Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    MULTIVARIATE METHODS FOR HIGH-THROUGHPUT BIOLOGICAL DATA WITH APPLICATION TO COMPARATIVE GENOMICS

    Thumbnail
    View/Open
    Hsiao_umd_0117E_16485.pdf (18.15Mb)
    No. of downloads: 13

    Date
    2015
    Author
    Hsiao, Chiao-wen
    Advisor
    Corrada Bravo, Héctor
    DRUM DOI
    https://doi.org/10.13016/M2DM0K
    Metadata
    Show full item record
    Abstract
    Phenotypic variation in multi-cellular organisms arises as a result complex gene regulation mechanisms. Modern development of high-through technology opens up the possibility of genome-wide interrogation of aspects of these mechanisms across molecular phenotypes. Multivariate statistical methods provide convenient frameworks for modeling and analyzing data obtained from high-throughput experiments probing these complex aspects. This dissertation presents multivariate statistical methods to analyze data arising from two specific high-throughput molecular assays: (1) ribosome footprint profiling experiments, and (2) flow cytometry data. Ribosome footprint profiling describes an in vivo translation profile in a living cell and offers insights into the process of post-transcriptional gene regulation. Translation efficiency (TE) is a measure that quantifies the rate at which active translation is occurring for each gene – defined as the ratio of ribosome protected fragment count to mRNA fragment count. We introduce pairedSeq, an empirical covariance shrinkage method for differential testing of translation efficiency from sequencing data. The method draws on variance decomposition techniques in mixed-effect modeling and analysis of variance. Benchmark tests comparing to the existing methods reveals that pairedSeq effectively detects signals in genes with high variation in expression measurements across samples due to high co-variability between ribosome occupancy and transcript abundance. In contrast, existing methods tend to mistake genes with negative co-variability as signals, as a result of variance underestimation when not accounting for negative co-variability. We then present a genome-wide survey of primate species divergence at the translational and post-translational layer of gene regulation. FCM is routinely employed to characterize cellular characteristics such as mRNA and protein expression at the single-cell level. While many computational methods have been developed that focus on identifying cell populations in individual FCM samples, very few have addressed how the identified cell populations can be matched across samples for comparative analysis. FlowMap-FR can be used to quantify the similarity between cell populations under scenarios of proportion differences and modest position shifts, and to identify situations in which inappropriate splitting or merging of cell populations has occurred during gating procedures. It has been implemented as a stand-alone R/Bioconductor package easily incorporated into current FCM data analytical workflows.
    URI
    http://hdl.handle.net/1903/17037
    Collections
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility