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Convective motions in Earth’s outer core are responsible for the generation of the geomag-

netic field. We present liquid sodium convection experiments in a spherical vessel, designed to

model the convective state of Earth’s outer core. Heat transfer, zonal fluid velocities, and prop-

erties of temperature fluctuations were measured for different rotation rates Ω and temperature

drops ∆T across the convecting sodium.

The small scale fluid motion was highly turbulent, despite the fact that less than half of the

total heat transfer was due to convection. The typical length scale of convective motions decreases

with rotation rate like Ω−1/3. These convective structures give rise to temperature fluctuations

which decrease in amplitude with increasing rotation rate and grow linearly with the temperature

drop; σT ∼ Ω−1/3∆T. Convective heat transfer was observed to increase with both temperature

drop and rotation rate proportional to Ω1/3∆T . Retrograde zonal velocities were measured at

speeds up to 0.02 times the tangential speed of the outer wall of the vessel. These velocities

scale linearly with rotation rate and imposed temperature gradient; Uφ ∼ Ω∆T. Power spectra

of temperature fluctuations exhibit a well defined knee at a frequency which is characterized by

ballistic velocities. The knee frequency is thought to be associated with the convective motions

(i.e. the energy injection scale for the underlying fluid motion). We observe a sensitive dependence

of heat flux on an applied magnetic field: heat transfer concentrates in the equatorial region with

an applied magnetic field parallel to the rotation axis.

In the context of Earth’s outer core, our observations imply a thermal Rayleigh number

Ra = 1022 and a convective velocity near 10−5 m/s. There is likely a knee in the energy spectrum



of outer core fluid motions associated with convective length and time scales of 100 m and 2 days.

Heat flux measurements suggest that persistent inhomogeneity in the geomagnetic field may cause

inhomogeneities in the formation of the inner core.
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Chapter 1

INTRODUCTION AND BACKGROUND

Fluid motions in Earth’s outer core have a direct effect on several prominent features of our planet.

Transfer of angular momentum between the core liquid and the mass lying above it may induce

changes in the rotation rate of Earth, i.e. the length of day. Persistent spatial inhomogeneity

in heat transfer due to outer core flow dynamics may be reflected in the behavior of the mantle,

which may in turn affect the motion of the crust, i.e. plate tectonics. Perhaps most interesting,

liquid motion in the outer core underlies the existence of Earth’s magnetic field. It is likely that

the dramatic reversals of the magnetic poles, as well as other magnetic field dynamics are tied to

core fluid motions. The experiments described in this dissertation are motivated by the need for a

better understanding of the dynamics of Earth’s liquid outer.

The discussions in this chapter will be structured as follows. First, the interior of the

Earth will be described in some detail, focusing on the fluid outer core. In the next section, we

will discuss similarities and differences between the outer core and the experiments presented in

this dissertation. Then, a review will be presented of previous centrifugal convection experiments

and some congruent numerical and analytical work. Finally, a brief outline will be given of the

remaining chapters.

1.1 Earth’s interior and its magnetic field

How do we know the state of the inaccessible depths of Earth’s interior? As of 2003, the deepest a

person has ever ventured into Earth’s core is 3585 meters in the East Rand mine of South Africa, a

mere 5/1000 of the way to Earth’s center. Knowledge of the deeper reaches has been obtained only

by indirect means. For example, one may deduce that the Earth’s density is inhomogeneous with

the following reasoning. The mass of the Earth can be deduced from its orbital motion through

the solar system; it is 5.97 × 1024 kg. The average density of rocks in the crust varies from 2.7

to 3.3 g/cm3, which is less than the average density of the Earth, about 5.5 g/cm3. Furthermore,

measurements of Earth’s precession and oblateness reveal that the moment of inertia of Earth is

1
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Figure 1.1: Radial profiles of pressure and density taken from the preliminary reference Earth

model (PREM) [23].

I = 0.33MR2, which is less than the value for a sphere of constant density I = 0.4MR2. These

facts imply that Earth’s interior is inhomogeneous and of higher density towards its center. Perhaps

this is unsurprising since the material at the center of the Earth is being compressed under the

enormous weight of mass at larger radii. But compression alone appears not enough to account for

the larger density at the deepest depths. This fact and a great wealth of more information about

Earth’s interior is obtained with measurements of seismic waves produced by earthquakes in the

crust that propagate through the core.

Global arrays of three-component, broad-band seismographs have allowed great advances in

knowledge of Earth’s interior. Sound velocity vs. depth profiles and the period of free oscillation

of the seismic waves are used to develop self consistent models, which specify the density, pressure,

and elastic moduli as a function of depth. For example, fig. 1.1 shows radial density and pressure

profiles. A recent and important example of such a model is called the preliminary reference Earth

model (PREM) developed by Dziwolski and Anderson [23]. A good introduction to PREM is

provided in a book by Poirier [50].

A fairly detailed picture of Earth’s interior may be developed based on PREM or similar

seismic models. I will first describe this picture and then describe the methods and assumptions

2



from which the picture is arrived at from PREM data.

The volume of the Earth is divided into four main regions: a solid inner core of mostly

iron, a iron-rich liquid outer core, a heterogeneous mantle composed of rock, and the crust at

the surface. Seismological models like PREM indicate that the density increases with depth in a

manner consistent with adiabatic compression until the bottom of the mantle. At that depth there

is a sharp increase in density that must indicate a different material. Due to its abundance on

Earth, the Sun, and meteorites, iron is the most likely material below the mantle [69]. The inner

core boundary lies at a radius of 1220 km . Nearly three times this size, the core-mantle boundary

is at a radius of 3480 km . The crust occupies only about top 25 km of the Earth’s surface, which

is 6371 km in mean radius. The boundaries between all of these regions are likely very rough and

the above quoted radii are an approximate average over the boundary.

The inner core boundary is at a temperature of about 5000 K and a pressure 330 GPa . The

outer core is predominantly iron, alloyed with one or more lighter elements. Some candidates for

the lighter elements are silicon, sulfur, and oxygen. They comprise about 10 percent of the alloy by

weight. The temperature at the core-mantle boundary is about 3800 K at a pressure of 130 GPa.

There is a discontinuous jump in temperature (∼800 K) crossing the boundary from the outer

core to the mantle associated with a change in the chemical composition. The mantle is a solid

capable of plastic deformation and is composed primarily of iron, magnesium, aluminum, silicon,

and oxygen silicate compounds. Near the top of the mantle (700 km depth) the temperature is

1900 K and the pressure is around 20 GPa .

The method by which velocity and free oscillation periods of seismic waves are used to

construct models relies on the approximations that Earth’s interior is in spherically symmetric,

hydrostatic equilibrium. The success enjoyed by these models suggests that the outer core is indeed

in a nearly hydrostatic state. With these assumptions, The pressure P is related to the acceleration

g and density ρ by

∇P̄ (r) = ρ̄(r)ḡ(r), (1.1)

3



where here and throughout this section the overbar refers to quantities averaged over polar and

azimuthal angle and bold characters represent vectors. The centrifugal acceleration causes a slight

departure from spherical g, but this feature is often ignored since, at most, the centrifugal ac-

celeration is only 0.3% of gravitational acceleration. Seismological models also assume that the

fluid outer core is isentropic and chemically homogeneous. This allows one to derive from eq. 1.1

relations for temperature, density, and chemical potential as a function of radius in the outer core.

For example the pressure gradient of eq. 1.1 may be rewritten,

∂P

∂r
=

(
∂P

∂T

)

S

∂T

∂r
, (1.2)

∇P =
ρcp

α

∇T

T
. (1.3)

where the basic thermodynamic relationship (∂P/∂T )S = ρcp/αT is used to introduce the

heat capacity cp and volumetric thermal expansion coefficient α. Then combining eq. 1.1 and

eq. 1.3 the so-called adiabatic temperature gradient in Earth’s core is the solution to

∇T̄ (r) =
ᾱ(r)T̄ (r)ḡ(r)

c̄p(r)
. (1.4)

Similar manipulations using thermodynamic relationships yield first order differential equations

for average density ρ and chemical potential µ,

∇ρ̄(r) =
ρ̄(r)ḡ(r)
ūs(r)2

, (1.5)

∇µ̄(r) = ᾱξ(r)ḡ(r). (1.6)

where us is the speed of seismic compression waves, and αξ is the compositional expansion coeffi-

cient. With seismic measurements of us and a second equation relating g to ρ,

∇ · ḡ(r) = −4πGρ̄(r), (1.7)

one may in principle solve Eqns. 1.5 and 1.7 for g and ρ. G is the gravitational constant. Then

using these solutions and assuming the expansion coefficients and specific heat are constant in the
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core, the other equations 1.1, 1.4, and 1.6 may also be solved to yield radial profiles similar to

those shown in fig. 1.1.

Another source of information about the deep interior of the Earth is it’s magnetic field.

Depending upon the locale of the measurement, Earth’s magnetic field is typically 5× 10−5 T. In

1600, William Gilbert correctly suggested that the source of the magnetic field lies deep within

Earth’s interior [24]. Although not a perfectly spherical lodestone as Gilbert surmised, there are

in fact three sources within the Earth which generate its magnetic field: permanent magnetism,

magnetotelluric currents, and the geodynamo. Permanently magnetized minerals like iron and

magnetite in the crust account for less than 0.1% of the observed field. Although the magnitude

of local crustal magnetism may be comparable to 10−4 T, the spatial scales are disordered and

small relative to the size of the planet. Therefore crustal permanent magnetism is highly unlikely

to be responsible for a field with global structure. Furthermore, permanent magnetism is confined

to the crust since just below the crust temperatures are above the Curie point.

Electric currents are induced in the core due to Earth’s motion through the magnetic fields

of other planets and the sun. These so-called magnetotelluric currents give rise to magnetic fields

which make a small contribution to Earth’s full magnetic field. Magnetotelluric magnetic fields

are identified by their time dependence which is simply related to the orbits of the Earth, the sun,

and other planets.

The third and dominant source of Earth’s magnetic field is the geodynamo. Several centuries

after Gilbert, Joseph Larmor, in 1919, was the first to suggest that the magnetic field of cosmic

bodies may originate from the motion of electrically conducting fluid within the body, i.e. a

dynamo [41]. The dynamo process is believed to be responsible for the magnetic field of most

planetary, stellar, and galactic magnetic fields. The motion of electrical conductors, including

fluids, in the presence of a magnetic field causes electric currents in the fluid. This is called

Faraday induction. The induced currents are accompanied by magnetic fields, which may reinforce

the original magnetic field. If so, a positive feedback loop can exist where a magnetic field induces

currents, which in turn, produce more magnetic field, which induce more currents, and so forth.
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In this case the zero magnetic field solution to the governing equations is unstable to a growing

magnetic field solution. The fact that the Earth has a large scale dynamic magnetic field indicates

that the liquid iron outer core is in motion. The kinetic energy of the flowing iron is converted

into magnetic energy via the dynamo process and then dissipated as heat by Ohmic dissipation of

the electric currents.

Observations of Earth’s magnetic field provide more information than the simple fact that

the fluid outer core is in motion. Measurements reveal broadband variations in time and space,

which suggest that the outer core motion is turbulent. Decomposed into a sum of spherical har-

monics, the current surface field is primarily dipole (about 70 % of the power in the observable

field), but shows complicated structure up to spherical harmonic degree l = 23. An approximate

expression for the power in the different degrees is [40]

log10Wl ≈





−3.270− 0.569l, for 2 ≤ l ≤ 12

−10.83− 0.0114l, for 16 ≤ l ≤ 23
(1.8)

Permanent magnetism in the crust is thought to be responsible for the higher degree structure,

l ≥ 16. The 2 ≤ l ≤ 12 structure is thought to originate from the outer core, having great enough

spatial scale to avoid the filtering of the crust and mantle. This portion of field is referred to as the

main field. In addition to the spatial structure, the main field varies on time scales between 1 and

105 years. These temporal dynamics are called secular variation. A salient feature of the secular

variation is an overall westward drift of the spatial structure. The drift is latitude dependent and

irregular in time. The westward drift may be caused by zonal flow (i.e. azimuthal flow) of the

liquid in the outer core. An estimate of that velocity for mid-latitude is about 10−4 m/s. An

excellent review of our current understanding of the main field and numerical simulations was

written by Roberts and Glatzmaier [54].

What is the energy source for the fluid motion that is responsible for the rich dynamics

observed in the main field? The answer to this question is the topic of ongoing research and to

a large extent the topic of the work presented in this dissertation. One possible mechanism for

driving fluid flow in the outer core is forces due to precession of Earth’s rotation (e.g. [42]). A
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more likely candidate and the focus of the discussion here is buoyancy driven convection.

There are two types of convection in Earth’s outer core: thermal and compositional. Let us

first consider compositional convection, where the presence of less dense elements in the fluid give

rise to buoyancy forces. The fluid in the outer core primarily consists of iron mixed with one or

more lighter elements in an approximately 10:1 ratio by weight [1]. As heat is carried out of the core

by the fluid motion and conduction, the temperature at the inner core is ever so slowly dropping.

Since the pressure does not drop with the temperature, the boundary where iron becomes solid is

pushed to larger and larger radii. That is to say, the inner core is growing. As the iron solidifies

on the inner core boundary, fractionation causes an accumulation of the lighter elements in the

liquid near the inner core. Buoyancy forces float this light-element-rich mix towards the surface of

the outer core. In this way the growth of the inner core is self promoting. The more it grows, the

more the light elements are released to stir the outer core. The more the outer core is stirred, the

more heat is carried out of the core thereby lowering the temperature and promoting more inner

core growth. It should be noted, that the low thermal conductivity of the mantle likely acts as a

bottle neck for heat leaving the outer core, limiting the rate of cooling.

Thermal convection is similar to compositional convection, but slightly more complicated.

There are several possible heat sources which may drive thermal convection in Earth’s core. One

is the heat of fusion which is released at the inner core boundary as it grows. Another possibility

is simply the original heat from the formation of Earth. In this case, the Earth is still hot, but

cooling off via convection and conduction through the core and mantle and radiation from the

surface. A third possibility, which is more controversial, is the existence of radioactivity in the

core. It is known that the vast majority of heat flux through the crust is due to radioactive decay

in the mantle. It is debated to what extent radioactive elements (particularly potassium-40) add

to heat production in the core [53]. Another possible heat source is viscous dissipation of motion,

perhaps due to tidal forces caused by the moon’s gravity.

In order for thermal convection to occur in some region of the Earth’s core, it is necessary

that the local temperature gradient have a steeper slope than that of the local adiabatic tem-
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Figure 1.2: Illustration of fictitious density and adiabatic gradients. The gradient is unstable to

convection at small radii and stable at large radius.

perature gradient. The adiabatic temperature gradient is the temperature profile solely due to

compression, the solution of eq. 1.4. Even without considering convection the adiabatic gradient

conducts a great deal of heat out of the core. The heat sources in the core must exceed the heat

conducted along the adiabatic gradient for convection to occur. To better understand this idea,

consider a fluid parcel displaced a distance δr from its starting point to a larger radius. Adia-

batic expansion will decrease its density by δρ (and also its temperature by δT ). If the actual

density (temperature) gradient is shallower than the adiabatic gradient, then the fluid parcel will

be heavier than the surrounding fluid and sink back to where it started. If the actual density

(temperature) gradient in the fluid is steeper than the adiabatic gradient, then the fluid parcel

will be less dense than the surrounding fluid and experience a buoyant force to rise to even larger

radius. The first case describes a stable gradient, while the second is unstable to convection. This

concept is illustrated in fig. 1.2.

There are several questions hovering about the idea of convection as an energy source for

the geodynamo. How much power must the convective motions supply to sustain the geodynamo?

One might form a minimum guess based on the Ohmic dissipation that would occur in Earth’s core
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due to the magnetic field which is observable at the surface. Roberts et al. estimate from 6 MW

[53]. Speculating about how much more dissipation might occur due to smaller scale magnetic field

structure, which we cannot measure at the surface, Roberts et al. estimate up to 2 TW . Total

heat flux leaving the outer core is estimated to be in the range 1-10 TW (e.g. [9], [39]). Is this

enough power to drive the geodynamo? How much of this is due to convection and how much due

to conduction down the adiabat? How much power is in the small scale magnetic field within the

core? This genre of questions motivates the experiments presented in this dissertation. We hope

to shed some light on the mechanisms of convection in rotating, spherical systems. We also touch

upon the interaction of magnetic fields with the convective state.

To summarize, the basic state of Earth’s outer core is close to hydrostatic equilibrium. The

fluid motion which drives the geodynamo is a relatively small departure from this adiabatic base

state. Nonetheless, the structure and dynamics of the main geomagnetic field suggest the core is

highly turbulent with strong zonal flow as well. Turbulent convection with strong zonal flow and

large conductive heat transfer are characteristics observed throughout the experiments presented

in this dissertation.

1.1.1 Equations of motion

Before continuing further I will present the equations of motion governing the fluid motion in the

core. These are taken from an analysis by Braginsky and Roberts [8].

∂tρ = −∇ · (ρv), (1.9)

ρ∂tv + ρ(v · ∇)v = −∇p + ρg − 2ρΩ× v + ρFB + ρFν , (1.10)

ρ∂tS + ρ(v · ∇)S = −∇ · IS + σS , (1.11)

ρ∂tξ + ρ(v · ∇)ξ = −∇ · Iξ, (1.12)

∇ ·B = 0, (1.13)

∂tB + (v · ∇)B = ∇× (v ×B)−∇× (η∇×B). (1.14)
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The first equation is the continuity equation, expressing conservation of mass with ρ and v repre-

senting density and fluid velocity. The second is the Navier-Stokes equation with buoyancy force

ρg, Lorentz force ρFB = J×B, and Coriolis force −2ρΩ×v included. The pressure, gravitational

acceleration, and rotation vector of the Earth are p, g, and Ω respectively. The viscous force is

ρFν = ∇ · πν , (1.15)

where

πν
ij = 2ρν(eij − 1

3
ekkδij) (1.16)

and eij = 1
2 (∇ivj +∇jvi) is the strain rate tensor and ν is the kinematic viscosity of the fluid. The

Navier-Stokes equation is a statement of conservation of momentum in the fluid. The third equation

governs entropy S, with IS representing entropy flux and σS representing entropy production. The

mass fraction is ξ and Iξ is the mass flux. The magnetic field B is solenoidal, i.e. there are no

magnetic monopoles. This fact is embodied in eq. 1.13. The dynamics of the the magnetic field is

governed by the induction equation (eq. 1.14), wherein η is the magnetic diffusivity.

1.2 Experiment compared to the Earth

The experimental apparatus consists of a 60 cm diameter outer sphere and a concentric 20 cm

diameter inner sphere. In the space between the spheres is 110 kg of sodium. The inner sphere is

cooled by pumping kerosene at a constant temperature through its interior. The outer sphere is

heated with an array of heat lamps. The spheres co-rotate at rotation rates up to 25 RPS. The

centrifugal acceleration due to the rotation and the temperature gradient between the cool inner

and hot outer sphere cause buoyancy forces to drive convective motion in the liquid sodium.

In principle, the equations of motion are the same for the experiment as those for Earth’s

outer core ( eqs. 1.9 - 1.14), but some simplifications may be made. The fluid may be approximated

as incompressible, ∇ · v = 0, except for in the buoyancy force term of the Navier-Stokes equation

(Boussinesq approximation). (At the highest rotation rates of the apparatus, there actually is

compression in the fluid which gives rise to density changes of order 0.1%.) For the buoyancy
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force, compressibility manifests in the simple equation of state, ρ = ρ0(1 − α(T − T0)). The

resulting buoyancy force is

Fbouyancy = (ρ− ρ0)Ω2rr̂ = −ρ0αT̃Ω2rr̂, (1.17)

where T̃ = T − T0 is the deviation of the temperature from the conductive heat profile T0. The

centrifugal acceleration is Ω2rr̂, where r̂ is the cylindrical radial unit vector. The entropy equation

may be recast in terms of temperature, perhaps an easier form to interpret. The mass fraction

equation is omitted since there is no compositional convection in our experiment; the medium is

pure sodium and motion is due solely to thermal convection. It should be noted that centrifugal

compositional convection experiments in the same geometry as the presented experiment show

very similar character of flow [14]. The dimensional equations of motion for the experiment are

then,

∇ · v ≈ 0, (1.18)

∂tv + (v · ∇)v = −∇p

ρ0
− α∆TΩ2rr̂− 2 Ω× v + (∇×B)×B + ν∇2v, (1.19)

∂tT + (v · ∇)T = κ∇2T, (1.20)

∇ ·B = 0, (1.21)

∂tB = ∇× (v ×B) + η∇2B. (1.22)

The diffusive term in the induction equation has been simplified using vector identities and the

fact that the magnetic field is solenoidal, ∇ ·B = 0. These equations may be made dimensionless

with the substitutions,

t → t′
D2

ν
, (1.23)

v → v′
ν

D
, (1.24)

r → r′D (1.25)

T̃ → T̃ ′∆T
ν

κ
, (1.26)

B → B′ νB0

D
√

Ωηµ0
, (1.27)
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where D is the size of the gap between the inner and outer sphere (20 cm ), ∆T is the temperature

drop from the inner sphere to the outer sphere. B0 is the strength of the applied magnetic field,

and µ0 is the magnetic permeability of sodium. Dropping the primes the resulting equations are

∇ · v ≈ 0, (1.28)

∂tv + (v · ∇)v = −∇p−RaT̃ rr̂− E−1k̂× v + Λ∇×B×B +∇2v, (1.29)

∂tT + (v · ∇)T = Pr−1∇2T, (1.30)

∇ ·B = 0, (1.31)

∂tB = ∇× (v ×B) + Pm−1∇2B, (1.32)

where k̂ is a unit vector aligned with the rotation axis. There are now five dimensionless numbers

which characterize the problem: Ekman number E, Rayleigh number Ra, Elsasser number Λ,

Prandtl number Pr, and magnetic Prandtl number Pm.

E =
ν

2ΩD2
, (1.33)

Ra =
α∆TΩ2D4

νκ
, (1.34)

Λ =
B2

0

ρηΩµ0
(1.35)

Pr =
ν

κ
, (1.36)

Pm =
ν

η
. (1.37)

The Ekman, Rayleigh, and Elsasser numbers are nondimensionalizations of the three control pa-

rameters used in the experiment, which are respectively, the rotation rate, the temperature drop

across the gap between the spheres, and the applied magnetic field. The Ekman number is a nondi-

mensionalization of rotation rate with the viscous diffusion time. It is an important parameter in

the dynamics of viscous boundary layers in rotating flows. The Rayleigh number characterizes the

competition between convection and diffusion. One way to interpret Ra is as a ratio of the con-

vective fluid velocity squared to the diffusive velocities due to viscosity and temperature diffusion.

That is, the ballistic estimate for a fluid element at a temperature ∆T colder than its neighbors

is vb = DΩ
√

α∆T , the viscous diffusive velocity is vν = ν/D and the thermal diffusive velocity
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experiment Earth’s outer core

Ekman 4.6× 10−7 to 5.5× 10−8 10−15 [22]

Rayleigh 4.2× 106 to 2.8× 109 1020 to 1030 (e.g. [32], [48])

Elsasser 0 to 1.9× 10−4 1

Prandtl 0.01 10−1to 10−2 (e.g. [53], [48])

magnetic Prandtl 1.2× 10−5 10−6 [53]

Table 1.1: Comparison of values of dimensionless numbers in the experiments and Earth estimates.

is vκ = κ/D. The Raleigh number is then Ra = v2
b/vν/vκ. The Elsasser number is the ratio

of Lorentz forces to Coriolis forces. The two Prandtl numbers are properties of the fluid which

remain very close to constant throughout the experiments. Table 1.1 shows a comparison of the

nondimensional numbers of the experiment and Earth’s outer core.

Two obvious differences between the Earth’s outer core and our experiment are the direction

of gravitational acceleration and the temperature gradient. Opposite the Earth, the experiment is

cooled at its center and heated on the outside. Earth’s gravitational acceleration is directed radially

inward with spherical symmetry while the centrifugal acceleration in the experiment is radially

outward with cylindrical symmetry. However, since both the temperature gradient and direction of

acceleration are reversed, the buoyancy forces are mathematically nearly equivalent; two negative

signs in the buoyancy term in the Navier-Stokes equation cancel. What about the difference

between spherical and cylindrical “gravity”? This difference is mediated by the effects of rotation.

In particular, Coriolis forces tend to confine the motion of the fluid to planes perpendicular to

the rotation axis. In other words, the components of spherical gravity which are not cylindrically

radial are inhibited by rotation to do significant work on the fluid. This fact is made clear by the

Taylor-Proudman theorem. If the two dominant terms in the Navier-Stokes equation are pressure

and the Coriolis force, a geostrophic balance, we have

2ρΩ× v = −∇p. (1.38)

Taking the curl of this equation and assuming an incompressible fluid, ∇ · v = 0 we’re left with a
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mathematical restatement of the Coriolis force effects mentioned above,

(Ω · ∇)v = 0. (1.39)

The Taylor-Proudman theorem is embodied by eq. 1.39. The theorem states that there may be no

gradients in velocity along the direction of the rotation axis; the motion is two dimensional in planes

perpendicular to Ω. The Taylor-Proudman theorem as manifested in rotating convection was

demonstrated in a direct comparison of spherical and cylindrical gravity in numerical simulations

by Glatzmaier and Olson [27]. They found very similar character of convection in both cases.

Further support for the idea that geostrophic convection takes a two dimensional form is provided

in asymptotic analyses by Roberts (1968) [52] and Busse (1970) [10].

In addition to the difference in shape between cylindrical and spherical gravity, the exper-

iment is subjected to Earth’s gravity, vertical and anti-parallel with the rotation vector of the

experimental vessel. In the absence of rotation, this acceleration due to Earth’s gravity would

drive so-called natural convection between the spherical shells. The expected power-law depen-

dence between natural convective heat transfer and the Rayleigh number is h ∼ Raα with α

between 0.25 and 0.3. For example, an experimental study with liquid sodium convection around

a heated cylinder far from boundaries is [34]

Nu = 0.53(RaPr)1/4, (1.40)

Where Nu is the Nusselt number, defined as the ratio of total heat transfer to that due solely

to conduction. Then Nu − 1 represents the dimensionless convective heat transfer. For air in

the annular gap between concentric spheres (like our geometry) the exponent is slightly higher

Nu ∼ Ra0.276 [7]. Neglecting the differences between vertical plates and concentric spheres, the

onset of natural convection for our apparatus occurs at a temperature drop of order 10−4 ◦C.

In other words, unless it is suppressed by Taylor-Proudman type constraints, natural convection

is likely to be present for even the lowest temperature drops and rotation rates attained in the

experiment. One might expect a cross-over from natural convection to centrifugal convection at

some ∆T for a given rotation rate. In our results presented later, this cross-over is assumed to be
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at or before the predicted onset of centrifugal convection.

Another significant difference between Earth’s outer core and the experiment is that the

extremely high pressure in the outer core gives rise to effects related to compressibility as discussed

in the introduction. Although not absent, these effects are much less severe in the experiment. It

is straightforward to compute the effects of compression in the experiment since the centrifugal

acceleration is known, ac = Ω2r. Using eq. 1.4 with cylindrical radius r instead of spherical r and

substituting ac for g,

∇T̄ =
αT̄Ω2r

cp
. (1.41)

Assuming the boundaries are also cylindrically symmetric, one may integrate this to find the

adiabatic temperature profile,

T̄ (r) = Tiexp

(
αΩ2(r2 − r2

i )
2cp

)
, (1.42)

where Ti and ri are the temperature and radius of the inner sphere. With the inner sphere at a

typical temperature of 107 ◦C, the resulting temperature profiles for a variety of rotation rates

are shown in fig. 1.3. (It is perhaps interesting to note that at the highest rotation rate attained

with the experiment, 25 Hz, the centrifugal acceleration at the largest radius of the experiment

is nearly 1000g.) Typical temperature drops reached in the experiment are between 2 and 20◦ C.

The adiabatic temperature difference is 0.63◦ C at 25 Hz and is therefore significant for the lowest

temperature drops.

Perhaps the most significant difference between the experiment and Earth’s core is the lack

of a dynamo in the experiment. Some of the presented experiments were conducted with magnetic

fields applied with external Helmholtz coils in an attempt to compensate for the lack of a dynamo.

The magnetic field in Earth’s core certainly plays an important role in the dynamics of the fluid

motion. It is nonlinear interactions between the velocity field and magnetic field which sets the

magnitude of the main field around 10−4 T. One can imagine a thought experiment in which the

magnetic field is reset to zero magnitude. If the zero field solution is unstable in the fluid motion

of the outer core, the magnetic field would begin to grow. It would continue to grow until Lorentz

forces are large enough to modify the fluid flow in such a way as to stem further growth, but

15



0.1 0.15 0.2 0.25 0.3
radius (m)

107

107.2

107.4

107.6

107.8

te
m

p
e

ra
tu

re
 (

C
)

25 Hz

20 

15

10

5

Figure 1.3: Adiabatic temperature profiles for the different rotation rates investigated, assuming a

typical inner sphere temperature of 107◦ C. The inner sphere radius is 0.1 m and the outer sphere

radius is 0.3 m.

16



maintain it’s current value. This is presumably the current situation in the Earth’s core; there is

a balance between Lorentz forces and the driving forces of fluid motion. Some suggest that there

is a three way balance between Lorentz, Coriolis, and buoyancy forces (e.g. [57]). For most of the

measurements taken in the experiments, magnetic field is absent, in which case the force balance

is between Coriolis and buoyancy or inertia and buoyancy. For the experiments with an imposed

magnetic field the Elsasser number is, at most, about 10−4. At this level, the magnetic field has

some influence, although not very dramatic, on the observed dynamics.

1.3 Review of related work

The first experimental investigation of centrifugally driven convection as a model of planetary cores

was conceived and implemented by Busse and Carrigan in 1976 [17] [18]. Since then, there have

been a number of similar experiments, which I will divide into two categories: close to onset and

fully developed convection. The experiments near onset (Busse and colleagues [17], [18], [19], [21],

[5], Chamberlain and Carrigan [20], and Jaletzky [35]) have largely confirmed the early analytical

work of Busse [10] and Roberts [52]. These studies were mostly in water, with a few in mercury.

The character of fluid flow near onset is two dimensional and periodic in space and time.

The spatial periodicity manifests in an array of column-like vortices which form a belt around

and tangent to the inner sphere. The region where the vortices form is often called the tangent

cylinder. The diameter of the vortices is smaller than the shell gap and decreases as rotation rate

increases. The flow is approximately two-dimensional outside of thin boundary layers on the outer

sphere. That is, the columnnar vortices extend from the outer boundary of the bottom hemisphere

to the outer boundary of the top hemisphere with any slice through the flow perpendicular to the

rotation axis revealing a very similar flow pattern. These columns also tilt in a prograde sense

with respect to the sphere rotation and precess around the inner sphere in time. Busse (1970)

predicted the columnar structure, while the frequency, length scales, and critical value of Rayleigh

number for convection onset come from asymptotic analysis by Roberts (1968),

ωc ∼ E−2/3, (1.43)
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δ ∼ DE1/3, (1.44)

Rac ∼ E−4/3. (1.45)

It should be noted that these scaling laws are obtained for very small Ekman numbers and large

Prandtl number (≥ 1). Zhang 2000 [70] presented the expected scalings for very low Prandtl

number (10−4) and Ekman number,

ωc ∼ 1, (1.46)

δ ∼ D, (1.47)

Rac ∼ E−1/2. (1.48)

The Prandtl number of sodium is PrNa = 0.01. As will become apparent in the chapters on

experimental results, the observed behavior in our experiments are not entirely consistent with

either extreme.

Experiments conducted far beyond the onset of convection, have been conducted in a variety

of fluid media: in order of decreasing Prandtl number, silicon oil (Pr=13), water (Pr=7), gallium

(Pr=0.03), and sodium (Pr=0.01). Cordero did experiments to investigate convection in transition

from the regime of regular patterns described above to irregular turbulent convection [21]. Cardin

and Olson [14] did compositional convection experiments in water and a more dense mixture of

water and sucrose. They found qualitatively similar results to those observed in thermal convec-

tion. They also did thermal convection experiments which they modelled with a quasi-geostrophic

numerical code [15]. They observed turbulent convection characterized by ribbon-like plumes near

the equatorial plane and mean zonal flows driven by Reynolds stresses. The typical length scale of

the turbulent plumes was found to remain close to that predicted near onset of convection. They

observed retrograde zonal flows at the inner sphere and prograde at the outer.

Sumita and Olson have conducted a series of experiments in a hemispherical geometry at

an Ekman number E = 4.7 × 10−6. They studied the effects of inhomogeneous heating on the

vessel boundary [59], [60]. They found that a large scale spiral flow with a sharp front develops.

This front was suggested as a cause for certain features of the secular variation in Earth’s main
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field. They suggested flow in the outer core may be composed of fast jets and slower zonal flows

caused by inhomogeneous heat transfer at the core-mantle boundary. In water experiments with

homogeneous boundary heating, they observed convection from onset up to 45 times the critical

Ra [61]. Increasing Ra, convection first developed at the inner sphere in the form of prograde

spiralling, 2-D turbulent plumes. For higher Ra, plumes also develop at the outer sphere, mixing

with the inner sphere plumes to create a fine scale geostrophic turbulence. The results obtained

with water were suplemented by using silicon oil, which allows for much higher values of Ra.

They report values of Ra ≤ 600Rac. A scaling for heat transfer was obtained from the combined

results of water experiments and those with silicon oil, Nu ∼ Ra0.41±0.02. They also did two-layer

convection experiments with silicon oil and water and measured heat flux for different thickness

ratios of the two fluids.

In the experiments by Cardin, Olson, and Sumita, the convecting fluid and the vessel were

transparent. This allowed for qualitative flow visualization with dyes and reflective flakes. In our

experiment, and in much of the work I will describe in the next paragraph, the working fluids are

liquid metals, which are unfortunately opaque. Therefore other means are necessary for obtaining

flow dynamics.

Aubert, Gillet and colleagues in Grenoble have conducted convection experiments in a vessel

with a spherical outer wall and a cylindrical inner boundary. They used gallium and water [2].

They reach Ekman numbers down to 7× 10−7 and Ra up to 80 times critical in water and 4 times

critical for gallium. They used ultrasonic Doppler velocimetry to obtain scaling laws for velocities

and vortex size as a function of Ekman, Rayleigh, Prandtl, and Nusselt numbers. They found that

their measurements agreed well with scaling laws derived from a quasi-geostrophic model similar

to that used by Cardin and Olson in the numerical work mentioned above. They found

ur =
ν

D2

(
RaQ

Pr2

)2/5

E1/5, (1.49)

δr = D

(
RaQ

Pr2

)1/5

E3/5, (1.50)

uzonal

ur
= Re

2/3
l E1/6, (1.51)
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(1.52)

where ur and uzonal are the radial and zonal velocities, δr is the radial size of vortex structures,

Rel ≡ urδr/ν is the local Reynolds number, and RaQ ≡ RaNu is the heat flux based Rayleigh

number. In addition to these scaling laws, they observed that zonal flows were much larger in

magnitude in gallium than in water. Supplementing their experiments, they found the scaling laws

in good agreement with results from a quasi-geostrophic numerical model [3]. Gillet in collaboration

with Chris Jones has more recently used this model to develop a scaling law for ur in terms of the

Nusselt number of the form [25],

Pel =
urL

κ
=

(
Ra

Rac
Nu− 1

)1/2

. (1.53)

Quantitative comparisons of results of the gallium experiments and certain aspects of the Sumita

and Olson experiments to the results of our experiment will be presented in chapter 4.

A great deal of numerical work has addressed the problem of convective flows in rotating

spheres and possible resulting dynamo action. Good reviews of these works are given by Busse

[11], Zhang and Schubert [70], and Roberts and Glatzmaier [54]. A recent review of experimental

work related to dynamos, but not limited to convection experiments is presented by Nataf [46].

1.4 Outline of this dissertation

Chapter 2 is a description of the experimental apparatus. It is written in extreme detail for the

sake of reproducibility and future grad students who inherit the apparatus. The third chapter, also

packed with technical detail, delineates the data acquisition systems and methods for processing the

data. The experimental results and accompanying interpretations are given in chapter 4. These

results are divided into five sections: temperature standard deviation, temperature probability

density functions, zonal velocity, heat transfer, and power spectra. Finally in chapter 5, the

experimental results are summarized and extrapolated to predict certain quantities and behavior

in the outer core of the Earth.
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Chapter 2

EXPERIMENTAL APPARATUS AND METHODS

This chapter is a detailed description of the apparatus and methods used in the experiments. The

first section describes the vessel in which the convecting sodium resides. Each of the following

four sections is devoted to one of the peripheral systems necessary for running the experiments:

cooling, heating, rotation, and magnetic fields. The last section describes the process by which the

sphere is filled with sodium. A schematic of the vessel and many of the stationary peripheral parts

is shown in fig. 2.1. The physical properties of sodium and how they depend upon temperature

are delineated in table 2.1. The data in table 2.1 comes from the Handbook of thermodynamic and

transport properties of alkali metals edited by Roland W. Ohse [47].

2.1 Rotating assembly

Throughout the description of the device I will use names for its parts in analogy to the Earth. For

example, equator refers to the intersection of the surface of the spheres with the plane perpendicular

to the rotation axis midway between the top and bottom of the spheres (the equatorial plane).

The poles are the two points where the rotation axis intersects the surface of the sphere.

The outer sphere is composed of two thick hemispherical shells which both screw into a

ring at the equator. (The hemispheres, the ring and the inner sphere were machined by Bechdon

corporation). A teflon-encapsulated silicon o-ring is compressed between the mating surfaces of the

two hemispheres. The walls are 2.54 cm thick aircraft alloy titanium (Ti-6Al-4V). The equatorial

ring which binds the two hemispheres together is the same titanium alloy, but is plated with nickel

to prevent gauling in the threads.

The bottom hemisphere has a 8.89 cm diameter, hollow titanium shaft extending from

the south pole towards the center. The inner sphere screws into this bottom shaft so that it is

spherically concentric with the outer sphere. A metal gasket coated with Loktite 515 forms a

seal impervious to sodium and kerosene where the inner sphere meets the bottom shaft. The top

hemisphere, likewise, has a shaft extending from the north pole towards the inner sphere. A pair
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T ν × 103 ρ cp k α× 104 κ Pr

(K) (cm2/s) (g/cm3) (J/gK) (W/cmK) (1/K) (cm2/s)

371 7.3 0.923 1.43 0.911 2.36 0.69 0.011

380 7.12 - - - - - -

390 6.81 - - - - - -

400 6.51 0.917 1.41 0.878 2.38 0.68 0.0096

410 6.25 - - - - - -

420 6.01 - - - - - -

430 5.78 - - - - - -

440 5.58 - - - - - -

450 5.39 0.906 1.38 0.834 2.42 0.67 0.0081

460 5.21 - - - - - -

470 5.05 - - - - - -

480 4.90 - - - - - -

490 4.76 - - - - - -

500 4.62 0.895 1.35 0.798 2.47 0.66 0.007

510 4.50 - - - - - -

520 4.38 - - - - - -

530 4.28 - - - - - -

540 4.17 - - - - - -

550 4.08 0.884 1.33 0.767 2.51 0.65 0.006

Table 2.1: Properties of sodium and their temperature dependence [47].
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Figure 2.1: The experimental apparatus consists of co-rotating, concentric spherical shells, between

which sodium convects.
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of teflon-encapsulated silicon o-rings seal the seam between the top shaft and the inner sphere.

Heat is extracted from the system by pumping kerosene through the inner sphere at a

constant temperature and flow rate. The inner sphere is made of stainless steel. The wall between

the sodium and kerosene is 0.25 cm thick. Inside the inner sphere is another spherical shell with

a 15 cm diameter. As indicated by the dashed lines in fig. 2.1, the kerosene flows in the 2.54 cm

gap between this innermost sphere and the inner sphere wall. A stainless steel tube with 3.81 cm

diameter inserts into the hollow bottom shaft (5.08 cm diameter bore). The kerosene enters the

inner sphere through this tube and exits through the anular gap between the tube and the bottom

shaft wall.

The bottom shaft spans the distance from the inner sphere, through the outer sphere wall

at the south pole, and further down to a pair of bearings and a mechanical seal. The bearings are

two angular contact ball bearings (SKF 7216 BE) placed back-to-back, seated in a stainless steel

base. Also housed in the stainless steel base, the mechanical seal (John Crane type 613) provides

a fluid coupling between the stationary coolant hoses and the rotating bottom shaft.

The top shaft also extends past the upper surface at the north pole of the outer sphere. The

leads from six thermocouples located on the inner sphere pass through the hollow of the top shaft.

These wires connect to a data processing circuit mounted to the top of the shaft. Leads from

instrumentation on the outer sphere also pass through a hole in the wall of the top shaft just above

the outer sphere surface and continue up to the data processing circuit. On the exterior surface of

the top shaft are bearings, slip rings for powering the data circuit, and a pulley. The pulley is a 6

inch diameter, 48 tooth, L-series timing belt pulley for driving the rotation of the sphere. The slip

rings are simply constructed from adhesive backed copper strips over several electrically insulating

layers of Kapton tape.

The bearing on the top shaft (SKF 6016) and the stainless steel base are attached to a

secondary vessel; it is a stainless steel cylinder with 0.95 cm thick walls and floor. A 1.27 cm thick

stainless steel removable lid captures the outer race of the top bearing. The vessel is liquid tight up

to a height sufficient to contain all 110 l of sodium in the unlikely event of a catastrophic rupture
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of the sphere. There are three removable acrylic windows in the sides. The base bolts to the floor

of the cylinder and the outer race of the top bearing is seated in the lid.

2.2 Cooling

The cooling system provides an approximate constant temperature boundary condition at the inner

sphere surface. As mentioned above, kerosene is pumped through the interior of the inner sphere

at a constant temperature and flow rate. The temperature of the kerosene is modulated (between

50 and 100 C) with a heat exchanger to a chilled water loop and also flexible strap heaters wrapped

around part of the coolant piping. The temperature was controlled to within 0.2 ◦ C. Implemented

in a Labview program, a PID algorithm controls a valve in the chilled water line feeding the heat

exchanger. The trottle valve is a needle valve with about 6 turns from closed to fully open position.

The valve stem is rigidly coupled to a stepper motor with a 4:1 gear ratio so that 1560 steps equals

one full turn of the valve. The stepper motor is controlled by the Labview program using the

parallel port of the computer for digital output. The process variable for the control algorithm is

provided by a Keithley 2182 nanovoltmeter/thermocouple meter reading a thermocouple attached

to the outside of a copper pipe in the kerosene loop. A National Instruments GPIB card provides

communication between the computer and the Keithley 2182. A pair of thermocouples is also used

to measure the temperature difference between the kerosene entering and exiting the sphere. This

measurement can be used to approximate the global heat transfer through the system. The flow

rate of the kerosene is not actively controlled, rather the pump is allowed to run at full speed with

no changes in the kerosene loop plumbing. The only causes for variability in flow rate are changes

in the pressure drop across the sphere when the rotation rate is changed and different amounts of

entrained gas in the kerosene. These differences affect the flow rate from day to day, but not during

the collection of data for a given steady state measurement. Most of the pipes in the kerosene

loop are insulated with flexible polyethylene foam tubes to reduce heat loss to room air when the

kerosene is very hot (up to 98 ◦ C for the lowest temperature drops between the inner and outer

sphere). The lower limit for the temperature drop across the sodium is determined by how hot
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Rotation rate (Hz) ∆T (◦C) Rayleigh number

3 2.1-19.8 4.2× 106 − 3.8× 107

5 2.9-20.4 1.6× 107 − 1.1× 108

10 1.7-18.9 3.8× 107 − 4.2× 108

15 0.7-18.1 3.5× 107 − 9.1× 108

20 1.1-16.0 9.8× 107 − 1.4× 109

25 0.6-14.7 8.4× 107 − 2.8× 109

Table 2.2: Range of temperature drops and Rayleigh numbers achieved for different rotation rates.

The lower limit for ∆T was set by the maximum temperature of the cooling fluid, which was

limited by heat loss to room air in the coolant pipes. The upper limit for ∆T was set by the power

of the heater or the cooling capacity of the kerosene heat exchanger, depending on the rotation

rate.

the kerosene is. It is therefore imperative to minimize heat loss from the piping when taking low

temperature drop data.

2.3 Heating

The outer surface of the sphere is maintained at an approximate constant heat flux boundary

condition with an array of stationary heat lamps. The total heat transfer through the system is

limited by the heaters. Table 2.2 shows the range of temperature drops and Rayleigh numbers

reached for each rotation rate.

Heat is provided by up to 10 kilowatts of infrared short wave heat lamps (Heraeus 63061).

Twenty 500 Watt bulbs are fixed to a stationary, curved frame about 2.54 cm from the surface of the

sphere. The bulbs are arranged so that the average heat flux over the surface of the sphere is close

to uniform as the sphere rotates past the bulbs. That is, the light intensity is in an approximate

sine distribution in polar angle. The heat lamp array is located on one side of the sphere. As long
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as the rotation period is small compared to the thermal diffusion time for the outer wall of the

sphere, the heating is also constant in azimuthal angle. The outer wall is 2.54 cm thick titanium

(thermal diffusivity 0.029 cm2/s) so it’s thermal diffusion time is of order 100 s. Data was never

collected at a rotation rate lower than 3 Hz, hence the heating was azimuthally uniform. The heat

lamp array is fixed to a frame surrounding the sphere made from extruded aluminum posts (from

80/20, Inc.). The members of the frame form the edges of a cube. Also mounted on each of the

four sides of the frame are thin stainless steel walls. The purpose of these walls is to minimize heat

transfer between the hot rotating sphere and the cooler walls of the secondary containment vessel.

They reduce the heat transfer due to turbulent air stirred by the rapidly rotating sphere and they

reflect more of the radiation of the heat lamps towards the sphere.

The heaters are powered by a 40 A, 300 V TCR power supply. The power supply is controlled

by a computer with a PCI 6031E National Instruments data acquisition card and running a Labview

program. The Labview program uses a PID algorithm to control the temperature of the outer

sphere based on measurements from a thermistor embedded halfway through the outer sphere

wall. The current and voltage of the heater power supply are recorded with the same Labview

program for an approximate measure of the global heat flux into the system.

For experiments with the largest heat transfer, a second array of heaters was added to the

setup. This six-bulb auxiliary array is very similar to the main array described above. With both

the main array and auxiliary array on at full rated power, about 13 kW is delivered to the heaters.

2.4 Rotation

A range of rotation rates of the sphere between 3 and 25 RPS were controlled within 0.75 - 0.05

percent (better control for higher rotation rates). This allowed us to access Ekman numbers in

the range E = 4.6 × 10−7 − 5.5 × 10−8. The rotation of the sphere is maintained by a 3.35 kW

DC electric motor and another PID control program. The motor is mounted to the top of the lid

of the secondary containment vessel. An L series timing belt and pulley system couples the motor

to the top shaft of the sphere with a 2:1 gear ratio. The rotation rate of the system is obtained
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using a Accu-read optical encoder (755A-07-5-1000-R-OC-1-5-STN). A 2.54 cm diameter rubber

wheel is attached to the shaft of the optical encoder and is kept in contact with the outside of the

drive belt. The optical encoder outputs 10000 TTL pulses/revolution. These pulses are applied

to the input of CD4040 counter used to divide the pulse rate to a low enough frequency to be

sampled using a National Instruments LabPC+ data acquisition card. A Labview program on a

third computer counts pulses from the encoder/counter circuit and computes the rotation speed of

the sphere. The program then uses this speed measurement in a PID control algorithm to control

the motor power supply (2182 Lambda 80 A, 36 V). The power supply only allows for unity gain

remote voltage control. Since the LabPC+ card is only capable of outputting 0-10V, it is necessary

to use an amplifier between the card and the power supply to access the full 0-36V range of the

supply. This amplifier is diagrammed in fig. 2.2 and is powered by a Model HV-1547 1-3000 V, 40

mA power supply (Power Designs Pacific, Inc.).

As delivered from the machine shop the sphere was axisymmetric enough to spin up to

about 10 Hz before shaking due to out-of-balance was too severe to run. The sphere was balanced

in-house for rotation rates up to 30 Hz. Attached to the outside of the secondary containment

vessel, an accelerometer was used to measure the frequency and amplitude of the out-of-balance

oscillations. At the same time, an optical sensor produced a signal with one pulse for each rotation

of the sphere. By observing the phase difference between of the accelerometer signal and the optical

signal and carefully adding weights to the equator of the sphere, the out-of-balance was reduced

to acceptable levels for 30 Hz rotation. Two weights were added: 106g and 156g separated by π/2

in azimuthal angle around the equator.

It is perhaps of interest to the reader that the termination of data collection for this dis-

sertation project was due to the failure of a balancing weight. That is, at around 30 Hz rotation

rate, one of the weights came free from the sphere causing considerable destruction. The weights

are thin slabs of lead, held onto the sphere by one 10-24 screw and a 16th inch thick stainless plate

covering the lead part. At 30 Hz, experiencing about 1000 g centrifugal acceleration, the stainless

plate began to bend. It bent to a large enough radius that it began to collide with heaters and
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Figure 2.2: Amplifier circuit used to control motor power supply.

finally the aluminum frame around the sphere, at which point the screw holding it in place was

sheared off entirely, freeing the weight. The secondary containment vessel did its job well, limiting

the destruction to within its walls. It was a very loud and violent punctuation to about 1 year of

data collection.

2.5 Applied magnetic field

In addition to the rotation rate and temperatures of the inner and outer spheres, a third control

parameter is the applied magnetic field. Magnetic fields up to 3 mT were applied to the system,

which for typical velocities reached in the flowing sodium, provides an Interaction parameter of

order N ≡ B2LD/ρµoηU = 3.6×10−2 and an Elsasser number up to Λ ≡ B2/ρµoηΩ = 1.9×10−4.

A pair of electromagnetic coils in a Helmholtz configuration are fixed to the stationary frame so

that they are concentric with the rotation axis and equidistant from the equator. They are 86 cm

in diameter, each with 300 turns of 18 AWG magnet wire. Though temperature dependent, the

typical maximum current through the coils, each with a 150V power supply, is around 4A.

2.6 Filling the sphere

The spherical vessel is filled with sodium from a 55 gallon fused drum as supplied by Dupont.

The procedure followed during this transfer process is described here. There are two 1/2 inch

NPT tapped holes through the outer surface or the sphere; one at the bottom and one at the top.
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The bottom hole is plumbed to the drum of sodium with heated copper tubing. The top hole is

plumbed to a nitrogen gas system. There is a heated stainless steel dip-tube extending to near the

bottom of the sodium drum. The drum is also plumbed to the nitrogen handling system. Prior to

transfer the drum and sphere are heated until the both the sodium and the sphere are near 120

C. During this phase, the sphere is pressurized, the drum is vented, and the fill line between the

drum and sphere is kept cold. When the sodium and sphere reach 120 C and nitrogen gas can

freely bubble through the sodium, the fill line heaters are turned on. After the fill line reaches 130

C, the sphere is vented and the drum is pressurized with about 4 PSI, thus beginning the transfer

of sodium to the sphere. The plumbing from the top hole on the sphere has a section of coiled

tubing (the so-called pigtail) close to the sphere. The pigtail is kept very cold with dry ice acting

as a one-time shutoff valve for sodium. As the sodium is transferred to the sphere, the pigtail

allows nitrogen to pass freely, but immediately freezes sodium into a solid plug when the sphere

is full. When this point is reached, the sodium in the sphere is further heated to 150 C with the

filling tube still full of liquid sodium (higher than the highest expected temperature during any

experiment). This ensures that the sodium will never expand to a volume larger than the volume

of the sphere (a sure way to cause a leak). With the sphere full of 150 C sodium, the fill line is

frozen by applying dry ice. Sphere heaters are then turned off allowing the sodium to cool and

contract for about five minutes. Finally the plumbing in the top hole in the sphere is replaced by

a stainless steel plug. The next day after all the sodium has returned to a solid state, the fill line

in the bottom hole is replaced by another plug and the filled sphere is ready to run.
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Chapter 3

DATA ACQUISITION AND PROCESSING

3.1 Heat flux, temperature, and magnetic field measurements

Measurements of heat flux were made with several methods. Two heat flux sensors (Thermonetics)

are attached to the outer surface of the outer sphere near the equator, separated by 50 cm az-

imuthally. Estimates of global heat flux were obtained by measuring the power used by the heater

power supply and by measuring the temperature drop of the cooling fluid entering and exiting the

sphere. The heater power overestimates the system heat flux because of losses in heating the air

and secondary containment vessel. The cooling fluid temperature difference method was unreli-

able because no means of measuring the flow rate of the fluid was implemented. The primary and

most reliable measurement of heat flux comes from a pair of thermistors at two different depths

in the outer sphere wall: one at 1.35 cm from the outer surface, the other at 2.03 cm. Knowing

the thermal conductivity of titanium and the temperature difference between the probes, one may

estimate the heat flux with a simple calculation.

Temperature measurements were made at many locations in sphere: on the outer sphere,

in the fluid bulk, and near inner sphere. A schematic of the probe locations is shown in fig. 3.1

and tables 3.1 and 3.2. Three thermistors are embedded in the wall of the outer sphere. Two of

these (used for the heat flux measurements mentioned above) are located at a polar angle of π/4

and separated azimuthally by 10.6 cm. A third thermistor is embedded in the wall of the bottom

hemisphere at a polar angle of 3π/4. It is 2.03 cm through the wall and located at the same

azimuthal angle as the thermistor at the same depth in the upper hemisphere. The thermistors in

the outer wall are YSI 43A74 Veco medium beads. They are 0.1 cm in diameter. Each thermistor

is placed at the bottom of a hole drilled perpendicular to the surface of the titanium wall. They

are kept in place with Kapton tape, which also secures their leads flat on the surface of the sphere

up to a hole in the top shaft.

A group of three thermistors (Betatherm 10MCD27) and four type E thermocouples (Omega

EMQSS-035U) measure the temperature in the bulk of the convecting sodium. Located in the
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Figure 3.1: Measurements of temperature, heat flux, and magnetic field are made at locations

indicated. See tables 3.1 and 3.2 for more precise position information and definitions of the

labels.
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probe name description location

MFIN Betatherm thermistor 10.5 cm in radius from upper shaft wall

180◦ azimuthally from fill hole

BFIN Betatherm thermistor 0.32 cm below MFIN

SFIN Betatherm thermistor 0.32 cm retrograde from MFIN

FOR thermocouple 3.43 cm directly below MFIN

FOP thermocouple 0.23 cm prograde azimuthally from FOR

FIR thermocouple 0.23 cm radially inward from FOR

FIP thermocouple 0.23 cm prograde azimuthally from FIR

OSM YSI thermistor 1.35 cm deep in outer sphere wall

45◦ up from equator

180◦ azimuthally from top fill hole

OSD YSI thermistor 2.03 cm deep in outer sphere wall

10.64 cm prograde azimuthally from OSM

OSL YSI thermistor 2.03 cm deep in outer sphere wall

at same azimuthal angle as OSD, 45◦ down from equator

Table 3.1: Description and location of temperature probes in the outer wall of the vessel and in

the bulk of the sodium. See fig. 3.1 for a supplementary diagram.
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probe name description location

ISTP thermocouple 3.08 cm above equator of inner sphere

0.24 cm away radially from inner sphere surface

ISTR thermocouple 0.63 cm retrograde azimuthally from ISTP

ISMP thermocouple 2.69 cm above equator

0.77 cm away from inner sphere surface

ISMR thermocouple 0.63 cm retrograde from ISMP

ISLP thermocouple 2.31 cm above equator

1.60 cm away from inner sphere surface

ISLR thermocouple 0.63 cm retrograde from ISLP

OSFR heat flux sensor 2.54 cm above equator

same azimuthal angle as OSD

OSFP heat flux sensor 50 cm azimuthally prograde from OSFR

BAX axial hall probe on axis of rotation, 5 cm above inner sphere

BRAD radial hall probe same position as BAX

Table 3.2: Description and location of inner sphere temperature probes, heat flux sensors, and hall

probes. See fig. 3.1 for a supplementary diagram.
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upper hemisphere, the seven probe assembly extends into the sodium from the top shaft 13.1 cm

above the inner sphere. The three thermistors are at a cylindrical radius of 16 cm. They are fixed

inside of closed end, 0.165 cm diameter, stainless steel tubes. The four thermocouples are at the

same cylindrical radius 3.4 cm below the thermistors. The thermistors are positioned such that

two are in a vertical plane and two are in a horizontal plane perpendicular to the rotation axis.

The four thermocouples are in horizontal plane each at the corner of a square. Two pairs

are approximately at equal cylindrical radius and two pairs at equal azimuthal angle. The pairs of

probes are separated by 0.23 cm. Correlations between these thermocouples are used to estimate

fluid velocities. The thermocouples are in ungrounded stainless steel sheaths 0.089 cm in diameter.

Both the thermocouples and thermistors are silver-soldered into a the end of a 0.95 cm diameter,

hollow, stainless steel tube which is mounted into a hole in the top shaft with a Swagelok pipe

fitting. The leads from the probes pass through the interior of the top shaft to the data processing

circuit mounted at the top of the shaft.

Six additional thermocouples are positioned near the surface of the inner sphere. They are

the same type as the above mentioned thermocouples. The outer diameter of the sheaths is 0.089

cm, allowing good time response. In water the time to reach 67% of a step change in temperature

is < 0.25 sec. Since sodium has a thermal conductivity which is much larger than that of water,

the response time is decreased even further. The probes are silver-soldered into holes through the

surface of the inner sphere. All six probes are located in a group just above the equator, arranged

like the dots on the six-side of dice. One pair is 1.6 cm away from the inner sphere surface separated

by 0.63 cm azimuthally. A second pair at a slightly higher polar angle is 0.77 cm away from the

surface also separated 0.63 cm azimuthally. The third pair is 0.24 cm from the surface with the

same azimuthal spacing. The stainless steel sheaths containing the thermocouple leads extend

from where they are soldered into the inner sphere surface through its hollow interior and then

through six holes at the top of the inner sphere. They are silver soldered into these holes also so

that only stainless steel sheaths are exposed to the sodium and kerosene. The thermocouple leads

then pass through a hole in top shaft where it meets the inner sphere and continue up to the data
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processing circuit.

Magnetic field measurements are made possible with hall probes (Honeywell SS94A1F)

positioned just above the inner sphere inside the top shaft. Two components of magnetic field are

measured with an axial probe and a radial probe.

3.2 Data processing

During an experiment, the data from ten of the probes described above is transmitted from the

rotating assembly to computers, stationary in the laboratory, via an infrared link. A rotating data

processing circuit, designed in-house specifically for this experiment, is mounted to the top of the

top shaft. The circuit converts ten analog measurements to 12 bit digital signals. The heart of the

rotating circuit is a PIC16C773 Microchip microcontroller. This small programable computer (the

PIC code and instructions for burning new chips are in appendix B) is responsible for analog to

digital conversion, multiplexing, and serial transmission of the data. The PIC chip has 10 analog

inputs, each acquired at 50 samples/sec. The remainder of the circuit consists of amplifiers, a

DC/DC converter, several voltage regulators and voltage references, and protection diodes and

low pass filters for the PIC chip inputs. Mechanically, the circuit consists of three boards, stacked

and mounted to an aluminum carriage which bolts to the top of the shaft. The top level of the

stack is an aluminum plate with a hole on center in which the IR transmission LED is mounted.

The top circuit board in the stack provides power for the components on the other two

boards. A Datel 5/1000-15/200-D12A DC/DC converter is used to produce negative voltages.

It outputs -15 V, which is then passed to negative voltage regulators to create -12 V for the

bottom rail of the amplifiers and -2.5 V for the hall probes. The voltages produced by the DC/DC

converter were too noisy to be used without passing through a voltage regulator. Other positive

voltage regulators produce 5 V for the PIC chip, 12 V for the top rail of the amplifiers, and 5 V

for the hall probes. All the regulators and the DC/DC converter are fed 15.4 V from slip rings

on the top shaft. When none of the protection diodes are tripped and the sodium temperature is

greater than the reference temperature the circuit uses about 220 mA at 15.4 V (a useful fact for
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circuit debugging).

The middle board in the stack houses the PIC chip. The PIC chip has no internal over-

voltage protection. Therefore, each analog input is protected with external diodes which clamp

the input voltages between 0 and 5 volts. Each input also has a RC low pass filter with a cutoff

frequency of about 100 Hz. The TX pin of the PIC chip is capable of directly driving the IR LED

with up to 25 mA. This produces a sufficiently powerful signal as long as the receiving photodiode

is not more than about 2.54 cm away. An external 20 kHz crystal is used for the PIC’s clock. Also

on the middle board are four sockets for AD624 or AD524 amplifiers. These were used for heat

flux sensors.

The bottom board in the stack contains all the circuitry for measuring temperatures. There

are four 5V voltage references for thermistors. Each thermistor is set up in a voltage-divider

bridge to convert their temperature sensitive resistance into a voltage for the PIC chip. There are

four AD524 instrumentation amplifiers which are used to amplify the thermocouple signals. The

reference junction for the thermocouples is also on the bottom board. This consists of a 1 cm x 1

cm block of copper bolted to the board. A thermistor measures the reference temperature inside

a hole in the copper block. A reference thermocouple is also in thermal contact with the copper

block. Figure 3.2 shows a schematic of the circuits for the thermistors and thermocouples.

Given the temperature of the reference junction, one can deduce the temperature of the

other thermocouples as follows. The temperature of a type E thermocouple junction is related to

the Seebeck voltage (voltage across the T/C junction) by

T (V ) ≈ −45 + 30295V − 117000V 2. (3.1)

Likewise the approximate Seebeck voltage for the reference thermocouple can be deduced

from the measured reference temperature (thermistor measurement) with the formula

Vref (Tref ) ≈ 5.867× 10−5T. (3.2)

Since the voltage V at the amplifier inputs is the sum of Vref and the voltage from the
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Figure 3.2: Circuit schematics for (a) thermistors and (b) thermocouples.

measuring thermocouple Vm, the temperature at the measurement location is

Tm(V, Vref ) = T (V − Vref ) ≈ −45 + 30295(V − Vref )− 117000(V − Vref )2 (3.3)

Equations 3.1 and 3.2 are approximations of NIST polynomials for Type E thermocouples.

These conversion formulas are accurate enough to maintain a level of uncertainty in temperature

measurements on the level of factory calibration. More precise individual calibrations are necessary

to achieve ±0.2 ◦C. Calibration procedures are described in the next section of this chapter.

The transmission IR LED is parallel to and coaxial with the rotation axis pointing straight

up. Just above the rotating, emitting LED in the stationary frame there is a receiving circuit with

a photodiode (Phontonic Detectors, Inc. Type PDB-C140). The receiving circuit basically consists

of a the photodiode, a comparator, and a TTL to RS232 converter. The digital signal from the

rotating circuit is captured by the photodiode, brought back to TTL levels (0-5V) with the LM311

comparator and then converted to RS232 levels (+-12V) with the MAX232 converter. The signal

is then passed to a PC through the serial port. The incoming data on the PC is handled by a

Labview program. The Labview program (see appendix B for the code) collects a four second time
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Figure 3.3: Data processing and system control block diagram.

series from the serial port and writes the binary data to a temporary location on an SGI Octane

on the network. The Octane converts the raw binary data to ASCII and writes it to disk. In

addition the Octane computes temperatures on-the-fly from the voltage data which is then sent to

the PC which controls the heater power supply. The same Labview code that controls the heaters

on this PC also displays the temperature data in real time and writes heater power measurements

to disk on the Octane. Both the Labview code and the PID algorithm (also coded in Labview)

are presented in appendix B. A block diagram of the entire data collection and control system is

shown in figure 3.3.
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3.3 Calibrating temperature probes

In order to make accurate measurements of heat flux, it is necessary to measure accurate differ-

ences between two temperature probes. This accuracy is also critical for determining the Rayleigh

number for small temperature drops from the innner to the outer sphere. As supplied from the man-

ufacturer, both thermistors and thermocouples are generally not accurate enough (within about

5% of factory calibrations). Therefore, in-house calibration was performed for all the temperature

probes discussed in above sections.

With all the probes in the position where they would remain during experiments, the sphere

full of sodium was heated up to 130 ◦C with strap heaters fixed onto the outside of the sphere

with Kapton tape. The temperature was never above 130 ◦C in steady state for the presented

experiments. The sphere was then wrapped tightly with 2 layers of R-19 fiberglass insulating

batting and one layer of aluminum foil. The heaters were then shut off and the temperature of all

the probes in the system was monitored for about 12 hours. During this period the temperatures

slowly drifted down with the system in a nearly isothermal state. From the rate of change of

the temperature and the thermal mass of the system an estimate of the heat loss and maximum

temperature gradients between probes may be calculated. The system typically took 6.7 hours to

drop about 15 ◦C. The power lost to cooling is then related to the change in temperature ∆T of

the sodium and the titanium vessel,

Qtot

Timetot
=

(mcp∆T )Na + (mcp∆T )Ti

Timetot
(3.4)

=
(110000g)(1.42J/g◦C)(15◦C) + (150000g)(0.526J/g◦C)(15◦C)

2.4× 104s
(3.5)

= 147W. (3.6)

Spread over the surface of the sphere, this is 0.0130 W/cm2. The largest temperature gradient is

expected in the titanium wall since it is a worse heat conductor than the sodium. This implies a

drop in temperature of about 0.1 ◦C between the probes (OSM and OSD) embedded in the outer

sphere which are used for the heat flux measurements. With the maximum gradient in mind, all

the probes are calibrated with respect to the factory calibration of one of the thermistors (OSM).
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Figure 3.4: Two typical time series from closely spaced temperature probes. We interpret the

delay between the the signals to be caused by the zonal fluid velocity as it sweeps temperature

structures past the probes.

The result is that all probes are correct with respect to each other to within 0.2 ◦C but only as

good as the factory calibration for absolute temperature measurements.

3.4 Velocity measurements

Time series of temperature at two nearby positions in the sodium may be used to obtain local

estimates of the fluid velocity. Closely spaced groups of temperature probes are located near the

inner sphere surface and also in the bulk of the flow as described in the previous section. As

temperature structures are swept past a pair of temperature probes, the time series of one probe

closely resembles the other, but with a slight time delay. Fig. 3.4 shows a short sample of two

such time series. This delay is approximately the time it takes for the fluid velocity to carry the
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temperature field across the distance d between the probes.

One may be confident that the time delay in the temperature time series truly reflect the

fluid velocity for several reasons. First, the time series are highly irregular due to the turbulent

nature of the convection. This is true as close to the onset of convection as the apparatus allows

measurement. This means that one need not worry that the correlations between the time series

are due to spatial or temporal periodicity. Furthermore, temperature variations in a single time

series are often much slower than the peak delay in mutual information. This ensures that the

correlations are not spurious. A drawback to this method is that it is not possible to detect the

difference between a fast moving temperature structure and a temperature structure that is moving

at some angle with respect to the line between the probes. That is, a temperature front which

hits the probes at the same time, approaching from right angles to the line between the probes

will appear to have zero delay, or infinite velocity. A second problem with the technique is that

resolution of velocity measurements decreases as velocity increases. The higher the fluid velocity,

the shorter is the delay time. Thus, the highest velocity one could hope to measure is limited by

the time resolution of the data acquisition. The velocity is

v =
d

τ
, (3.7)

which implies the error in v is

|δv| = d

τ2
δτ. (3.8)

The delay is obtained using an algorithm which computes difference vectors constructed

from short sections of the time series. Given two discrete time series At and Bt two m-dimensional

vectors an and bn+τ are constructed,

an = (An, An+1, ...An+m) (3.9)

bn+τ = (Bn+τ , Bn+1+τ , ...Bn+m+τ ). (3.10)

Here bn+τ is constructed with a delay of τ points with respect to an. The magnitude ε of the

difference vector is then

ε = |an − bn+τ | =
√

(An −Bn+τ )2 + (An+1 −Bn+1+τ )2 + ...(An+m −Bn+m+τ )2. (3.11)
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Figure 3.5: A typical distribution of τ delays. The inset shows a blowup of the peak, clearly offset

from zero indicating an average fluid velocity which carries temperature structures from one probe

to another.

For a given an the difference vector is computed for every value of τ , so that b is a moving boxcar

sweeping through the full length of Bt. This process is repeated such that a also sweeps through

all of At. Throughout the computations a running tally is kept of number of occurrences with

ε < 0.1 for each value of τ . The end result is a histogram or probability density function for delay

times τ . An example τ distribution is shown in fig. 3.5. The expectation value of is computed for

values of τ with a count of more than 80 percent of the count of the most probable τ . This value

is used to determine the peak of this histogram with better resolution the original sampling rate

size. The probe separation divided by this peak τ is taken as the mean velocity of the fluid.
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The velocity measurements presented in this dissertation are taken from pairs of probes at

equal radius and height, separated azimuthally. That is, they probe the azimuthal component of

velocity. The probe configuration is motivated by the prevalence of strong azimuthal or zonal flows

in rotating convecting flows such as the experiment presented here. One pair of probes is located

near the inner sphere surface. The other pair is located in the bulk of the flow approximately

halfway between the inner sphere and outer sphere.
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Chapter 4

RESULTS AND INTERPRETATIONS

4.1 General features and observations

The data presented in this chapter are the product of many experiments conducted with the ap-

paratus and instrumentation described in chapters 2 and 3. All the data was recorded while the

system was in steady state. A typical day’s experiment involved running at a constant rotation

rate Ω and varying in steps the temperature drop ∆T from the outer to the inner sphere. Some

experiments were also done at constant Ω and ∆T while varying an applied magnetic field. Reach-

ing a steady state was a rather slow process, typically taking between 40 minutes and 1 hour. This

settling time, although not measured, seems to decrease for higher rotation rates of the spherical

vessel, consistent with the fact that at higher Rayleigh number, convection more vigorously mixes

the fluid. This is not obvious since Coriolis forces also increase with rotation rate and tend to in-

hibit the convective motions. Perhaps the fact that buoyancy wins out is simply because buoyancy

forces increase as Ω2 while Coriolis forces increase only linearly in Ω. The system was considered

to be in a steady state when the mean temperatures at the inner sphere, mid-gap, and outer sphere

as well as heat flux at the outer sphere remained unchanging for more than 20 minutes. Once in a

steady state, time series were acquired, typically around 900 seconds long with a sample rate of 50

Hz. It was necessary to monitor all three temperatures, because the radial dependence of average

temperature was observed to change with rotation rate and ∆T. Specifically, the temperature was

always within 20% of the value expected for a conductive temperature profile, but at low ∆T,

the midgap temperature is closer to the outer sphere temperature and decreases towards that of

the inner sphere as the convection becomes more vigorous. This effect is evident in fig. 4.1. This

results in an increased settling time, which is consistent with the idea that to reach a steady state,

one must wait for the excess heat to be extracted by the cooling system as the bulk of the fluid

approaches a lower mean temperature. In fig. 4.1, the temperature drop from mid-gap to inner

sphere divided by the full temperature drop ∆T is plotted for different ∆T and rotation rates.

These results are in contrast with measurements of average temperature as a function of radius for
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Rotation rate (RPS) mc ∆Tc Rac

3 11 6.88 1.38× 107

10 19 2.52 5.61× 107

15 21 1.71 8.57× 107

20 23 1.30 1.16× 108

25 23 1.07 1.49× 108

30 25 0.91 1.82× 108

40 28 0.72 2.57× 108

Table 4.1: These critical values of wavenumber and ∆T were computed by Gillet using a quasi-

geostrophic model with our parameter values and geometry.

similar experiments in water and silicon oil by Sumita and Olson. [61], [62]. They observed the

opposite trend in mean temperature of the bulk fluid: it approached the outer sphere temperature

as Ra was increased. The most obvious difference between our experiment and theirs is that the

Prandtl number of sodium is 0.01 compared to 7 and 14 for water and silicon oil respectively. We

also spun the sphere at much higher rotation rates, thus achieving lower Ekman numbers.

It should be noted that the apparatus is not well suited for measurements near the onset

of convection. At all observed ∆T values, above and below the expected onset of centrifugally

driven convection, turbulent fluctuations of temperature were observed. This is probably due

partially to the nature of low Prandtl number convection and partially to some form of natural

convection, which, ignoring Coriolis effects has a much lower critical ∆T as discussed in chapter

1. The expected values for the onset of convection in our system were calculated for us by Nicolas

Gillet [26] using the quasi-geostrophic code developed by Aubert, Gillet, and Cardin [3]. His results

for the critical ∆T and azimuthal wavenumber m are shown in figs. 4.2 and 4.3 and tabulated

in table 4.1. The wavenumber results are consistent with Roberts’ asymptotic theory, while the

critical ∆T results seem to fall in between the Roberts scaling for large Pr and the Zhang scaling
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Figure 4.2: Shown are the onset values of ∆T for centrifugal convection at different rotation

rates. The data were computed by Gillet [26] using a quasi-geostrophic numerical model with our

parameter values and geometry.

for very small Pr. Gillet’s results were

mc ∝ Ω0.35 ∼ E−1/3, (4.1)

∆Tc ∝ Ω−0.88 =⇒ Rac ∼ E−1.12. (4.2)

(4.3)

In other experiments ([61], [2]) where flow visualization was possible (either with dye or flakes in

water or with ultrasound in gallium) it has been observed that the typical size of vortices that form

at onset remains close to the typical length scale for more complicated motion as the convection

becomes more vigorous. For this reason 1/mc ∼ DΩ−1/3 will be used as a typical length scale in

several of the arguments used to understand the data in later sections of this chapter. The critical

values of ∆T provided by Gillet will also be used.
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4.2 The big picture: some conjectures

Considered together, the results in upcoming sections of this chapter suggest a general picture

of the velocity and temperature dynamics for these experiments. Let me describe the general

picture before delving into the supporting details. The velocity field seems to be well described by

two parts: a large scale retrograde zonal wind and a smaller scale turbulent velocity responsible

for the convective heat transfer. The scale of the zonal flow is characterized by Uφ ∼ ΩDα∆T ,

which suggests a balance between Coriolis and buoyancy forces (or possibly the presence of thermal

winds). The smaller scale convective velocities seem to scale as Uc ∼ ΩD
√

α∆T , which suggest

a balance between inertial and buoyancy forces. The velocity field is most active near the inner

sphere and seems to be characterized by a persistent length scale δ ∼ E1/3D. A likely scenario

is that buoyancy drives outward radial motion near the inner sphere where heat flux per unit

area is greatest and these radial motions are deflected by Coriolis forces into a zonal flow. Since

sodium has such a low viscosity (0.007 cm2/s) the slightest shear in the flow caused by the buoyant

motions or the zonal motions induce turbulence. A Reynolds number Re ≡ UL/ν based on the

typical zonal flow is around 40000. In spite of the turbulence, the heat transfer is still not more

than twice that due to conduction. The mean radial temperature profile is within 20% of the

conductive profile throughout our measurements. The turbulence of the velocity field creates

fluctuations in temperature, which are swept around the vessel by the zonal flow. It is analysis of

these temperature fluctuations that provide the majority of our results.

4.3 Temperature standard deviation

Measurements of temperature in these experiments are the backbone of most of the results pre-

sented in this chapter. This section is devoted to presenting and explaining the behavior of the

magnitude of the temperature fluctuations. I will first show some typical time series for different

rotation rates and ∆T values. These sample time series were measured very close to the equator

of the inner sphere (ISTP as defined in chapter 2). As is evident in fig. 4.4 the size of temperature

fluctuations increase as ∆T is raised and decrease as Ω is increased. The Coriolis forces apparently
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suppress the fluctuations, while buoyancy forces excite them.

The standard deviation of temperature fluctuations for many different rotation rates and

temperature drops are shown in fig. 4.5. The trends suggested by the sample time series in

fig. 4.4 are clear. A simple argument based on advection of temperature structures by a mean

zonal velocity may be used to explain the observed behavior in standard deviation of temperature.

Consider velocity structures in the flow of size δ ∼ E1/3D which are swept past the temperature

probe. If the velocity structures are mixing a fraction δ/D of the full temperature drop ∆T, then

we can expect temperature fluctuations of size

σT ∼ E1/3D

D
∆T, (4.4)

σT ∼ E1/3∆T. (4.5)

This scaling is borne out clearly in fig. 4.6. The dashed line in fig. 4.6 is a linear fit with the

following equation

σT = 4.0 E1/3∆T. (4.6)

4.4 Temperature probability density functions

The probability density function (PDF) for a passive scalar in turbulent convection has been shown

to exhibit Gaussian statistics for Rayleigh numbers that are small enough (e.g. [16], [63], [51]).

For greater Rayleigh numbers, in the so-called hard turbulence regime, the PDF often exhibits

exponential tails (e.g. [33], [28]). A review of passive scalars in turbulent flows is given by Warhaft

[68].

Temperature PDFs for two rotation rates, 3 and 15 Hz, are shown in figs. 4.7 and 4.8. The

PDFs are constructed from time series acquired close to the inner sphere equator. For the lower

rotation rates the PDFs are more skewed to towards negative temperatures. For higher rotation

rates the PDFs are still slightly skewed, but closer to Gaussian, though slightly super-Gaussian

in the positive tail. In general, it seems that low amplitude cooler-than-mean events are most
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Hz (bottom), each with a low ∆T (left) and a high ∆T (right) example. These time series were

acquired near the equator of the inner sphere.
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likely, while extreme warm events are more likely than extreme cold events. This is probably

because, near the inner sphere, the mean is close to the temperature of the inner sphere and events

colder than the inner sphere temperature are impossible. The trend towards Gaussian statistics

is probably a reflection of the stronger turbulence accompanying higher Ra at high rotation rates.

The warm tail tail may show hints of a hard turbulence regime.
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rotation rate of 3 Hz. The source time series were all scaled by their standard deviation.
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4.5 Zonal velocity

As discussed in chapter 3, estimates of zonal velocities were obtained by computing average delay

times between temperature time series acquired from azimuthally separated probes. The resulting

velocities were retrograde with respect to rotation near the inner sphere where the measurements

were taken. Velocities for different rotation rates are plotted against ∆T in fig. 4.9. Due to time

resolution limitations, the method of obtaining velocity measurements fails for large ∆T and large

rotation rates. These points are excluded from the presented data. Furthermore, data is only

shown for values of ∆T greater than the predicted onset of centrifugal convection.

The velocity data may be presented in a dimensionless form with the following scalings.

Velocity is divided by DΩ (i.e. Rossby number) and the temperature drop ∆T is replaced by

α∆Te. The critical temperature drop and adiabatic temperature drop, as estimated in chapter 1,

are subtracted from the full ∆T to form ∆Te ≡ ∆T − ∆Tc − ∆Tadiabatic. In other words ∆Te

represents the temperature drop available to drive convection. The velocity, scaled in this way,

is shown in fig. 4.10. The error bars on the points in fig. 4.10 come from uncertainty in time

resolution (±0.01 s) and uncertainty in temperature difference measurements (±0.2 ◦C).

There are several possible explanations for a velocity that scales as v ∼ DΩα∆T . The

simplest explanation stems from a balance between the buoyancy force and the Coriolis force in

the Navier-Stokes equation,

Ω2rα∆T ∼ 2Ω× v. (4.7)

A heuristic justification for such a force balance comes from considering the motion of a convective

plume under the influence of Coriolis forces. Buoyancy forces drive cold plumes away from the

inner sphere. The initial radial trajectory of the plume is deflected by the Coriolis force into an

azimuthal direction, which suggests azimuthal velocities experience the balance in eq. 4.7. A simple

dimensional argument applied to eq. 4.7 yields,

Ω2Dα∆T ∼ ΩU. (4.8)
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One may then solve for velocity to obtain a scaling that is consistent with that used in fig. 4.10,

U

ΩD
∼ α∆T. (4.9)

This simple dimensional argument, is reminiscent of a more complex theory developed by

Aubert et al. mentioned in chapter 1. They use the vertically-averaged vorticity equation, assuming

that Coriolis, buoyancy, and inertial effects are in balance to derive scaling laws for radial velocity,

typical vortex size, and temperature fluctuations. They also derive a scaling for zonal velocities

given by

uφ ∼
(

RaQ

Pr2

)4/5

E9/10, (4.10)

Ignoring the Nusselt number dependence (as did Aubert et al. when applying their scalings to

data from gallium convection), this may be put in terms of ∆T and Ω,

uφ ∼ (α∆T )0.8Ω0.7. (4.11)

Our data is plotted with this scaling in the subsection below.

Another mechanism which may be responsible for the zonal flows we observe is thermal

winds. Thermal winds are driven by the misalignment of the centrifugal acceleration with the

temperature gradient. For example, if one began to rotate a sphere of fluid with a spherical

gradient in temperature, say hot at the center and cold at the surface, the heavier cold fluid

near the poles would begin to move toward the equator. This initial motion would be deflected

by Coriolis forces into a zonal flow. The equation governing a thermal wind in the presence of

centrifugal acceleration is

(2Ω · ∇)v = α∇T × Ω2rc, (4.12)

where rc indicates cylindrical radius. If we assume a spherical, conductive radial temperature

profile, the temperature gradient is ∆TD/r2
s , where rs is spherical radius. Then, with the rotation

axis aligned with the z axis, we have

2Ω
∂vφ

∂z
= α

∆TD

r2
s

Ω2rcsinθ, (4.13)
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where θ is the angle between a cylindrically radial and spherically radial directions. One can

approximate an integral of this equation along a line of constant cylindrical radius from the bottom

of the vessel up to the equator of the inner sphere as

vφ ≈ ΩDα∆T, (4.14)

the same scaling as derived above. Although it is not clear from our measurements, one could

imagine ways to determine whether thermal winds or small scale convective motions are driving

the zonal flows. Ultrasound or other velocimetry instrumentation could be used to measure the z-

gradient of velocity. If the gradient matches eq. 4.13, thermal winds would be confirmed. Another

technique which may shed some light, is to reverse the temperature gradient. Thermal winds should

be present in this case as well. If they are of comparable magnitude, this would also confirm the

thermal wind hypothesis.

Manneville and Olson took measurements of zonal flows in a very similar experimental

device using water for the convecting fluid [43]. They found complicated banded structure in the

zonal flow which depended upon latitude and Rayleigh number. They also observed a turn-over in

the increase of fluid velocity as Rayleigh number was increased. The high ∆T data in our results

may indicate similar behavior, but higher Rayleigh numbers would be required to fully explore this

hypothesis in our experiments.

One should be cautious applying the above arguments to the Earth’s core. For both the

dimensional argument and for thermal winds, one factor of Ω comes from the buoyancy force.

For the Earth, the buoyancy force is largely independent of rotation rate. Therefore, the scalings

determined above must be put into a form using dimensionless numbers in order to compare to

Earth.

Uφ = 3.5
κ

D
RaE. (4.15)

4.5.1 Comparison to gallium experiments by Aubert et al.

As mentioned in the introductory chapter, Aubert et al. have conducted convection experiments

with liquid gallium in a rotating sphere [2]. They measured fluid velocities and developed scaling
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Figure 4.11: The zonal velocity scaling of Aubert et al. tested with our data shows a good fit for

low ∆T, but fits less well for higher ∆T.

laws to explain their measurements. In this section I will compare the zonal velocities that we

observed with the Aubert et al. scalings.

In fig. 4.11 our measurements of zonal velocity are plotted in the same way that Aubert et

al. have presented their results in reference [2]. In other words, the Nusselt number is considered

constant. If the Nusselt component of the Aubert scaling is retained, the prediction is

uφ ∼
(

RaNu

Pr2

)4/5

E9/10. (4.16)

This scaling is tested in fig. 4.12. The data clearly do not fit this model. A reason may be that

Aubert et al assumed Nu− 1 ∼ Nu in the derivation of their scaling laws.

There are clearly apparent discrepancies between our results and those of Aubert et al.

Although similar, the apparatus and methods used by Aubert et al. were not identical to our own.
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Figure 4.12: The zonal velocity scaling of Aubert et al. including Nusselt number dependence is

tested with our data. The fit is poor.

Instead of an inner sphere, in their apparatus, cooling fluid passed through a cylindrical shaft

extending from the top to the bottom of the outer spherical shell. One likely consequence of this

different type of “inner core” is that the boundary layers at the tangent cylinder are different. In

our experiment, geostrophy will cause a free-shear boundary along the tangent cylinder above and

below the sphere. In Aubert’s, the “tangent cylinder” is the solid surface of the cooling channel,

resulting in a shear (rather than a free-shear) boundary. Another difference between the setups is

the nature of the coolant flow. Cooling fluid in our apparatus passed through the bottom shaft,

through the inner sphere, and then returned also through the bottom shaft. Thus, the shaft above

the sphere was not significantly cooler than the sodium, minimizing unwanted convection due to

the shafts. In Aubert’s device, the cooling was pumped in at the north pole and out at the south

pole. An additional difference is in the method of varying “inner core” temperature. In our setup,
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the coolant flowed at a constant and high flow rate (around 20 l/minute) and the temperature of

the fluid is modulated. In the Aubert experiment, the flow rate was modulated in order to change

the inner cylinder temperature. In our experience, this method less reliably produces a constant

temperature inner boundary, because at low flow rates, the incoming fluid is much cooler than

the outgoing fluid. A perhaps less important difference is that the radius ratio between the inner

cylinder and their outer sphere was 0.36, a 10% difference compared to our inner to outer sphere

radius ratio of 1/3. Finally, the Prandtl number of gallium (Pr=0.025) is different than that of

sodium (Pr=0.01). We cannot accurately assay which of these differences might be responsible for

the velocity scaling discrepancy.

4.6 Heat transfer

For two otherwise identical systems with low and high Prandtl numbers, the Nusselt number will

always be larger for the high Pr system. In other words, heat transfer in low Prandtl number

fluids is different from that in high Pr fluids in that more heat is transferred by conduction. In

spite of this lower convective heat flux, the flow is often quite turbulent even very close to onset.

In two different gallium convection experiments (also low Pr), Aubert, et al. [2]and Aurnou et al.

[4], also observed turbulence very close to onset. We observe this character of convection in our

experiments as well. In our experiments as well as the above mentioned low Pr experiments, the

Nusselt number is never greater than 2. This contrasts sharply with high Pr experiments (water:

Pr = 7, silicon oil Pr = 14) which often exhibit very high Nusselt numbers. For example, Sumita

and Olson have obtained Nusselt numbers as high as 186 using silicon oil [62].

The total heat transfer was measured at a latitude of 45◦ using two temperature probes

embedded at different depths in the outer wall of the vessel. The data for multiple rotation rates and

∆Ts are shown in fig. 4.13. It is certain that there are variations in heat flux at different latitudes.

Measurements have not yet been made to quantify this. Some evidence for latitude dependent

heat transfer is discussed in the upcoming section on measurements with applied magnetic field.
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Figure 4.13: The total heat flux is plotted for different rotation rates and a range of temperature

drops. The dotted line represents the heat that would be conducted if the sodium were stationary.

66



4.6.1 Conduction

The conductive heat flux for a given temperature drop may be estimated with a simple calcula-

tion. Assuming the system is in steady state and the fluid is stationary and of constant thermal

conductivity, the temperature equation is simply Laplace’s equation,

∇2T = 0. (4.17)

The solution to Laplace’s equation in a spherical geometry is

T (r) = A +
B

r
, (4.18)

which is subjected to the boundary conditions T (Ro) = To and T (Ri) = Ti. These boundary

conditions imply that

T (r) = To +
∆TRi

Ro −Ri
(1− Ro

r
). (4.19)

Since Ro = 3Ri this may be further reduced to give the conductive temperature profile,

T (r) = To +
∆T

2
(1− Ro

r
). (4.20)

The conductive heat flux per unit area is then

Φ = k
∂T

∂r
, (4.21)

Φ = k
∆T

2
Ro

r2
. (4.22)

Then the total heat flux is

Φtot = 4πR2
ok

∆T

2
Ro

R2
o

, (4.23)

Φtot = 2πk∆TRo. (4.24)

The dashed line in fig. 4.13 represents this total conducted heat flux.

As discussed in the first section of this chapter, temperature measurements at midgap were

used to approximate the radial temperature profile. The ratio

T (rmidgap)− Ti

∆T
(4.25)
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is plotted in fig. 4.1. The conduction profile computed above predicts a value for this ratio given

by

T (rmidgap)− Ti

∆T
=

T (2Ri)− Ti

∆T
= 0.75. (4.26)

This value is the dashed line in fig. 4.1. The temperature at the midgap probe never deviates more

than 20% from the conductive profile.

4.6.2 Convection

As shown in fig. 4.13, the total heat flux is never more than twice the conductive heat flux. That

is, the Nusselt number is never greater than 2 for any of our experiments. The difference between

the total and the conducted heat flux is shown in fig. 4.14.

One may derive a relationship between the convective heat flux and the the control param-

eters using an argument based on viscous dissipation. The basic idea is to relate global dissipation

to an estimate of local dissipation in order to estimate Nu(Ra, E, Pr). This argument was inspired

by a theory primarily developed by Grossman and Lohse for Rayleigh-Beénard convection (e.g.

[29], [56]).

Taking a volume average of the kinetic energy equation one may obtain the exact relation

for the global viscous dissipation,

εglobal =
ν3

D4
(Nu− 1)RaPr−2. (4.27)

The derivation of this relation is carried out in detail in appendix A. Consider now the dissipation

associated with convective velocity structures of spatial size δ ∼ E1/3D and typical velocity U ,

εlocal ≡ ν(∇v)2 (4.28)

∼ ν
U2

δ2

δ

D
(4.29)

∼ ν3

D4

Re2

E1/3
, (4.30)

Where the factor of δ/D is introduced to account for the fact that the region in which the dissipation

occurs is some fraction of the whole volume. A similar means of estimating local dissipation was

used with success by Grossman and Lohse [29]. Another way to interpret the local estimate is
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Figure 4.14: The convective heat flux is plotted for different rotation rates and a range of temper-

ature drops.
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that the dissipation is dominated by laminar viscous boundary layers of thickness E1/3D. Aubert

et al. have argued that dissipation should be dominant in boundary layers. Plaut and Busse [49]

have observed in numerical simulations the presence of thermally modified Stewartson layers on

the vertical boundaries of cylindrical centrifugal convection with thickness that scales like E1/3.

Whether the dissipation occurs in boundary layers or convective structures, we may equate the

global and local dissipations to obtain

(Nu− 1)RaPr−2 ∼ Re2E−1/3. (4.31)

We now assume that the typical velocities of the dissipative structures is U ∼ ΩD
√

α∆T and put

the nondimensional numbers in terms of our control parameters Ω and ∆T, to obtain ,

(Nu− 1)∆T ∼ ∆TΩ1/3. (4.32)

The heat transfer due to convection is proportional to (Nu−1)∆T . Our measured convective heat

flux is shown in fig. 4.15 plotted against ∆TΩ1/3.

The scaling used for the convective velocity scale U ∼ ΩD
√

α∆T is known as the ballistic

estimate. It may be derived from estimating the free fall velocity of a fluid parcel that is ∆T

colder than its neighbors and subject to an acceleration Ω2D over a distance D. One may also

arrive at this scaling from considering a balance of inertia and buoyancy forces in the Navier-Stokes

equation,

(v · ∇)v ∼ Ω2rα∆T, (4.33)

U2

D
∼ Ω2Dα∆T. (4.34)

One may solve for U to find the same scaling as the ballistic estimate. It is also of interest to note

that the Aubert model discussed in the previous section predicts vradial ∼
√

vφE−1/2. Although

they observed a different scaling for vφ, this relationship applied to our measurements of vφ gives

the radial velocity scaling vradial ∼ Ω0.75∆T 0.5, which is not extremely dissimilar from the ballistic

estimate. Using their scaling law for uφ, one obtains vradial ∼ Ω0.6∆T 0.4. It seems that their model

systematically slightly under-predicts our estimates of velocities.
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4.7 Temperature power spectra

Both the heat flux and standard deviation scalings were explained with arguments using the

predicted length scale for vortices at the onset of convection (δ ∼ E1/3D). This begs the question;

do we observe any periodicity as is also predicted close to onset? The time series in fig. 4.4 suggest

that this is not the case. We may be certain by examining power spectra of the temperature

fluctuations. Shown in fig. 4.16 are power spectra for two ∆Ts at each of three different rotation

rates. It is clear in the power spectra that the temperature signal is not periodic, showing broad

band fluctuations with interesting structure down to the lowest rotation rates and ∆Ts.

Several features are common to all temperature spectra that we measured. Most noticeable

is the distinct drop in power law slope at high frequency. At frequencies above this knee the

power law slopes of the spectra are constant and close to -5.7. Significantly, we find that the knee

frequency at which the steep slope begins is

fc = 2.0Ω
√

α∆T . (4.35)

The power spectra shown in fig. 4.16 are plotted in fig. 4.17 scaled by their standard deviation

and the knee frequency. Two-dimensional numerical simulations by Tran and Bowman suggest

that the knee in the spectra marks the primary frequency at which energy is injected into the

flow [64], [65]. In other words, the knee frequency is associated with convective motions. The fact

that the knee frequency f ∝ Ω
√

∆t suggests strengthens the arguments in the last section where

we assumed Uconvective ∼ Ω
√

∆T . The knee frequency is shown in fig. 4.18 for several rotation

rates for increasing ∆T . We note that these data were extracted by hand for each of the power

spectra. The frequency scaled by rotation rate is plotted in fig. 4.19. The dashed line in fig. 4.19

is proportional to square root of ∆T .

The slope of the high frequency part of the spectra is close to -17/3 as shown in fig. 4.17 and

also in the compensated spectra in fig. 4.20. This slope may be explained using the temperature

equation and some assumptions about the underlying velocity field. First, Taylor’s hypothesis is

assumed to hold since we have observed substantial azimuthal velocities for most values of our
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Figure 4.16: Temperature power spectra are shown for two ∆T at three rotation rates. All spectra

show a distinct knee into a diffusive regime with a steep contant slope above this knee.
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control parameters. In other words, it is assumed that temperature fluctuations are caused by ad-

vection of spatial temperature structures past the measurement point. This is the same assumption

used to explain the standard deviation above. A second assumption is that the underlying velocity

field has an energy spectrum with an inertial range that scales as E(k) ∼ k−5/3. If there is also a

balance between advection and diffusion of temperature then from the temperature equation, we

have,

(v · ∇)T ∼ ∇2T. (4.36)

If the velocity, whose scale given by v =
√

kE(k) ∼ k−1/3, is advecting the large scale temperature

gradient, while the temperature is diffusing on length scales 1/k, then we have

k−1/3 ∆T

D
∼ k2∆T ′, (4.37)

where T ′ is the size of temperature fluctuations on a scale 1/k. Then we solve for T ′ and use it to

find the temperature variance spectral density C(k),

C(k) = (T ′)2/k (4.38)

C(k) ∼
(

k−7/3 ∆T

D

)2 1
k

(4.39)

C(k) ∝ k−17/3 (4.40)

Camussi and Verzicco [13] have observed high wavenumber slopes close to -17/3 in tempera-

ture spectra obtained in direct numerical simulations of Rayleigh-Bénard convection with mercury

(low Pr). Similar to our results, they observed Kolmogorov-like turbulence in the velocity field

and used this fact to collapse different spectra to one curve. They did not attempt to explain the

-17/3 slope.

4.7.1 Further speculations about power spectra

At larger time scales than the diffusive regime discussed above, the power law slopes of the spectra

range in value between -5/3 and 0. The -5/3 slope is observed mostly at low rotation rates and high

∆T. Compensated spectra with power divided by f−5/3 are shown in fig. comp17. Sreenivassan

[58] has reported that in shear flows the spectral slope of passive scalars approaches -5/3 as one
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increases the Reynolds number, but is shallower for lower Reynolds number. Ignoring effects due

to Coriolis forces, this trend is opposite our observations. As we increase rotation rate, buoyancy

forces are greater and our Reynolds number based on measured zonal flow increases, but the

slope of the scalar spectrum becomes shallower. Measurements of temperature spectra from the

atmosphere [45] show a large -5/3 regime. This result is intriguing because the atmosphere is in a

similar force balance regime to our experiment.

Using a simple dimensional argument one may also derive a -5/3 scaling for the spectral

slope of a passive scalar in a turbulent velocity field. If one assumes that the spectral density C(k)

of the variance of a passive scalar θ depends only on the rate of dissipation of variance χ, a time

scale τθ and wavenumber k, then there is only one possible relationship which is dimensionally

correct,

C(k) ∼ χτθk
−1. (4.41)

Given an underlying velocity field, which has an energy spectrum given by E(k) ∼ kβ then the

time scale τv of the velocity field v(k) at a length scale 1/k is

τv ∼ 1
kv(k)

. (4.42)

And since v(k) =
√

kE(k) we have

τv ∼ 1

k
√

k1−β
, (4.43)

τv ∼ k−3/2+β/2. (4.44)

If we further assume that the time scale of the scalar is equal to that of the velocity, τθ = τv, then

C(k) ∼ χk−5/2+β/2. (4.45)

If β = 5/3 then the scaling for scalar spectrum is C(k) ∼ χk−5/3 as well.

In addition to an explanation for the -5/3 part of the observed spectra, the above argu-

ment may explain the shallower slopes as well. At larger length scales it is likely that the flow

resembles the two-dimensional, geostrophic picture prescribed by the Taylor-Proudman theorem.

Two-dimensional turbulence is often associated with an cascade of enstrophy from large to small
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scales, which is accompanied by a -3 slope in the energy spectrum [37], [6]. With β = 3 in the

above argument, one obtains C(k) ∼ χk−1, which is similar to some of the shallower slopes we

have observed. For example, fig. 4.22 shows compensated power spectra for a range of rotation

rates and ∆T with the power divided by f−1. The -3 and -5/3 slopes have also been observed in

quasigeostrophic numerical simulations by Tung and Orlando [67].

Perhaps one should be cautious applying the above arguments to low Prandtl number fluids.

It might be expected in such fluids that time scales in the temperature field would not be the same

as the velocity since diffusion effects would play a role. However, our observations to a large extent

indicate that the underlying velocity field does dictate time scales. Both in the scaling arguments

for the standard deviations of temperature and the -17/3 slope of the diffusive part of the spectrum,

the idea of velocity advecting temperatures was used with success.
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4.8 Magnetic field effects

Only a few experiments were conducted with applied magnetic fields. A pair of electric coils in a

Helmholtz configuration, coaxial with the rotation axis, produced fields up to 30 Gauss (3 mT).

The resulting change in dynamics manifested in altered heat flux. The total heat flux required to

maintain a given ∆T was observed to drop with increased magnetic field. Furthermore, changes in

spatial distribution of heat transfer changed. Heat flux increased near the equator and decreased

at a polar angle of 45◦. These results are summarized in fig. 4.23 where relative shifts are shown

for total heat flux, equatorial heat flux, and 45◦ lattitude heat flux.
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Magnetic fields have a similar effect as rotation on fluid flow when the fluid is electrically

conducting. The magnetic field suppresses gradients in the velocity field which are in the same

direction as the magnetic field; the flow tends toward 2-D. The observed behavior of changes in

heat flux with applied magnetic field are consistent with this idea. If fluid motion is confined to

planes perpendicular to the rotation axis then heat flux will be concentrated near the equator.

Furthermore, the sloping boundaries of the spherical vessel combined with the tendency towards

2-D flow amounts to an overall suppression of flow. This is consistent with the decrease in global

heat flux. This result will be discussed in the next chapter in the context of a saturation mechanism

for the geodynamo as well as a possible mechanism for inhomogeneous formation of Earth’s inner

core.
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Chapter 5

CONCLUSIONS AND PREDICTIONS

The convection experiments described in this dissertation were designed to model the outer core of

Earth. Liquid sodium was subjected to a thermal gradient between rapidly co-rotating concentric

spheres with radius ratio 1:3. The resulting centrifugally driven convection was highly turbulent,

despite the fact that convective heat transfer was never more than that of conduction. With

external magnetic fields applied, convective heat transfer was found to increase near the equator,

while the total heat transfer decreased.

The velocity field of the liquid sodium was characterized by two scales: a large scale zonal

flow and a smaller scale turbulent convective flow. The zonal flow was measured near the equator

of the inner sphere and for all parameter values was retrograde with respect to rotation. The

magnitude of the velocity was found to be consistent with a balance between Coriolis and buoyancy

forces,

Uφ = 3.5ΩDα∆T. (5.1)

The zonal flow may also have been driven by thermal winds. The Reynolds number based on this

zonal flow ranged from 103 to 104.

The smaller scale convective velocities act to weakly mix the temperature gradient, resulting

in a radial temperature profile which deviates from the conductive profile likely by less than 20

percent. Broad band power spectra and nearly Gaussian probability density functions of resulting

temperature fluctuations indicate that the convective velocities are turbulent. These temperature

fluctuations are swept by the zonal flow past temperature probes, which are fixed in the rotating

frame. Measurements of these fluctuations suggest that the typical length scale for the convective

velocities scales as E1/3D. This results in temperature signals with standard deviation,

σT = 4.0E1/3∆T. (5.2)

Heat flux and the power spectra of temperature fluctuations suggest a model of the small scale
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convective velocity determined by a balance between inertia and buoyancy forces,

Uconv ∼ ΩD
√

α∆T . (5.3)

This is the ballistic estimate for convective velocities.

Heat flux was found to increase with increasing rotation rate. At the highest rotation rates

(E = 5.5× 10−8) and largest temperature drops from the inner to outer sphere (Ra = 2.0× 109),

the Rayleigh number was about 14 times critical. At this most extreme state of convection, the

Nusselt number remained less than 2. Assuming that convective velocities are ballistic and length

scales are E1/3D, an argument based on dissipation was used to derive the following scaling,

(Nu− 1)∆T = 0.1E−1/3∆T. (5.4)

The convective heat transfer is proportional to (Nu− 1)∆T .

Power spectra of the temperature fluctuations exhibited a well-defined cross-over from in-

ertial to diffusive time scales. The knee frequency for all parameter values was found to be

fc = 2.0Ω
√

α∆T . (5.5)

At frequencies smaller than this cross-over, power law slopes of spectra range between 0 and -5/3.

Above the cross-over, in the diffusive regime, a constant slope of approximately -17/3 is observed.

Summing up,

logS(f) =





s0 to s1 − 5
3 log(f), for 0 < f ≤ 2.0Ω

√
α∆T

s2 − 17
3 log(f), for 2.0Ω

√
α∆T < f ≤ noisefloor

(5.6)

where s0, s1, and s2 are constant offsets. Both the -17/3 and -5/3 may be explained assuming

that temperature fluctuations are due to a underlying velocity field with Kolmogorov-type energy

spectra (E(k) ∼ k−5/3). The knee frequency is strong evidence that the dynamics at small scales

is influenced by ballistic convective velocities.

5.1 Predictions for Earth’s outer core

The experiments described here are like Earth’s outer core in several ways. Both have turbu-

lent velocity fields. This is revealed by the temperature fluctuations of the experiment and the
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broadband secular variation of Earth’s magnetic field. Both the experiment and Earth’s core have

modest Nusselt number. Convective heat transfer in the experiment was never larger than the

conductive heat transfer. In Earth’s core, the heat conducted down the adiabat is thought to be

responsible for most of the heat flux out of the core. Both systems have large scale retrograde zonal

flows, although different in magnitude. The Rossby number based on zonal flow measurements

for the experiment was between 10−2 and 10−3, while the Earth’s Rossby number based on the

westward drift of the secular variation is of order 10−6. (It is perhaps interesting to note that the

Rossby number based on zonal flows on Jupiter are of order 10−2.) The most important difference

between the experiment and the Earth is likely the presence of a large magnetic field in Earth’s

core, the geodynamo. The Elsasser number for Earth’s core is estimated near unity. During the

few experiments with applied magnetic fields, our Elsasser number was only as large as 10−4. For

the sake of better understanding, let us set aside the differences between between the core and the

experiment and explore the implications of our results for the Earth.

5.1.1 Zonal flow and core Rayleigh numbers

Let us first consider the zonal flow. The expression (eq. 5.1) for azimuthal velocity obtained in the

experiment may be written in terms of dimensionless numbers,

Uφ = 3.5
κ

D
RaE. (5.7)

The westward drift of the secular variation is often associated with an azimuthal velocity of the

liquid motion in the outer core; it about 5 × 10−4m/s. If this zonal flow is caused by the same

mechanisms responsible for that in our experiment then this implies that the Rayleigh number in

the Earth’s core is

Rathermal
core =

D

3.5κ
(5× 10−4 m/s)E−1. (5.8)

We use the estimates, E ∼ 10−15 (with ν ≈ 10−6 m2/s [22]), κ ≈ 5× 10−6 m2/s [54] and the shell

gap for the outer core, D ≈ 2× 106 m to obtain

Rathermal
core = 6× 1022. (5.9)
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One might guess that compositional convection is governed by similar physics. If Earth’s zonal

flow is driven by compositional convection, me may use a very similar argument to estimate

the compositional Rayleigh number. In this case we replace κ with the compositional diffusion

coefficient Dξ ≈ 10−9 m2/s [54] and arrive at,

Racompositional
core = 1025. (5.10)

These Ra estimates are both significantly lower than those made by Gubbins using an argument

based on entropy [32]. He estimated Rathermal ∼ 1029 and Racompositional ∼ 1038.

5.1.2 Convective flow velocity

We may also derive an estimate for the turbulent convective velocities from our argument for

convective heat flux. In the last chapter we established

(Nu− 1)RaPr−2 ∼ Re2E−1/3. (5.11)

where the Reynolds number is based on convective velocities. If the Prandtl number is about 0.1,

Nusselt number is between 1 and 10, and we use our estimate of Ra ∼ 1022 from above, then

Earth’s Reynolds number would be Re ∼ 107 to 108. And since Re ≡ UconvD/ν we can estimate

the convective velocities in Earth’s outer core,

Uconv ∼ 10−4 to 10−5 m/s, (5.12)

which is about the same magnitude as the zonal flow, estimated from the westward drift. Our

results suggest that this is also a reasonable estimate for convective velocities. This lends some

some support to the idea that the ratio of toroidal to poloidal flow is optimally near unity for a

dynamo [44].

5.1.3 Time and length scales of convection

Temperature power spectra from our experiments exhibit a dramatic change in power law slope

at a distinct time scale determined by the ballistic frequency, fc = 2.0Ω
√

α∆T . This is likely
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associated with the injection of energy into the flow by convective motions. There should exist a

similar convective frequency in the outer core. The ballistic frequency in the Earth’s core is

f ∼ Ω
√

α∆T ≈ 10−6 s−1. (5.13)

This yields a characteristic time for convective motions of

τc ≈ 1.7× 105s ∼ 2 days. (5.14)

If the frequency of fluctuations is due primarily to advection of a spatial temperature structures as

we suspect in the experiment, then one may estimate a length scale associated with the cross-over

frequency using the westward drift velocity:

δc ∼ τcUdrift ∼ 100 m. (5.15)

The observed cross-over frequency for the temperature power spectra seems to be governed

by inertial and buoyancy effects and occurs at very small time and length scales. If there exists a

similar cross-over in the magnetic field power spectrum this has implications for our understanding

of the geodynamo. The minimum power required to drive the dynamo may be estimated by the

Ohmic dissipation of the electric currents associated with the magnetic field. If there is significant

power in the magnetic field down to length scales of order 100m, this implies a large amount of

Ohmic dissipation due to small scale magnetic fields. The more power there is dissipated, the

larger the required energy sources to drive the geodynamo. Similar concepts were used by Roberts

et al. to argue the case for the presence of radioactive potassium in Earth’s outer core [53]. Their

discussions were motivated by broad band magnetic field spectra observed in numerical dynamo

simulations. Future experiments with larger applied magnetic fields should allow the measurement

of magnetic field power spectra directly.

5.1.4 Magnetic field and heat flux

Our experiments support the idea that magnetic field suppresses convection on a global scale. This

reinforces old ideas for a mechanism by which the geodynamo reaches a saturated average value of

89



magnetic field. That is, the magnetic field grows until it suppresses convection sufficiently to stem

further growth. Our experimental results also indicate that while the magnetic field decreases the

total heat transfer, it may increase local heat transfer. If the local variations in heat transfer occur

on large enough length scales, and long enough time scales, one might imagine that they would

influence core-mantle thermal interactions and perhaps also persistent structures in the observable

magnetic field (e.g. the Central Pacific low flux patch [36], [38]).

The applied magnetic fields in the experiments were close to constant in space and aligned

with the rotation axis. This lead to a concentration of heat transport in the region that is coplanar

with the inner sphere (i.e. the equatorial region). Although the magnetic field in Earth’s core is

certainly not as simple as the one applied for our experiments, the observed inhomogeneous heat

flux suggests a mechanism for the seismically observed inhomogeneity of Earth’s inner core. If

there is a persistent structure to the magnetic field near the inner core, this will cause convection

to occur more strongly in some regions than in others. The regions of the inner core surface where

convection is most vigorous will grow most quickly. Although gravity ultimately forces it to become

spherical, the inner sphere is likely formed by a process which is not spherically symmetric, due to

5.2 Future research suggestions

Three of the four years devoted to the research presented in this dissertation were spent designing,

building, and debugging the apparatus and data acquisition systems. A great deal of science

remains untapped in future experiments with this apparatus. I will list some suggested avenues

and improvements for future research with the apparatus, starting with those that require the least

modification to the apparatus.

• Add a thermally insulating layer of material (say, teflon) to the bottom shaft. This would

reduce unwanted convection due to the bottom shaft being cooler than the sodium.

• Add more pairs of thermistors at different depths through the outer sphere wall at different

positions. It would be interesting to map out the polar angle dependence of heat transfer

and how it changes with the control parameters.
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• Implement an accurate flow meter for the coolant fluid. In conjunction with measurements

of the temperature difference between the fluid entering and exiting the inner sphere, the

coolant flow rate would facilitate a measurement of global heat flux. It would be interesting

to compare global heat flux measurements to local ones.

• More extensive study of applied magnetic field effects. Larger applied magnetic fields and

more sensitive magnetic field sensors would both yield interesting physics. Perhaps there

exists a similar inertia-diffusion cross-over in the magnetic field power spectrum, as we ob-

served in the temperature power spectra. Also, with an Elsasser number closer to 1, there

will surely be interesting dynamics to observe.

• Water or perhaps silicon oil experiments with the same device. With a higher Prandtl

number fluid, one could reach higher Ra numbers than in any previous experiments. During

preliminary test runs with water in this device, regular very slow oscillations (≈ 300s period)

were observed. It would be interesting to carefully explore these dynamics.

• Balance the sphere for higher rotation rates. The device was designed to operate at rotation

rates up to 100 Hz. Reaching this speed would increase the Rayleigh number by a factor of

16 from the highest Ra thus far attained. In addition, possibly interesting effects due to fluid

compression may exist at higher rotation rates.

• Ultrasound measurements of fluid velocity. If the apparatus is not rotated too rapidly, then

there is no reason we should not be able to implement ultrasound measurements using slip

rings to pass signals to and from the rotating frame. Direct velocity measurements would

add to our results considerably.

91



Appendix A

GLOBAL DISSIPATION

In deriving the global dissipation it will be assumed that the vessel is cylindrical rather than

spherical. This simplifies the argument and likely introduces only an order unity error as is typical

for geometrical corrections. The cylindrical geometry has been used successfully to learn more

about the spherical case in a number of analytical and numerical studies (e.g. [12], [49]). We also

assume that the system is in steady state: volume averages are stationary in time. We will begin

by deriving exact relations for global dissipation. The viscous dissipation εν ≡ ν(∇v)2 may be

rewritten,

εν = ν∇(v∇v)− νv · ∇2v. (A.1)

Then we may replace the second term on the righthand side ν∇2v from the Navier-Stokes equation

to get,

εν = ν∇(v∇v)− v · [∂tv + (v · ∇)v +∇p + 2Ωez × v + Ω2rαTer

]
. (A.2)

Now we take a volume average of each term,

〈εν〉V = 〈νv∇v〉A − 〈v · (v · ∇)v〉V − 〈v · ∇p〉V − 〈2Ωv · (ez × v)〉V − 〈Ω2rαTvr〉V , (A.3)

where 〈〉V indicates a volume average and 〈〉A is an average over the surface of the volume. The

first term changes to an area integral with the divergence theorem and since the fluid velocity goes

to zero at the walls this term is zero. The time derivative term vanishes since the system is in

steady state. The Coriolis term also vanishes since v⊥ez×v. The fact that the system is rotating

has no effect on the total viscous dissipation except through the buoyancy force. This leaves only

the advective, pressure, and buoyancy terms, which may be manipulated to yield,

〈εν〉V = −〈vv2

2
〉A − 〈vp〉A − αΩ2〈rTvr〉V . (A.4)

The the derivative ∇ in the advective and pressure terms was moved to the left of all the velocity

factors with the help of the incompressibility condition, ∇ ·v = 0. With the derivative on the left,

the divergence theorem was again applied and allows us to eliminate both of the area integrals for
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the same reasons as used before. This leaves only one remaining integral of the buoyancy force,

〈εν〉V =
αΩ2

D3

∫

r

r

(∫

A

TvrdA

)
dr. (A.5)

The area integral is over surfaces of constant radius and is equal to the convective heat flux Qconv

up to factors of ρ and cp,

〈εν〉V =
αΩ2

D3

∫

r

r
Qconv

ρcp
dr. (A.6)

Recall the definition of definition of the Nusselt number,

Nu ≡ Qconv + Qcond

Qcond
, (A.7)

=⇒ Qconv = (Nu− 1)Qcond, (A.8)

Qconv = (Nu− 1)kD∆T, (A.9)

where the total conducted heat is Qcond = kD∆T and k is the thermal conductivity. Integrating

and replacing Qconv, eq. A.6 becomes approximately

〈εν〉V ≈ αΩ2

D3
(Nu− 1)

k∆TD2

cpρD

D2

2
, (A.10)

= α∆TΩ2D4(Nu− 1)
κ

D4
, (A.11)

= Ra(Nu− 1)
κ2ν

D4
. (A.12)

Then the relation for global viscous dissipation is

〈εν〉V =
ν3

D4
RaPr−2(Nu− 1). (A.13)

A similar procedure is followed to derive the value for global thermal dissipation 〈εT 〉V ≡ 〈κ(∇T )2〉V .

As before, we recast the dissipation with some simple vector algebra, (∇T )2 = ∇· (T∇T )−T∇2T ,

and the temperature equation to get

〈εT 〉V = 〈κ∇ · (T∇T )〉V − 〈T∂tT 〉V − 〈T (v · ∇)T 〉V . (A.14)

The time derivative is zero since volume averages are stationary. With the divergence theorem

applied to the first term and moving the spatial derivative to the left in the last term, we have

〈εT 〉V = 〈κ(T∇T )〉A − 〈vT 2

2
〉A. (A.15)
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The last term vanishes with the vanishing velocity on the boundary. It is instructive to break up

the surface area integral of the remaining term into the contributions of the outer, inner, top, and

bottom surfaces,

〈κ(T∇T )〉A =
1

D3

∫

outer

T∂rTdA− 1
D3

∫

inner

T∂rTdA +
1

D3

∫

top

T∂zTdA− 1
D3

∫

bottom

T∂zTdA.

(A.16)

It is assumed that the top and bottom are thermally insulated well enough that the thermal gradient

∂zT is close to zero, making the top and bottom contributions negligible. It is also assumed that

temperatures are constant, Ti and To on the inner and outer surfaces. This is one way that the

model does not represent the experiment well, as the outer boundary in the experiment is closer to

a constant heat flux boundary condition. Recognizing that the integral of the normal temperature

gradient integrated over a surface is the total heat flux through that surface divided by k, we have

〈εT 〉V = κ
To

kD3
(Nu)Qcond − κ

Ti

kD3
(Nu)Qcond (A.17)

= κ
∆T

kD3

Nu∆TD2k

D
, (A.18)

where ∆T = To − Ti and Qcond is replaced as before. The global average of thermal dissipation is

then

〈εT 〉V = κ
∆T 2

D2
Nu. (A.19)
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Appendix B

CONTROL AND DATA PROCESSING CODE

B.1 Shell scripts

This shell script is used to change binary data to ASCII. The program takes as input the files

written by the Labview program, stod.vi, which receives data from the PIC chip on the rotating

assembly. The script is called ariv14.

#!/bin/tcsh

while (1)

if (‘ls -l | head -n2 | tail -1 | awk ’{print $5}’‘ <= "3840") then

sleep 1

else

set dat = ‘ls -1 |head -1‘

seri $dat > temp

set zeit = ‘head -1 temp | awk ’{print "rot"int($1)}’‘

set hot0 = ‘awk ’{sum+=$2;n++}END{print sum/n}’ temp‘

echo $hot0 > tdat

set hot1 = ‘awk ’{sum+=$3;n++}END{print sum/n}’ temp‘

echo $hot1 >> tdat

set hot2 = ‘awk ’{sum+=$4;n++}END{print sum/n}’ temp‘

echo $hot2 >> tdat

set hot3 = ‘awk ’{sum+=$5;n++}END{print sum/n}’ temp‘

echo $hot3 >> tdat

set hot4 = ‘awk ’{sum+=$6;n++}END{print sum/n}’ temp‘

echo $hot4 >> tdat

set hot5 = ‘awk ’{sum+=$7;n++}END{print sum/n}’ temp‘

echo $hot5 >> tdat

set hot6 = ‘awk ’{sum+=$8;n++}END{print sum/n}’ temp‘

echo $hot6 >> tdat

set hot7 = ‘awk ’{sum+=$9;n++}END{print sum/n}’ temp‘
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echo $hot7 >> tdat

set hot8 = ‘awk ’{sum+=$10;n++}END{print sum/n}’ temp‘

echo $hot8 >> tdat

set hot9 = ‘awk ’{sum+=$11;n++}END{print sum/n}’ temp‘

echo $hot9 >> tdat

cp tdat ../depot

mv temp ../$1/$zeit

rm -f $dat

endif

end

This next script is used to compute delay times used for computing azimuthal velocities. It is

called dotautall.

#!/bin/tcsh

set list = ‘ls -1 fixts* | sort -n -k1.6‘

foreach i ($list)

echo $i ’\c’

set mean4 = ‘awk ’{print $4}’ $i | meanvar‘

set mean5 = ‘awk ’{print $5}’ $i | meanvar‘

awk ’{print ($4-’$mean4[1]’)/’$mean4[3]’}’ $i | avenb 8 | scale -af > junk

awk ’{print ($5-’$mean5[1]’)/’$mean5[3]’}’ $i | avenb 8 | scale -af> junk2

tautest3 junk junk2 -40 40 1512 16 > junk3

awk ’$3<1.5{print $2}’ junk3 | scale -af | invar1 7 > junk4

awk ’$2>0.01{print $1,$2}’ junk4 | draw -mc | gplot

awk ’$2>0.01{print $1,$2}’ junk4 | awk ’{sumn+=$2; sumn2+=$2*$2; sumn3+=$2*$2*$2;

sum1+=$1*$2; sum2+=$1*$2*$2; sum3+=$1*$2*$2*$2}END{print

sum1/sumn,(sum2/sumn2),(sum3/sumn3)}’

end
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B.2 Labview code

Figure B.1: Front panel of Labview program (Temp022504.vi) used to monitor temperatures and

control the heating system.
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other case for TF box A

A

Figure B.2: Code diagram of Labview program (Temp022504.vi) used to monitor temperatures

and control the heating system.
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Figure B.3: VI hierarchy of Labview program (Temp022504.vi) used to monitor temperatures and

control the heating system.
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Figure B.4: Front panel of Labview program (coolcontrol041204.vi) used to monitor temperatures

and control the cooling system.
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A

B

False case 

for TF case B

0th frame 

of sequence A

1st frame 

of sequence A

2nd frame of sequence A

Figure B.5: Code diagram of Labview program (coolcontrol041204.vi) used to monitor tempera-

tures and control the cooling system.
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Figure B.6: Front panel of Labview program (rot011204.vi) used to monitor and control rotation

rate of the sphere.
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A

B

C

D

Figure B.7: Code diagram (part 1) of Labview program (rot011204.vi) used to monitor and control

rotation rate of the sphere.
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TF case A:  This set of nested case statements just switches between which 

channel of the rotation rate counter is read.    Channel 0 is for slow rotation rates.

Channel 1 counts half the pulses of Channel 0, and therefor is for rotation rates

twice as large.  Channel 2 halves the count again, etc.  

TF case B:  This is the case for PID control

rather than manual control.

TF case C:  This is the case for when data is not

written to file.

TF caseD:  When true the history is all set  to zero.

Figure B.8: Code diagram (part 2) of Labview program (rot011204.vi) used to monitor and control

rotation rate of the sphere.
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Figure B.9: VI hierarchy of Labview program (rot011204.vi) used to monitor and control rotation

rate of the sphere.
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Figure B.10: Front panel of Labview program (stod0061704.vi) used to acquire the serial digital

data coming from the measurement probes on the rotating assembly.
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Figure B.11: Code diagram of Labview program (stod0061704.vi) used to acquire the serial digital

data coming from the measurement probes on the rotating assembly.
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Figure B.12: VI hierarchy of Labview program (myPID2.vi) used to acquire the serial digital data

coming from the measurement probes on the rotating assembly.
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Figure B.13: Front panel of Labview program (myPID2.vi) used in the above Labview codes to

control heater and motor power supplies and the coolant control valve.
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A

0th frame of 

sequence A

1st frame of  

sequence A

2nd frame

false case

for  TF case B

B

Figure B.14: Code diagram of Labview program (myPID2.vi) used in the above Labview codes to

control heater and motor power supplies and the coolant control valve.
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B.3 C code

This program was used to extract the data coming from the PIC chip. As transmitted by the PIC

chip the data is a continuous stream of bits with this format: start bit, 8 bits, stop bit. These 8

bit chunks between the start and stop bits are of two types: one has a 4 bit label and the low 4

bits of the signal, the other is the high 8 bits of the signal. See the PIC code in next section for

more detail. The code below extracts the full 12 bit signal and puts it into ten columns based on

label value. This code is called dplnew.c.

#include <stdio.h>

#include <math.h>

main(argc, argv)

int argc;

char *argv[];

{

char words[16384],tmp;

float start, field;

int i,j,n;

FILE *fpi,*fpo;

if ((fpi=fopen(argv[1],"r"))==NULL) {

fprintf(stderr,"File opened is stdin for input\n");

fpi=stdin;

}

start=atof(argv[1]+1);

for (i=0; !feof(fpi); i+=2) {

fread(&tmp,1,1,fpi);

words[i+1]= (tmp&0xf);

words[i]= (tmp>>4);
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}

n=i-2;

for (i=0; i<n; i++) {

if ( words[i]==0 && words[i+4]==1 && words[i+8]==2 &&

words[i+12]==3 && words[i+16]==4 && words[i+20]==5 &&

words[i+24]==6 && words[i+28]==7 && words[i+32]==8 &&

words[i+36]==9 ) {

if(i%2==0){

printf("%4.3f ",start+(5.0*i)/9600.0);

}else{

printf("%4.3f ",start+(5.0*i-1)/9600.0);

}

for (j=0; ((i+j+3<16384)&&(j<40)); j+=4) {

field=words[i+j+3]+16*words[i+j+2]

+256*words[i+j+1];

printf("%g ",5.0*field/4095.0);

/*printf("%g ",field);*/

}

printf("\n");

}

}

exit(0);

}

This next program is called by the script, dotautall, used to compute the delay between two

time series. This delay time is used to estimate zonal velocities from temperature time series of

closely spaced temperature probes. The code is named tautest3.c.

#include <stdio.h>
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#include <math.h>

#define abs(x) ((x) < 0.0 ? -(x) : (x))

#define size 64

unsigned int b[32];

main(argc, argv)

int argc;

char *argv[];

{

FILE *fpi,*fpi2,*fpo;

double x,y,sum=0,mean,dxdu;

float dataa[524288],datab[524288];

double a,d,x0,epsilon,min,max,sumx,sumy,sumz,sumx2,sumxy,slopek;

double sumu,sumd;

int location,i,j,k=0,l=0,m,n,r,t,inorder,unbound;

int p[size][size],pa[size],pb[size];

int tsum,tmin,tmax,tstep,Nt;

float mina,minb,maxa,maxb;

float s;

if ((fpi=fopen(argv[1],"r"))==NULL) {

fprintf(stderr,"File opened is stdin for input\n");

fpi=stdin;

}

if ((fpi2=fopen(argv[2],"r"))==NULL) {

fprintf(stderr,"File opened for fpi2 is stdin for input\n");

fpi2=stdin;

}

tmin=atoi(argv[3]);
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tmax=atoi(argv[4]);

tstep=1;

location=atoi(argv[5]);

m=atoi(argv[6]);

min=20000; max= -20000;

for (n=0; fread(&s,sizeof(float),1,fpi)==1; n++) {

dataa[n]=(float)(s);

if (dataa[n]<min) min=dataa[n];

if (dataa[n]>max) max=dataa[n];

}

mina=min; maxa=max;

min=20000; max= -20000;

for (n=0; fread(&s,sizeof(float),1,fpi2)==1; n++) {

datab[n]=(float)(s);

if (datab[n]<min) min=datab[n];

if (datab[n]>max) max=datab[n];

}

for (i=0; i<size; i++) {pa[i]=0; pb[i]=0;}

for (i= -tmin; i<n-tmax-m; i++) {

min=20000; max= -20000;

for (t=tmin; t<tmax; t+=tstep) {

Nt=0; sum=0;

for (j=0,sum=0; j<m; j++)

sum+=abs(dataa[i+j]-datab[i+j+t]);

if (sum<min) {min=sum; tsum=t;}

}

if (tsum<tmax-1) printf("%d %d %g\n",i,tsum,min);
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}

}
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B.4 PIC code

This is the code which is burnt into the 16C773 PIC microcontroller. The burning is facilitated with

software and hardware furnished by Microchip. The software is called MPLAB. The hardware is a

small box with 40 pin dip socket, which plugs into the serial port of the PC running the MPLAB

software. When burning the chip be sure to set the configuration bits as prescribed at the end of

the following code.

LIST p=16C774

INCLUDE <p16C774.inc>

CLRF 0x7F

start

;********* d/a init **************

MOVLW 0x81 ;Set AD clock to Fosc/32, turn on converter

MOVWF ADCON0 ;Select ch0

;********* channel selection ************

BTFSC 0x7F,0

BSF ADCON0, CHS0

BTFSC 0x7F,1

BSF ADCON0, CHS1

BTFSC 0x7F,2

BSF ADCON0, CHS2

BTFSC 0x7F,3

BSF ADCON0, CHS3

;********* d/a conversion ****************
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MOVLW 0x19 ;Wait for S&H to settle

MOVWF 0x21 ;Set 0x21 to 25

wait0 DECFSZ 0x21, 1 ;Count down from 25 (75 inst. cycles)

GOTO wait0

BSF ADCON0, GO ;Start conversion

wait1 BTFSC ADCON0, GO ;Wait for conversion to finish

GOTO wait1

;********* USART output ****************

BSF STATUS, RP0 ;Select bank 1

BSF TXSTA, BRGH ;High speed baud rate

MOVLW 0x81 ;Set baud rate to 9600 bps

MOVWF SPBRG

BCF TXSTA, SYNC ;Set to asyncronous mode

BSF TXSTA, TXEN ;Enable transmit

BCF STATUS, RP0 ;Select bank 0

BSF RCSTA, SPEN ;Enable serial ports

wait2 BTFSS PIR1, TXIF ;Make sure TXREG is empty

GOTO wait2

BSF STATUS, RP0 ;Select bank 1

MOVF ADRESL, 0 ;Move ADRESL to output

ADDWF 0xFF, 0 ;Put channel label on empty first four bits
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BCF STATUS, RP0 ;Select bank 0

MOVWF TXREG

BCF STATUS, RP0 ;Select bank 0

wait3 BTFSS PIR1, TXIF ;Make sure TXREG is empty

GOTO wait3

MOVF ADRESH, 0 ;Move ADRESH to output

MOVWF TXREG

;********* increment channel ****************

MOVLW 0xF6

ADDWF 0x7F, 1

INCFSZ 0x7F, 1

SUBWF 0x7F, 1

GOTO start

END

;Configuration Bits HS,on,off,off,disabled,2.5v
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