Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling strong-field laser-atom interactions with nonlocal potentials

    Thumbnail
    View/Open
    Rensink_umd_0117E_17835.pdf (5.908Mb)
    No. of downloads: 431

    NLIHydrogenSimulation.mov (11.85Mb)
    No. of downloads: 33

    NLISinglePhoton.mov (10.22Mb)
    No. of downloads: 34

    Date
    2017
    Author
    Rensink, Thomas C.
    Advisor
    Antonsen (Jr.), Thomas M
    DRUM DOI
    https://doi.org/10.13016/M2R56G
    Metadata
    Show full item record
    Abstract
    Atom-field interactions in the ionization regime give rise to a wide range of physical phenomena, and their study continues to be an active field of research. However, simulation of atom-field dynamics is time-consuming and computationally expensive. In this thesis, a nonlocal model potential is used in place of the Coulomb potential in the time dependent Schrodinger equation, and examined for suitabil- ity of modeling strong field-atom dynamics while offering significant reduction in computation cost. Nonlocal potentials have been used to model many physical systems, from multi-electron molecular configurations to semiconductor theory. Despite their rel- ative success, nonlocal potentials have been largely unexplored for modeling high field laser-gas interactions in the ionizing regime. This work explores the theory and numerical results of a single state gaussian nonlocal model in intense, femtosecond laser pulses, with the main findings: nonlocal potentials are useful for obtaining the photoionization rate in the tunnel and multiphoton regimes, and qualitatively char- acterize the wavefunction dynamics of irradiated atoms. The model is also examined in the context of the two-color technique for producing Terahertz (THz) frequency radiation.
    URI
    http://hdl.handle.net/1903/19339
    Collections
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility