Liquid sodium model of Earth's outer core

Loading...
Thumbnail Image

Files

umi-umd-1864.pdf (1.77 MB)
No. of downloads: 891

Publication or External Link

Date

2004-08-27

Citation

DRUM DOI

Abstract

Convective motions in Earth's outer core are responsible for the generation of the geomagnetic field. We present liquid sodium convection experiments in a spherical vessel, designed to model the convective state of Earth's outer core. Heat transfer, zonal fluid velocities, and properties of temperature fluctuations were measured for different rotation rates and temperature drops across the convecting sodium. The small scale fluid motion was highly turbulent, despite the fact that less than half of the total heat transfer was due to convection. Retrograde zonal velocities were measured at speeds up to 0.02 times the tangential speed of the outer wall of the vessel. Power spectra of temperature fluctuations indicate a well defined knee characterizing the convective energy input. This frequency is proportional to the ballistic velocity estimate. In the context of Earth's outer core, our observations imply a thermal Rayleigh number Ra=10^22, a convective velocity near 10^-5 m/s, and length and time scales of convective motions of 100 m and 2 days.

Notes

Rights