University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    FISSION-FUSION DYNAMICS IN MAMMALS: LINKING ANIMAL MOVEMENT TO GROUP BEHAVIOR

    View/Open
    Alvarez_umd_0117E_17720.pdf (3.491Mb)
    (RESTRICTED ACCESS)
    No. of downloads: 0

    Date
    2016
    Author
    Alvarez, Silvia J.
    Advisor
    Fagan, William F
    DRUM DOI
    https://doi.org/10.13016/M2SK3S
    Metadata
    Show full item record
    Abstract
    Mammals living in groups show temporal variation in spatial cohesion and membership of groups, a behavior known as fission-fusion dynamics (FFD). Changes in cohesion depend on the movement behavior of individuals, which is influenced by their social environment, among other factors. I aimed to answer two main questions: 1) how do cognitive abilities and environmental factors explain the variation in social systems of mammals with FFD? and 2) how are FFD related to movement behavior? To answer the first question, I built a dataset on social traits of mammals with FFD from published references and used multivariate analysis to uncover the patterns of variation in social systems. Variation resulted mostly from differences in group and subgroup sizes, and differences in social traits evidenced the presence of discrete categories of social organization that might represent distinct strategies of FFD. To assess the effects of brain size and resource availability on social traits, I used generalized estimating equations as a phylogenetic comparative method. Brain size affected most social traits in marine mammals, supporting predictions of the social brain hypothesis. Resource availability was poorly correlated with social traits in all terrestrial mammals, but it had different effects for herbivores and carnivores, suggesting that environmental constraints acting on FFD differ between trophic levels. To answer the second question, I assessed the predictive power of several movement metrics characterizing tracks of orangutans on FFD, using generalized boosted regressions. Tortuosity, speed, and the number of behaviors were strong predictors of group presence and size, while temporal changes in movement behavior were correlated with changes in cohesion. These findings highlight the potential use of individual movement data to predict aspects of FFD. Lastly, I used an agent-based model to explore the influence of different levels of specificity in recognition on grouping behaviors. Model results suggest that basic social behavioral rules influence FFD, and that more complex group dynamics, such as hierarchical group structures, only emerge in scenarios with high levels of recognition specificity. Overall, the model suggests that recognition abilities, which likely correlate with cognitive skills, may play an important role in the evolution of social systems.
    URI
    http://hdl.handle.net/1903/19269
    Collections
    • Biology Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility