Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    System Identification of Vehicle Dynamics and Road Conditions Using Wireless Sensors

    Thumbnail
    View/Open
    Blum_umd_0117E_16195.pdf (6.724Mb)
    No. of downloads: 4826

    Date
    2015
    Author
    Blum, Noah Corey
    Advisor
    Zhang, Yunfeng
    DRUM DOI
    https://doi.org/10.13016/M2J05H
    Metadata
    Show full item record
    Abstract
    Road quality and ride comfort are major concerns when creating and maintaining roads. Ride comfort is dependent on the interaction between the vehicle and the roughness of the road. Road roughness is currently measured by road-profiling vehicles in a quantifiable term known as the International Roughness Index (IRI). Although this method is useful for determining road surface information, it is a time consuming process, it can't be carried out every day, and it does not provide a direct indication of ride comfort. However, advancements in sensor technology provide necessary enhancements that current methods cannot address. This study aims to develop an innovative method using built-in wireless sensing and mobile computing features of smartphones to not only estimate road roughness, but to provide a direct real-time indication of ride comfort. Estimation of road roughness based on vehicle response involves insight regarding the properties of the vehicle itself. While the vibration response of the vehicle can be readily measured using wireless accelerometers or built-in smartphone sensors, information pertaining to the vehicle and road properties is left unknown. To address this issue, various system identification methods are evaluated for high-damped systems and applied to the vehicle. Through the application of system identification methods using vehicle response data, the unknown parameters of the vehicle can be estimated. These methods are validated through analysis of vehicle model simulation paired with standard simulated road profiles. Furthermore, these simulations create an environment to determine optimal conditions for vehicle mass prediction. With vehicle parameters identified, the dynamic response parameters of the vehicle and the input of the road surface profile can be correlated to estimate the IRI while directly providing ride comfort information. Field testing involving the use of a wireless accelerometer and GPS is also implemented to compare recorded data against the simulation findings. This study establishes a framework that integrates wireless sensors, system identification methods, and the correlation between ride comfort and the IRI with vehicle vibration measurements. System identification methods with a focus on vehicles subjected to excitation from the road are evaluated. This involves an investigation of prediction error identification methods with the use of grey-box modeling to estimate vehicle mass under varying road conditions. With vehicle parameters known, correlation of vehicle vibration response with the IRI and ride comfort is empirically established to determine areas of road in need of maintenance along with comfortable travel routes in real-time. This study demonstrates the appeal for including information related to road conditions and ride comfort in mobile maps for alternative travel routes.
    URI
    http://hdl.handle.net/1903/16773
    Collections
    • Civil & Environmental Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility