD-1 (post-CTLA-4 treatment) and pre-treatment with 

anti-CTLA-4, respectively) and AUC = 0.78 and 0.85 for Riaz et al. (pre- and 

on-treatment with anti-PD-1, respectively)130. A lower performance of AUC = 

0.73 is obtained for Prat et al129 (anti-PD-1), a nanostring dataset with low 

coverage of the IMPRES checkpoint molecules126,129 (Figure 9A).  

 

We further tested the predictive ability of IMPRES in a new unpublished 

dataset in which we carried out RNA-seq of tumor biopsies derived from 41 

samples of patients with metastatic melanoma who were treated with different 

ICB therapies at the Massachusetts General Hospital (Methods). IMPRES 

achieves an AUC of 0.81 and 0.97 on the anti-PD-1 and anti-CTLA-4 samples 

respectively (Figure 9B). Evaluating the predictive accuracy of IMPRES on 

the aggregate collection of all the datasets studied above (a total of 297 

samples), IMPRES obtains an AUC of 0.83, significantly superior to all other 

existing published predictive signatures, as shown in detail further below. Its 

aggregate performance is AUC=0.84 on all anti-PD-1 treated samples and 

AUC=0.8 for all samples treated with anti-CTLA-4 (Figure 9B). To appreciate 



 

 72 
 

the potential translational impact of IMPRES, Figure 9C shows the number of 

true/false positives (responders) and true/false negatives (non-responders) 

obtained on this aggregated data at different IMPRES score thresholds. In 

total, there are 89 samples labeled as responders (considered ‘positive’ in the 

classification) and 208 non-responder samples (considered ‘negative’) across 

all datasets.  If one adopts a very conservative approach and predicts 

responders only if their IMPRES score is greater-than/equal-to 12, few such 

predictions arise but all of them are true (top row pair). At a more relaxed 

threshold of 8, IMPRES correctly captures almost all true responders, while 

misclassifying less than half of the non-responders (that is, sparing 

unnecessary treatments for the majority of non-responding patients). When 

further decreasing the classification decision threshold more samples are 

predicted as responders, manifesting the known tradeoff between precision 

and recall (Figure 9D). A qualitatively similar picture emerges when 

considering the anti-PD-1 and anti-CTLA-4 treated patients separately. Higher 

IMPRES scores are also associated with improved overall survival and 

progression-free survival (PFS) in ICB treated melanoma patients (Methods, 

Figure 9E-H).  
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Figure 9. IMPRES performance. (A) Receiver Operating Characteristic (ROC) 

curves quantifying IMPRES prediction AUC across numerous publically 

available ICB response datasets125–130. (B) ROC curves for an independent 

dataset of ICB response (with 10 patients treated with anti-CTLA-4 and 31 

patients treated with anti-PD-1) and for the aggregate datasets including all 

297 samples, the 216 samples of patients treated with anti-PD-1 and 81 with 

anti-CTLA-4. (C) Bar plots showing the prediction accuracy and error types 

for different IMPRES thresholds (where a positive label corresponds to a 
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‘responder’ prediction) on the aggregate compendium of 297 patients included 

in all 11 datasets studied. The dashed line represents the total number of 

responders. (D) Precision/recall evaluation of IMPRES on the same aggregate 

compendium. The Y-axis displays the precision/recall as a function of the 

number of ‘responder’ predictions made (shown on the X-axis, obtained by 

decreasing the classification threshold, whose value is also displayed in italic 

font). (E)-(F) Kaplan Meier survival curves for the Van Allen et al and Riaz et 

al. ICB treatment datasets, respectively, with high vs. low IMPRES scores 

(using the median IMPRES as a threshold differentiating between the high 

and low groups). (G)-(H) Boxplots showing progression free survival for low 

vs. high IMPRES in the Van Allen and Prat et al. ICB datasets (using the 

median IMPRES as a differentiating threshold).  

 

We next turned to compare the predictive accuracy of IMPRES with that of 

current state-of-the-art predictors. Even though there is a clear association 

between the tumor’s mutational load and patient’s response to ICB, the 

resulting predictive power is fairly moderate, with AUCs in the range of 0.6-

0.7127,131–133, and similarly for predictors based on the neoantigen 

landscape125,131,134,135. Studies based on transcriptomic signatures have 

reported AUCs in the range of 0.6-0.8127,136, but these performance levels are 

mainly limited to the single dataset that was used for their construction. To 

perform the comparison, we built predictors of response to ICB based on each 

of the published transcriptomic signatures. The overall performance of 
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IMPRES is significantly superior to each of the other predictors (Paired Rank-

sum test P-value<0.004) (Figure 10A). This observation holds true when we 

compared the performances for each ICB-treatment group separately (Figure 

10B). Compared to IMPRES, the second best predictor, cytolytic-activity 

estimation137, has an overall AUC of 0.68, and that of each of the other 

methods 0.6 or lower. Overall, the predictors built on biologically motivated 

scores (cytolytic-activity137 and PDL-1 expression) generalize better than the 

machine learning based predictors constructed on transcriptomic signatures 

identified in isolated, specific cohorts. Of note, while we find a significant 

correlation between IMPRES and abundances of CD8+ and CD4+ T cells 

inferred via CIBERSORT, the inferred abundances of immune cells 

themselves are poor predictors of response to ICB. IMPRES superiority is 

particularly notable because for most existing signature-based predictors (all 

but cytolytic-activity137 and PDL-1 expression) we had to re-train the latter 

separately for each dataset, otherwise their overall performance was dismal, 

testifying to their poor generalizability between different datasets (Methods). 

In contrast, IMPRES is constructed only once from the NB data and never 

trained on any melanoma dataset; thus, it is markedly less prone to over-

fitting, a paramount concern regarding standard cancer transcriptomics 

predictors138–140. To further study the importance of training on the 

independent NB data, we trained ICB response predictors based on melanoma 

data instead of NB, following exactly the same representation and training 

procedure as used in IMPRES. In this case we obtain markedly lower 
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prediction performances on the melanoma datasets that were not used for 

training compared with those achieved with the original IMPRES procedure. 

For completeness, we additionally compared the performance of IMPRES to 

all other predictors but excluded patients annotated with ‘stable disease’ from 

the analysis. This results in an overall similar picture of superior performance 

of IMPRES versus the other classifiers with a slightly improved performance 

in both. 

 

The features composing IMPRES uncover a few insights that are biologically 

interesting. Reassuringly, the relatively higher expression of known immune 

stimulatory genes (such as HVEM, CD27 and CD40) is associated with a 

better response, while the higher expression of known immune inhibitory 

genes (such as CD276, TIM-3, CD200 and VISTA) is associated with a worse 

response to ICB, as expected (Figure 10C). Higher expression of CD40 

compared to that of PD-1, PDL-1, CD80 and CD28 is associated with a better 

response to ICB, in line with the recent findings that agonists of CD40 reverse 

resistance to anti-PD-1 therapy, and that induced PD-1 expression mediates 

acquired resistance to antagonist CD40 treatment141. Additionally, the higher 

expression of the immune stimulator CD27 compared to that of PD1 (but not 

compared to CTLA-4) is associated with improved response. This is in line 

with recent findings that the combination of a CD27 agonist plus anti-PD-1 

recapitulates the effects of CD4+ T helper cells on tumor control, while the 
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combination of a CD27 agonist plus anti-CTLA-4 did not improve tumor 

control142.  

 

We further studied the individual predictive power of each of the 15 IMPRES 

features, by considering the expression ratio of each predictive pair 

(Methods). We find that some features are specifically more predictive for 

anti-PD-1 pre-treatment (CD28/CD86, Rank-sum P-value = 0.05) or on-

treatment (PD1/OX40L, CD86/OX40L and CD86/CD200, Rank-sum P-value 

= 0.018 for all). Notably, no feature emerges as being strongly predictive of 

response to anti-CTLA-4 specifically (Figure 10D). Next, we examined all 

possible associations between these 15 features (using their expression ratio) 

and the abundance of all 22 types of immune cells inferred by CIBERSORT 

in the datasets of melanoma treated with ICB. Notably, we find two 

significant associations (Bonferroni-Corrected for multiple comparisons,  𝛼 =

0.05) between CD8+ T cells abundance and IMPRES features that hold across 

melanoma datasets: the first involves a significant and consistent negative 

correlation with the CD40/PD-1 expression ratio and the second involves a 

positive correlation with the PD1/OX40L expression ratio (Figure 10E). 

Finally, a feature reduction analysis shows that the overall predictive 

performance of IMPRES can be maintained with a subset of 11 of the 15 

original features, but beyond that it markedly decreases. 

 



 

 78 
 

 

Figure 10. IMPRES features. (A) Bar plot comparing IMPRES performance to 

that of other published approaches across 9 publicly available ICB treatment 

datasets. The performance obtained by each approach is displayed via four 

bars, each representing the AUC for a specific treatment group, with the 

rightmost bar denoting the overall performance across all samples. The Rank-

sum P-values comparing the performance of each classifier evaluated to that 

of IMPRES over all samples are presented (P-value of 0.002 is achieved when 

IMPRES AUC is larger than that obtained by the other predictor for all 9 

datasets, and 0.004 when it is larger for 8/9 datasets). (B) A table showing the 

empirical P-values comparing IMPRES performance to that of each of the 

other predictors in the three different ICB treatment classes and for the 
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aggregate of all datasets (the value of ‘<1e-3’ denotes that IMPRES’ 

prediction performance was superior to that of the predictor with which it was 

compared in all 1,000 sampled test repetitions). (C) A network representation 

of the 15 pairwise features comprising IMPRES. Each node represents an 

immune checkpoint gene and each edge describes a pairwise relation (an 

IMPRES feature). The direction of edge A -> B denotes that the higher 

expression of A vs. that of B is associated with better patients’ response. The 

color of the outline of each node denotes if it is inhibitory or activating and its 

fill color denotes whether it belongs to the PD1 or CTLA-4 pathways. (D) 

Clustogram of the individual predictive power of the 15 IMPRES features 

(based on their expression ratios) in each of the melanoma treatment datasets 

studied (the color scaling denotes the AUC obtained using each individual 

ratio as a response predictor, ranging from 0 to 1). (E) Scatter plots showing 

the correlation between CIBERSORT-inferred CD8+ T cells abundance (X-

axis) and the gene expression ratios of two IMPRES features that are 

significantly associated with it (Y-axis); CD40/PD1 (upper panel) and 

PD1/OX40L lower panel). The Spearman 𝜌 and associated P-values are 

shown for each ICB response data125,127,128,130 individually and for all four 

datasets together (excluding nanostring datasets in which low coverage 

severely degrades CIBERSORT performance and were hence not included in 

this analysis). 
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Methods 

Collection of immune checkpoint molecules 

To build a predictor based on pair-wise relations between checkpoint genes’ 

expression, we formed a list of 45 immune checkpoint genes with known co-

stimulatory or co inhibitory effects, collected from literature reports 143–146. 

From these, we focus on 28 genes that were measured in all RNA-sequencing 

datasets analyzed in this paper. 

 

Feature selection and IMPRES construction on the NB data 

For feature selection, we use the quantile-normalized expression of the 28 

immune checkpoint genes selected above in the 108 NB tumor samples 

studied, using the following expression function of pairs of checkpoint genes 

as features: 

 

 𝐹!,!(x)   =
1, 𝑒𝑥𝑝!(𝑥) < 𝑒𝑥𝑝!(𝑥)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

 

Where 𝑒𝑥𝑝! 𝑥  and 𝑒𝑥𝑝! 𝑥  denote the expression of genes 𝑖  𝑎𝑛𝑑  𝑗 in sample 

𝑥. 

We focus on pairs where at least one of the genes is among the six genes that 

are directly associated with anti-CTLA-4 and anti-PD1 blockade therapy, 

including CTLA-4, CD28, CD80/CD86, PD-1 and PD-L1<sup>147</sup> 

(Buchbinder & Desai, 2016)(Buchbinder & Desai, 2016)(Buchbinder & 

Desai, 2016)(Buchbinder & Desai, 2016), which together form 294 potential 
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gene pairs. To select features that best separate positive from negative samples 

in the NB data, we performed a hill climbing aggregative feature selection 

involving 500 iterations of a five-fold cross validation procedure, where the 

features that highly scored consistently across folds were selected for 

IMPRES.  

 

Immune pathway enrichment analysis  

To identify CDPs (consistently differentially expressed immune pathways in 

melanoma ICB responders), we first identified the genes that are up and down 

regulated in ICB responders vs non-responders for each of the 

datasets125,127,128,130 (using one sided Rank-sum P-value<0.05). Then, we 

performed a GO pathway148 enrichment analysis for immune related pathways 

via a hyper-geometric test, to identify (1) pathways that are consistently up or 

down regulated (hyper-geometric P-value<0.05) in responders for all anti-PD-

1 melanoma datasets, and  (2) pathways that are consistently up or down 

regulated in responders for all anti-CTLA-4 melanoma datasets (Figure 8C).  

 

To correlate CDPs with the IMPRES features, we then evaluated the 

Spearman rank correlation coefficients (𝜌) and corresponding P-values 

between the median pathway expression level of each CDP (using the median 

expression of all genes in a pathway) and each of the IMPRES expression 

ratios. This is done across all samples in each of the following datasets: (1) the 

anti-PD-1 treated melanoma datasets (2) the anti-CTLA-4 treated melanoma 
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datasets (3) the non ICB-treated melanoma datasets and (4) the neuroblastoma 

dataset. 

 

Computing IMPRES features’ expression ratio  

To evaluate the predictive performance and functional associations of 

individual IMPRES features in a more refined manner we used the expression 

ratio instead of the binary indicators in each sample (i.e. for each feature A>B 

we used A/B instead). The resulting AUCs obtained with each ratio feature for 

each ICB response data are presented in Figure 10D. 

 

Applying IMPRES to predict ICB response of melanoma patients 

To apply IMPRES, we calculate for each sample x, the 𝐹!,!(x) over the 15 

IMPRES checkpoint pairs (features). This leads to a binary vector of length 15 

for each sample. The total number of ‘1’s in this vector denotes the sample’s 

IMPRES score (ranging between 0 and 15). High scores predict good 

response. By varying the classification threshold over the different possible 

IMPRES score values we generate the ROC curves and the resulting AUCs 

presented in the main text for each melanoma dataset.  

 

Unpublished data collection and preparation  

RNA-sequencing of 31 anti-PD-1 pre- and on-treatment tumor specimens, and 

10 anti-CTLA-4 pre- and on- treatment tumor specimens derived from 

patients with metastatic melanoma was conducted as previously described in 
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Jenkins et al149. These patients were enrolled in clinical trials at Massachusetts 

General Hospital. Clinical trial registration numbers at ClinicalTrials.gov are 

NCT01714739; NCT02083484; NCT01543698; NCT01072175; 

NCT00949702; NCT01783938; NCT01006980. 

 

Clinical response classification  

Table 4 enclosed by summarizes the response annotations and criteria used for 

establishing them in the original study.  

  

  

Van 

Allen et 

al. 

Hugo et 

al. 

TCGA 

SKCM 
Chen et al.  

Prat et 

al.  

Riaz et 

al. 

Unpublish

ed data 

classifi

ed as 

"respon

se" 

‘response’, 

‘Complete 

Response'

, 

‘Complete 

Response', 

 ‘R’ = 

freedom from 

disease/ 

decreased 

tumor > 6 

months 

‘CR’, 

‘PR’ 

 ‘CR’, 

‘PR’ 
 ‘CR’, ‘PR’ 

'Partial 

Response' 

'Partial 

Response' 

classifi

ed as 

"non-

respons

e" 

‘nonrespon

se’,’long-

survival’ 

 ‘Progress

ive 

Disease’ 

 ‘Clinical 

Progressive 

Disease’, 

‘Stable 

Disease’ 

 ‘NR’ = 

tumor growth 

on serial CT 

scans or a 

clinical 

benefit 

lasting 6 

months or 

less 

 ‘PD’ 
 ‘PD’, 

‘SD’ 
 ‘PD’ 

Protoco

l 

irRECIST1

50 

RECIST15

1 
 RECIST151 	  Nan	  

	  RECIST

151	  

	  RECIST

151	  
	  RECIST151	  

 

Table 4. Response annotations for each melanoma dataset 
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Kaplan Meier survival analysis 

Kaplan Meier analysis is performed by comparing the survival of patients 

with high IMPRES scores (> median(IMPRES)) to those with low IMPRES 

scores (< median(IMPRES)) using a log-rank test. The patients with median 

IMPRES score (= median(IMPRES)) are grouped with the smaller-size group 

among the two groups mentioned above.  

 

Discussion 
 

In summary, IMPRES’ high predictive performance is mainly due to two key 

conjectures: (a) key immune mechanisms underlining spontaneous regression 

in NB can predict response to ICB, and (b) specific pairwise relations of 

immune checkpoint genes’ expression can be predictive of spontaneous 

regression of NB and response to ICB in melanoma. Our results demonstrate 

that building on these assumptions leads to a predictor of response to 

checkpoint therapy that is significantly superior to the state-of-the-art and 

displays robust performance across many different melanoma datasets. From a 

translational standpoint, we show that IMPRES can correctly capture almost 

all true responders while misclassifying less than half of the non-responders, 

sparing unnecessary treatments for non-responding patients. Future studies are 

warranted to further study the predictive performance of the approach 

presented here in other cancer types where ICB is approved.  
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Chapter 4: Cancer chemoradiotherapy treatment modifiers  

 
Prediction of patients with complete pathological response to chemo-radiation 

therapy (CRT) and identification of targets that modulate patients’ response and 

mitigate resistance to CRT 

Introduction 

Rectal carcinomas account for approximately 20% of all colorectal cancers. Patients 

with stage II and III rectal carcinoma are treated with chemo-radiotherapy (CRT) 

before surgery to reduce the rate of local recurrences. However, not all patients 

respond equally well to CRT, with response ranging from complete response, i.e., no 

tumor cells left (Approximately 15-27% of patients (Sanghera, Wong et al. 2008, 

Maas, Nelemans et al. 2010)), to primary resistance. Clearly, accurately predicting the 

response to CRT before treatment commences would be immensely useful: patients 

with a predicted complete response and having other comorbidities might be spared 

surgery. Alternatively, patients whose tumors are resistant could be treated to increase 

sensitively to CRT. Our goal is to build a predictor that will predict complete 

response to CRT based on gene expression data characterizing the tumor of each 

individual patient. This analysis will also reveal the set of discriminating genes and 

accompanying molecular features that play a key role in modulating the response to 

CRT in rectal cancer and will enable identification of targets that play a role in 

modifying resistance to CRT in rectal cancer, whose inhibition may mitigate this 

resistance. 
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Results 

Identification and cross validation 

To avoid over-fitting we first performed a feature selection procedure using 

only small number of randomly selected samples (20% of the data). To this 

end, we randomly select eight positive (5% of the patients, Tumor 

Regression Grade (TRG) = 100%) and eight negative (5% of the patients, 

Tumor Regression Grade (TRG) < 45%) cases and search for differentially 

expressed transcripts between these samples, from which to selected the 

features for the classifier. To reliably identify complete responders, without 

misclassifying partial responders, we aimed to select features that will 

maximize the sensitivity of the generated classifier. Therefore, we randomly 

select a second set of 8 positive and 8 negative samples and performed a hill-

climbing procedure 152,  gradually adding transcripts from the group of 

differently expressed transcripts, that improve the sensitivity of a resulting 

SVM classifier, when applied to the second group of samples. A signature of 

42 transcripts resulted in a classifier with maximal sensitivity on the 16 

randomly selected test samples. The resulting classifier generated from 42-

transcript signature was than assessed through a five-fold cross validation 

procedure on training set comprising 32 positive (TRG = 100%) and 32 

negative (TRG < 45%) cases. The cross validation procedure resulted in a 

sensitivity of 0.46 (when allowing zero false positives), AUC of 0.86 and an 

Accuracy of 0.8 (Figure 11A). Based on these 64 cases, an SVM machine was 

established and applied to all 161 cases with TRG ranging from 10% to 100%. 
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Encouragingly, we found that when applying our classifier to the entire data, 

we get a sensitivity of 0.31, AUC of 0.97 and an Accuracy of 0.86 (Figure 

11B-C), indicating that even when considering the full range of TRG (10-

100%), our classifier can correctly identify more than 30% of the complete 

responders with no errors, using a group of 42 transcripts (36 unique genes). 

 

 

Figure 11. Cross validation performance. (A) and (B) Receiver operating 

characteristic (ROC) curve for the cross validation procedure and for the full 

set of 161 patients, respectively. The dashed line represents the objective of 

the rate of true positive sample when the false positive is zero. (C) A heatmap 

showing the 42-gene signature for all 161 patients, sorted by TRG of these 

patients. 
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Validating with an independent datasets 

A major issue impeding the emergence of local advanced rectal cancer 

prognostic or diagnostic tools from molecular signatures is that these 

signatures are often found not reproducible when applied on independent 

datasets (Conde-Muino, Cuadros et al. 2015). To prove this point, we first 

applied our classifier on an independent test that was completely left out to 

this point, including 14 samples from which 4 are complete responders. Our 

classifier results in a sensitivity of 0.25 (when allowing zero false positives), 

AUC of 0.6250 and an Accuracy of 0.785 (Figure 12A-B) 

Next, we tested several recently published classifiers on our data set 

consisting of 161 patients and an independent data set from (Millino, Maretto 

et al. 2017). We find that none of these signatures show a predictive signal 

when applied to our or the data from Millino et al. 

In contrast, when applied to the same independent dataset from of 0.82 and an 

Accuracy of 0.84 (Figure 12C-D), indicating that even when applied on a 

completely independent dataset, our predictor can accurately foresee 25% of 

the complete responders while never misclassifying an incomplete responder.   
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Figure 12. Performance for two independent datasets. (A) A heatmap showing 

the 42-gene signature for the 14 patients in our test set (B) Receiver operating 

characteristic (ROC) curve resulting from applying our classifier to the left-

out test set. (C) A heatmap showing the 42-gene signature for the 38 patients 

in the dataset from (Millino, Maretto et al. 2017), sorted by TRG of these 

patients. (D) Receiver operating characteristic (ROC) curve obtained by 

applying our classifier on independent dataset with 38 patients. The dashed 

line represents the objective of the rate of true positive sample when the false 

positive is zero. 
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Colorectal cancer patient survival prediction 

Patient complete response (pCR) is associated with an improved survival and 

a more favorably oncological outcome. We therefore hypothesized that due to 

their biological function; the expression patterns of genes in the classifier 

predicting pCR in rectal cancer patients should be also associated with good 

prognosis. To this end, we calculated a patient specific score using the 42 

genes in the selected signature. For each gene, 𝑔 ∈ 𝐺!"# is defined if its 

expression is increased in responder samples in the training set, and 𝑔 ∈ 𝐺!"# 

is defined if its expression is increased in resistant samples in the training set. 

The score of each patient is then defined by, 

𝑠𝑐𝑜𝑟𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡! =   
!"#!!∈!!"# (!)

!"#!!∈!!"# (!)
 

 

As expected, we find significant correlation between these scores and Tumor 

regression grade (rho = 0.3398, Spearman p  = 1.03e-05, Figure 13A). We 

then calculated this score for each patient in the TCGA (Cancer Genome Atlas 

2012) colorectal cancer database (n=276) and in a second dataset from  

(Jorissen, Gibbs et al. 2009) colorectal cancer (n=290). Strikingly, we find 

that high score is significantly associated with improved survival (Log-rank 

p=0.0051 and 0.021, respectively. Figure 13B-C). This testifies further on the 

robustness of our signature and its prognostic value. 
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Figure 13. Patients score of response to CRT predicts survival in two 

independent datasets of colorectal cancer. (A) A scatter plot showing the 

correlation between the tumor regression grade in percent (X-label) and the 

gene signature score assigned to each patients representing predicted response 

to CRT (Y-label). (B) and (C) are the Kaplan-Meier survival curves for 

colorectal cancer patients predicted by using this score to have the best and 

worst prognosis (top and bottom 10% of patients scores, respectively; 

Methods) in the TCGA database and data from 153 
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Chapter 5: Monogenetic disorders modifiers 

In preparation as “System-wide identification of genomic modifiers of monogenetic 
disorders” 
 

Introduction 

Substantial clinical variability is observed in many Mendelian diseases, so that 

patients with the same mutation may develop a very severe form of disease, a mild 

form or show no symptoms at all. Among the factors that may explain these 

differences in disease manifestations are modifier genes 154. Identifying these genetic 

modifiers may be of great interest from both treatment and genetic counseling 

perspectives 155. However, very few modifier genes have been identified so far and 

the mechanisms underlying clinical variability of Mendelian disorders remain poorly 

understood, mainly due to the low frequency of the mutations causing these disorders 

and the scarcity of available data.  

 

Strategies used to show the role of genetic factors in phenotypic expression are often 

classified into three categories depending on the type of data available 38: (1) 

Association studies of case-control data, which is the most widely used strategy in the 

search for modifier genes, probably as it requires sampling patients only, rather than 

collecting familiar data. In association studies, the distribution of marker genotypes is 

compared in patients with different levels of the phenotype. (2) Linkage studies, 

which require available data from affected siblings. Linkage analysis compares the 

number of alleles shared identical by descent by affected siblings between 

phenotypically-concordant and discordant sibling pairs. (3) Blind search - Systematic 
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genome-wide screens, which consists in searching for the genetic factors involved in 

the phenotype of interest over the whole genome, to identify individuals that are 

resilient to mutations causing the phenotype of interest. 

 

Here we present an approach for genome-wide GENtic moDULators identiFication 

(GENDULF) that is applicable in the lack of large DNA sequencing data. GENDULF 

operates by mining tissue gene expression of healthy and disease bearing individuals 

to identify expression patterns of genes that may modify disease severity. We first 

apply our approach to identify tissue specific modifiers of Cyctic Fibrosis (CF), for 

which considerable efforts has already been invested to find genetic modifiers. 

GENDULF prioritize most of the modifiers previously identified for CF in both lung 

and colon tissues (via linkage and association studies), and points to a few new 

candidates that may potentially bear a modifying role. To experimentally validate our 

approach, we then apply it to Spinal Muscular Atrophy (SMA), for which fewer 

modifiers have been previously discovered.  We find one gene, U2AF1, out of four 

candidates arising initially, that consistently increases the ratio between full length 

SMN2 to ∆7SMN2, thus potentially increasing the levels of the SMN protein and 

improving the phenotype for SMA patients.  

Results 

GENDULF pipeline 

We set to search for genes that modify the phenotype associated with a 

monogenetic disorder, and specifically, we aim to find genes whose down 
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regulation would result with a healthier phenotype, as these may have 

therapeutic value if targeted by drugs. GENDULF is based on the notion that 

modifier genes may be active in healthy individuals where a gene that is 

causing a monogenetic disorder (termed GCD) is lowly expressed, but that 

these are probably inactive in disease bearing individuals. Based on this 

rational, GENDULF proceeds in two main steps (Figure 14): (1) First, for a 

given monogenetic disorder studied, we identify Potential Modifiers (PMs) 

which are genes that are particularly lowly expressed when the GCD is lowly 

expressed in the relevant tissue for the disease. This association may 

potentially underlie the rescued phenotype observed when the GCD is inactive 

in healthy individuals. (2) Then, we identify Disease associated PMs (DPMs). 

To this end, we examine the expression of the PMs in studies containing both 

diseased and control samples. We hypothesize that if a gene is a genetic 

modifier whose low expression confers a healthy phenotype (as indicated by 

the first step) then we should expect to find it highly expressed in disease 

samples, which evidently are not rescued (i.e. DPM). This is in 

contradistinction to genes that are co-expressed with a gene causing a 

monogenetic disorder in healthy tissues but are not genetic modifiers, whose 

expression should remain correlated with that of the GCD also in the disease 

samples (non DPMs). 
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Figure 14. An overview of GENDULF computational pipeline. (1) Mining 

transcriptomics of healthy tissues afflicted by a disorder to identify PMs. (2) 

Evaluate the expression of the PMs in studies containing both diseased and 

control samples to find DPMs genes that are not co-expressed with the GCD 

in disease tissues. 

Cystic Fibrosis 

Cystic fibrosis (CF) is an inherited disorder that causes thick, sticky mucus to 

form in the lungs, pancreas, colon and other organs. In the lungs, thick mucus 

can damage tissue and block airways, making it difficult for patients to 

breathe and promoting lung infections 156. CF is caused by mutations in the 

CFTR gene result in defective cystic fibrosis transmembrane conductance 

regulator (CFTR) proteins 157,158. Normally, CFTR proteins located on the 

surface of the epithelial membrane act as chloride channels that in turn 
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regulate the epithelial sodium channel and other anion channels at the cell 

surface. The complex interplay of these channels regulates the electrochemical 

gradient that allows appropriate airway surface liquid depth and mucus 

viscosity 159,160. CF affects 60,000 individuals worldwide and is a good model 

for the identification and characterization of factors that influence disease 

variation as its high prevalence provides a large number of accessible patients 

to perform detailed phenotypic analyses 161,162. So far a few modifiers has 

been identified for CF lung disease severity through association studies 162,163. 

We hence set to identify tissue specific CFTR modifier and compare our 

findings against these recently identified genetic modifiers. 

We First applied GENDULF to analyze 320 healthy lung samples from the 

GTEx database, which yielded 55 PMs. We then examine the expression of 

these genes in nasal brushings of the inferior turbinates of mild and sever CF 

patients and healthy controls 164. We find that the while the CFTR gene 

expression generally decreases in mild and severe CF patients vs. controls, the 

expression of the 14 of the PMs increases in severe CF (Figure 15A), 

testifying to their potential modifying role.  

Reassuringly, some of the CFTR modifiers identified in lung tissues are 

known modifiers of CF manifestations in the lung, including the EHF gene, a 

known modifier gene of lung disease severity in CF 162 and SLC6A14, which 

has been recently identified as potential modifier of lung disease severity in 

CF 163.  

 



 

 97 
 

Second, we applied GENDULF to analyze 345 healthy colon samples from 

the GTEx database, yielding 11 candidate genes. Examining the expression of 

these genes in rectal mucosal epithelia from CF patients and healthy controls 

165, we find that the expression levels of four of these candidates is higher in 

CF than in normal control samples, thus all predicted as CF genomic 

modifiers in the colon (Figure 15B). Interestingly, the knockdown of one of 

the four identified modifiers, FABP1, rescues a lethal intestine defect in 

mouse model of CF 166  

 

A recently published study 163 has pointed to five loci that display significant 

association with variation in CF lung disease. The identification of a gene that 

causally affects disease variation is challenging as such association loci may 

typically include many genes 38. We applied GENDULF to evaluate the genes 

within these five loci to identify candidate modifiers of CF lung disease 

severity.  

To this end, in a given loci, for each gene we evaluated the level by which its 

expression is significantly down regulated when the expression of CFTR is 

extremely low in healthy lung tissues, quantified via a Wilcoxon rank-sum P-

value. We find that in four of the five loci we studied (all but chr5p15.3) at 

least one gene is showing such a significant functional association (FA) and 

that the level of these FAs varies monotonically with the genomic location of 

the gene (it is gradually increasing up to a maximum and then gradually 

decreasing). Robustness analysis shows that this pattern of monotonically 
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varying FAs does not occur in random, as it is never obtained when analyzing 

randomly shuffled CFTR expression values. This, it is likely that these 

ordered monotonic expression patterns truly capture FAs with the CFTR gene. 

Furthermore, notably the modifier genes of CF pointed by the authors of 162,163 

mostly fall at maxima points, as shown in Figure 15C, including EHF, MUC4, 

HLA-DRA and SLC614. 

 

 
 

Figure 15. CF identified modifiers. (A) CF identified modifiers expression in 

healthy lung for high vs. low CFTR expression (left panel) and in severe CF, 

mild CF and healthy controls. (B) CF identified modifiers expression in 

healthy colon for high vs. low CFTR expression (top panel) and for CF and vs 

controls (bottom panel). (C) The p-values assigned to genes within chr11p12-

p13, chr6p21.3, chr3q29 and chrXq22-q23 ordered by their location. The 

lower dashed line represent a significant threshold corrected for the number of 
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evaluated genes and the upper dashed line represent a significant threshold 

corrected for all genes and transcripts in GTEx with alpha = 0.05.  

 

  

Spinal Muscular Atrophy  

Spinal muscular atrophy is an autosomal recessive neurodegenerative disease 

characterized by degeneration of spinal cord motor neurons, atrophy of 

skeletal muscles, and generalized weakness. SMA is caused by deletion or 

mutation of the survival of motor neuron 1 (SMN1) gene, which encodes the 

SMN protein 167,168. Humans carry two paralogous SMN1 and SMN2 genes 

that are ubiquitously expressed. The SMN protein is principally produced 

from SMN1 full-length mRNA, as SMN2 transcripts often goes through 

alternative splicing and exclusion of exon 7, resulting in mRNA that encodes 

an unstable SMN protein that is rapidly degraded 169,170.	  However, the low 

levels of SMN2 transcripts still produce small amounts of the fully functional 

SMN protein. 

Here, We use healthy Muscle and Spinal cord tissues, in which SMN1 

expression is considerably variable; to evaluate the expression of different 

SMN2 isoforms when SMN1 is especially low. In both tissues we find 

increased full-length SMN2 transcript levels when SMN1 expression levels 

become very low (Spearman Rho = -0.1427, -0.1432 and Rank-sum p-value = 

1.3657e-05 and 0.084, for healthy muscle and spinal chord tissues, 

respectively). This support the assumption that rescuing mechanisms are 
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indeed in play in healthy tissues when SMN1 expression is very low, thus 

investigating the trascriptomic changes occurring in such healthy samples may 

reveal other GM of SMA, whose alterations may modify SMN levels in 

diseased tissues as well.  

Hence, we applied GENDULF to find genetic modifiers for SMA whose 

knockdown (KD) will result in improved phenotype. To this end, we search 

for genes that fulfill all the four following criteria:  

(1) Genes whose expression is significantly lower than expected when SMN1 

levels are extremely low (bottom 10th percentile) in healthy muscle and 

spinal cord tissues, suggesting that their low expression may have a 

compensating affect for the loss of SMN1. 

(2) Genes who’s under activation is associated with higher ratio between full-

length SMN2 levels and exon7 skipped SMN2 levels, testifying for their 

potential compensating affect through reducing the exon7 skipping of 

SMN2. 

(3) Genes whose expression is not reduced by the KD of SMN1 (to simulate 

the SMA disease state, in either in iPSC-derived motor neurons or human 

SH-SY5Y cells). This indicated that the observed association between 

these genes and SMN1 in healthy tissues is not due to mere co-expression 

but may signify a true functional rescue effect in the maintaining these 

tissues as healthy, while the lack of this rescue effect results in an SMA 

disease like phenotype. 
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(4) Genes whose expression is higher in SMA vs. controls in Muscle or Spinal 

cord tissues, further testifying on a true modifying effect rather than a co-

expression pattern. 

This analysis points to two potential targets that withstand all three criteria 

with sufficient statistical significance, U2AF1 (Figure 16A-E) and 

HNRNPA0.  

Experimentally testing these targets, we find that the top predicted target, 

U2AF1, indeed increases the ratio between the levels of full-length SMN2 

levels and exon7 skipped SMN2 levels, as predicted (Figure 16F).  
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Figure 16. U2AF1 gene. (A) Scatter plots showing the correlation between 

U2AF1 and Δ7𝑆𝑀𝑁2  levels in healthy muscle (upper panel) and healthy 

spinal cord (lower panel) (B) Scatter plots showing the correlation between 

U2AF1 and the ratio between full length SMN2 and Δ7𝑆𝑀𝑁2 in healthy 
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muscle (upper panel) and healthy spinal cord (lower panel) (C) boxplot 

showing U2AF1 expression in healthy muscle (upper panel) and healthy 

spinal cord (lower panel) for samples with high vs. low SMN1 expression (D) 

Boxplot showing the expression of the two U2AF1 transcripts in controls vs. 

SMN1 shRNA in human SH-SY5Y cells (upper panel)  and iPSC-derived 

motor neurons (lower panel). (E) Boxplots showing U2AF1 expression in 

controls vs. SMA in muscle (left panel) and spinal cord (right panel) (F) 

Experimental testing the affect of U2AF1 KD on full length SMN2, ∆7 SMN2 

and the ratio between full length SMN2 and ∆7 SMN2. 

***Figure 16F and the work presented in it is generated by Charlotte Sumner 

and Daniel Ramos, Johns Hopkins University School of Medicine 

 

	  

Discussion 
  

 

We present GENDULF, a novel systematic approach to identify generic 

genetic modulators for monogenetic diseases. GENDULF identifies 

expression patterns of genes that may modify disease severity using gene 

expression of healthy and disease bearing individuals, and it is the first 

approach for modifiers identification that is applicable in the lack of large 

DNA sequencing data. We first validate GENDULF in Cyctic Fibrosis (CF), 

where we show that it prioritizes most of the modifiers previously identified 

for CF in both lung and colon tissues (via linkage and association studies). 
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Additionally, we validate GENDULF in Spinal Muscular Atrophy (SMA), 

where we identify U2AF1 gene, which, as predicted, consistently increases 

the ratio between full length SMN2 to ∆7SMN2.  

 

GENDULF may be applied to a spectrum of monogenetic diseases to 

prioritize potential modifiers and enable treatment possibilities for these 

orphan diseases. 
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