Nonparametric Quasi-likelihood in Longitudinal Data Analysis

dc.contributor.advisorSmith, Paul Jen_US
dc.contributor.authorJiang, Xiaopingen_US
dc.contributor.departmentMathematical Statisticsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2005-02-02T06:41:09Z
dc.date.available2005-02-02T06:41:09Z
dc.date.issued2004-11-24en_US
dc.description.abstractThis dissertation proposes a nonparametric quasi-likelihood approach to estimate regression coefficients in the class of generalized linear regression models for longitudinal data analysis, where the covariance matrices of the longitudinal data are totally unknown but are smooth functions of means. This proposed nonparametric quasi-likelihood approach is to replace the unknown covariance matrix with a nonparametric estimator in the quasi-likelihood estimating equations, which are used to estimate the regression coefficients for longitudinal data analysis. Local polynomial regression techniques are used to get the nonparametric estimator of the unknown covariance matrices in the proposed nonparametric quasi-likelihood approach. Rates of convergence of the resulting estimators are established. It is shown that the nonparametric quasi-likelihood estimator is not only consistent but also has the same asymptotic distribution as the quasi-likelihood estimator obtained with the true covariance matrix. The results from simulation studies show that the performance of the nonparametric quasi-likelihood estimator is comparable to other methods with given marginal variance functions and correctly specified correlation structures. Moreover, the results of the simulation studies show that nonparametric quasi-likelihood corrects some shortcomings of Liang and Zeger's GEE approach in longitudinal data analysis.en_US
dc.format.extent389808 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/2078
dc.language.isoen_US
dc.subject.pqcontrolledStatisticsen_US
dc.subject.pquncontrolledlocal polynomial regressionen_US
dc.subject.pquncontrolledgeneralized estimating equationsen_US
dc.subject.pquncontrollednonparametric covariance estimatoren_US
dc.subject.pquncontrolledregressionen_US
dc.subject.pquncontrolledasymptotic propertiesen_US
dc.titleNonparametric Quasi-likelihood in Longitudinal Data Analysisen_US
dc.typeDissertationen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
umi-umd-2045.pdf
Size:
380.67 KB
Format:
Adobe Portable Document Format