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Chapter 1: Introduction

My research has been divided between three separate but related laboratories.
The focus of my Ph.D. work from 2011-2015 at the University of Maryland has been
on the development of a new atom-chip based quantum simulation experiment in
the Laser Cooling and Trapping Group on the campus of the National Institute of
Standards and Technology (NIST) Gaithersburg. During 2008-2010, I worked on
the University of Maryland campus as part of the team developing an ultracold
Rb-Li quantum degenerate mixtures experiment. Prior to this, I spent 1.5 years at
NIST working in the lab that first created artificial gauge fields for Bose-Einstein
Condensates. In each of these labs, I worked with a number of different talented
people, all under the supervision of Ian Spielman. Here, I discuss my initial work
on light-induced artificial vector potentials, setting the stage for my current project,
light-less artificial gauge fields. This project’s goal is the simulation of topological
matter [1] and for quantum simulation using an atom-chip. Finally, I will describe
our most recent imaging experiment performed with the new apparatus.

Light-induced gauge fields: Ultracold atoms are highly controllable and
tunable, making them an ideal platform for simulating and studying idealized con-

densed matter systems that are often difficult to probe in the absence of disorder.



These systems include the integer and fractional quantum Hall effects in a two-
dimensional electron gas. These topological insulators are isolated from the envi-
ronment, providing dissipation-less edge currents while insulating in the bulk. To
learn more about these fascinating states of matter, we endeavor to make neutral
quantum gases behave as charged particles in a magnetic field.

In our experiments, the Hamiltonian of a charge neutral 8"Rb Bose-Einstein
condensate (BEC) is engineered to simulate the Hamiltonian of a charged particle
by introducing an artificial vector potential A into the system. The momentum,
p, of the atom’s contribution to the kinetic energy, p?/2m, is changed to p —
p — ¢A, characteristic of a charged particle in an electromagnetic field. In our work
detailed in Ref. [2], a spatially uniform vector potential was demonstrated with
a BEC using a pair of counter-propagating Raman laser beams. The two-photon
Raman transition couples the atom’s internal state to its linear momentum. The
dressed-state dispersion relation becomes F ~ (p —¢A)?/2m*, so that the atom has
an effective mass msx*, and the location of the shifted energy minimum determines
the strength of the vector potential. The relative strength of the vector potential
is experimentally tunable with the Raman detuning § (using a bias magnetic field
to change the Zeeman shift), and coupling, which is dependent on the Raman laser
intensity. In the experiment, we measured the vector potential’s dependence on d
at different Raman coupling strengths, which agreed with a single-particle model.
We visualized the composition of the spin-momentum coupled dressed states by
diabatically removing the Raman coupling and applying a magnetic field gradient

to Stern-Gerlach separate the internal spin states after time of flight.



This experiment served as a stepping stone to subsequent experiments with
non-uniform vector potentials in our laboratory as well as others. These experiments
include artificial magnetic and electric fields, spin-orbit coupling, higher order par-
tial waves, Zitterbewegung, and the spin Hall effect (publications [3], [4], and [5],
respectively).

Light-less artificial gauge fields: During my third year of graduate school,
I started my main thesis project, where I designed and constructed an apparatus
for Rb BECs. This apparatus will enable experiments with light-less artificial
gauge fields using a nanofabricated in-vacuum atom-chip. The chip will be used
solely for the purpose of creating these vector potentials; not, as is common, for
BEC production. This work strives to realize artificial vector potentials that are
unachievable using the traditional method which employs Raman laser beams.

To make significant progress in engineering vector potentials for alkali fermions,
which could realize topological insulators, heating due to spontaneous emission must
be overcome. The heating diminishes the lifetime of a Raman dressed cloud, and
limits the time during which an experiment can be performed. To achieve sufficient
Raman coupling strength with minimal heating, the single-photon detuning of a
Raman beam must be of order the excited state fine structure splitting. However,
for alkali fermions, heating due to scattering becomes prohibitive at these detunings
due to their small excited state fine structure. For example, the splitting in 8"Rb is
one-thousand times that of °Li.

The light-induced Raman coupled Hamiltonian arises from the vector light-

shift of the Raman laser beams. The vector light-shift may be interpreted as an



effective, spatio-temporally oscillating magnetic field. We propose to mimic this
interaction using the real oscillating (radio-frequency (RF)) magnetic fields from
an atom-chip [6]. A nanofabricated atom chip with micron scale wires will achieve
comparable length scales to the light-induced case, and the near-field magnetic fields
~b pm from the chip surface will provide sufficient coupling strengths. Because
of this, the chip must be placed in-vacuum. Additionally, the individual control
over the atom-chip wires will allow for fine spatial variations in the Raman coupling
strengths not previously possible, such as abrupt turn-off of the coupling (within
one lattice period ~3 pm) on the edges to create edge states. The first prototype
of the chip is currently being bench tested in the laboratory.

The apparatus itself has been built and reliably produces 8’Rb BECs with
highly stable atom number. We use standard laser cooling techniques to magnet-
ically trap a cloud of atoms at of order 10 K from room temperature vapor in a
spin-polarized ground state. We trap in the F'=2 manifold and take advantage of
the factor of two gained in the trap strength over the F'=1 manifold. We magnet-
ically transport the atoms 44 cm vertically in =2 s, and achieve BEC in a crossed
dipole trap using the techniques described in [7]. We then microwave-transfer the
atoms into the ground |F' = 1, mp = —1) state during dipole evaporation to reach
degeneracy. While the chip is under development, we performed our first imaging
experiment with the new apparatus.

Multiple off-resonance defocused imaging: In cold atom experiments,
each image of light refracted and absorbed by an atomic ensemble, carries a remark-
able amount of information. Numerous imaging techniques including absorption,

4



fluorescence, phase-contrast (PCI), and off-resonance defocused (ORD) imaging are
commonly used. We extend ORD to image BECs. In the ORD method, there exists
an exact solution to the wave equation. This defines a direct relationship (transfer
function) between the intensity of the probe light which has interacted with the
atoms and the two-dimensional column density of the atomic cloud. This transfer
function, used to compute the column density, is characterized by divergences at
certain spatial frequencies. The locations of these divergences are dependent on
the detector distance z from the focus. By placing multiple detectors with differ-
ent degrees of defocus, we eliminate these systematic artifacts present in the ORD
method.

Experimentally, the multiple-camera off-resonance defocused (MORD) method
may be incorporated into existing set-ups with minimal additional equipment. We
use two non-polarizing beam splitters to divide the atomically absorbed and phase
shifted beam into three beams with nominally equal intensities. We simultaneously
capture the images using three cameras placed at different distances away from the
focal plane. Combining the three images eliminates the shot-noise amplification that
occurs at the divergences of single-camera reconstructions.

Further, our simulations of absorption, PCI, and MORD imaging show that
the statistical uncertainty in the measured optical depth using MORD imaging is

comparable to or below those of other imaging techniques.



Chapter 2: Artificial Gauge Fields

2.1 Introduction to light-induced vector potentials

Here, we discuss the concept of “artificial gauge fields” [8-10] in which we
apply an engineered vector potential A to a BEC [11,12]. The high experimental
controlability and tunability of BECs make them ideally suited for this endeavor.
An ultracold atomic gas in the presence of A can simulate various interesting con-
densed matter phenomena [13,14] that are difficult or impossible to probe in actual
condensed matter systems. The spatial and temporal properties of A realized in the
experiment determine what phenomena is simulated.

We modify the Hamiltonian of a neutral atom H = p?/2m + V(7) to include
a gauge field via the replacement p — p — ¢A, where p is the canonical momentum
of the atom, and ¢ is the artificial charge associated with the fictitious vector poten-
tial A: so that the charge neutral atoms making up the BEC behave like charged
particles interacting with an electromagnetic field. Depending on the properties of
A, the BEC may experience a fictitious magnetic field B = V x A [15], electric
field E = —0A /0t [16], or more exotic effects such as spin-orbit coupling (SOC)
from a matrix valued A [5,17]. Our new atom-chip apparatus aims to expand on

the fictitious gauge fields that have been studied thus far; in particular, spin-orbit



coupled physics. Therefore, in this chapter, we discuss the SOC case in detail. The
engineered SOC Hamiltonian models a neutral 8’Rb atom as a charged particle in
a solid, whose spin state is coupled to its linear momentum.

In solids with SOC, a particle moving with momentum hk = h(k,, ky, k) in a
static electric field E = Eye, in the laboratory frame experiences a magnetic field
Bso = Eo(h/mc*)(—ky, ks, 0) in its moving frame [17], where ¢ is the speed of light
and m is the mass of the particle. In the moving frame, the electron’s magnetic
moment pp couples via the Zeeman interaction to this field: ﬁz = —pg - Bso.
This effective Zeeman interaction, called Rashba SOC, couples the spin and linear
momentum of the charged particle: —pg - Bgo x 0.k, — 0k, Where 6,, ., are
the Pauli matrices operating on the internal spin states. In two dimensions, linear
SOC can be described by the sum of the Rashba term and the Dresselhaus (o
—0,ky — 6yk,) term. In a landmark experiment [17], a Hamiltonian was engineered

in cold atoms to realize a system with equal Rashaba and Dresselhaus SOC:

k2. . . BPk2. Q 5 .
1-[B+Bep®) pu= 14 26, + =6, + 20k,6,, 2.1
v [B + Bso(k)] - 5, L 1T 50+ 50+ 20Ky (2.1)

Hsoc =

where () is the Raman coupling strength, and § is the detuning from Raman res-
onance. The constant o describes the SOC strength. Generally, « is fixed by the
properties of a solid, and is only slightly-tunable in any given sample. However, in
cold-atom systems, the coupling strength can be experimentally controlled [17] by
changing the intersection angle between the Raman laser beams (for light-induced
SOC), or by changing the “Raman” wire periodicity of an atom-chip. In the follow-

ing, we describe the origin of these terms in the spin-orbit coupled Hamiltonian for



a neutral ®’Rb atom interacting with electromagnetic fields.

2.2  Experimental set-up

We use a Raman dressing scheme to introduce a vector potential into the
Hamiltonian of a 8Rb BEC. We start with the BEC in the magnetically trappable
551 /2 ground hyperfine state |F' = 1, mp = —1), the atoms are then dressed with two
Raman laser beams counter-propagating along e, with frequencies wy and wy+Awy,
and orthogonal linear polarizations, as shown in Fig. 2.1. We apply a bias field Bje,,
which sets the quantization axis and Zeeman shifts the atom’s hyperfine states. The
atoms experience two-photon Raman transitions [18,19] between the mp levels of
the ground F' = 1 state with single-photon recoil momentum Ak, = 27h/\ from
each Raman beam, where X is the wavelength of the beams. We define recoil energy
E, = h*k?/2m, where m is the mass of the atom.

The general set-up described by Fig. 2.1 is used in all of the fictitious gauge
field experiments performed on the “RbK” apparatus, with slight variations in the
values of A\, By, and the intersection angle between the two Raman laser beams.

Next, we discuss the Hamiltonian of the Raman dressed atom.

2.3 Dressed state Hamiltonian: three-level case

The real-space Hamiltonian for a BEC dressed using the Raman coupling

scheme described in Sec. 2.2 is

. [R*(KZ 4 K2 I
H= %%—V(r) 1+ H,, (2.2)
m



® Boey
BEC
«  mamEpy O
L. =
e

X

Wy, + A(DL

Figure 2.1: Raman coupling set-up. Two Raman laser beams counter-propagating
along +e, with crossed linear polarizations provide two-photon coupling between
the magnetic sublevels mp of the ground electronic state 55 /2, F' =1 of ¥ Rb. The
F =1 state is Zeeman split by an external magnetic field applied along e, that
defines the quantization axis. With respect to the quantization axis, the beams
propagating along e, and -e, have polarizations m and o, respectively.

where we may separate the Raman coupled part of the Hamiltonian, I:Ix, from the
rest of the Hamiltonian because the momentum transfer direction of the Raman
beams is only along e,. The fly,z Hamiltonian is that of a free particle (first term
on the right-hand side), plus V(r). The optical dipole trap provides the potential
V(r), and the unit matrix acting on the Zeeman split F' = 1 spin space |mp) €
{|=1),00),[+1)}is 1.

The coupling between the spin states in H, comes from the atom-light inter-
action between the BEC and Raman beams. An atom interacts with the electric
fields

Ei(r,t) = Ee*ro=ilte, and Ey(r,t) = Fye  Fre—ilitiwi)ie (2.3)

of the two Raman beams (Fig. 2.1). For beams of equal intensities £y, = Ey = Ej,

the total electric field is
Etotal(x,t) — EO [e—ika—ithey + eika—i(wL-i-AwL)tez] ) (24)

The interaction Hamiltonian arises from the vector light-shift proportional to E;. %

FEiotal, which behaves like an effective magnetic field By oc —EZ cos(2krz + Awt)e,.



Along with the atom’s magnetic moment u = grmpug, this gives rise to the Raman
interaction Hp = —p - Bess. In the frame rotating at frequency Awy, and using the
rotating-wave approximation, the interaction Hamiltonian in the basis of the bare

spin states {| — 1), [0),| + 1)} is

0 6i2kLa: 0
Hy/h=Qp/2 | o-izkee 0 izkre | . (2.5)
0 e—i2kLz 0

In momentum space, we use the spin-momentum basis to find the gauge transformed

Hamiltonian
H,/h= /2 hk2/2m — e Qp/2 . (20

0 Qr/2 h(ky — 2kp)?/2m + 6

The tunability associated with inducing artificial gauge fields in a cloud of ultracold
neutral atoms is evident: the laser intensity determines the Raman Rabi frequency
(coupling strength) Qp, the strength of the bias magnetic field determines the Zee-
man shifts, i.e., the Zeeman detuning § and the quadratic Zeeman shift ¢/h = epBg,
where e = 7.1772 x 1072 kHz/G?.

Diagonalization of H, results in three eigenvalues Ej(l;:x), where 7 = 1,2,3.
The properties of the resulting dispersion relations are largely dependent on the
values of (2g, and §. The quadratic Zeeman shift € provides a small energy offset to
the dispersion curves. Example plots of E](l;:x) are shown in the left-hand column of
Fig. 2.2. The sans-Raman coupling, free-particle dispersion curves of the bare spin
states are shown in black; the three Raman dressed energy bands are shown in red.

10



The lowest energy band is approximately harmonic about the dispersion minimum
Epin: Ejzl(lzjx) ~~ hz(l%a; — l;;mm)Q/Qm*, where Fk,m = gA, and m* is an effective
mass. In Sec. 2.4.1, we discuss the procedure used to load atoms into the lowest
energy dressed state F;—;. The induced vector potential, given by the position of
the dressed state minimum, is A = (A,,0,0). This vector potential commutes with
itself, i.e., A is “Abelian.”

The Raman beams couple spin states with the atom’s linear momenta; |mg, k).
The two-photon Raman transition couples adjacent mp states, i.e. states that differ

in angular momentum by AAmpr = +h and by linear momentum 2hk,. The three

Raman-coupled basis states [2,20] are
U(ky) = {| = 1, ky + 2k,),10, k), | + 1, kz — 2k,)}. (2.7)

Next, we describe the experimental sequence we developed to demonstrate the gauge

field Hamiltonian 2.6, and describe the results.

2.4 Experimental procedure

2.4.1 Adiabatic dressing

In our first fictitious fields experiment [2], Raman dressing was used to create
a light-induced, spatially uniform, effective vector gauge potential for a 3Rb BEC
in the F' = 1 ground hyperfine state. This experiment, paved the way for the many
non-uniform artificial gauge fields experiments that followed. The results of the

uniform vector potential experiment agreed with the single-particle model described

11



above.

The experiment started with a BEC prepared in [mp = —1,k, = 0) to be
loaded into the lowest energy Ejzl(/%x) Raman dressed state. To adiabatically load
into Ejzl(l%x), the BEC must be loaded with quasimomentum %, which is where
k, = 0 when 6 = 0. However, a 3D BEC created in a hybrid quadrupole plus
crossed-dipole trap using the methods described in Ref. [7], would start out in the
dressed state 7 = 1 with quasimomentum ky = —2k,.

To transfer the atoms to the 1%:0 = 0 state, the atoms are first RF dressed
with RF frequency w,; = Awy, and loaded into the lowest energy RF dressed state.
This is a two step adiabatic process: first, the RF coupling is ramped onto the
desired value in 1 ms with the detuning set far off resonance (by turning up the
bias magnetic field). Then second, the detuning is ramped to resonance in 9 ms.
Adiabaticity is easily reached because the RF-dressed band gap energy iQQpp/v/2
where Qrp/2m =12 kHz has the affiliated time scale ~ 20 pus, which is much less
than the ramp times.

Next, the atoms in the lowest energy RF dressed state are Raman coupled
by ramping on the Raman beams adiabatically (with respect to the energy gap
~ hQ)r between the dressed energy bands and the trap frequency along e,) to the
desired Raman coupling strength €2z in 20 ms. The RF coupling is then turned off
in 2 ms, leaving the atoms in the lowest energy Raman dressed state 7 = 1 with
l;:gC = 0. Atoms in an effective vector potential (i.e. l%mm # 0) may then be achieved
by adiabatically ramping on a detuning § away from Raman resonance (6 = 0) in

~ 20 ms. This combined coupling scheme was studied in Ref. [21].

12



The dressing procedure described for this particular experiment is common to
all experiments (with variations in the exact energy and time scales) that followed,
with the exception of the synthetic partial waves [3] experiment. This experiment
observed effective higher order partial waves as a result of the modified collision
interactions between two BECs that were Raman dressed with equal and oppo-
site momenta. In the partial waves experiment, instead of preparing the atoms by
loading them all into the energy minimum of the lowest energy dressed state, two
spatially overlapping BECs were prepared with momenta +2k;. Since the BECs
then load into the Raman dressed energy band at k,,;, = £2ky,, the atoms oscillate
in the optical trap. Because of this, the Raman dressing sequence was modified:
the Raman beams were ramped on in 1 ms, still adiabatic with respect to the band
gap, but fast compared to the quarter period of the optical trap frequency along
e;. Doing so ensures the momenta of the two BECs remain the same during the
dressing stage. At a quarter period, a BEC with non-zero starting momentum would
maximally change its speed inside a harmonic trap.

Next, we discuss the techniques used to make measurements on a Raman
dressed cloud after performing an experiment. Again, these techniques apply gener-
ally to any gauge fields measurements made in the lab, but we refer to the original

vector potential experiment and discuss its results.
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2.4.2 Measurements

The relative strength of the vector potential is experimentally found by mea-
suring the spin and momentum decompositions of the Raman dressed BEC. Though
a ground-state BEC has zero group velocity, the momenta of the three spin compo-
nents under Raman dressing are dependent on the values of § and 2. To prepare
for the measurement, we diabatically turn-off the Raman coupling (i.e. the Ra-
man laser beams) and apply a magnetic field gradient to Stern-Gerlach separate
the three spin states after time-of-flight (TOF). During TOF, the cloud ballistically
expands and the three momentum components become spatially resolved, as shown
in the right-hand column of Fig. 2.2. The presented data is spin- and momentum-
separated along the vertical and horizontal axes, respectively. The on-resonance
case, (a), shows the expected +2k, momenta acquired by the mp = +1 states from
the two-photon Raman coupling. At a non-zero detuning, hd = —2F,., shown in (b),
all spin states have acquired a non-zero velocity, along with corresponding changes

in the population fractions (such that the mean velocity remains zero).

2.5 Dressed state Hamiltonian: two-level case

We next describe the two-level Raman-coupled scheme used to realize SOC.
Experimentally, we want to reduce the thee-level system into an effective two-level
system and simulate the two spin states of a spin-1/2 fermion such as an electron.
This is accomplished by applying a bias field large enough to detune the mp =
+1 state from Raman resonance with the mprp = 0, —1 states via the quadratic
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Figure 2.2: In the left-hand column, the bare spin free-particle dispersion curves
are shown in black. The energy dispersion relations of the three Raman dressed
eigenstates EJ(%:C) where 7 = 1...3 are depicted in red. In the right-hand column
are the corresponding images taken in the laboratory after TOF, which shows the
spatially resolved spin and momentum decompositions of the Raman dressed state.
In both cases (a) and (b), the atoms were dressed with Raman coupling strength
hQr=4.85 E,, and quadratic Zeeman shift ie=0.44 E,. (a) hd = 0, the minimum
of the lowest energy dressed state F;—; is at k, = 0, i.e. there is no effective vector
potential. (b) hd = —2FE,, the E;_; minimum, indicated by the black arrow, shifts
0 Kumin # 0, so that each spin state acquires a non-zero phase velocity from the
induced vector potential.

Zeeman shift (Je] > [0],€2). The bias field Byey provides the linear Zeeman shift
w, /21 ~ 4.81MHz, and the Raman beams have a fixed frequency difference Aw;, ~
w, (Fig. 2.3). We are left with two pseudo-spin states | 1) = |F = 1,mp = 0) and
| 1) = |F = 1,mp = —1) with respect to the e, quantization axis. The relevant

coupled states are reduced to

U(ky) = {| — 1, ks — k), [0,k + kL) } (2.8)
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Figure 2.3: Two-level energy diagram for the spin-orbit coupling scheme. A two-
photon Raman transition couples the atom’s internal state to its linear momentum.
The Raman laser beams have a single-photon detuning A, which is of order the
excited state fine structure splitting. The Raman beams are detuned by ¢ from the
|—1) and |0) Zeeman states. A large enough magnetic field provides the quadratic
Zeeman shift of order the linear shift || > |0], Q2. This decouples the |+1) state from
the |—1), |0) states (negligible Raman coupling to the |+1) state).

The Raman beam geometry was modified to intersect at § = 7/2 for the SOC
case [17] so that the new energy scale E;, = h%k? /2m, where ki = k.cos(0/2) =

V27 /A. The associated two-level Hamiltonian is

. %(l{:x—kL)Z%—(S/Q Qr/2
H,/h= (2.9)
Qr/2 (kg + k)? — 6/2
Here 0 = Awy, — w, is the detuning from Raman resonance, and g is the Raman
coupling frequency. The SO coupling strength o« = FEp/k; is a function of the
Raman beam wavelength A and intersection angle #, but is independent of the

Raman coupling strength Q.
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Diagonalization of the Hamiltonian for a given coupling strength 2z gives

dispersion curves symmetric about quasimomentum ¢ = 0 for 6 = 0 Fig. 2.4.
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Figure 2.4: SOC dispersion curves. Black curves give the free-particle dispersion for
the bare spin states absent Raman coupling. For small Raman coupling strengths
Qg < 4Fp, the Raman coupled dispersion has two minima. For large Qg > 4FE7,
the dispersion has a single minima. In both cases, the curvature about the minima
has been modified from the free-particle case, so that the Raman-coupled atom has
a single-particle effective mass m*.
The dispersion curves are plotted for § = 0 and varying Raman coupling strengths
Qgr. In the SOC regime where h{)p < 4FE, dispersion curves have two minima
corresponding to dressed pseudo-spin states | 1) and | |’). For larger coupling
strengths, the two minima combine into a single minimum, so that the system
described is a spinless boson. The dressed states decompose into the bare spin
states, and the location of the dressed minima are variable with 4. It is in the single-
minimum regime that previous experiments realized artificial electric and magnetic
fields [15,16].

For non-zero detuning and h{2g > 4FE,, the dispersion minima k,,,;,, shifts. The
new minima are approximately harmonic near kpin: F (ky) ~ R (ky £ kpin)?/2m*,

with effective mass m* = h?[d*E(k,)/dk?]™! determined by the dispersion curva-
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ture. Dressed energies E(k,) are analogous to the Hamiltonian (p — qA)?/2m for
a particle with charge ¢ interacting with vector potential A. Then Epmin = qA/h
and the magnitude of A(9,{g) are bounded: —2k; < qA/h < +2k; [2]. The
strength of the vector potential A determines the fraction of atoms in each spin
and momentum state. Further, the strength, spatial, and temporal properties of A
are experimentally controlled with different Raman beam intensities to vary cou-
pling strength Qg, and properties of the detuning via changes in bias magnetic field
(Zeeman shift) ¢ [15,16].

It has been shown experimentally [17] that, absent Raman coupling, a BEC
formed from | 1, k, = ky + kr) and | |, k, = ky — k) spatially mix. However, a
quantum phase transition into SOC occurs when {2z = 0.19 E. In this regime, the
dressed spin states spatially separate from effective spin interactions.

The two-minima regime of the two-level Raman dressed Hamiltonian was used
to realize the spin-Hall effect (SHE) for the first time in a BEC. In the SHE, two spin
states experience equal and opposite spin-dependent Lorentz-like forces. The force
is orthogonally directed to the particle’s direction of motion, in analogy to the Hall
effect for charged particles. The SHE has been observed for electrons flowing in spin-
orbit coupled condensed matter systems [22,23]. In our experiment, we introduced
spin-dependent Lorentz forces to pseudospin-1/2 8’Rb BECs by engineering spin-
and space-dependent vector potentials [5].

The experimental realization of the SHE built on the methods described for
two-level Raman dressing of a 8Rb BEC, with a key new feature: spatially inhomo-
geneous SOC. Since the Raman coupling strength is proportional to the intensity of
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the Raman beams, the strength of €1, and therefore of A, is dependent on where
in space the atomic cloud is located inside the Raman beams’ Gaussian intensity
profile. The dynamic control over the optical trap beam allowed the Raman cou-
pling to be both position and time dependent. The dressed state was prepared with
equal populations in each (dressed) spin polarized state. The spin mixture was then
suddenly displaced in the harmonic trap to a final displacement associated with a
different (2. Each spin state acquired momentum along e,, which was both op-
posite in direction for the two spins, and related to its final momentum along e,,

characteristic of the SHE.

2.6 Dressed states without lasers: atom-chip experiment

2.6.1 Motivation

Going beyond spin-orbit coupling (SOC) achieved in previous bosonic 8’Rb
experiments necessitates more involved experimental set-ups. For example, non-
Abelian SOC requires Raman coupling in more than one-dimension. The Raman
detuning, A, must provide sufficient Raman coupling 2z o« 1/A? but also be far
enough detuned from the excited state fine structure splittings to limit scattering.
The scattering rate is proportional to 1/A?, so that we quickly reach a limit as A is
increased to minimize scattering. In the case of an optical dipole trap discussed in
Sec. 2.7, scattering is not a limiting factor because the light-shift for large detunings
scales as 1/A, so that a far-red detuned laser beam can provide strong confine-

ment at high intensities. For sufficient Raman coupling and minimal scattering, the
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optimal detuning from the ground to first excited fine structure (D1) transition is
approximately equal to the excited state fine structure splitting, 7.1 THz for 8"Rb
(Fig. 2.3).

Future experimental interests include the study of alkali fermions such as 4°K
and °Li, for the modeling of topological insulators with neutral atoms. However, the
light-induced Raman coupling scheme will result in high rates of scattering: the fine-
structure splitting is only 1.7 THz for *°K, and just 10 GHz for °Li. Therefore, the
lifetime for moderate Raman coupling strengths will be limited by large spontaneous
emission rates. This limit on experimental lifetime imposed by scattering rates

suggests the need for a non-optical coupling method.

2.6.2 Light-less “Raman” coupling

}Fow

Figure 2.5: The magnetic sublevels of the ground hyperfine F' = 1 state are Raman
coupled with RF fields from an atom-chip. The RF frequency detuned 4 from
RF resonance couples the spin states (pictured). An RF field has the wavelength
scale =~ 10 m, compared to the length scale ~ 800 nm associated with Raman
transitions using laser light. Thus, the length scale associated with an RF field is
not appropriate for imparting momentum kicks on the atom; we therefore propose
the use of a moving near-field RF field to achieve the desired length scales.

In this section, we introduce light-less Raman coupling using radio-frequency

(RF) magnetic fields from an atom-chip. As we showed in Sec. 2.3, the atom-light
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interaction looks like a rapidly varying effective magnetic field (vector light-shifts)
where

Besr x €, cos(dk - x — dwt). (2.10)

To eliminate lasers and use radio-frequency (RF) magnetic fields to Raman couple
the Zeeman split ground hyperfine states | = 1,mp = —1,0) of ¥Rb, we will
use an atom-chip in place of Raman beams to eliminate spontaneous emission and
spatial constraints that arise with use of complicated laser beam set-ups. The RF
will couple the spin states in the usual way, as shown in Fig. 2.5. The strong near-
fields of the atom-chip will replace the laser-atom interaction [6]. The coupling field
produced by the chip must carry momentum (as in the Raman-with-light case) to
couple the hyperfine states. We will accomplish this using a set of semi-rectangular
gold wires spaced a ~ 900 nm apart on an atom-chip. The wire separation is etched
with ion milling. This results in the separation between the wires to taper from
~ 150 nm at the top, down to ~ 50 nm at the bottom (see Fig. 2.6). The wires
carry currents

I, = Iysin(qr — wt + ¢n), (2.11)

where m is the wire number, ¢ is the wave vector, and ¢,, is the phase. A three-phase
current scheme creates a moving magnetic lattice, and the speed of the motion is
determined by the frequency of the changing current in the “Raman wires.” The
currents of neighboring wires are shifted in phase by 27/3 to produce the moving
magnetic lattice.

The proposed atom-chip must be placed in-vacuum because we require chip-
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to-BEC distance of ~ 5um (Fig. 2.6), a distance which is within the “sweet spot”
region for both a strong and spatially uniform (along e,) Raman coupling strength.
The chip design considerations are further discussed in Sec. 2.6.3.

The chips are fabricated at the Center for Nanoscale Science and Technology
(CNST) at NIST Gaithersburg using electronic beam lithography, and the gold
wires were written on a commercially purchased Si substrate. A thin ~ 5 nm layer
of titanium was deposited on the Si to bond to gold. Each Raman wire has a cross-
section of 150 nm (height) by 850 nm (width), with a spacing ~ 150 nm between
individual wires at the surface. Due to fabrication constraints, the spacing between
wires tapers down from 150 nm to 50 nm at the base. The first test chip is pictured
in Fig. 2.7. To ensure uniform coupling over the entire length of a BEC, 96 parallel
wires were fabricated. Three distinct regions of wires were fabricated with different
wire periodicities. This added flexibility will allow the light-less Raman scheme to

be realized with three different characteristic length scales.

€,

T—>ex % ~5um
150nm T 7 | ; Lo Au
«— PN
900 nm 150 nm Si

Figure 2.6: To achieve sufficient Raman coupling strengths, the BEC must be ~ 5um
from the chip surface (i.e. within the evanescent region of the moving RF magnetic
field produced by the chip). Adjacent wires are spaced ~ 900 nm apart, and the
separation between wires varies between ~ 150 nm (top) to & 50 nm (bottom). The
separation taper is a consequence of the ion milling technique used to etch the wires
during fabrication. The near-field wavelength of the three-phase RF field is then
2.7pm.
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Images courtesy of the NIST Center for Nanoscale Science and Technology (CNST)

Figure 2.7: First successful test chip fabricated, ready for bench testing. (a) Full
top-down view of the 96 wires. There are three regions of parallel wires; each region
has different wire periodicity. (b) cross-section view of region ii, and (c) cross-section
view of region 7ii.

2.6.3 Raman-with-light vs. rf Raman

In general, the rf Raman coupling will take place at different length scales from
the Raman-with-light case (although the angle of intersection of optical beams can
be used to tune the length scale of the interactions much as in an optical lattice [24]).
The different wire spacings are inversely proportional to the momentum that the
chip-generated near-field magnetic field will be able to impart to the atoms. The

near field magnetic field from the wires is,

B(z) o Ipexp(—2mz/ A f) (2.12)
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for Raman wires, where A, is the periodicity of the current in the Raman wires,
and z is the distance from the chip surface. The strength of B(z) (analogous to
the Raman laser intensity in the Raman-with-light case) determines the Raman
coupling strength. To overcome the exponential decay of the evanescent wave near
the chip surface, we must trap the atoms at a distance of order A, from the chip
surface. Given the current design, a uniform coupling strength in the plane parallel
to the chip surface requires a distance of 3~5 pum from the surface. A plot of the
Raman coupling strength as a function of e, for the distance z = 2 ym from the chip
surface is shown in Fig. 2.8(a). The dark blue curve represents the time-averaged
coupling strength, uniform over the dimensions of a typical BEC. For sufficient
coupling strengths, we would like to place the BEC as close as possible to the par-
allel wires producing the moving magnetic field. However, for distances z < a, the
time-averaged coupling oscillates at the wire periodicity. At distances z 2 a, the
coupling becomes uniform; therefore the optimal operating region for our experi-
ments is at small distances z that satisfy the uniformity condition. Additionally,
the Raman coupling strength as a function of the distance z from the chip surface
is shown in Fig. 2.8(b), for the three wire periodicities fabricated on the atom-chip:
Aeff = 0.4 pm, 10.8 um, and 16.2 pm. Further, uniform coupling in the direction
perpendicular to the surface requires that the BEC be thin along this direction.
Although atom-chips are commonly purposed for BEC production (such as
magnetic trapping with wires on the chip), we will use our chip solely for the pur-
pose of creating the Raman coupling (degeneracy will be reached in an optical trap).
Moreover, due to the unusually close placement of the BEC to the chip surface,
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near-surface effects such as spin-flips due to thermally induced currents in the room
temperature gold surface (Johnson noise), and perhaps even the distortion of the
trapping potential due to the Casimir-Polder potential [25], should be considered.
A shorter BEC lifetime would limit the duration of time we have to perform exper-
iments. However, since the BEC will be tightly confined along e, (2D BEC) and
the Casimir-Polder force falls off quickly with distance z from the surface (o< 1/z%),
we expect the Casimir-Polder force to have negligible affects. In addition, the spin-
flip rate due to Johnson noise from the gold wires is expected to be insignificant:
0.05 s7! ~ 0.15 s~! in the spatial region of interest to the BEC 3 pym to 5 pm.

For the Raman beams we use wavelength A ~ 800 nm, so the relevant energy
scale is By, = h*k?/2m =~ h -3 kHz ~ kg - 150 nK. A Raman transition is a
two-photon process, while RF Raman using a real moving magnetic field is a single-
photon process. Thus, it is appropriate to compare the RF length scales to half of
A, & 400 nm. The length scale for the chip A\gr > 2a is limited by the wire spacing
2a ~ 2 pm. The minimum wire periodicity that could be fabricated on the chip was
constrained by the wire cross-section we expected to be necessary to avoid significant
heating of the wires. Erp = h-20 Hz = kp - 3 nK, and —2kpp < % < +2kgp, the
vector potential bounds being a factor of ~ 8 smaller than the Raman-with-light
case. The benefits of the chip method include the relative ease with which complex
coupling schemes can be designed, including spatially varying coupling.

If a larger-magnitude artificial vector potential is desired, there are several
options to get an Frp comparable to E7. One option is to use the alkali fermions,
which are smaller in mass. For example, °Li would result in a factor of 10 gain in
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Figure 2.8: A constant coupling over the dimensions of the BEC (as in the light-
induced coupling case) requires the time-averaged magnetic field value to be con-
stant. For small distances z < a, where a is the spacing between adjacent wires, the
coupling oscillates over space. The optimal value is z = 2a ~ 3a, the smallest value
of z for which the coupling is constant. The calculated time-averaged coupling is
shown as dark blue in (a) for Acjy = 5.4 um at z = 2 pm from the chip surface. We
desire the smallest z feasible because the coupling strength drops off exponentially
along z. The calculated coupling strength as a function of the distance z away from
the chip surface for different wire periodicities is shown in (b) for Iy = 1 mA.

the recoil energy. Another option is to two-rf-photon couple the m; = 1 and m; =
—1 spin states instead of single-rf-photon coupling m; = —1,0. The momentum
difference between the two spin states is then increased by 2k,., so that E, has a
factor of 4 gain in energy scale.

As mentioned, the first atom-chip for RF-Raman-coupling induced artificial
gauge fields experiments is currently being bench tested. Empirically, we found
that we are able to run currents higher than anticipated [26] through the chip wires.
This means a larger range of Raman coupling strengths is at our disposal. While
the predicted breakdown current was &~ 50 mA, currents up to =~ 130 mA were
run through each wire with no noticeable heating of the wires, i.e. the resistance
across each wire stayed constant. A current of just ~ 1 mA will provide Raman

coupling strength h{2p ~ FEgrp at distance z =~ 5 um from the chip surface. In
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addition, the less stringent constraint on the wire cross-section will allow future
chips to be designed with smaller than 900 nm wire periodicities, possibly closing

the gap between the length scales of RF Raman and light-induced Raman couplings.
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Chapter 3: Quantum degenerate gas production

In our experiment, we achieve Bose-Einstein condensation of 8Rb atoms start-
ing with standard laser cooling techniques followed by evaporation to degeneracy
in a hybrid optical dipole plus magnetic trap [7]. Here we provide an overview of
the laser cooling and trapping procedure we use on the Rubidium Chip (RbChip)
apparatus, which includes the hybrid trap technique developed on the Rubidium II
apparatus (now Rubidium Potassium (RbK)), as detailed in Ref. [7]. The steps to
degeneracy are summarized in Table 3.1 and Fig. 3.5.

We start by capturing atoms from room-temperature Rb vapor in a six-beam
magneto-optical trap (MOT) in the MOT cell with loading enhanced by light-
induced atomic desorption (LIAD) [27,28]. The atoms are then trapped in a mag-
netic quadrupole trap and magnetically transported [29] from the MOT cell to the
science cell using a series of overlapping anti-Helmholtz coil pairs. The details of
the magnetic transport are discussed in Sec. 4.3. Upon completion of the transport,
we perform rf-forced evaporation in the magnetic trap. The magnetic field gradient
is then lowered, so that the magnetic trapping potential no longer exceeds that of
gravity, to transfer the cloud into a red-detuned crossed optical dipole trap (ODT).

Finally, we perform evaporation in a crossed ODT to reach quantum degeneracy.
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3.1 Imtroduction: Doppler cooling

Our task is to cool room-temperature atoms from vapor, ~ 300 K, until they
reach quantum degeneracy at =~ 100 nK. The first step is to collect atoms in a MOT
using Doppler cooling, which for example is commonly utilized in a Zeeman slower.
While the RbK experiment has a Zeeman slower, the RbChip experiment does not.
However, we give a brief description of it here for pedagogy. A Zeeman slower utilizes
one-dimensional (1D) Doppler cooling in combination with an external, spatially
varying magnetic field to cool and slow atoms before they are captured in a MOT.
The basic ideas of Doppler cooling can be understood with this 1D example. A beam
of atoms traveling along e, is slowed by a fixed frequency laser beam propagating
along —ey (Fig. 3.1). As the atoms slow due to preferential absorption of counter-
propagating near resonant radiation, the Doppler shift of their transition frequency
decreases. This issue is remedied with the application of a spatially varying magnetic
field that changes the Zeeman splitting of the internal spin states of the atoms as they
move and slow so that the atoms stay on resonance with the laser beam frequency.

A photon absorbed imparts momentum Ak to an atom at resonance with its
laser frequency wy, where k;, = 27w/ is the wave number of the plane-wave laser
with free-space wavelength A\ (Fig. 3.1). For an atom moving at speed v in the
direction opposite to the laser beam propagation, the atomic resonance frequency wy
in the laboratory frame is Doppler shifted by kv in the reference frame of the atom,
so that the atom is resonant with a laser which has angular frequency w = wy—kpv.

The laser cooling beam must then have frequency wy, that is red-detuned from wy
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Figure 3.1: Doppler cooling. (a) An atom travels along e, with velocity v, opposite
the propagation direction of a laser beam with momentum Ak. (b) An atom absorbs
light resonant with its internal electronic states, including both Doppler and Zeeman
shifts. The atom is excited to its excited state, and the light imparts momentum hk
on the atom. (c) The spontaneous emission decay of the atom back to its ground
electronic state produces a random momentum kick which averages to net zero over
many cycles.

to be absorbed by the atom: w; = wy + J, where detuning 6 < 0. The absorbed
photon is then spontaneously emitted in a random direction (Fig. 3.1¢). Over the
course of many absorption-emission cycles from an incident laser beam, the random
momentum kicks average to zero and the net momentum kick is directed opposite
to v (Fig. 3.1b): the atom is slowed.

To achieve significant cooling, many cycles of absorption and spontaneous
emission are necessary. The recoil velocity v, = hkz/m ~ 6 mm/s for ’Rb, where
m the mass of a single rubidium atom, is the change in the atom’s velocity due to
absorption of a photon. At room temperature (300 K), the most probably velocity

of 8Rb atoms is ~ 240 m/s, so that tens of thousands of momentum kicks are
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necessary to significantly slow the atoms. To accomplish this task, we couple the
551 /2; F' = 2) ground to the [5P3/9; F' = 3) excited state (the D, cycling transition)
using A ~ 780 nm laser light.

The internal electronic states used to Doppler cool neutral 8"Rb atoms are
shown in Fig. 3.2. The atomic cooling transition used in laser cooling and trapping
is the cycling transition accessed using o (circularly) polarized cooling beams. This
D, transition is the optimal cooling transition because it has the largest transition
probability (i.e. largest Clebsch-Gordan coefficient). In addition, angular momen-
tum selection rules require an atom in [5P;; F' = 3,m} = 3) to spontaneously
decay back down to |55 /2; F' = 2, mp = 2), where the atom rejoins the cooling cy-
cle. In addition to the cooling transition, atoms have a small but finite probability of
making the off-resonant transition several linewidths away from the cooling transi-
tion, |55 /2; F7 = 2) — |5P5/9; F' = 2). The atom may then spontaneously emit back
to |551/2; F' = 2) or to the dark [5S;9; F' = 1) state. Atoms in the dark state are no
longer at resonance with the laser beam due to the large (> I') 6.8 GHz splitting be-
tween the two electronic ground states. We, therefore, apply an additional repump
laser beam resonant with the |5510; F = 1,mp = 1) — |[5P3)9; F' = 2,ml, = 2)
transition to pump the atoms out of the dark state (Fig. 3.2). Some of these atoms

will decay to |557/2; F' = 2) and rejoin the cooling cycle.

31



52P3/2
I
F'=2
A
F'=1
F'=
MOT MOT
Cooling Repump
P~ ~~
| ﬂv
5281/2 F=2
— F=1

Figure 3.2: 8"Rb D2 line hyperfine structure level diagram. The primed states
represent the excited state hyperfine structure. The MOT cooling and repump laser
wavelengths are red-detuned from the F' = 2 to I/ = 3 and F = 1 to F/' = 2
transitions, respectively. The detuning compensates for the Doppler shift seen by
the atom traveling in the direction opposite the laser beam propagation.

3.2 Limits of Doppler cooling

The maximum scattering force from the absorption process is limited by the
rate of spontaneous emission (an atom cannot absorb faster than it can emit a

photon). The steady-state excited state population for a two-level atom is

B 02 /4
2 02/2 4+ T2/4

P22 (3.1)

The laser intensity I and coupling strength €2 (the Rabi frequency, the rate at
which the atom oscillates between the ground and excited states) are related by
I/Igar = 202 /T? where the saturation intensity for the cooling transition is Ig4r =
hw3T /127c?, where w is the frequency of the transition, and c is the speed of light.

For large laser intensities I — 0o, Q > §,T", so that p — 1/2. Then the scattering
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force ' = hkT'pey has a maximum F,,, = hk['/2. The maximum acceleration is
then amez = Finaz/m = hKI'/2m = v, /27, where 7 is the lifetime of the 5P3/, ex-
cited state. For 8Rb, tmaee ~ 2 X 10°m/s°, v, &~ 6 mm/s, and 7 ~ 26 ns. For two
counter-propagating laser beams, the net cooling scattering force slows the atoms so
that they can only slowly diffuse out of the beams: an optical molasses. This force
is a damping force F,oiasses.coor = —avv, for small velocities kv < I', and negative
(red) detuning § < 0. The damping coefficient « is a function of 4, and a > 0 only
when the laser is red-detuned from atomic resonance. This damping force competes
with momentum diffusion from spontaneous scattering to a lowest Doppler limited
temperature Tp, limited by the natural line-width I'" of the excited state by the

relation kgTp = hI'/2. For 8" Rb, the Doppler temperature is Tp ~ 146 uK.

mF:0

Figure 3.3: Magneto-optical trap. Three

properly polarized counter-propagating Figure 3.4: MOT energy level separation
pairs of orthogonal laser beams along with as a function of position. Note that the
an external anti-Helmholtz magnetic field ot (07) beams couple to opposite m; =
make a magneto-optical trap (MOT). 1(—1) Zeeman states.

33



3.3 Magneto-optical trap

Our procedures for Bose-Einstein condensate (BEC) production all start by
loading atoms into a magneto-optical trap (MOT), as shown in Fig. 3.5 stages (i) to
(ii). The MOT is typically used as a first step toward BEC because of its large
capture volume, reasonable capture velocity, and the fairly long lifetime of the
trapped atoms. The MOT combines three orthogonal pairs of counter-propagating
laser beams with a weak magnetic field gradient (weak compared to the grav-
ity gradient, such that the atoms are not magnetically trapped) of ~ 10 G/cm
to form a trapping region [30]. The field gradient is created by a pair of anti-
Helmholtz coils that run currents in opposite directions with a field minimum
of zero at the trap center (Fig. 3.3). The polarizations of the laser beams play
a crucial role in a MOT (Fig. 3.4). Near the quadrupole trap center, the field
varies linearly as B = B'(x,y,—2z). Since the magnetic field is symmetric along
e, and e,, the gradients along e, and e, are equal, and because V - B = 0,
(0B,/0z) + (0B,/0y) — (0B,/0z) = 0. The weak fields provide a Zeeman split-
ting AE = grupmpB of the atom’s internal energy levels near the trap minimum.
Each counter-propagating laser beam pair has opposite circular polarizations—right-
handed circular (o) and left-handed circular (o7) that allow angular momentum
transitions Amp = +1, and Amp = —1, respectively (Fig. 3.4). As an atom travels
away from the MOT trap center, its internal hyperfine level splitting increases with
the field. An atom that sees a red-detuned beam will feel a restoring force when

its internal energy reaches a point in space where it is at resonance with the laser
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frequency. The laser is detuned of order the natural linewidth (I'/27 ~ 6 MHz) of

the transition.
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Figure 3.5: Quadrupole trap current as a function of time. The anti-Helmholtz coil
pair used for the first stages of laser cooling and magnetic trapping is sequenced as
follows: (i) Vaporous 8"Rb atoms are captured and cooled in the magneto-optical
trap (MOT) for ~1 sec. The loading of the MOT happens in the first ~0.5 sec
using light-induced atomic desorption (LIAD). (ii)) CMOT. (iii) The magnetic field
is turned-off for the molasses stage. (iv) Magnetic trap is on to recapture the atoms
(MOT laser off). (v) Adiabatic increase in the trap depth for a compressed trap to
get ready for magnetic transport. (vi) Magnetic transport starts, to be discussed in
detail in Sec. 4.3.

Typically, the number of atoms captured in a MOT is N ~ 10°, with tem-
perature 7" ~ 100 uK. We typically load the MOT for 0.5 s to 3.0 s depending on

background vapor pressure and desired number of atoms into the science cell.

3.4 Optical molasses

After the atoms are trapped and cooled in the MOT, we perform polarization
gradient cooling by suddenly turning the quadrupole field to zero, while keeping
the laser beam pairs used for the MOT on. The three orthogonal pairs of counter-
propagating laser beams provide the damping forces necessary to cool atoms in a sub-
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Doppler optical molasses [31]. Molasses is performed for a short period (step (iii) in
Fig. 3.5) immediately after the MOT stage. Since atoms move in three-dimensions,
the optical molasses laser beams must propagate along all three axes for capture.
It is important to note that the molasses itself is not a trap, and does not spatially
confine the atoms.

Optical molasses uses the polarizations associated with laser beams to sub-
Doppler cool atoms. While Doppler cooling is limited by the excited state line
width of the atom ~ 6MHz for 8" Rb, the Sisyphus cooling mechanism of molasses is
limited by the recoil energy E,/h ~ 4 kHz of the atom, meaning that the change in
energy per a Doppler cooling process is larger than that in the Sisyphus effect. Each
set of counter-propagating beams create a spatially varying light-shift. An atom
that repeatedly climbs up this gradient, absorbs a photon, then spontaneously de-
cays to the bottom of the hill, experiences a decrease in energy related to the height
of the hill for each occurrence. The process is ultimately limited by the recoil energy
gained from spontaneous emission. In the alkali atoms, Sisyphus cooling operates
at energies below the Doppler cooling limit, and can further cool atoms below the

Doppler limit. Our apparatus utilizes a 19 ms molasses stage (Fig. 3.5 (iii)).

3.5 Magnetic trap

After laser cooling atoms in a MOT, then molasses, the atoms are transferred

to a magnetic trap [32] for transport and evaporative cooling [33]. In the magnetic
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Table 3.1:

MOT quadrupole coil current sequence

time  current ramp type frequency
(A) (I'/2)
1 LIAD MOT 0.5sto3s 8.5 constant 2.6
2-3 MOT /CMOT 1.0s 8.5,20 half Gaussian 2.5,2.7
4 molasses 1I9ms tol=0 exponential 23.2
5 optical pumping 681 us 10.6
6 magnetic trap 0.1s 34 constant
7 magnetic trap compress 0.1s 34,90 half Gaussian
8 magnetic transport 2.2s Sec. 4
9 rf evaporation 5s linear 20-4 MHz
10 decompression i 4s 70,50 linear
11 decompression ii 3s 50, 22 linear

capture stage shown in Fig. 3.5(iv), the quadrupole current is suddenly turned back
on. Magnetic traps have large trap volumes that allow good spatial mode-matching
to the size of the laser cooled atomic cloud. This, in addition to the simplicity in
design (the same pair of quadrupole coils used for the MOT are used for magnetic
trapping in an experiment) and the tight confinement the trap can provide (much
larger than gravity gradient), explains its wide usage.

The magnetic trap provides a state-dependent conservative potential using
gradient forces to keep the atoms near the quadrupole center. These forces arise
from the interaction between the atomic magnetic dipole moment and the external
magnetic field B. The potential energy experienced by an atom is U = —pu - B =
grpupmpB. The field from the quadrupole trap is linear near the trap center. For

circular coils it has the form;

U(r) = uB'\/2? + y? + 422, (3.2)
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where B’ is the magnetic field gradient in the ex — e, plane; half the gradient along

e,. Then the force experienced by an atom due to U(r) is

(3.3)

0B 0B 0B
F=-VU=—grupmpg ( ) )

dx’ dy’ 0z
so that the linear potential is trapping when the force points in the weak field
direction, towards the center of the trap. This requires gpmpr > 0, and the atoms
that satisfy this condition are called low-field seekers—|F' = 1,mp = —1), |F =
2,mp = +1), |[F = 2,mp = 2) states for 8’"Rb—while high-field seekers |F =
I,mp=+41), |F =2,mp=—1), |F =2,mp = —2) get expelled from the trapping
region. Spin-projectionless atoms in the |F' = 1,mp = 0) and |F = 2,mp = 0)

states do not experience any magnetic force at linear order in B.

3.5.1 RF evaporation

After the atoms have been recaptured using the magnetic trap, they are ready
to be cooled further via evaporation. The field gradients in a magnetic trap provide
a spatially dependent resonance that can be driven by radio-frequency (RF) to
spatially select out the most energetic atoms. These atoms are found furthest away
from the center of the trap, and are forced to spin-flip from a low-field seeking
state to a high-field seeking state by application of RF with frequency w,; such that
hw,; = grpupmpB (Fig. 3.6) drives resonant transitions from the mp = —1 state
to the untrappable mp = 0,41 states. The most energetic atoms, i.e., atoms with
energies larger than the average energy are selected out, and the remaining atoms

elastically scatter and re-thermalize to a lower average temperature.
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However, there is one inherent limitation to the quadrupole magnetic trap: the
magnetic field zero at the center of the trap causes unwanted Majorana spin-flips
and heating, which limits evaporative cooling to temperatures above those required
for quantum degeneracy. Evaporation works well as long as the re-thermalization
from elastic collisions happens at a rate faster than the non-adiabatic spin-flip rate.
As evaporation cools the atoms and the cloud size decreases, the atoms eventually
heat and spin-flip faster than they can re-thermalize. Thermalization from elastic
collisions happens at a rate faster than the non-adiabatic spin-flip rate.

Two conventional methods commonly used to overcome this disadvantage in
quadrupole traps are the time orbiting potential (TOP) trap, and an optical plug.
The TOP trap uses a time orbiting bias field to shift the magnetic field zero away
from the trap center, while the optical plug method uses a repulsive (blue-detuned)
optical potential to push the atoms away from the center. In Ref. [34], we developed
anew hybrid technique which combines the magnetic trap with a red-detuned optical
dipole trap to achieve degeneracy of 8"Rb atoms. This technique does not require
an oscillating field or a plug beam. This method is discussed in Sec. 3.6.

In practice, we apply an RF sweep to continuously eject the most energetic
atoms out of the trap until the desired equilibrium temperature is reached (Fig. 3.6).
In terms of the RF dressed state energy bands of the coupled magnetic sublevels of
the F' = 1 ground hyperfine state shown in Fig. 3.7, a linear RF sweep follows the
lowest energy band (shown in solid red). At the end of a sweep, we typically have

N ~ 108, and T =~ 30 uK.
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Figure 3.6: Atoms in the magnetic trap are evaporatively cooled with a radio-
frequency (RF) sweep (indicated by the gray arrow) from 20 MHz to 4 MHz. The
atoms with the highest energies become resonant with the RF transition frequency
during the sweep. When resonant, the RF flips the internal state of an atom from the
magnetically trappable mpr =-1 state to the untrappable mpr =0,1 states. The spin-
flipped atoms are evacuated from the trap, and the remaining atoms re-thermalize
to a lower temperature.
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Figure 3.7: The RF dressed energy levels for the ground F' = 2 manifold are depicted
by the solid curves, with the lowest energy band shown in red. The energies of the
magnetic sublevels sans dressing are shown as dashed gray lines.

3.6  Quadrupole plus optical dipole: the hybrid trap

As atoms cool and collect in the middle of the magnetic trap during RF evap-

oration, spin-flips may occur near the Zeeman level crossings (Fig. 3.6). This draw-
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Figure 3.8: Spin populations of the RF dressed spin states in the F' = 2 ground
hyperfine state manifold as a function of the detuning, d, from RF resonance.

back of the quadrupole magnetic trap must be mitigated. In our hybrid scheme,
we minimize spin-flip loss by overlapping an optical dipole trap with the magnetic
trap. The initially magnetically trapped atoms are collected in a red-detuned optical
dipole trap centered &~ one beam waist below the magnetic quadrupole zero (The
alignment below the quadrupole zero is such that the magnetic field gradient sup-
ports the atoms against gravity). After RF evaporation, when Majorana loss is
significant, atoms remain in the all optical trap.

The hybrid trap works well because it limits Majorana loss in the magnetic
trap, and the transfer of the atomic cloud from linear quadrupole to harmonic
dipole happens at approximately constant entropy; i.e. the transfer is adiabatic.
The transfer process both decreases the temperature and increases the phase space
density. For a cloud in thermal equilibrium in a quadratic trap, the Majorana loss
rate '), o< i/ml?, where m is the mass of the atom, and [ is the half width half

maximum of the cloud [7,35]. This assumption is valid for high density clouds with
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high rates of elastic collision [36].

For a two-level system, the single beam ODT potential is

U(r):—_?mCQF( L ! )I(r), (3.4)

2w3, Wis +w  wie—w

where c is the speed of light, I" is the spontaneous decay rate of the excited state, wyo
is the resonant frequency, and w, I(r) are the frequency and intensity of the dipole
laser beam, respectively. We define detuning A = w—wi». For a near-detuned beam

|A| = |w — wia| <K wig, the trapping potential simplifies to

3mc? r

Ulr) = T2 A (r).

(3.5)

For a red-detuned beam A < 0, U(r) is an attractive potential with a potential
minimum at maximum intensity. This remains true for a far-red detuned trap, for
which both terms in Eqn. 3.4 must be considered. In the laboratory we use a far-
red detuned trap at high intensities to decrease the scattering rate. The trapping

potential for such a trap using a Gaussian laser beam is
U(r) = —Uexp{—2r*/w*} (3.6)

where r is the radial distance from the center of the beam, and wq is the beam
waist (1/e? radius).

The combined optical and magnetic potential of the hybrid trap is

2 2
U(r) = pB’ % + yz + 22 — Upexp{—2[z* + (2 — 20)*]/wi} + mgz + Ey, (3.7)

where the first term originates from the magnetic trap as discussed, and the second
term comes from the Gaussian dipole beam with width wy and trap depth Uy. The
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third term is the gravitational potential energy of the atom with mass m, and Ej is
an offset added to make the potential energy minimum U, = 0.

We use three pairs of quadrupole coils to provide bias magnetic fields in the
e;, e,, and e, directions. The bias coils serve several functions. These include
the cancellation of stray background magnetic fields; defining the quantization axis;
and inducing the Zeeman shift on the hyperfine energy levels of the atoms necessary
for microwave or RF internal state control. Figure 3.9 shows the magnetic field
calibration of the three coils. The coils were designed to provide a field larger than
or equal to 1 G/A. The intercept is the calibrated current required by a bias coil
pair to cancel out the background magnetic field (i.e. the condition under which the
atoms experience zero magnetic field).

Optical forces arising from scalar light-shift in the optical trap confine atoms
to the highest intensity region for a far red-detuned laser beam. After complete
transfer into the crossed ODT, atoms typically have N ~ 107, and T ~ 5 uK. The
dipole trap is approximately harmonic at low energies, and is state-independent (due
to large detuning).

In the hybrid trap, we use the strengths of both the magnetic trap (large trap
volume and tight confinement) and ODT (efficient all-optical evaporation without
magnetic fields), while overcoming their weaknesses by using the two traps together.

At low energy, U(r) may be approximated as harmonic:

U(r) ~ =[U/z* + U;'y2 + U (2 — Zmin)?], (3.8)

DN | —

where U/" with i = z,y, z are the trap curvatures, and w, , ~ 21/U/mw?.
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Figure 3.9: Calibration of the bias coils in the science cell along (a) e, (b) e,, and
(c) e..

After a final adiabatic relaxation of the magnetic trap, the atoms are confined
solely in a crossed optical dipole trap. The crossed-dipole trap frequencies along
e;.ey, and e, as a function of the total laser output intensity, as measured by a
pick-off photodiode, is shown in Fig. 3.10(a). The trap frequencies were measured
by exciting dipole modes of oscillation in the trap and observing the resulting os-

cillation in the center of mass motion. The measurements were taken by using a
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magnetic field gradient to apply a force F; = grupmp(0B/0z;) on the atoms. The
gradient force displaces the |F' = 2, m; = 2) atoms from the center of the harmonic
trap; thereby initiating oscillation about the trap minimum. The post time-of-flight
position of the atomic cloud as a function of time was measured to determine the
trap frequency along each axis. An example measurement is shown in Fig. 3.10(b).
After transfer, we perform an all-optical evaporation in the dipole trap by lowering
the laser intensity and therefore the depth of the trap. At the end of evaporation,

degeneracy is reached.

3.7 A dimensional argument for Bose-Einstein Condensation

Classically, a particle may occupy any point in the phase-space continuum
(Pzs Dy, Pz, %, Y, 2). When considering quantum statistics, however, the three-dimensional
phase-space is discrete. The requirement for discreteness arises from the Heisenberg
uncertainty principal ApAz > h/2, so that the smallest allowed volume unit in
three-dimensional phase-space is h3. Up to a constant, the critical number density
N./V for Bose-Einstein Condensation (BEC) can be derived as follows: consider
a bosonic gas with volume V' and temperature 7', and assume that all states with
energies kgT and below are occupied. The equipartition theorem, kgT = p?,,./2m
(where kp is the Boltzmann constant) relates 7' to the maximum momentum p,,q,-
Then the total phase-space volume V = V - 47p3 /3, and the total number of

quantum states N’ = V/h3. Degeneracy occurs as the number of quantum states
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Figure 3.10: Calibration of the crossed-dipole trap frequencies as a function of the
total laser intensity. (a) An example trap frequency measurement along e,, shown as
point “a” in (b). (b) The trap frequencies as a function of intensity (trap depth) have
a square root dependence, characteristic of a harmonic oscillator. Measurements
were taken while keeping the power ratio between the two beams constant.

approaches the total number of particles V. Then for critical number NN, we find

N, T\ 2
e (ka ) , (3.9)

% 2mh?

where T, is the critical temperature. We have found the relation between N. and
T., up to a constant, using dimensional analysis. Next we apply quantum statistics

to derive the proportionality constant.
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3.8 Quantum Statistics

To refine our previous estimate, we first introduce the differences between
Boltzmann statistics and quantum statistics for bosons and fermions. To begin, the
probability of finding a system in state ¢ with energy F; and number of particles
N; when the system is in contact with a reservoir with fixed temperature 7" and
chemical potential u is

e~ [Ei—pNi]/kpT

PP=——or—— 3.10
p (3.10)

where Z = Y, e7WFim#Nil/ksT ig the grand partition function which sums over all

possible Gibbs factors e~ [Ei=#Ni/ksT o that 3, P = 1 is satisfied.

The Pauli exclusion principle states that no two fermionic particles may occupy
the same single-particle state. This means that for a single-state system, the state
may either be occupied (N = 1) with energy €, or unoccupied (N = 0) with energy
0. The partition function for such a system is Z = 1 + e~ (<"#/k8T "and the average
number of particles in the single-particle state (n) = Y, Nye lEi=nNil/ksT /7 ig oiven

by the Fermi-Dirac distribution

1

<n>FD = elem/ksT 1 1° (3.11)

With bosons, the single-particle state can be occupied by any number of n particles,
so that the sum is a geometric series Z = Y, e~ (c#N/ksT = 1 /(1 — e~(e=w)/kaT)

where p < € so that the sum converges, and insures that the Bose-Einstein distri-
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bution for the average number of particles

1

<n>BE = e(ﬁ—ﬂ)/kBT . 17 (312)

is always positive. We would like to compare the number distributions of bosons
and fermions with that of an ideal gas in which all particles occupy different single-

particle states. Such a system is described by the Boltzmann number distribution

<n>Boltzmann = 6_(6_#)/kBT‘ (313)

Number Distribution (n)
N

Energy [kgT]

Figure 3.11: Fermi (red), thermal (black), and Bose (blue) number distributions.
The energy axis is in units of kgT', and is offset by the chemical potential p. The
Bose distribution diverges at € = p

For € > 1, both quantum distributions approach the classical limit, (n) .5, (n) g5 —

(1) Bottsmann @ shown in Fig. 3.11.

The Fermi-Dirac distribution is a step-function when 7" = 0, and all states with
energies below p are occupied, and those above unoccupied. This describes de-
generacy for fermions, and ex = p is the Fermi energy, the energy of the highest
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occupied single-particle state. Since degeneracy is reached when every available en-
ergy level is filled, starting with the ground state, the total number of atoms present
determines the Fermi energy. For a Fermi-gas confined in a box with volume V,

er = h?/8m(3N/7V)¥3 and Ty = ex/kp is the Fermi temperature.

3.9 Density of states

The critical number of atoms for BEC with the correct pre-factor for an uncon-
fined extended system can be computed using the previously derived Bose-Einstein
number distribution and the density of states. We follow the derivation in Pethick
and Smith [37] to derive the critical phase-space density required for condensa-
tion. A bosonic gas will condense to degeneracy at critical temperature T, as dis-
cussed, and an appreciable number of atoms will occupy the same single-particle
ground state. We first re-write the total number of quantum states N in terms of
the energy associated with the free particle momentum e = p2,, /2m for a parti-
cle confined in a box (note: in the laboratory particles are harmonically trapped).
The total number of states up to energy e is G(e) = V2Y2(me)*?/37%h3. Then
the density of states g(e) = dG(e)/de = Vm?®2e'/2/2'/272h3 which has the form
g(€) = Cpe®L, with o = 3/2 and Gy = Vm®?2 /2127213 for a particle in a three-
dimensional box. We integrate the density of states weighted by the Bose-Einstein
distribution over all energies to find the total number of particles in excited states

Nepeited = fooodeg(e)<n> pp» Where the contribution from the ground state is negligi-
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ble for large N.

At the critical point before an appreciable number of particles occupy the ground
state for condensation, virtually all particles occupy excited states, so that N =
Negeiteq- The maximum number of particles is in the excited states when pu = 0

(energy required to add a particle to the system is zero):

° 1
N, = /0 deg(e) ce/ksTe _ 1" (3.14)

Change of variables © = ¢/kgT, gives

00 a—1
m:@%mﬁ/mm . (3.15)
0 et —1
This integral can be evaluated using special functions as
N, = Ca(kBTc)aF(a)C(a)v (316)

where the gamma function I'(«) and Riemann zeta function ((a) have analytical

solutions. For the three-dimensional particle in a box with a = 3/2, we find

2wmkT,\ ?
m ) , (3.17)

N5—26m
|74 h2

and 2.612 is the dimensionless phase-space density.
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Figure 3.12: Absorption images taken in the chip laboratory after 25 ms time-of-
flight. Purple represents zero atom density while red represents the highest atom
density. (a) A thermal cloud, (b) a bimodal distribution (coexisting condensed and
thermal phases), and (c¢) a nearly pure Bose-Einstein Condensate
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Chapter 4: Apparatus Design and Construction

4.1 Design Motivation and Overview

For the physical design of the atom-chip apparatus, we aimed for a compact,
simple system. Instead of a Zeeman slower, we use a vapor-fed 3D MOT cell, and
load the MOT using light-induced atomic desorption (LIAD) [28]. The main vacuum
components are the MOT and science cells, separated by a differential pumping
tube located inside a vacuum chamber, as indicated in Fig. 4.1(b). Attached to this
chamber is a gate valve that allows the MOT region to remain under vacuum when
the science region is vented, for example, for atom-chip placement. Both vacuum
regions have a dedicated ion pump (IP). Additionally, the science region contains a
titanium sublimation pump (TSP) which has a connection for a turbo pump during
bake out.

The two-celled vacuum system physically separates the MOT optics from the
science cell region, leaving increased optical access to the science cell. In order to
move atoms from the MOT cell to the science cell, we use magnetic transport [29].
The physical extent and plumbing complexity of the magnetic transport system was
minimized by transporting in only one direction and having water-cooled towers to

which the coils are mounted, instead of individually water cooled coils. Each tower
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Figure 4.1: (a) The vertical atom-chip apparatus. The atom-chip will enter the
vacuum system from the top. The magnetic transport system is used to move the
atoms from the MOT cell to the science cell. (b) Cross-section of the apparatus. Of
the vacuum components, the “oven” containing solid rubidium is mounted closest
to the optical table. The oven connects to the MOT cell, where a vapor-fed MOT
is produced using LIAD. Magnetically trapped atoms are then transported through
the MOT cell, up through the differential pumping tube, into the science cell where
a BEC is achieved in a dipole trap. The gate valve is used when we require venting
one of the vacuum regions (while keeping the other under vacuum). The innermost
transport coils are visible. With respect to the rest of the transport coils, the MOT
and last pair of coils have larger inner diameters.

functions as both a cold plate and a mechanical mount for the coils (Fig. 4.1). The
vertical apparatus design was chosen so that the long-armed chip holder could be
inserted in the direction of gravity. Further, to simplify coil mounting and to avoid
higher currents that would be required if coils wrapped around the vacuum system
(coils would require much larger inner diameters), we oriented the axial direction e,

of the transport coils orthogonal to the gravity direction e,.

93



4.2 Vacuum Design

4.2.1 Rubidium Source

The oven houses solid rubidium in a 1.33” CFF nipple connected directly
below the MOT cell. At this connection, the bellows located in the glass-to-metal
adapter provides flexibility in mounting the oven to the table. The oven is fixed to
the optical table with a custom designed adapter that houses a thermoelectric cooler
(ThorLabs controller TED4015) used to temperature control the vapor pressure in
the MOT cell. We typically maintain this “oven” at 1 C to keep the vapor pressure
low (= 10® Pa). A constant flow of gaseous nitrogen out of 1/4” OD tubing keeps
condensation from building on the temperature sensor. During experiment, LIAD
is used to non-thermally increase the vapor pressure during MOT loading. We shine
two ~395-410 nm, 350 mW LED sources onto the MOT cell to accomplish this task
(Mightex part SLS-0309-B, with driver SLA-1200-2). To maintain sufficient coating
on the inner wall surfaces of the MOT cell, the oven temperature is periodically held

at a warmer temperature of ~ 10°C overnight.

4.2.2  Vacuum Cell Design

The MOT cell is composed of two commercial glass-to-metal-seal adapters
from Larson Electronic Glass (both with 1.33” CFF, one with a bellows (BP1-075-
F1-L1), and the other without (SP-075-F1)), and a custom Pyrex glass rectangular

cell fabricated by the NIST optical shop in Gaithersburg, MD. The geometry of
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the cell was determined by the anticipated size of the MOT beams (1/e* diameter
at the atoms is &~ 40 mm), and is 1.75” x1.75” in inner cross-sectional area, 5.5”
in length, with thickness 0.125”. The science cell is designed similarly, also made
from 0.125” thick Pyrex, with rectangular dimensions 4.5” x1.75” x1.75”, with a
short custom length 1.33” rotatable CFF to bellows adapter from Larson (BP1-075-
F1(R)-L1-SPCL) attached to the bottom end, and a 4.5” rotatable CFF to bellows
glass adapter on the top end (BP1-250-F4(R)-L1). The cross-section of the science
cell was kept large in anticipation of a typically-sized chip-carrier with dimensions
1.32”7 x 1.32”. The chip carrier is a 120-pin, ceramic, pin-grid-array, purchased from
Spectrum Semiconductor Materials, Inc. (part CPG12009).

The science cell was designed to extend beyond the cooling towers in height so
that the glass-to-metal adapter, which is too wide to fit between the towers, would
be out of the way as shown in Fig. 4.1(a). The safe glass-working distance required
for the process of attaching the glass-to-metal-seal adapters to the rectangular cell
added additional unplanned length to the realized apparatus. The final flange-to-

flange length of the MOT cell is &~ 38 cm, and the science cell has length ~ 46 cm.

4.2.3 Differential Pumping and Mounting

On the Kimball Physics chamber (part MCF275-SphHex-C2A6), located in
between the two cells, are mounted two faced-off 2.75” CFFs. The total chamber
plus conflats width along e, (coordinates as defined in Fig. 4.1) had to be narrowed

because the total width extends beyond the widths of all other vacuum parts (i.e.

95



(@) Lifetime in the magnetic trap (b) BEC lifetime

40x10° —: (Science cell) 3500 -}
3000 —{*
_ Tau ~ 60 sec
3 357 'S 2500 \e Tau~6.7s
S, S,
= _ 2000 —
32 8
E 30 £ 1500 -
=}
z Z 1000
257 500 —
(J
(] p—
T T T T 0
0 10 20 30 5 10 15 20 25 30
Time (s) Time (s)

Figure 4.2: Lifetime measurements of (a) magnetically trapped |F =2, mp = 2)
atoms (blue circles), and (b) a BEC in the same spin polarized state (green circles).
The exponential fits are shown in solid red.

it was the limiting factor in how close together we could mount the transport coil
pairs). The narrowing allowed the transport coil pairs to be closer together and thus
provide a more optimal geometry (to minimize currents required for the desired trap
gradient). The chamber houses a differential pumping tube (Duniway CA-133). The
differential pumping tube and the two Varian StarCell 20 L/s IPs allow the science
cell to be kept at a lower vacuum pressure (compared to the MOT cell) suitable
for BEC production and experiment: typically, the lifetime of magnetically trapped
atoms in the |F =2, mp = 2) state is & 5 s in the MOT cell, and ~ 60 s in the
science cell (Fig. 4.2(a)). The lifetime of a BEC in the same spin polarized state
was measured to be &~ 7 s in the dipole trap, as shown in Fig. 4.2(b).

The experiment is largely supported and attached to the optical table with
commercial 80/20 Inc. extruded aluminum frames and fixtures. Additionally, cus-
tom supports fix the two cells vertically in place (Fig. 4.4, and V-clamps support

the IPs).
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Above the science cell, a “cross”, a “T”, and an elbow make up the connections
to the science region IP, angle valve, TSP, and Turbo pump. The elbow keeps the

valve out of the T'SP’s line-of-sight (Fig. 4.1(a)).

4.2.4 Chip Holder

The dimensions of the in-vacuum atom-chip holder was constrained by the
vacuum components located along its path to the science cell. The chip will be placed
inside the vacuum because we will require the BEC to be ~5 um away from the
chip surface. The atom-chips are custom fabricated by NIST Center for Nanoscale

Science and Technology (CNST) in Gaithersburg.

ceramic
socket

Figure 4.3: The chip will be mounted from the top of the experiment. Stainless
steel extends from the uppermost conflat on the apparatus, designed to place the
chip near the center of the final quadrupole trap.

4.2.5 Vacuum Bakes

Before assembling the vacuum system, most components were cleaned in an
ultrasonic bath. This was a two- or three- step process: first, a bath with soap
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Figure 4.4: First part of vacuum assembly (MOT region). a) The MOT cell is
mounted vertically using a custom holder, so that the cell “sits” on the holder. b)
The MOT region fully assembled. Screws inserted from underneath the holder seals
the cell and octagonal chamber together. Depicted here is the initial “pump” out
stage using a turbo pump (Pfeiffer HiCube 80 eco), attached to the chamber at the
top, after the gate valve. A 1.33” CFF bellows connects the left side of the chamber
to the MOT region IP.

and water if the part was particularly dirty (e.g. oily), then an acetone bath, then
lastly a methanol bath. Once the parts were assembled, the entire system was
baked (heated) to remove water and hydrogen. The vacuum system was covered
in aluminum (Al) foil, then wrapped in heat tape, then wrapped again in several
layers of Al foil. We used the Dukal Corp. “survival wrap” as the outermost
layer of our oven. Each heat tape temperature was controlled by a Variac. Our
apparatus is primarily made up of metal and glass: because these two materials have
different thermal expansion coefficients, it is particularly important to avoid rapid
temperature changes when baking any of the metal-to-glass joints. We generally

increased the temperature at a rate of ~20 C/hour. Fig. 4.5 shows the pressure
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change over time of a bake performed on the MOT region of the apparatus.

MOT region bake
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Figure 4.5: MOT region vacuum bake-out performed, while the science cell was being
manufactured by the NIST Optical Shop. The vacuum pressure is proportional to
ion pump current. The fit to the data from time ~ 2.7 x 10° s to ~ 2.25 x 10° s is
of the form IP current = yo + A*tP.

4.3 Magnetic Transport

4.3.1 Transport Design

We magnetically trap and transport atoms in the |F' = 2, mp = 2) state, tak-
ing advantage of the factor of two we gain in the energy gradient (Zeeman split-
ting ~ 1.4 MHz/G) compared to |f = 1,mp = —1) atoms. The atoms are mi-
crowave transferred after magnetic transport (during dipole evaporation) to the
lower-loss [36] |f = 1, mp = +1) state.

Magnetic transport is achieved using a series of overlapping coils in an anti-
Helmholtz type configuration. The general idea is to keep the magnetic trap geom-

etry constant while the atoms are spatially moved from the starting location (MOT
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cell), to the final position (science cell). This ensures minimal heating of the atoms,

and is accomplished by invoking three constraints:

0B

5. — 120 G/cm, (4.1)

0B

W 47G/cm, and (4.2)
(6B/dx)

A = L2 =128, 4.3
(6B/5y) -

where 6B /dz, §B/dy, and 6 B/dx are the magnetic field gradients along the strong
axis, transport axis, and the non-elongated weak axis, respectively and A is the
resulting aspect ratio in the x — y plane. We solve for three unknown variables [,
I5, and I3, the currents in three adjacent sets of coil pairs at any given time. We
solve for the currents numerically, starting from the center of the MOT coils to the
center of the final coil pair (which is used in the hybrid trap [7]). Except for the very
first and last transport segments, three coil-pairs are energized at any given time
during transport. During transport, the effective magnetic trap is elongated along

the transport direction ey. The calculated transport sequence is shown in Fig. 4.6.

Eleven anti-Helmholtz coil pairs transport magnetically trapped atoms from
the MOT cell to the science cell in 2.2 seconds, at an average speed of 200 mm //sec.
The transport sequence requires constant trap gradient to minimize heating of the
atoms. Further, all currents are positive (the power supplies are uni-polar).

We empirically touched-up the calculated transport sequence. We found that
the transport velocity preferred to be slowest in the middle of transport, close to
the gate valve, as shown in Fig. 4.7. We suspect that the necessity for slow speeds
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Figure 4.6: Calculated magnetic transport sequence; current in each of four coils as
a function of time. The time axis was generated by scaling the calculated gravity
gradients to the measured gravity gradients.
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Figure 4.7: Actual magnetic transport sequence; current in each of four coils as a
function of time.

in this region may be due to a magnetized component inside the valve. The trans-

port efficiency was measured to be ~85%, with most of the loss occurring at the
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beginning of transport from collisions with background Rb atoms.

4.3.2 Characterization of the Transport System

The transport system (coils, coil holders, and cooling tower) was designed to
fit around the vacuum components, and to provide cooling to the transport coils.
For simplicity, we designed all coils to be as similar as possible in geometry. Each
transport coil was wound with “ribbon” magnet-wire laminated on one side with
Kapton insulation from Alpha-Core. Three types of wire were used to construct the
transport coils: wire with copper cross-section 12.7 mm x 0.254 mm (0.5” x 0.01”)
for all “top” quadrupole pairs (coils further away from the vacuum system) and push
coil, cross-section 6.35mm x 0.254 mm (0.25” x 0.01”) for all “bottom” pairs (coils
closest to the vacuum system), and the MOT and final quadrupole pairs were made
with custom-sized 0.3” x 0.02” wire. Coil specifications are listed in Table 4.1. We
list the specifications from the manufacturer in the second column, and the actual

dimensions measured using a caliper, in the third column.

Table 4.1: Wire dimensions

Wire type Specifications Measured
A (for “bottom” coils) 0.25”x0.01”  0.350” x0.013”
B (for “top” coils) 0.50”x0.01”  0.625”x0.013”

C (for “MOT” and “final” coils) 0.30”x0.02”  0.425” x0.023”

After the coils were wound and assembled onto the transport tower, we mea-

sured the resistance of each coil, as shown in Table. 4.2. The test lead resistance
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of 62 m$? has been taken into account (the resistance listed is for the coil only).

Table 4.2: Characterization of each coil

Coil# | Current | Voltage | Resistance| Coil# | Current | Voltage | Resistance
Tower 1| (A) (V) (m$?) Tower2 | (A) (V) (m$?)
1 4.99 0.509 40 1 4.99 0.527 44

2 4.99 0.603 59 2 5.02 0.615 61

3 4.99 0.904 119 3 4.99 0.904 119
4 4.99 0.597 58 4 4.99 0.609 60

53 4.99 0.892 117 5 4.99 0.904 119
6 4.99 0.597 58 6 4.99 0.609 60

7 4.99 0.904 119 7 4.99 0.904 119
8 4.99 0.603 59 8 4.99 0.609 60

9 4.99 0.915 121 9 4.99 0.921 123
10 10 1.204 58 10 4.99 0.621 62
11 4.99 0.527 44 11 4.99 0.539 46

Next, a Hall probe was used to measure the magnetic field of three representative

coils at different distances Z from the coil surface. The measurements agreed well

with the predicted (calculated) values (Table 4.3). The Hall probe was also used to

double check the chirality of each coil.

Table 4.3: Gradient measurements

Magnetic Field Measured/Calculated (Gauss)

Coil Z=0 Z = 12.7mm 7Z = 25.4mm
6 42/44 23/24 12/13
7 61/62 38/41 21/22
11 20/21 18/18 13/13

Once we could transport the atoms from the MOT cell to the science cell,

we calibrated the magnetic field gradient of each coil pair by measuring the gravity

gradient. The results are shown in Table 4.4. The computed gravity currents were
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21.3 A for the “MOT” trap (coil pair # 1), 19.9 A for the “final” trap (# 11), 7.4 A
for “bottom” coils (all other odd numbered pairs), and 13.4 A for “top” coils (all

even numbered pairs).

Table 4.4: Calibration of gradients

Coil pair # Gravity current (A) | Coil pair # Gravity current (A)
1 19.7 7 6.0

2 17.1 8 16.8

3 8.7 9 8.1

4 16.3 10 18.8

5 10.3 11 21.0

6 16.6 - -

Except for the very first and last portion of the transport sequence, all coils of
the same geometry run the same spatial current profiles; though we allow variations
in the transport velocity. We used genetic optimization [38] to optimize each stage
of our experiment, up to BEC production. The example optimization run shown in
Fig. 4.8 included 14 transport sequence variables to optimize transport currents as
a function of the distance traveled by the atoms (transport velocities were fixed).
We found that the algorithm results were comparable to the results obtained with
time-consuming manual optimizations. We typically ran the algorithm overnight.
Further, because of the high stability of our apparatus, we also ran scans over entire
weekends. We also used the algorithm as a multi-tasking tool while working on

projects off-line.
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Figure 4.8: Example genetic optimization [38] of the experimental sequence of our
apparatus. In this optimization run, we optimized 14 variables in the transport cur-
rent functions. In this figure we measure atom number as a function of the variables
that determine the shape of the commanded current profiles during magnetic trans-
port. These include the variables which determine the maximum current amplitude,
the width, and curvature.

4.3.3 Fabrication of Transport Coils

Each coil was wound on an aluminum form machined with the desired coil
inner diameter. The design requires removal of excess Kapton to achieve desired
coil height and good thermal contact requirements. Each winding form could adapt
onto a lathing form with four screws, as shown in Fig. 4.9a. The lathing form fit
into a standard 1/2” collet for machining (Fig. 4.9b). To prepare wound coils for
machining, the gaps between Kapton layers were filled with a fluid and machinable
epoxy (Stycast 1266). To minimize air bubbles and gaps within the epoxy, each coil
was placed inside an evacuated bell jar immediately after application of the epoxy
for &~ 30 minutes, then left to cure overnight at room temperature.

Each coil was lathed up to the copper surface and was checked for shorts under

a microscope (Fig. 4.10). When a short was identified, the copper was etched with
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Figure 4.9: a) Transport coil mounted on lathing form. The cable tie was attached
to keep the coil from unwinding while the machinable epoxy (Stycast 1266) cured.
Each winding form is designed to adapt onto the lathing form for machining. b)
We lathed off the excess Kapton on both the front and back surfaces to achieve a
smooth finish for better thermal contact between surfaces.

a 1:1.4 mixture of nitric acid and water until no short remained.

Figure 4.10: A transport coil under a microscope. FEach closely lathed-down coil
was inspected under a microscope to check for shorts. If a short was discovered, the
coil was etched with a nitric acid solution.

4.3.4 Design of coil holders and cooling towers

Coils were fixed to mounting forms with thermally conductive epoxy (Omegabond 200).
The epoxy extends over the coil surface to eliminate height discrepancies between
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the mounting form and coil, and provides increased thermal conductivity between
coil layers. The coils were then assembled onto two monolithic cold plates contain-
ing multiple slits to minimize eddy currents. In addition, thermal compound was
applied between each layer. Most of the machined parts are made of aluminum,
which is an economical thermal conductor that is relatively easy to machine. The
cooling tube clamps are made of stainless steel, which has electrical conductivity an
order of magnitude lower than that of aluminum, to prevent shorting the cold plate

slits.

Figure 4.11: Coil mounting procedure. a) A coil has been glued with a thermally
conductive epoxy to its holder, and the second side is ready to be glued. The
entire assembly is then baked to cure the epoxy. b) Several mounted coils ready for
installation.

4.3.5 Current control

Four Agilent 6672A 20V /100A power supplies provide currents to the coils, and
three coils run current at any given time of transport. Having a fourth supply allows

every Agilent to have a “rest” segment (to completely turn off) before rejoining the
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Figure 4.12: Two transport towers (one shown) with eleven transport coil pairs make
up the magnetic transport system. The narrow aluminum panels on the right and
left sides of the coils provide extra mechanical support to the vertically mounted
coils.

cycle. We use MOSFETs (part IXEFN520N075T2, 75V, 480 A from IXYS), which are
mounted on water cooled cold plates, to control the currents through the transport

coils.

4.4 Microwaves for internal state control

The general set-up of the microwave source used for internal state control was
adapted from those used in the lattice and gauge fields labs in the Laser Cooling
group [39]. A microwave horn placed several inches from the experiment is used

to transfer atoms between the F' = 1 and F = 2 ground hyperfine states. As
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Figure 4.13: The majority of the MOT optics were assembled using Thorlabs 30 mm
“cage systems”. The MOT region is pictured here, with “1”7, and “2” indicating
transport-tower-to-cage adapter parts. The adapters also serve as clamps: “1”
clamps down on the two copper water cooling tubes, and “2” connects the two
towers together.

the microwave source, we use Stanford Research Systems SG 384, and send the
microwave signal through the set-up shown in Fig. 4.14. The microwave power

measured after the various components is listed in Table 4.5.

4.5 Laser systems

We have three laser systems in the laboratory: the master/repump, cooling,
and dipole boards, shown in Figs. 4.15, 4.16, and 4.17, respectively [40]. Together,
these laser beams provide all of the laser light required for BEC production.

We use a Toptica DL Pro diode laser for the master/repumper, and a Toptica
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Figure 4.14: Microwave set-up.

TA Pro diode-laser-and-tapered-amplifier integrated system for the cooling board.
Toptica’s DigiLock 110 provides PID feedback for locking to the saturation absorp-
tion signal. We perform saturation absorption spectroscopy with a Triad Technology
rubidium reference cell heated to 50 C using ThorLabs’ cell heater GCH25-75.
The light to the dipole board is provided by an IPG Photonics 30 W fiber laser.
All mirrors are mounted on ThorLabs 1”7 mirror mounts (POLARIS-K1). We use a
metal jacketed high power fiber from NKT Photonics (LMA-PM-15) with custom

SMA905 8° angle polished ends.
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Table 4.5: Main microwave setup

Label Element Output Power (dBm) Manufacturer (part number)
a  Source -10.7 Stanford Research Systems (SG384)
b Cable -12  company name (part number)
¢ Amplifier 14.7 Minicircuits (ZX60-183-S+)
d Directional Coupler 14.0 Narda (4014C-30)
e Mixer -6.7 Marki (IRW-0618MXW-1)
f Band-Pass Filter -10.6  Minicircuits (VBFZ-6260-S+)
g  Attenuator (0V) -11.3  General Microwaves (Herley) (D1956)
h  Amplifier Microwave Amplifiers (AM53)
i Circulator-Isolator MCLI (CS-57)
j Power Detector Minicircuits (ZX47-40-S+)
k Stub Tuner Maury Microwave 1819C
1 Antenna/Horn (part number)

4.6 Atom-chip fabrication

In this section, we will give an overview of the main steps used to fabricate
our atom-chips (all chips are fabricated by CNST at NIST, Gaithersburg). Fig. 4.18
shows a pictorial summary of these steps. A technique was developed which mixed
and matched two lithography techniques. The two techniques used are optical pro-
jection lithography (good for features sized greater than 0.4 um), and electron beam
(e-beam) lithography (for features less than 0.4 pm). Due to the fine-resolution of
the e-beam technique, imaging the entire RF “Raman” design using this technique
would require long write-times and is cost-prohibitive. However, the small wire
spacing required for the 100 parallel wires requires the e-beam resolution.

For a cost-effective, time-efficient fabrication, the chip is created using a two-

step lithography process: the wire “pads” which branch out from the parallel wires
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Figure 4.15: The repump/master laser system. The DL Pro is locked to the 87Rb
F =1 — F' = 2 repumping transition using saturation absorption spectroscopy.
We use a pick-off at the laser output (before any AOMs) to beatnote lock the cooling
laser.

to where electrical connections are made (via wirebonding) are predominantly drawn
with the photo-lithography technique, pictured in Fig. 4.18(d). The resolution R of
this technique is diffraction limited, i.e. is dependent on the wavelength \; of the
light used, and the numerical aperture (N A) of the imaging system, R o« \;/NA. In
the second step, the fine-scaled parallel wires which will create the moving magnetic
fields described in Sec. 2.6.2 are drawn with e-beam lithography, Fig. 4.18(g). The
e-beam technique may draw features down to 2 nm.

Finally, the image of the wire patterns is etched onto the gold layer using the

ion milling technique: Ar+ forms a compound with Au, physically separating Au
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Figure 4.16: The cooling laser board. The Toptica TA Pro provides power to
the MOT and probe beams. The laser is beatnote locked to the repump laser
(Fig. 4.15), and locks red detuned from the |f =2,mp=2) to |f =3,mp =3)
cooling transition.

from the layer. After the gold etching is complete, the resist is stripped off, leaving
the gold wire patterns exposed and ready for wiring (Fig. 4.18(g)-(i)).
The cross-section of our first physical test-chip is shown in Fig. 2.7. Bench

testing is underway.

4.7 Conclusion

Techniques used to achieve Bose-Einstein condensation were reviewed as the

necessary first step in simulating solid-state systems using cold atoms in engineered
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Figure 4.17: The 1064 nm dipole board. The laser is injected into one high power
fiber. At the fiber output (located on the experiment board), the beam is split into
two using an AOM. The two beams are used as a crossed-dipole trap, an all-optical
trap in which Bose-Einstein condensation is achieved.

vector potentials. The atom-chip experiment will replace Raman light-coupling
with RF coupling to eliminate scatter and may pave the way for next-generation
experiments that simulate condensed matter systems. The first test chip for light-

less “Raman”artificial gauge fields is currently under development.
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(a) Evaporate 150nm Au/Ti

(b) Photoresist

(c) Second resist

(d) Photolithography

(e) Image transfer to second resist layer

(f) Top layer resist strip

(g) E-beam exposure and development

(h) lon mill

(i) Resist strip

Figure 4.18: Two-layer lithography. The patterning technique developed at CNST
uses both electron lithography and optical projection lithography. In the preliminary
steps, (a) Au is evaporated onto a sapphire substrate, (b) the Au is covered with
photoresist used for photo-lithography imaging, and (c) a layer of resist appropriate
for electron beam lithography is laid on top of the photoresist. Now the chip design
pattern is ready to be imaged on to the resists: (d) photo-lithography for structures
2 pm - 0.4 pm, (e) image transfer onto the second resist layer, (f) removal of the
photoresist exposes the surface of the second resist, which is now ready for e-beam
lithography: (g) E-beam process for the fine features of the chip (i.e. the parallel
wires). This step (g) completes the drawing process, and finally (h) the ion mill is
used to etch the image on to the Au layer. Finally, (i) The resist is removed and
the patterned Au remain.

—~

—~

5



Chapter 5: Multiple-camera off-resonance defocused imaging of ul-

tracold atomic gases

5.1 Introduction

Ultracold atoms exist in isolation, enshrouded in ultrahigh vacuum, so that
nearly every measurement on them relies on their interaction with electromagnetic
fields. The most common measurements use a probe laser beam that is attenuated
and phase shifted by the atoms to recover two-dimensional images of the integrated
density—the column density—of the atoms. Whether the technique be absorption
imaging, or phase-contrast imaging (PCI), the spatially resolved column density of
the atomic cloud is recovered to retrieve information about the experiment.

In this chapter, we extend the method of off-resonance defocused (ORD) imag-
ing pioneered in Refs. [41-43]. In ORD imaging, a probe laser propagates through
a thin atomic cloud and is both absorbed and phase-shifted, in contrast to on-
resonant-absorption or phase-contrast imaging in which the probe is dominantly
absorbed or phase-shifted, respectively. Both the absorption and phase-shift are
proportional to the quantity of interest, the column density. For small detunings

d, the absorption o< 1/6%, while the phase-shift oc 1/d: the phase-shift dominates
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quickly as 0 is increased. Typically, absorption imaging [44] is used for clouds of low
to medium OD using a on-resonance probe beam (no phase-shift), and PCI [45] is
used to image clouds of high OD using a far-detuned probe beam (negligible absorp-
tion). In absorption imaging and PCI, images are recorded by a detector at the focus
of the imaging system. In ORD imaging, a defocused image is taken by a detector
positioned away from the focus: remarkably, Ref. [42] showed that it is possible to
digitally refocus intensity images of atoms without knowing the phase of the under-
lying electric field. Still, ORD was beset with unavoidable imaging artifacts; here
we demonstrate a technique to reconstruct defocused images of ultracold atoms ab-
sent artifacts. In this technique, multiple-camera off-resonance defocused (MORD)
imaging, we simulateously use three cameras placed at different defocused distances
and show that suitably placed cameras allow for artifact-free reconstruction of the
atomic column density. We then compare this technique to conventional imaging
techniques and show that its signal to noise ratio (SNR) is comparable to absorption
imaging near atomic resonance and comparable to phase contrast imaging far from
resonance.

This chapter is organized as follows; in Sec. 5.1 we discuss the solution to the
vector wave equation under the paraxial approximation for a thin, dilute cloud. In
Sec. 5.2, we describe absorption and phase-contrast imaging. We then make addi-
tional approximations to the electric field which has propagated through the cloud,
and derive the ORD and MORD solutions to the wave equation. In Sec. 5.3, we
describe the experimental implementation of the MORD method, and the procedure

we used to prepare condensates of low OD. In Sec. 5.4, we present our experimental
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MORD results and theoretically compare this method to absorption and phase-

contrast imaging.

5.1.1 Propagation of an electromagnetic wave

First we introduce the theoretical problem, starting with the propagation of an
electromagnetic wave. For our neutral atomic systems interrogated by a monochro-
matic probe laser beam with wavelength A and wave number ky = 27/, the evolution
of the electric field of the beam in the presence of atoms with complex susceptibility

X, is described by the scalar wave equation:
V2E;(r) + k3[1 + x(r)]Ei(r) = 0, (5.1)

also known as the Helmholtz equation, for each polarization component 7, provided
that the susceptibility x changes slowly with respect to A (i.e. the cloud is not too
dense) [46]. In the next section we derive the solution to eqn. (5.1) for a thin, dilute

medium.

5.1.2 Solving the Helmholtz equation

The Helmholtz equation, valid for monochromatic light traveling through a

homogeneous isotropic medium, has the formal solution
E(r + Aze,) = exp [iiAz (V2 + k2 + x(r)k2)" 2] E(r) (5.2)

for light traveling along e,, where V2 =0?/9%z + 0*/0%*y, and E(r + Aze,) is the

field which has propagated a distance Az through the medium, and E(r) is the field
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before propagation. From here forward, we consider the complex susceptibility of a

two-level atom:
oo i—2(0/T)
ko [1+I(r)/Iq +4(5/T)

p(r), (5.3)

X(r) =
where 09 =3)\?/27 is the resonant cross-section, Iy, is the saturation intensity, ¢ is
the probe detuning from atomic resonance, and I' is the linewidth of the transition.
Here we define A = §/T" as the detuning in linewidth units.

For the problem at hand, we take the paraxial approximation and consider a
cloud with finite thickness 6z under the condition §z < (61)%/w\, where (81)*/7\ is
the depth of field, and §1 is the minimum resolvable length determined by the imag-
ing system resolution [46]. In the paraxial approximation, E(r+ Aze,) is negligibly
diffracted from its original path along e, so that V2 < k2. This approximation can
be made for a dilute cloud with density p(r) < kj. For such a thin, dilute system,
()] < L.

The electric field after propagation through the cloud, is found by repeatedly
applying a step-wise propagator to the initial electric field. Such a propagator under
the paraxial approximation is found by taking the small susceptibility limit of the
argument in eqn. (5.2): {1+ [x(r) + (V2 /R3)]}/2 ~ {1+ (1/2) [x(x) + (V2 /R)]).
Then we find the separable solution E(r + Aze,)=exp(iAzky)E'(r) for a wave
propagating along e,. Inserting this field into the scalar wave equation, we find the

paraxial wave equation

OFE'(r)
0z

—2ikyg = V3iE(r) + kjx(r)E (r). (5.4)

The electric field E’(r) described above depends weakly on z, allowing the sus-
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ceptibility integral to be solved numerically for any probe intensity I(r) using the
split-step Fourier method (SSFM, Sec. 5.6).
Under the paraxial approximation, the step-wise propagation operator through

a dilute medium is

Q(A2) = exp {@% / R dz} | (5.5)

5.2 Imaging techniques

5.2.1 Introduction

We now derive an invertible relation between the observed intensity and the
atomic column density that recovers all but a small range of spatial frequencies: the
basis of the ORD imaging technique. The electric field propagating through the

cloud using eqn. (5.5) is

E(r+ Aze,) = Epexp [(iko/2)(xr + ix1)p(X)], (5.6)

where x;r = Im[x(r)], xr = Re[x(r)], and p(x) = fZZJrAZ p(r)dz is the two-dimensional

column density. Thus the electric field just after interacting with the atoms is
E(x,z =0") = B(x,2 = 07)e 2®?() (5.7)

where a(x)=koxsp(x)/2 and ¢(x)=koxrp(x)/2, are the absorption and phase-
shift, respectively. The intensity I = cyeo| E|?/2 of the light recorded by a detector
is proportional to the square of the electric field amplitude.

For the imaging techniques discussed here, there are generally three images
recorded by any given camera: [ Jl is an image with the atoms present, and [ jz is an
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image of the probe laser absent the atoms. Then the fraction of the light absorbed

by the atoms is
fi=2 (5.8)

where the “j”7 subscripts indicate that the images are in real space.

Next we describe the absorption and PCI techniques that will be compared to
the ORD and MORD methods in Sec. 5.4.3. Following the descriptions of the two
frequently used imaging techniques, we will derive the exact solution to the scalar

Helmholtz equation for the defocused techniques in Secs. 5.2.3 and 5.2.4.

5.2.2  Absorption and PCI techniques

In a typical imaging system, as depicted in Fig. 5.1, two lenses might be used
to focus the image of an object onto a detector. In the Keplerian imaging system
in Fig. 5.1, the first lens is positioned a distance f; from the object (a BEC), the
second lens is placed a distance f; + fo from the first lens, and finally, the detector
is placed at the focus of the second lens. The image magnification M = fy/ fi,
where f, fo are the focal lengths of the first and second lens, respectively. This
system describes the basis of absorption and phase-contrast imaging described in
this manuscript. Next we discuss these two techniques in detail.

The electric field E after propagation through an object modeled under the
thin-object approximation may be separated into its unscattered and scattered parts
Ey and AE, respectively, so that the total field E = Ey + AFE [44]. In absorption

imaging the intensity recorded on the camera I o |E|* oc exp(—2a) so that the
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f2 =250 mm detector planes

— focal plane ! ! 1

BEC I !
L
L) L@ 3 h
Fourier plane Aperture

Figure 5.1: A simplified schematic of a two-lens Keplerian imaging system with
magnification M = 3. In absorption and PCI, the detector plane is placed at the
focal plane. In MORD, the three detector planes 2" are located away from the
focus. This is equivalent to having three detectors next to BEC, as shown. The
imaging resolution is limited by the aperture diameter.

phase information is lost. Using Beer’s law, dI/dz = —p(z,y, z)ol, where o is the
effective scattering cross-section for a two-level atom, the optical depth corrected

for the probe detuning and non-negligible intensity, is

OD = —(1+4A% In {[1 - [3] Lzh (5.9)

Iy — I Lsat
For an infinitely thin cloud, OD = ggp(x), so that the OD is proportional to the
atoms’ column density. The second term on the rhs of eqn. (5.9) is negligible in the
low intensity limit [47].

Next we discuss PCI. Unlike on-resonance absorption imaging, the recorded
intensity of a phase-contrast image contains phase information from which the col-
umn density is extracted. PCI is typically implemented by creating a 6 phase
shift (with optimal signal at § = 7/2) to the unscattered probe laser light so that
Ey — Egexp(£in/2). In this way, the phase-shifted light interferes with the light
refracted by the atoms, giving an intensity pattern again proportional to the column
density [45]. The phase-shift is created by placing a plate with a phase retarding spot
slightly larger than the focused beam spot-size into the imaging system (Fig. 5.1).
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The spot is placed in the Fourier plane, the plane located a distance f; from the
first lens, in between the two lenses, where the unscattered probe laser beam comes

to a focus. Then the PCI intensity signal is
Le = Iy[2 + €72 — 2 %cos(¢) + 2e~“cos(¢ F 0) — 2cos(£0)], (5.10)

where 6 is the phase shift from the phase plate. Next, we choose § =7/2 and make

the assumption ¢ < 1 (appropriate for thin dilute clouds). In this case,
Le=1o(2+ e — 27 + 27 %¢), (5.11)

and the intensity is linear in ¢. The 7/2 phase shift is chosen to maximize this phase
signal (for example, for § =, the Taylor expansion is dominated by nearly all even
functions, so that I oc ¢?. For a far-detuned beam, exp(—a) — 1, eqn. (5.11)
reduces to I,./ly = [1 £ 2exp(—a)¢|, and the theoretical model works well for any

optical depth. Next we discuss the ORD and MORD methods.

5.2.3 ORD single image reconstruction

We made the paraxial approximation to the electric field which has propagated
through an atomic cloud in Sec. 5.1.2. Then, we assumed that the electric field did
not diffract as it traveled through the cloud (i.e., that it was thin compared to the
depth of field). We introduce additional assumptions about the interaction between
the light and atomic, allowing us to derive the ORD imaging technique. Going
forward we introduce the Fourier transform of a two-dimensional function f(x) as
f(u)= [ f(x)exp(—2miu-x)dx, where spatial frequency u= |u| with u? =u2 +u?
is related to the wave number ko by u = 2mko, where k§ = k7 + k2 + k2 is a constant.
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Figure 5.2: (a) The location of the first singularity determines the smallest spa-
tial frequency for which the reconstruction requires regularization. (b) Divergences
present in reconstructing the 2D column density.

Re-expressed in terms of u, the paraxial transfer function in free-space (derived
in Sec. 5.6) is

hparaz = exp(ikz)exp [—m)\z(ui + uf/)} . (5.12)

Using the convolution theorem, we readily obtain the Fresnel diffraction integral:

E(z,y,z) = iexp(ikz) /00 E(2' )y, z=0) (5.13)

Az o
in "2 /\2 ! 3.,/
X exp{E [(z =2+ (y—7v) ]}dmdy.
Now using eqn. (5.13) and the electric field just after it traversed the cloud in

equ. (5.7), we find the normalized Fourier transform of the intensity detected at the

camera

I(w;z) /oo exp(—a(x + Azu/2) — a(x — Azu/2) (5.14)

+ ip(x — Azu/2) —ig(x + Azu/2)) x exp(—2mix - u)dx.

Next we add extra assumptions on ¢ and «. We approximate that the phase is
slowly-varying: |¢(x + Azu/2) — ¢(x — A\zu/2)| < 1, and that absorption is small:
2a(x) < 1. At lowest order in ¢ and «, the intensity is:
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Tu; 2) /_OO [1— alx + A2u/2) — a(x — \zu/2) (5.15)

[e.e]

+ io(x — Azu/2) —id(x + Azu/2)] X exp(—27ix - u)dx

which is just a Fourier integral for ¢ and «. Defining the Fourier transforms of ¢

and « as 5 and «, respectively, we find

= §(u) — 26(x) cos(mAzu?) + 26(x) sin(rAzu?). (5.16)

I<1}; 2 = 17 [0/;:S+4A2 [2A sin(mAzu?) + cos(mAzu?)|p(u)  (5.17)
= ﬁ(u)ﬁ(u), (5.18)

where h(u) is the contrast transfer function (CTF) defining a linear relationship
between /I, and the Fourier transformed calculated column density j(u). The
example CTF and its inverse, plotted in Fig. 5.2, shows that singularities exist at
certain values of the spatial frequencies u, the locations of which are dependent upon
the camera postion z and the detuning A. The ratio x;/xr=—1/2A determines
the quality of information at low spatial frequencies. If x;/xr > 0, the phase and
absorption terms compete and the inverse CTF diverges. Therefore information is
lost in this region. There are two mathematically equivalent cases to achieve the
“good” xr/xr < 0 condition: A < 0 (red detuning) with z < 0 (negative defocus),
and A > 0 (blue detuning) with z > 0 (positive defocus). Measurement noise is
amplified near the divergences, so that no useful information can be extracted from

these frequencies.
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Here we qualitatively describe the process of regularization used to mitigate
the amplification of noise (or loss of signal) near divergences in the inverse CTF.
Regularization limits the extent to which the inverse CTF can diverge in Fourier
space. We may also consider the problem in real space. In addition to the image
of interest, we assume an image that is spatially uniform (its Fourier components
are zero), and take the weighted average of the two images in Fourier space. The
spatially uniform image is included only when the signal-to-noise ratio of the recon-
structed image in real space would otherwise fall below one. In our MORD method
to be discussed in Sec. 5.2.4, we retrieve information at all spatial frequencies rel-
evant to the system (the minimum resolvable frequency is bound by the detector
size, and the maximum by the resolution of the imaging system). We do so by using
multiple cameras simultaneously to eliminate divergences introduced by any single

camera.

5.2.4 Three image reconstruction

We showed in Sec. 5.2.3 that in the single camera (ORD) method, spatial fre-
quencies exist for which we retrieve no information, where i — 0. These spatial
frequencies are dependent on z, the displacement of the camera from focus (Fig. 5.3).
Thus by adding cameras to the system at different displacements z, we recover in-
formation at all spatial frequencies and eliminate the need for regularization. It is
appropriate to model shot-noise as additive white noise (i.e. noise that is uncorre-

lated and uniform over all spatial frequencies). Then the total mean square error
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(due to shot-noise) is > ;) 1A (u)p(u) — f,gi)(u)|2 + |ap(u)|?, where ¢ = 1...3 is the
camera number, and the second term is the Tikhonov regularization [48] term with

regularization constant a. The mean square error is minimized when

) (b)
@ hY

Figure 5.3: contrast transfer functions (CTF's) for three different detector positions.
By picking appropriate z values, contrast information may be retrieved for all spatial
frequencies u. In (b), the individual inverse CTFs are plotted, along with the
combined CTF.

DTG

p(u) = = . 5.19
S SR o

If singularities have no overlap, a may be set to zero, and the calculted column
density is effectively minimized by the weighted average of the three images in
Fourier space. Eqn. (5.19) models shot-noise as additive white-noise, and assumes
p(u) and the shot-noise are uncorrelated. The above equation is an exact solution
to the scalar wave equation without singularities (as long as the displacements 2
of the cameras are chosen without overlapping divergences.) Next we discuss the

physical implementation of this method.
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5.3 Experimental techniques

5.3.1 Physical set-up

We implemented the MORD technique using a two-lens imaging system with
magnification M = 3 (as shown in Fig. 5.1), and placed three detectors at different
distances from the focal plane. The system consisted of a pair of 25.4 mm diameter
lenses with focal lengths f; = 75 mm and f; = 250 mm separated by 325(10) mm.
Then the magnification along the beam propagation direction was M2, and the
effective distance away of a camera from focus was Az.;y = Az/M?. An aperature
with a 18(1) mm diameter in the Fourier plane blocked image distortions arising
from the 25 mm dichroic mirror used in the imaging system periscope. The imaging
system had an effective numerical aperture NA ~ 0.12, and an effective resolution
of &~ 8 pum. After the final lens, the light was directed to our three detectors using
non-polarizing beam splitters (BSs) with reflection to transmission (R:T) ratios
70:30 and 50:50 to split the probe into three beams with nominally equal powers
(Fig. 5.4). We detected each probe light on a charge-coupled device (CCD) camera
with detector size 648 x488 square pixels with pixel width 5.6 um. Each camera was
on a translation stage, so that the set-up could be used for both the defocused and
standard absorption imaging methods. The three cameras shared a triggering pulse

for simultaneous image capture.
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Figure 5.4: Schematic of our MORD setup. The two-lens imaging system described
by Fig. 5.1 is implemented with two non-polarizing beam splitters that nominally
split the probe laser beam into three equal intensities. Each image is then recorded
by its designated camera. Each camera takes a defocused image at position 2 from
focus.

5.3.2 Experimental procedure

Here we describe the experimental procedure used to acquire the images for the
MORD technique. We collected about 1 x 10° 8"Rb atoms in a vapor-fed six-beam
magneto-optical trap, performed sub-Doppler cooling, and then trapped the atoms
in the |f = 2, mp = 2) state in a spherical quadrupole trap. We then used magnetic
transport [49] to move the resulting cloud about 42 cm vertically in 2.2 s, giving
an ensemble at ~ 120 uK with about 1 x 10% atoms. We then evaporated to de-

generacy in the combined magnetic/optical technique described in Ref. [34]. During
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evaporation, we performed a microwave transfer between the ground hyperfine states
|f =2,mp =2) to|f =1,mp=—1), giving 100 x 10> atom Bose-Einstein conden-
sates (BECs) in a cross-optical dipole trap every 15 s in the |f = 1, mp = —1) state.
The BEC was trapped in a crossed-dipole trap with frequencies ~ 110Hz, 75Hz,
and 50Hz along e,,e,, and e, respectively. To achieve the desired optical depth to
test our imaging technique, we then performed a partial ~ 10 % transfer to the
|f =2,mp = 1) state with a short (< 7/2) microwave pulse [50]. We then used
a probe beam detuned A = 2I" from the f=2 to f'=3 cycling transition without
repump to image the transferred N ~ 1 x 10* atoms after a 6 ms TOF with the
three cameras simultaneously. The probe intensity I =~ 2.51,¢, where the saturation
intensity Iy, ~ 3.5mW /cm? [51] for a circularly polarized probe beam.

In the defocused technique, the intensity I Jl in eqn. (5.8) is the off-resonant, de-
focused absorption image of the atoms. Additionally, a third image I ]3 is taken with
neither the atoms nor the probe laser light. This background image is subtracted

from [ jl and [ J2 to remove any dark counts from the detector.

5.4 Measurement and analysis

5.4.1 Experimental data

Fig. 5.5(a) shows the raw data recorded by each camera using the experimental
techniques described in Sec. 5.3. We prepare the raw data by applying a Fermi
mask to get rid of probe artifacts present at the detector edges (Fig. 5.5(b)). To

compare the ORD and MORD imaging techniques, we show the single-camera ORD
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results in Fig. 5.5(c), and the two- and three-camera MORD reconstructed results

in Fig. 5.5(d). The background of the MORD method has visibly fewer artifacts

than the ORD reconstructed images.

(a) Detector image,1 (b) One-camera (c) Two-camera (d) Three-camera
reconstruction reconstruction reconstruction
200 =
'E 400 |
=
>

200 400 600 200 400 600
X [z m] X [p2 m]

Cam3

200 400 600 200 400 600
X [ m] X [ m]

Figure 5.5: Set of images taken by the three cameras: (a) the raw data, after apply-
ing a Fermi mask to get rid of artifacts at the edges which do not contain density
information but contributes to noise, (b) individual single-image ORD reconstruc-
tions for each camera, (c) a two-camera reconstruction, and (d) the three-camera

MORD reconstruction. The “rings” present in the ORD method are less prevalent
in the MORD technique.
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5.4.2 Systematics in the MORD method

Next we consider the following sources of systematic uncertainties in the cal-
culated column density of the MORD method: the theoretical model eqn. (5.19)
as shown in Fig. 5.6, the uncertainties in camera positions z® (Fig. 5.7), and the
quality of the e, — e, registration of the three images during reconstruction. We
then compare the statistical uncertainties of the three-camera method to those of
absorption imaging and PCI. We show that except for the on-resonance case, the
MORD imaging technique gives smaller uncertainties than absorption imaging at
the same detuning. Further, the MORD method has slightly larger but compa-
rable uncertainties to PCI for large detunings, and smaller uncertainties for small
detunings where PCI uncertainty diverges.

In our simulations, the SSFM (see Sec. 5.6) was used to propagate the electric
field through the atomic cloud. Fig. 5.6(a),(b) show the systematic fractional uncer-
tainties in the reconstructed OD for different probe detunings. Fig. 5.6(c) gives the
uncertainty for different probe intensities, plotted for a range of OD values. Further,
in Fig. 5.7, we vary the z( values from the actual, forward propagated distances:
by adding an offset to the 2 used in the reconstruction, we find Ap/py associated
with the uncertainties in the 2 positions of the three cameras that we measured
in experiment. The uncertainties stay small for any single camera that is offset by
up to several millimeters. Next we discuss the statistical uncertainties of MORD,

absorption, and phase-contrast imaging techniques.
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5.4.3 Uncertainties and comparisons to other imaging techniques

We take detector shot noise to be the only source of statistical uncertainty, and
neglect the read noise of the camera. The shot-noise of an image is given by v,
where N = | E|?(Ax)%dt/hw is the number of incident photons on the detector, with
the intensity recorded |E|?, pixel width Az, laser beam frequency w, and imaging
pulse-length dt. The statistical uncertainty in the calculated column density is found
by propagating the noise in the fractional uncertainty of fjQ (eqn. (5.8)) through each

step of the density calculation. We start with the squared noise in real space

(6£9)2 = Z (%) (0N]')?, where shot noise N = /NP, (5.20)
" j

and n=1...3 is the image number. In experiment, the intensity at the camera is
recorded as photoelectron counts by the camera, which is proportional to A. In
eqn. (5.20), ./\/'j” represents the number of photons. For the background image,
ON3=0. As stated in Sec. 5.3.2, a uniform probe propagates through free space
to the atoms. After the probe interacts with the atoms, it propagates a distance
Az in free space. Since in experiment we use non-polarizing beamsplitters to split
the probe intensity into three beams, the intensity detected at each camera is one-
third the original intensity. Shot-noise was simulated at the detector under these
conditions. In the next step towards column-density retrieval, we take the Fourier

transform of the fractional intensity (eqn. (5.8)):

1 .
Je = Wi Z e_“”fj, where N = the number of pixels. (5.21)
J
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Next, in the ORD method, the transformed image is multiplied to the single trans-
fer function izk associated with the detector: f,é = fkﬁk In the MORD method
considered here, we take the weighted average (as implemented in eqn. (5.19)) of all

the images with their corresponding transfer functions:

@ £ 7 (i)
2—2 = Z h,(z fk s where h/ h—~2 (522)
>y 1h9] ) > |9

and Cp = 3 |AD|2 is a constant. The column density of the atomic cloud is found

fi=

by taking the inverse Fourier transform of f,g
~ 1 o~ 1 o = 1) 70)
fi= —=> eVfi=—=> ")y Wiy (5.23)
R SR S

B T Py

where H]@j, = (1/\/N) Zk explik(j — Jl)]illkl

Then the final total squared uncertainty sums over all cameras ¢ =1...3:

LS () -y ST e o

=1 7

where n is the total number of cameras. We would like to compare this result to the
uncertainties in the absorption and PCI methods. Using the formalism described by

eqn. (5.20), we find the squared uncertainty for absorption imaging using eqn. (5.9):

(5OD)2:[1+4A2 1 er [1+4A2 1
at

2
N +Ns N, +Nsat] Ns. (5.26)

Next, we find that the uncertainty in the OD for PCI using eqn. (5.11) to be

o [N /N +442 1 1 /MANT
(JOD)? = { A AT (/\_/2 1)] N (5.27)
1+ N [Ny + 44277 N2
2A N3
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The statistical fractional uncertainties as a function of probe detuning is plot-

ted in Fig. 5.8 for MORD, absorption, and PCI methods, using eqns. (5.25), (5.26), and (5.27),

respectively.
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Figure 5.6: MORD systematic fractional uncertainties in the calculated OD and its
dependence on detuning using the low intensity approximation in the reconstruction
(a), using the intensity in our experiment (b), and the uncertainty dependence on
probe intensity (c).

5.5 Conclusion

We have demonstrated improvement in the single-camera ORD technique by
using three cameras simultaneously to eliminate the divergences that arise in the
contrast-transfer function. We studied the systematic uncertainties of the MORD
method, and theoretically compared multiple techniques using simulated data treated
in equal footing. We showed that the MORD method is comparable to PCI. There-
fore, in experiment, the easier to implement MORD set-up may be preferable to

PCI.
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Figure 5.7: Added camera displacement Az to each camera (independently, and not
at the same time). The offset is used in the reconstruction (not in the forward z).
Fractional uncertainty in OD vs. Az (top), reconstructed width vs Az (bottom).

5.6 Methods

A free space solution to eqn. (5.1) is a plane wave of the form

E(x,y, z) = expli(k,x+kyy+k.2)] for k§ = kZ+k;+kZ. For a probe beam propagating

along e,, we may re-express the electric field as

B(r) = exp|i (koo kyy + 2 /K8 — k2 — k2 )|

= E(r;z=0)exp(iz
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Figure 5.8: Systematic uncertainties of simulated data, for absorption imaging
(blue), phase-contrast imaging (red), and MORD (back). The simulated data and
analytical solutions are shown as circles and solid lines, respectively.

where E(r; z = 0) = exp(ikap-rap). The propagation behavior of the electric field has
two regions: when k§ > k2 + k2, E(r) propagates sinusoidally, and for k§ < k2 + k2,
the field decays exponentially (is an evanescent wave).

The general free space solution to eqn. (5.1) is given by the weighted sum over

all possible values of kop:

E(I‘ + AZez) = / exXp (Z.AZ\/ ]{7(2) — k%D ) E(kzp)exp(ing : r2D)dk2D s (530)

o
known as the angular spectrum representation, where the exact free space transfer

function

P(kop, Az) = exp (iAz\ [k — k2, ) (5.31)

propagates the original field E(r; z = 0) by distance Az. The free-space propagator

under the parxial approximation is
- k2
P'(kop, Az) = exp (—iAzLD) : (5.32)

ok2
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For propagation through an infinitely thin medium, the propagator

Q(Az) = exp [z’ko / o Vx(r) dz} . (5.33)

If the medium is a thin dilute cloud for which the paraxial approximation
applies (eqns.(5.32),(5.5)), there exists a numerical solution to the paraxial wave

equation (eqn. (5.4)) using the split-step Fourier method (SSFM):
E(r+ Aze,) = P'(Az/2)Q'(Az)P'(Az/2)E(r). (5.34)

where FE(r + Aze,) is the electric field that propagated a step Az. The SSFM given
by eqn. (5.34) is iterated through the thickness of the cloud. Correction to the

SSFM starts at third order in Az [52].
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Chapter 6: Conclusion and Outlook

During my tenure at NIST, the light-induced gauge fields laboratory has made
stunning progress in the field. The lab has gone from the production of a BEC in
a new apparatus, to the first demonstration of an artificial gauge field, and most
recently, the current team members of this lab visualized skipping orbits in the
quantum Hall regime. Synthetic gauge fields are an appealing field because of their
applicability to a wide range of disciplines, from condensed matter experiments,
topological materials, theoretical proposals beyond real materials, to high energy
physics.

Going forward, there are crucial milestones that could be realized with gauge
fields, such as observing fractional quantum Hall states in real space, and the re-
alization of flux lattices, perhaps enabled by alkaline earth [53] or lanthanide [54]
quantum gases.

With our new atom-chip apparatus, we performed an off-resonance defocused
imaging experiment with multiple cameras to reconstruct the OD of BECs with
comparable results to PCI. While the results are comparable, the physical imple-
mentation of the MORD technique in the laboratory is relatively simple and offers

potential advantages over PCI. While absorption imaging is a workhorse technique,
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it is satisfying to demonstrate a technique with improved fundamental limits (rela-
tive to ORD), with the prospect of enabling new experiments. The MORD may have
applications in extended atomic systems that require both high resolution imaging
and wide field of view without spatial divergences, such as continuous atom lasers
and atomic ring gyroscopes. Going beyond MORD, it is possible to reconstruct the
phase and amplitude of the electromagnetic field using simultaneous multi-camera
images which may allow for holographic reconstruction of the 3D atomic density.
Our newly constructed atom-chip apparatus could realize the first demonstra-
tion of an artificial gauge field without spontaneous emission. FPGA programming
of individual nanofabricated wires will allow the creation of exotic arbitrary poten-
tials. Once rf “Raman” is successfully demonstrated with 8"Rb, 6L can be introduced

into the system, setting up for even more exotic phenomena with Fermionic systems.
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Appendix A: Atom-light interaction

A.1 An Atom in the Presence of an External Magnetic Field
The Hamiltonian of an atom interacting with an external magnetic field is
H=A,1-J—p-B. (A1)

The nucleus has an intrinsic magnetic moment p; =—g;upl. The I-J term arises
from the interaction between the dipolar electromagnetic field emanating from the
nucleus, and the electron’s intrinsic electric dipole moment p; = —g ;upJ (where
J =L+ S and we assume L = 0). This interaction gives rise to the hyperfine
structure, and at zero external magnetic field, the size of the hyperfine splitting is
proportional to the hyperfine constant A,;. The Zeeman interaction term —p - B
arises from the interaction between the atom’s total magnetic moment p, and the
external magnetic field B = Byé,. The total magnetic moment g comprises both p ;
and pp: p=p;+pr=—pp(gsS +grl).

If the applied field is weak, the hyperfine interaction dominates and good
quantum numbers are F', and mp. However if the field is very strong, the hyperfine
interaction is negligible and I and J are effectively uncoupled and separately con-

served. Then good quantum numbers become |J,my; I, m;). Next we consider in
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detail the Hamiltonian in the region between these two cases. In the medium-field

region, we must consider the combination of |F,mg) and |J, my; I, m;) states.

A.2 Arbitrary field strength interaction

The Hamiltonian re-written in terms of raising and lowering operators is
- A
H= Apl.J. + %(LL — J_1) + ppBo(9sS: + g11.), (A.2)

where Ji =J, £ 4J,, similarly for /.. The Hamiltonian can be solved exactly for
J = 1/2, applicable to the ground states of all alkalis (L = 0,5 = 1/2). In this case,

my = +1/2, so the interaction only couples two sets of states |m;, m; = mp —my):
|mJ = :|:1/2,m1 =mr F 1/2>,

where mp = mj 4+ my is conserved for all magnetic fields. Since

Je|J,my)y =/ (J Fmp)(J £my+1)|J,my£1), (A.3)

the terms in the Hamiltonian involving the ladder operators couple the two m

states. The matrix elements of the Hamiltonian is

N 1 1
; Any N
(my = +1/20Hmy = F1/2) = Z5[(1+5) —mh. (A.4)

Diagonalization of the Hamiltonian results in the eigenvalues given by the Breit-Rabi

formula [55]

Ahf Ahf 1 2mF
Ey=—— B+ — |1+ = 1 2 A,
+ 1 T grempBy £ — t3 +I+lzv+$, (A.5)
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where

~ p1Bo (97 — g1)
Sl e (A.6)

A.3 Time-Dependent Perturbation in the Weak-Field Limit

Next we consider the interaction with a time-varying magnetic field
B = B + B, scos(w,ft). (A.7)

The bias field By =Bge,, the oscillating field B, fcos(w,t) = B, rcos(w,st)e,, and
IB,f| < |Bo|. Since p; > p;, we neglect p; and re-express the Zeeman interaction
Hamiltonian as H = p;-B=g;upS-B=g;upd-B for L=0. Since F is the good
quantum number in the region of small fields, we write the Hamiltonian in terms of
the projection of J on F. Both a classical vector model and a quantum mechanical
approach using the projection theorem (in which the theorem is applied to each
vector component of J) show that the Hamiltonian may be reexpressed as

: (3-F)
H = Y p.B
B p 1)
= grpsF -B
= grupF.Bo+ grpupF, B,y cos(w,st)
= wF, + QF, cos(w,st)

= Hy+ H, (A.8)

Where w = grpupBy, Q = grppBry. Without B,, to first-order the Zeeman shift is
the familiar E0) = (ﬁ ) =grupmpBy, and the energy splitting scales linearly with
the magnetic field.
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We want to eliminate the time dependence by going into the rotating frame
with the unitary time-evolution operator U(t) =e™'*=/" so that the state ket in
the rotating frame |W') =U(t)|¥). Then the Schrédinger equation for the state ket

rotating at frequency w’ about F, is

im0 0 )

ot ot
- ihU(t)%]\I/) +ih (a(g_§t>> U)o

= UHUNU®)|¥) — ' F,|0')
— [U®)HU(t) + U)H'U () — ' F.]| ')
= [(w—WE +UQHU (1))

- -Hrot|\11/>

where H,, is the Hamiltonian in the rotating frame. Since in the V) = (mp =

1,mp =0,mp = —1)basis,
eiw’t 0 0
Uty=e“"=/" = 0 1 0
0 0 e—iw’t
we find that U(t) H'U(t)
0 ei(wrf—i-w’)t 4 e—i(wrf—w’)t 0
— 1 ei(wrf—w’)t + e—i(wa—i—w’)t 0 ei(wrf—s—w’)t + e—i(wa—w’)t
2 0 ei(wrffw’)t + efi(wrerw’)t 0

If we let w’ =w, s, and make the RWA by dropping the terms that oscillate at
Qwpg, U(t)H'UT(t) = QF, /2, so the Hamiltonian is time-independent in the rotating

frame. The full Hamiltonian is then
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where 6 =w — w,.

J

URH'UT(t) = (Q/Q
0
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Appendix B: Machine drawings

Here we include the Science cell design in B.1. We then present the drawings for
the machined parts that make up the magnetic transport system. Figs. B.2, B.3, B.4,
and B.5 are coil holders designed to fit around the outer diameter of coils. Examples
of mounted coils are shown in Fig. 4.11. Fig. B.6 is the spacer placed in between
the final coil and the cold plate (Fig. B.10), and similarly, Fig. B.7 is the MOT
coil spacer. The cage adaptors referred to in Fig. 4.13 are shown as drawings in
Figs. B.8, B.9.

Further, Figs. B.11, B.12, and B.13 are coil winding forms. They also func-
tioned as coil holders when excess Kapton tape was faced off the coils surfaces using
a lathe. Moreover, Fig. B.14 is the cooling tube clamp which fixes the copper cooling
tubes onto the cooling towers, and Fig. B.15 is the MOT cell holder design, as seen

in Fig. 4.4.
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Figure B.3: “Top” Coil, holder
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Figure B.6: Final coil spacer

112



"AluQ asn o1wdpeIY 104
‘uonip3 juspnis s}IO0MpljoS

winUIWNY :JoUSIoW

(z) om] AmuonD

96°0

! 52€0
0950

1 L0Z29Q 1UBI9H UY2UI 05" 0 JOPIOHII0D

Figure B.7: MOT coil spacer

113



"AluQ asn o1wdpeIY 104
‘uonip3 juspnis s}IO0MpljoS

008'¢

Figure B.8: Cage adapter

114



"AluQ asn o1wdpeIY 104
wouwny ooy UOTHPT JUBPNIS SYIOMPI|OS

Z :Auon®

Buign) leddod 0IQ,8/€ 10} IN0-IND (821D JIOH)

22UDID3|D 2I0QIBIUNOD 0Z-¥/ 1

papoaIYL OF-¥

DalY]OW dwp|D egnjleddo)d
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Figure B.14: Clamp for copper water cooling tube
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