Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    AN APPARATUS FOR LIGHT-LESS ARTIFICIAL GAUGE FIELDS AND NEW IMAGING TECHNIQUES

    Thumbnail
    View/Open
    Perry_umd_0117E_16639.pdf (21.14Mb)
    No. of downloads: 427

    Date
    2015
    Author
    Perry, Abigail Reiko
    Advisor
    Spielman, Ian B
    Rolston, Steve
    DRUM DOI
    https://doi.org/10.13016/M2PX39
    Metadata
    Show full item record
    Abstract
    The thesis presented has three components: experiments with artificial vector potentials, a new atom-chip apparatus designed and built for light-less fictitious gauge fields, and an imaging experiment. First, we introduce experiments with light-induced vector potentials using two-photon Raman coupling to simulate charged particles using charge neutral Bose-Einstein condensates (BECs). Depending on the spatial and temporal properties of the engineered vector potential, it is possible for ultracold atoms to experience different variants of an effective Lorenz force such as; magnetic fields, electric fields, and spin-orbit coupling, via coupling between an atom's internal spin and its linear momentum. In this context, we discuss the main focus of this thesis, the design and construction of an atom-chip apparatus for $^{87}$Rb BECs for experiments with light-less artificial gauge fields. Eliminating the source of heating due to spontaneous emission will open new paths to explore artificial gauge fields in alkali fermions and will be a step towards the realization of simulated topological insulators using ultracold atoms. Finally, we will describe in detail an imaging experiment performed on this new apparatus, the reconstruction of the two-dimensional column density of a BEC using multiple defocused images taken simultaneously.
    URI
    http://hdl.handle.net/1903/17240
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility