Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stochastic Simulation: New Stochastic Approximation Methods and Sensitivity Analyses

    Thumbnail
    View/Open
    Chau_umd_0117E_16215.pdf (21.08Mb)
    No. of downloads: 414

    Date
    2015
    Author
    Chau, Marie
    Advisor
    Fu, Michael C.
    DRUM DOI
    https://doi.org/10.13016/M2P35S
    Metadata
    Show full item record
    Abstract
    In this dissertation, we propose two new types of stochastic approximation (SA) methods and study the sensitivity of SA and of a stochastic gradient method to various input parameters. First, we summarize the most common stochastic gradient estimation techniques, both direct and indirect, as well as the two classical SA algorithms, Robbins-Monro (RM) and Kiefer-Wolfowitz (KW), followed by some well-known modifications to the step size, output, gradient, and projection operator. Second, we introduce two new stochastic gradient methods in SA for univariate and multivariate stochastic optimization problems. Under a setting where both direct and indirect gradients are available, our new SA algorithms estimate the gradient using a hybrid estimator, which is a convex combination of a symmetric finite difference-type gradient estimate and an average of two associated direct gradient estimates. We derive variance minimizing weights that lead to desirable theoretical properties and prove convergence of the SA algorithms. Next, we study the finite-time performance of the KW algorithm and its sensitivity to the step size parameter, along with two of its adaptive variants, namely Kesten's rule and scale-and-shifted KW (SSKW). We conduct a sensitivity analysis of KW and explore the tightness of an mean-squared error (MSE) bound for quadratic functions, a relevant issue for determining how long to run an SA algorithm. Then, we propose two new adaptive step size sequences inspired by both Kesten's rule and SSKW, which address some of their weaknesses. Instead of us- ing one step size sequence, our adaptive step size is based on two deterministic sequences, and the step size used in the current iteration depends on the perceived proximity of the current iterate to the optimum. In addition, we introduce a method to adaptively adjust the two deterministic sequences. Lastly, we investigate the performance of a modified pathwise gradient estimation method that is applied to financial options with discontinuous payoffs, and in particular, used to estimate the Greeks, which measure the rate of change of (financial) derivative prices with respect to underlying market parameters and are central to financial risk management. The newly proposed kernel estimator relies on a smoothing bandwidth parameter. We explore the accuracy of the Greeks with varying bandwidths and investigate the sensitivity of a proposed iterative scheme that generates an estimate of the optimal bandwidth.
    URI
    http://hdl.handle.net/1903/16707
    Collections
    • Computer Science Theses and Dissertations
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility