Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nonparametric Quasi-likelihood in Longitudinal Data Analysis

    Thumbnail
    View/Open
    umi-umd-2045.pdf (380.6Kb)
    No. of downloads: 1147

    Date
    2004-11-24
    Author
    Jiang, Xiaoping
    Advisor
    Smith, Paul J
    Metadata
    Show full item record
    Abstract
    This dissertation proposes a nonparametric quasi-likelihood approach to estimate regression coefficients in the class of generalized linear regression models for longitudinal data analysis, where the covariance matrices of the longitudinal data are totally unknown but are smooth functions of means. This proposed nonparametric quasi-likelihood approach is to replace the unknown covariance matrix with a nonparametric estimator in the quasi-likelihood estimating equations, which are used to estimate the regression coefficients for longitudinal data analysis. Local polynomial regression techniques are used to get the nonparametric estimator of the unknown covariance matrices in the proposed nonparametric quasi-likelihood approach. Rates of convergence of the resulting estimators are established. It is shown that the nonparametric quasi-likelihood estimator is not only consistent but also has the same asymptotic distribution as the quasi-likelihood estimator obtained with the true covariance matrix. The results from simulation studies show that the performance of the nonparametric quasi-likelihood estimator is comparable to other methods with given marginal variance functions and correctly specified correlation structures. Moreover, the results of the simulation studies show that nonparametric quasi-likelihood corrects some shortcomings of Liang and Zeger's GEE approach in longitudinal data analysis.
    URI
    http://hdl.handle.net/1903/2078
    Collections
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility