
ABSTRACT

Title of dissertation: STOCHASTIC SIMULATION:
NEW STOCHASTIC APPROXIMATION
METHODS AND SENSITIVITY ANALYSES

Marie Chau, Doctor of Philosophy, 2015

Dissertation directed by: Prof. Michael C. Fu
R.H. Smith School of Business
& Institute of Systems Research

In this dissertation, we propose two new types of stochastic approximation

(SA) methods and study the sensitivity of SA and of a stochastic gradient method

to various input parameters. First, we summarize the most common stochastic

gradient estimation techniques, both direct and indirect, as well as the two classical

SA algorithms, Robbins-Monro (RM) and Kiefer-Wolfowitz (KW), followed by some

well-known modifications to the step size, output, gradient, and projection operator.

Second, we introduce two new stochastic gradient methods in SA for univari-

ate and multivariate stochastic optimization problems. Under a setting where both

direct and indirect gradients are available, our new SA algorithms estimate the gra-

dient using a hybrid estimator, which is a convex combination of a symmetric finite

di↵erence-type gradient estimate and an average of two associated direct gradient

estimates. We derive variance minimizing weights that lead to desirable theoretical

properties and prove convergence of the SA algorithms.

Next, we study the finite-time performance of the KW algorithm and its sen-

sitivity to the step size parameter, along with two of its adaptive variants, namely

Kesten’s rule and scale-and-shifted KW (SSKW). We conduct a sensitivity anal-

ysis of KW and explore the tightness of an mean-squared error (MSE) bound for

quadratic functions, a relevant issue for determining how long to run an SA algo-

rithm. Then, we propose two new adaptive step size sequences inspired by both

Kesten’s rule and SSKW, which address some of their weaknesses. Instead of us-

ing one step size sequence, our adaptive step size is based on two deterministic

sequences, and the step size used in the current iteration depends on the perceived

proximity of the current iterate to the optimum. In addition, we introduce a method

to adaptively adjust the two deterministic sequences.

Lastly, we investigate the performance of a modified pathwise gradient esti-

mation method that is applied to financial options with discontinuous payo↵s, and

in particular, used to estimate the Greeks, which measure the rate of change of

(financial) derivative prices with respect to underlying market parameters and are

central to financial risk management. The newly proposed kernel estimator relies

on a smoothing bandwidth parameter. We explore the accuracy of the Greeks with

varying bandwidths and investigate the sensitivity of a proposed iterative scheme

that generates an estimate of the optimal bandwidth.

STOCHASTIC SIMULATION:
NEW STOCHASTIC APPROXIMATION METHODS

AND SENSITIVITY ANALYSES

by

Marie Chau

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Prof. Michael C. Fu, Chair/Advisor
Prof. Steven I. Marcus
Prof. Kasso A. Okoudjou
Prof. Ilya O. Ryzhov
Prof. Paul J. Smith

c� Copyright by
Marie Chau

2015

To my loving and supportive parents.

ii

Acknowledgments

First, I would like to express my sincerest gratitude and deepest apprecia-

tion to my advisor, Prof. Michael C. Fu, for the tremendous amount of support,

guidance, feedback, and faith throughout this entire journey. Without him, this dis-

sertation would not be possible. Prof. Fu is not only a highly-respected scholar and

an excellent teacher who genuinely cares about his students, but also an amazing

mentor, always with the best intentions. I admire his breadth and depth of knowl-

edge, patience, humility, authenticity, honesty, compassion, optimism, and innate

good-hearted nature. For this experience and the opportunity to work with him, I

will be forever grateful.

Next, I would like to thank the other committee members - Professors Steve I.

Marcus, Kasso A. Okoudjou, Ilya O. Ryzhov, and Paul J. Smith - for taking the time

to read this dissertation and attend my defense. Special thanks to Professors Patrick

M. Fitzpatrick, Eric V. Slud, and David H. Hamilton for their encouragement and

willingness to help in their classes as well as in my job search.

Last, but certainly not least, I would like to thank the people I’ve met at UMD

who have since become some of my nearest and dearest friends. A very special thanks

to Patrick Sodré Carlos who I met randomly in di↵erential equations during summer

school in 2007 and is now one of my closest friends and biggest supporters. He’s

always willing to help not only myself but others as well, and is one of the main

reasons why I’m still here. Another special thanks to Karamatou Yacoubou Djima

for her loyal friendship from day one of boot camp. Graduate school would not

iii

have been the same without her, from our countless food outings, endless hours of

studying for quals, interesting conversations, fun times, and many laughs. Also a

very special thanks to Huashuai Qu, Xuan Liu, Jong Jun Lee, Zhixin Lu, Ran Ji,

and Anusha Dandapani for being amazing! Each of you have made a dent in my life

in your own special way. Thanks to the rest of my 1305 o�cemates. Many thanks

to Rhyneta Gumbs who has a very kind heart, always looking out for the students.

Thanks to the other girl’s night math ladies, Jennifer Clarkson, Clare Wickman, and

Hana Ueda for your emotional support and regular dinner outings. Also, thanks to

the rest of the boot camp class of 2008 for unforgettable memories. Thanks to

Hisham Talukder for the many laughs, Temba and Joe for our fun outings, Lucia

Simonelli for our salsa nights, Yimei Fan for fun times, Dana Botesteanu for good

conversations over dinner/drinks, Changhui Tan and Wenqing Hu for their patience

and invaluable math discussions. Also, thanks to Alverda McCoy for always being

so pleasant and flexible, saving me from many administrative disasters.

Most of all, I thank my parents. Words can’t begin to explain how grateful I am

for all they’ve done throughout my entire life. Their morals, values, determination,

patience, and supportive nature have shaped me into the person I am today.

iv

Table of Contents

List of Figures viii

List of Notations x

1 Introduction 1
1.1 Motivating Examples . 5

1.1.1 Stochastic Approximation . 7
1.1.2 Sensitivity Analysis . 8

1.2 Contributions . 8
1.3 Outline . 10

2 Background 11
2.1 Stochastic Gradient Estimation Methods 11

2.1.1 Indirect Gradients . 12
2.1.1.1 Finite Di↵erences . 12
2.1.1.2 Simultaneous Perturbation 13
2.1.1.3 Random Directions 14

2.1.2 Direct Gradients . 14
2.1.2.1 Infinitesimal Perturbation Analysis 16
2.1.2.2 Likelihood Ratio/Score Function 17
2.1.2.3 Weak Derivatives . 18
2.1.2.4 General Extension 19

2.2 Stochastic Approximation . 20
2.2.1 Classical Methods . 20

2.2.1.1 Robbins-Monro . 20
2.2.1.2 Kiefer-Wolfowitz . 22

2.2.2 Robust Gradient . 25
2.2.2.1 Simultaneous Perturbation Stochastic Approximation 25
2.2.2.2 Gradient Averaging 27

2.2.3 Adaptive Step Sizes . 29
2.2.3.1 Kesten’s Rule . 29
2.2.3.2 Scaled-and-Shifted Kiefer-Wolfowitz 30

2.2.4 Robust Output . 35
2.2.4.1 Averaging Iterates 35
2.2.4.2 Robust Stochastic Approximation 37
2.2.4.3 Acceleration Stochastic Approximation 38
2.2.4.4 Numerical Comparison 43

2.2.5 Varying Bounds . 45

v

3 New Hybrid Stochastic Approximation Methods 49
3.1 Motivation . 49
3.2 Secant-Tangents AveRaged Stochastic Approximation 50

3.2.1 Optimal Convex Weight . 52
3.2.1.1 Homogeneous Noise 52
3.2.1.2 Non-homogeneous Noise 54

3.2.2 Convergence . 57
3.2.3 Numerical Experiments . 64

3.2.3.1 Experiment 1: vary initial value 65
3.2.3.2 Experiment 2: vary steepness level 67
3.2.3.3 Results Summary . 69

3.3 STAR-SPSA . 70
3.3.1 Optimal Deterministic Weights 71
3.3.2 Convergence . 74
3.3.3 Numerical Experiments . 78

3.3.3.1 9-station Closed Jackson Network 78
3.4 Summary and Future Work . 85

4 Step Size Selection in Stochastic Approximation 87
4.1 Sensitivity of Finite-time Performance to Step Size 87

4.1.1 KW and its Variants . 88
4.2 Finite-time MSE Bound . 90
4.3 Numerical Experiments . 92

4.3.1 Tightness of the Finite-time MSE Bound for Quadratics . . . 92
4.3.2 Sensitivity of KW and its Variants 95

4.4 PROX-step . 101
4.5 Adaptive PROX-step . 106
4.6 Numerical Experiments . 109

4.6.1 Deterministic Problem with Added Noise 110
4.6.2 9-station Closed Jackson Queueing Network 116

4.7 Summary and Future Work . 117

5 Greek Kernel Estimators 120
5.1 Introduction . 120
5.2 Problem Setting . 123
5.3 Generalized Pathwise Method . 125

5.3.1 First-Order Greeks . 125
5.3.2 Second-Order Greeks . 126
5.3.3 Kernel . 128
5.3.4 First- and Second-Order Greek Estimators 129

5.4 Pilot Simulation . 129
5.5 Numerical Experiments . 131

5.5.1 Sensitivity to Bandwidth . 131
5.5.2 Sensitivity of Bandwidth Generator to Input Parameters . . . 136

5.6 Summary and Future Work . 141

vi

Bibliography 142

vii

List of Figures

1.1 Illustration: Generating sample performance 3

2.1 MSE under AC-SA, RM, RM w/averaging and RSA for f(x) = �1
3x

2,
x1 = 30.0, � = 1.0. 44

3.1 Illustration of STAR gradient, where f̃ and f̃ 0 are estimates of f and
f 0, respectively. 51

3.2 f(x) = �0.1x2,⇥ = [�50, 50], a
n

= 10(n+1)�1, c
n

= 0.1(n+1)�1/4, N =
1000. 66

3.3 f(x) = �ax2,⇥ = [�50, 50], a
n

= 10(n+1)�1, c
n

= 0.1(n+1)�1/4, N =
1000. 68

3.4 9-station closed Jackson queueing network. 79
3.5 9-station closed Jackson queueing network,

P9
i=1 x

(i) = 10, x(i) > 0,
a
n

= ✓
a

/(n+1), ↵
n

= c2
n

/(1+c2
n

), N = 50, customers serviced = 300,
macroreplications = 20. 81

4.1 Illustration of Sensitivity of SA to {a
n

}. 88
4.2 MSE of the 10000th iterate of KW and Kesten for three parameter settings

and SSKW for f(x) = �0.001x

2
, � = 0.001, a

n

= ✓

a

/n, c

n

= ✓

c

/n

1/4
. . . . 96

4.3 Sensitivity of KW to ✓
a

for f(x) = �0.001x2, a
n

= ✓
a

/n, c
n

=
✓
c

/n1/4, n = 10000. 98
4.4 Sensitivity of SSKW for f(x) = �0.001x2 as a function of �

a

, n =
10000. 99

4.5 MSE Comparison of KW, Kesten, and SSKW for f(x) = 100e�0.006x2
,

a
n

= 1/n, c
n

= 1/n1/4, n = 10000. 100
4.6 Illustration of PROX-Step Motivational 102
4.7 f(x) = 100e�0.006x2

, ✓ = [�30, 70], x1 = 10, a�
n

= 10/n, a+
n

= 5(k +
1)/n, �

f

= �
g

= 0.1, ↵ = 1.025, n
L

= 20, N = 50, macroreplications
= 20. 111

4.8 f(x) = 100e�0.006x2
, ✓ = [�30, 70], x1 = 10, a�

n

= 1/n, a+
n

= 2k/n,
�
f

= �
g

= 0.1, ↵ = 1.025, n
L

= 20, N = 50, macroreplications = 20. 112
4.9 MSE of x

N

and f(x
N

), f(x) = 100 exp�0.006x2
, ↵ = 1.5, ✓ = [�30, 70],

x1 = 10, �
f

= �
g

= 0.1,, ↵ = 1.5, n
L

= 50, N = 50, macroreplications
= 20. 113

4.10 MSE of x
N

and f(x
N

), f(x) = 100 exp�0.006x2
, ↵ = 2 ✓ = [�30, 70],

x1 = 10, �
f

= �
g

= 0.1, n
L

= 20, N = 50, macroreplications = 20. . . 114
4.11 MSE of x

N

and f(x
N

), f(x) = �x2, ✓ = [�30, 70], x1 = 10, �
f

= 0.1,
�
g

= 0.1, n
L

= 20, macroreplications = 20. 115
4.12 MSE of x

N

and f(x
N

), f(x) = �x2, N = 50, x1 = 10, �
f

= 0.1,
�
g

= 1.0, n
L

= 50, a�
n

= 1/n, a+
n

= 20/n 116
4.13 . 118
4.14 . 119

viii

5.1 95% confidence band for Asian delta (solid curves) for n = 1000
with w/95% confidence interval for bandwidth (vertical dashed lines)
generated using s = 0.1 and RRMSE for 100 sample paths. 134

5.2 95% confidence band for Asian vega (solid curves) for n = 1000
w/95% confidence interval for bandwidth (vertical dashed lines) gen-
erated using s = 0.001 and RRMSE for 100 sample paths. 134

5.3 95% confidence band for Asian gamma (solid curves) for n = 1000
w/95% confidence interval for bandwidth (vertical dashed lines) gen-
erated using s = 0.01 and RRMSE for 100 sample paths. 135

5.4 95% confidence band for barrier theta for n = 10000 and RRMSE for
100 sample paths. 136

5.5 Barrier gamma estimator for n = 10000, 100 sample paths. 137
5.6 Asian delta pilot 95% confidence interval for ĉ for k = 10. 139
5.7 Asian delta pilot, n = 500, sample size = 100. 140

ix

List of Notations

R the field of real numbers
d number of dimensions
⇥ parameter space (continuous)
✓ continuous parameter
f(·) distribution of input parameters (excl. ch. 3, 4)
J(·) function of interest
c
n

perturbation size
�

n

random vector
Y (·, ·) sample performance measure (ch. 1, 2)
f̃ sample performance measure (ch. 3)
a
n

step or gain size
e
i

ith unit basis vector
⇠ random e↵ects
|| · || Euclidean norm
h·, ·i dot product

x

Chapter 1

Introduction

Consider the stochastic optimization problem

min
x2⇥

J(x), (1.1)

where J : Rd ! R, J(x) = E[Y (x, ⇠)], and ⇠ denotes the stochastic e↵ects. In

simulation optimization, the objective is to find x⇤ that minimizes the function of

interest J(x). The search space ⇥ is, in general, either continuous or discrete, but

we only focus on the continuous case, which restricts the range of methods that

can be applied. One of the most useful and well-known methods in simulation

optimization for continuous parameters is stochastic approximation (SA), which

generates a sequence of estimates {x
n

} converging to a solution of rJ(x) = 0 using

the recursion

x
n+1 = ⇧⇥

⇣

x
n

� a
n

brJ(x
n

)
⌘

, (1.2)

where ⇧⇥(x) is a projection of x back into the feasible region ⇥ if x /2 ⇥, a
n

is a

positive step size or gain size, brJ(x
n

) is an estimate of the true gradient rJ(x
n

),

and x
N

is the output, where N is the stopping time, which we denote by x⇤
N

.

The first SA algorithm introduced in [50] estimated the true gradient using an

unbiased direct gradient, which unfortunately, is not always available in practice,

so [37] proposed the use of indirect gradients (i.e., finite di↵erences), which only

1

require sample performances. SA is simple and requires very little memory due

to its recursive nature, and thus can be implemented as an online method. As a

result, SA algorithms are used in a wide variety of application areas such as signal

processing, statistics, operations research, and machine learning [9].

The landmark papers, [50] and [37], proved convergence in probability for the

one-dimensional classical Robbins-Monro (RM) and Kiefer-Wolfowitz (KW) meth-

ods, respectively. Later, [5] modified the original conditions of the convergence

theorems for both RM and KW to obtain almost sure (a.s.) convergence in higher

dimensions. Then, [14] and [53] proved asymptotic normality, and [20] established

asymptotic normality for general SA algorithms in the multidimensional setting.

More recently, the focus has shifted to finite-time error bounds such as the mean-

squared error (MSE) of the estimate E[||x⇤
N

�x⇤||2], where ||·|| denotes the Euclidean

norm [7, 65], or the di↵erence between the objective value at the estimate and the

optimal objective value [31, 45,46].

Stochastic approximation converges asymptotically under certain conditions,

but the practical performance depends highly on the components of recursion (1.2).

Methods have been introduced to increase its robustness, such as choosing appro-

priate deterministic or adaptive step sizes [7, 21, 36, 51, 59, 65], generating estimates

based on a subset of iterates [48, 49, 52], projecting iterates back into the feasible

region in a clever/strategic manner [2], and stabilizing gradients or increasing gradi-

ent accuracy. By exploiting previous gradient estimates, [27], [47], and [63] propose

gradient averaging methods to increase gradient stability. Moreover, [1] and [3]

present methods to prevent gradients from taking extreme values, and [7] introduce

2

SIMULATOR
x Y (x, ⇠)

Figure 1.1: Illustration: Generating sample performance

a technique that reduces the variance by increasing the perturbation size of finite

di↵erences adaptively.

The SA algorithms with the fastest convergence rates are not necessarily su-

perior. Biased gradient estimates lead to slower asymptotic convergence rates, but

could outperform unbiased direct gradients in finite-time. One major factor in the

performance is the choice in step size. It is di�cult to select an appropriate step

size since the function (1.1) is unknown, and it is impossible to find a universally

optimal step size for all situations. Therefore, adaptive step sizes that adjust based

on the ongoing performance of the algorithm have been proposed to tackle the issue.

In the simulation optimization context, the gradient estimate brJ(x
n

) is as-

sumed to be computationally expensive to generate. Each sample performance

Y (x, ⇠) is generated through a simulator, as illustrated in Figure 1.1, which can

be used to estimate the gradient. In some cases, the simulator can also generate

an estimate of the sample performance gradient rY (x, ⇠) simultaneously, but it

requires additional information about the system dynamics, which is not always

available. Each simulation run is computationally heavy; therefore, the number of

iterations N is limited, so the final parameter estimate does not have any guarantees

based on the asymptotic theory. The expensive gradient together with the step size

sensitivity reinforces the importance of finite-time performance.

3

The sensitivity of the function of interest to the parameters is also critical, and

the category/class of methods for such gradient approximations is called sensitivity

analysis. The main objective is to estimate the sensitivity of J(x) accurately, so

the key is to generate an accurate and reliable gradient estimate. Unfortunately,

the function J(x) could have undesirable properties such as discontinuities, which

restricts the applicable methods. Common gradient estimates and their applicability

will be discussed in Section 2.1.

In finance, the accuracy of the sensitivity estimates of hedging tools is critical.

For example, an option is a financial instrument that can be used to hedge risk, and

its sensitivity to market parameters is useful in making investment decisions. If the

price of the underlying stock hits the strike price, then the option can be exercised,

resulting in some positive payo↵. However, if the stock does not reach the strike

price, then it cannot be exercised, resulting in zero profit. The payo↵ function of

an option may be discontinuous, which adds a level of di�culty in estimating the

gradient with respect to market parameters, also known as Greeks. The well-known

infinitesimal perturbation analysis (IPA) is not applicable in this case, but a modified

version, smoothed perturbation analysis (SPA), can be applied to discontinuous

functions [28]. More recently, kernel estimators have been used in combination with

IPA estimators to generate a hybrid gradient or modified IPA [43]. The kernel relies

on a bandwidth parameter chosen by the user, and [43] proposed a selection method

based on minimizing the asymptotic MSE, which has several input parameters, again

determined by the user.

The commonality between stochastic approximation (SA) and sensitivity anal-

4

ysis lies in their requirement for a gradient estimate, although serving di↵erent pur-

poses. Many of the stochastic gradient estimation methods have associated asymp-

totic results, which are necessary, but in practice, finite-time performance is also

essential. Both methods often require user specified input parameters that must be

selected, and the finite-time performance has a strong dependence on those chosen

parameters. Take for example the widely-known finite di↵erence gradient estimate,

which requires a perturbation size c. If the function is deterministic, a smaller c

would increase the accuracy of the gradient estimate. However, in the stochastic

setting, where the function evaluations are noisy, perturbations which are too small

can result in extremely noisy gradient estimates. “Too small” is also relative to the

problem at hand. The input parameter c has a significant impact on the quality

of the estimate and must be chosen appropriately. Ideally, algorithms/methods are

robust, and their performance should not be strongly correlated with user specified

parameters.

1.1 Motivating Examples

For motivation, we provide application examples where stochastic approxima-

tion and sensitivity analysis can be applied, two of which are more detailed.

Queueing networks. Many application areas such as communication networks,

production systems, and smartgrids can be modeled using queueing networks. A

possible metric of interest is the total throughput of the system. Each node or

server has a particular mean service time, which is a controllable parameter, and the

5

objective is to find the optimal parameter values to maximize the total throughput.

Furthermore, the sensitivity of the throughput to the mean service time also be

examined.

Inventory management. Production/manufacturing/retail businesses require

inventory management systems to help maintain operations and increase profitabil-

ity. A commonly known inventory policy is the (s, S) policy, where an order is

placed to replenish the supply up to S after the inventory on hand falls below s.

The goal is to minimize the total cost (e.g., ordering, holding, and shortage) for

implementing such a policy.

Finance. Well-modeled stock prices are essential in making well-informed in-

vestment decisions. Recently, stochastic volatility models have been introduced with

volatility varying in time. The parameters are estimated based on the maximum

likelihood function, where SA can be easily applied. Furthermore, payo↵s for op-

tions are based on stock price models, and optimal exercise strategies can be created

to maximize the payo↵.

Machine learning using “big data”. Traditional regression models are based

on batch data, where the analysis is conducted on a fixed data set. However, with

the rise in the amount of data available, models must be generated/updated in an

online manner, and stochastic approximation is a commonly applied method.

6

1.1.1 Stochastic Approximation

Consider a G/G/1 queue with one server, unlimited bu↵er or waiting capacity,

interarrival times and service times that follow general distributions with means 1/�

and x, respectively. In this system, there is only one service station with one server.

The customers arrive from outside of the system with interarrival times following

some general distribution with mean 1/�, and the server serves each customer on a

first-come first-served basis with a service time also following a general distribution

with mean x. This queueing system can be modeled easily with distributional in-

formation about the interarrival and service times, and SA can be directly applied.

An important objective to consider is increasing customer satisfaction. Among the

various correlated performance measures that can be used to quantify the satisfac-

tion level, the total time spent in the system (i.e., time in waiting in queue plus the

actual service time) is arguably one of the most significant factors. The objective

function could be the expected time in system E[T (x, ⇠)], where T (·, ·) is the time in

system of a customer, plus a positive decreasing cost C(x) associated with the mean

service time x, e.g., c/x, where c > 0. The objective of stochastic approximation is

to find x⇤ = argmin
x2(0,1/�) E[T (x, ⇠)] + C(x), by solving r(E[T (x, ⇠)] + c/x) = 0

iteratively. One could also be interested in the sensitivity of the function, but we

will provide a di↵erent example for sensitivity analysis.

7

1.1.2 Sensitivity Analysis

Financial options are instruments that give option holders the right to purchase

or sell stock for a particular strike price once certain conditions are met. Investors

often use options to hedge financial risk and are especially interested in the expected

payo↵ E[g(S)], where g is the sample payo↵ and S is the stock price over a time

period, which depend on market parameters such as interest rate, initial stock price,

volatility, etc., as well as its sensitivity. The derivatives of the expected payo↵ with

respect to market parameters @E[g(S)]/@x are referred to as Greeks. To implement

Greek estimators, the stock price can be modeled as a stochastic process (e.g.,

Brownian motion and OrnsteinUhlenbeck process) over a pre-specific duration with

certain parameters. When making financial decisions, it is essential that investors

make them with accurate and reliable information, such as good Greek estimates.

1.2 Contributions

First, we propose two novel stochastic gradient estimation methods in stochas-

tic approximation for univariate and multivariate problems. We consider a setting

where direct gradients are also available, so we combine both direct and indirect

gradient estimates using a convex weight to form a hybrid gradient. Currently, the

existing SA algorithms only consider either direct or indirect gradient estimates, but

not in conjunction. For the indirect gradient, we consider a symmetric di↵erence-

type gradient estimate, and an average of the two associated direct gradients for

the direct gradient estimate. In the one-dimensional case, we use a symmetric dif-

8

ference gradient estimate, which can be directly extended to higher dimensions, but

instead, we employ the well-known simultaneous perturbation gradient to exploit

its potential computational e�ciency. A critical component of our hybrid gradient

estimate is the convex weight, which we derived to minimize the variance of the hy-

brid gradient, leading to favorable theoretical properties. Our new hybrid gradients

are provably convergent in SA.

Second, we conduct preliminary experiments to investigate the sensitivity of

the KW algorithm and two of its variants to the step size parameter and explore

the tightness of a finite-time MSE bound. Then, we introduce two new adaptive

step size sequences for SA, both of which adjust based on the perceived proximity

of the current iterate to the optimum. Most of the present adaptive step sizes

only consider one adaptive sequence for either each dimension or for all dimensions.

Instead, our adaptive step size is based on two sequences, and the step size used

in the current iteration depends on the current sample performance(s) compared to

the past observations. Although the method is adaptive, the two initial sequences

are deterministic, so it also su↵ers from the same disadvantages of deterministic step

sizes. Therefore, we introduce a method to adaptively adjust the two deterministic

sequences.

Finally, we examine the sensitivity of two methods: 1) a modified pathwise

method involving a kernel estimator to the smoothing bandwidth parameter and 2)

a bandwidth selection method to various input parameters.

9

1.3 Outline

The rest of the dissertation is as follows. In Chapter 2, we provide background

information to better understand stochastic approximation and sensitivity analysis.

In Section 2.1, we discuss the most common stochastic gradient estimation methods

for both direct and indirect gradients. Then in Section 2.2, we introduce the classical

SA algorithms in addition to modifications to the gradient, step size, output, and

projection operator. Chapter 3 presents our two novel approaches to stochastic

gradient estimation methods for single and multidimensional problems along with

theoretical and numerical results. We derive optimal weight parameters and prove

convergence for both cases. We test our new algorithms against well-known SA

algorithms on a deterministic problem with added noise and on a queueing network.

In Chapter 4, we explore step size selection techniques in SA, in addition to the

tightness of a finite-time MSE bound, before introducing our new adaptive step sizes.

We investigate the performance of our new adaptive step sizes on two contrasting

deterministic functions with added noise for the one-dimensional case and on a

queueing network for the multidimensional case. Chapter 5 presents a proposed

modified pathwise gradient estimation method that incorporates a kernel estimator

for options with discontinuous payo↵ functions. We empirically test the sensitivity

of the kernel to the bandwidth parameter as well as the sensitivity of a proposed

bandwidth selection algorithm to its input parameters. At the end of Chapters 3,

4, and 5, we provide concluding summaries as well as future research directions.

10

Chapter 2

Background

2.1 Stochastic Gradient Estimation Methods

Stochastic gradient estimation is essential in stochastic approximation and

sensitivity analysis but serves di↵erent purposes. In SA, the gradient estimate is

only an intermediary step that provides a trajectory direction, so it is more tolerant

of less accurate estimates. Sensitivity analysis accesses the parameter e↵ects on the

function of interest, so the goal is to accurately estimate the gradient, and accuracy is

key. Certain stochastic gradient methods do not provide estimates accurate enough

to be suitable for sensitivity analysis and are designed specifically for SA.

In general, stochastic gradient estimates fall under one of two main categories:

direct or indirect. Indirect gradient methods approximate gradients using finite

di↵erence-type gradient estimates, which only require function evaluations, e.g., via

the secant method in the one-dimensional case. Since indirect gradient estimates

only require sample performances, they can be easily applied to any case but are

biased. Direct gradient methods are known as gradient-based approaches, mainly

because the techniques results in unbiased gradient estimates, which lead to faster

convergence rates in SA.

11

2.1.1 Indirect Gradients

Indirect gradients are applicable as long as the simulator can generate sample

performances. Unfortunately, indirect gradient estimates are biased, which lead to

slower asymptotic convergence rates in stochastic approximation.

2.1.1.1 Finite Di↵erences

Finite di↵erence methods stem from Taylor’s series expansion, and require

the additional task of selecting a perturbation sequence {c
n

}, which impacts the

variance. In the one-dimensional case, the derivative can be rewritten as a finite

di↵erence plus a bias term that diminishes as the perturbation size c
n

approaches

zero as n ! 1 (e.g., f 0(x
n

) = [f(x
n

+ c
n

) � f(x
n

)]/c
n

+ O(c
n

)). The perturbation

size c
n

influences the noise level of the finite di↵erence gradient estimate, and if it

is too small, the gradient estimates can be very noisy in the stochastic setting. If

sensitivity analysis is the ultimate goal, then a relatively larger perturbation size is

preferable. In higher dimensions, the idea is to slightly perturb one component while

keeping all others constant and return a corresponding function value estimate.

Here are two common examples of finite di↵erences:

brJ
i

(x
n

) =

8

>

>

<

>

>

:

Y (x
n

+ c
n

e
i

, ⇠+
n,i

) � Y (x
n

� c
n

e
i

, ⇠�
n,i

)

2c
n

symmetric di↵erence,

Y (x
n

+ c
n

e
i

, ⇠+
n,i

) � Y (x
n

, ⇠
n

)

c
n

forward di↵erence,

for i = 1, . . . , d, where brJ
i

(x
n

) is the ith component of the gradient estimate,

e
i

denotes the ith unit basis vector, c
n

2 R+ is the perturbation size, ⇠±
n,i

and ⇠
n,i

denote the stochastic e↵ects, and Y (x, ⇠) is an unbiased estimate of J(x). Symmetric

12

di↵erences require the estimate of two function values J(x
n

+ c
n

e
i

) and J(x
n

� c
n

e
i

)

for each dimension i and one-sided forward di↵erences require J(x
n

) and J(x
n

�c
n

e
i

)

for i = 1, . . . , d; therefore, two-sided symmetric di↵erences and one-sided forward

di↵erence estimates involve 2d and d+1 simulation replications, respectively. Since

the cost to generate each gradient is linear in the number of dimensions d, finite

di↵erences can be very ine�cient in higher dimensions. The next indirect gradient

estimate addresses this issue.

2.1.1.2 Simultaneous Perturbation

In 1992, [55] introduced the simultaneous perturbation (SP) gradient estimate

specifically for multidimensional stochastic approximation problems. Similar to fi-

nite di↵erences, SP is a gradient-free approach that only requires objective function

values to approximate the underlying gradient, and is therefore easy to implement.

The ith component of the SP gradient has the form

brJ
i

(x
n

) =
Y (x

n

+ c
n

�
n

, ⇠+
n

) � Y (x
n

� c
n

�
n

, ⇠�
n

)

2c
n

�
n,i

,

where c
n

2 R+ is the perturbation size, ⇠±
n

denotes the stochastic e↵ects, �
n

=

(�
n,1, . . . ,�n,d

), and the sequence {�
n

} is generally assumed to be i.i.d. and inde-

pendent across components. Notice that, unlike finite di↵erences, the numerator of

the SP gradient is independent of i, so a gradient only requires 2 simulation runs, re-

gardless of the number of dimensions d, which can be e�cient in higher dimensions.

The only additional requirement is to generate �
n

, which is relatively inexpensive

compared to simulating sample performances. The SP gradient is only intended for

13

use in stochastic approximation algorithms and has limited relevance in sensitivity

analysis.

2.1.1.3 Random Directions

The random directions (RD) gradient was also developed specifically for mul-

tidimensional problems and was the inspiration behind SP. The ith component of

the RD gradient is

brJ
i

(x
n

) =
[Y (x

n

+ c
n

�
n

, ⇠+
n

) � Y (x
n

� c
n

�
n

, ⇠�
n

)]�
n,i

2c
n

,

with perturbation size c
n

2 R+ and stochastic perturbation �
n

= (�
n,1, . . . ,�n,d

).

The sequence {�
n

} is generally assumed to be i.i.d. and independent across compo-

nents, and ⇠±
n

denote the stochastic e↵ects. Notice that RD is almost identical to SP,

except instead of dividing by the stochastic perturbation component �
n,i

, it multi-

plies the di↵erence term. This di↵erence changes the restrictions on the stochastic

sequence {�
n

} to guarentee convergence in SA and translates to a bound on the

second moment, instead of the inverse moment, with zero mean, so the Gaussian

distribution is applicable [23].

2.1.2 Direct Gradients

Direct gradients generally require more “o✏ine” work and involve additional

coding within the simulation model. However, if direct gradient methods are applica-

ble, they usually provide unbiased gradient estimates, which lead to faster asymp-

totic convergence rates in stochastic approximation. In addition, direct gradient

14

methods are computationally e�cient, especially in higher dimensions, since they

often only require one simulation replication for any dimension d.

For notation, assume

J(X) = E[Y (✓)] = E[Y (X1, . . . , Xd

)], (2.1)

where Y : Rd ! R and X = (X1, . . . , Xd

) is a vector of input random variables.

The parameter ✓ has been purposely left out of the right-hand side of expression

(2.1) to emphasize the point that it can appear in either the sample (pathwise) or

measure (distributional). Let f denote the joint distribution of the input random

variables X, then (2.1) can be written in the following two ways:

E[Y (X)] =

8

>

>

>

<

>

>

>

:

Z 1

�1
Y (x)f(x; ✓)dx distributional,

Z 1

0

Y (X(✓; u))du pathwise,

(2.2)

where x, u, and the integrals are d-dimensional. When the parameter is located

in Y (·), then the dependency of ✓ is pathwise and perturbation analysis is usually

applied; whereas, if ✓ is located in f(·), then its ✓ dependency is distributional

and the likelihood ratio or score function and weak derivatives could potentially be

applied. In some instances, the ✓ can be pushed in and/or out of the distribution

with an appropriate change of variables, also known as the push in/out method,

which will change the applicability of the estimation method.

If we assume that the interchange of the integration and di↵erentiation is valid,

then di↵erentiating (2.2) with respect to ✓ results in the following two cases:

dE[Y (X)]

d✓
=

8

>

>

>

<

>

>

>

:

Z 1

�1
Y (x)

df(x; ✓)

d✓
dx distributional,

Z 1

0

dY (X(✓; u))

d✓
du pathwise.

(2.3)

15

We assume each random number u
i

produces a random variate x
i

for i = 1, . . . , d.

For simplicity, in Sections 2.1.2.1 and 2.1.2.2, we assume that the parameter

only appears in X1, which is generated independently of the other random variables.

For the simplified example, we will apply the method to the specific case where d = 2,

X1 ⇠ exp(✓), and X2 ⇠ U(0, 1). The random variate x1 is generated via inverse

transform method where X
i

= �✓ lnU
i

and U
i

⇠ U(0, 1).

2.1.2.1 Infinitesimal Perturbation Analysis

For the pathwise dependent case, the second integral can be expressed as

@E[Y (X)]

@✓
=

Z 1

0

dY (X1(✓; u1), X2, . . . , Xd

)

d✓
du

=

Z 1

0

@Y (X)

@X1

dX1(✓; u)

d✓
du,

where @Y

@X1

@X1
@✓

is the infinitesimal perturbation analysis (IPA) estimator.

In this particular case,

@E[Y (X)]

@✓
=

Z 1

0

Z 1

0

@Y (X1(✓; u1), u2)

@x1

dX1(u1; ✓)

d✓
du1du2,

and dX1
d✓

depends on the construction of X1 and since X1 = �✓ lnU, then dX1
d✓

=

� lnU = X1
✓

, so the final IPA estimator is

@Y (X1, X2)

@X1

dX1

d✓
=
@Y (X1, X2)

@X1

X1

✓
.

Implementation of the estimator requires more knowledge about how the X
i

’s

are generated in order to compute the derivative of the random variable dX

i

d✓

; there-

fore the representation of X
i

, which depends on ✓, is key. As a general rule, if the

16

sample performance is continuous with respect to the parameter of interest, then

IPA is a suitable gradient estimation method. However, in practice, discontinu-

ities may occur in the sample performance (e.g., indicator function), thereby forcing

other estimation techniques to be applied. Refer to [23,25] for detailed examples.

The next two types of estimators pertain to the distribution dependent case.

2.1.2.2 Likelihood Ratio/Score Function

Assume f
i

(·; ✓) is the marginal p.d.f. of X
i

, so the joint density can be written

as f(x) = ⇧d

i=1fi(xi

). Therefore, (2.3) can be expressed as:

dE[Y (X)]

d✓
=

Z 1

�1
Y (x)

@f1(x1; ✓)

@✓
⇧d

k=2fk(xk

)dx

=

Z 1

�1
Y (x)

@ ln f1(x1; ✓)

@✓
f(x)dx,

where Y (X)@ ln f1(X1;✓)
@✓

is the score function or likelihood ratio estimator.

In our particular example,

dE[Y (X)]

d✓
=

Z 1

0

Z 1

0

Y (x1, x2)
@f1(x1; ✓)

@✓
dx1dx2

=

Z 1

0

Z 1

0

Y (x1, x2)

1

✓

⇣x1

✓
� 1

⌘

�

1

✓
e�x1

✓ dx1dx2.

SF/LR estimators are generally simple to implement when they are applicable.

However, this method is not applicable to distributions where the underlying support

depends on ✓. For instance, U(0, ✓) and Ber(p; ✓, b) are examples of continuous and

discrete distributions, respectively, with ✓ dependent support, so LR/SF estimators

do not exist. However, they exist for distributions where the underlying probabilities

rely on the parameter of interest, such as bin(n, ✓), Ber(✓; a, b), Poisson(✓), exp(✓),

17

andN(✓, �2). Furthermore, this method usually has di�culty with nondistributional

parameters, but the issue might be overcome by using the push in or push out

method to push the parameter of interest in or out of the distribution. If the

parameter appears in more than one input random variable distribution, the variance

will increase linearly as the number of times those random variables are used in the

simulation, but this issue could be controlled through batching. For example, if the

performance measure of interest of an M/M/1 queue is the average time in system

of 1000 customers, we could look at the average of 100 samples, 10 customers each,

instead. Furthermore, for higher derivative estimators, this method is easier to

apply.

2.1.2.3 Weak Derivatives

For the weak derivatives estimator, there exists c(✓) and densities f (2)
1 and f (1)

1

such that

@f1
@✓

= c(✓)[f (2)
1 � f (1)

1]. (2.4)

This representation always exists, because if we let f (1)
1 = 1

c

�

@f1

@✓

��
and f (2)

1 =

1
c

�

@f1

@✓

�+
, where c =

R �

@f1

@✓

��
dx =

R �

@f1

@✓

�+
dx, then @f1

@✓

is written as the di↵erence

of two signed measures, otherwise known as the Hahn-Jordan decomposition, which

is not unique.

Therefore, using this representation,

dE[Y (X)]

d✓
=

Z 1

�1
Y (x)

@f(x; ✓)

@✓
dx

=

Z 1

�1
Y (x)c(✓)[f (2)

1 � f (1)
1]dx,

18

where the weak derivatives estimator is of the form

c(✓)[Y (X(2)
1 , X2, . . . , Xd

) � Y (X(1)
1 , X2, . . . , Xd

)],

where X(1)
1 ⇠ f (1)

1 and X(2)
1 ⇠ f (2)

1 .

This is called a weak derivative because the left hand side of (2.4) might not

be proper, but when it is integrated against a test function, it is well-defined. These

estimators are not unique and in our specific example,

dE[Y (X)]

d✓
=

1

✓

Z 1

0

Z 1

0

Y (x1, x2)

1

✓

⇣x1

✓
� 1

⌘

�

1

✓
e�x1

✓ dx1dx2,

where the weak derivatives estimator is 1
✓

[Y (X(2)
1 , X2) � Y (X(1)

1 , X2)], with X(2)
1 ⇠

Erl(2, ✓) and X(1)
1 ⇠ exp(✓).

Similar to the LR method, WD estimators variance grows linearly as the num-

ber of random variables with ✓ dependency increases in the simulation. For example,

in a queueing system, ✓ could appear in the interarrival and service times, which

can be decreased through batching. In addition, WDs are not unique, so deciding

which to use in generating the estimator could be a challenge.

2.1.2.4 General Extension

We now generalize the estimators for situations where more X
i

’s have a de-

pendence on ✓. Let P ⇤ denote the set of indices where X
i

is dependent on ✓. Then

the following are the general estimators:

IPA estimator:

X

i2P

⇤

@Y (X)

@X
i

dX
i

d✓

19

LR/SF estimator (multivariate, independent):

Y (X)
@ ln f(X; ✓)

@✓
, Y (X)

X

i2P

⇤

@ ln f
i

(X
i

; ✓)

@✓

WD estimator (multivariate, independent):

c(✓)(L(X(2)) � L(X(1))),
X

i2P

⇤

c
i

(✓)(L(X1 . . . , X
(2)
i

, . . . , X
d

) � L(X1 . . . , X
(1)
i

, . . . , X
d

))

2.2 Stochastic Approximation

2.2.1 Classical Methods

The two classical stochastic approximation methods, Robbins-Monro (RM)

and Kiefer-Wolfowitz (KW), were first applied to the one-dimensional unconstrained

stochastic optimization problem, and the recursive scheme follows

x
n+1 = x

n

� a
n

brJ(x
n

), (2.5)

which is identical to (1.2) with the exception of the projection operator. The main

di↵erence between RM an KW is the gradient estimate brJ . In RM, the gradient

is estimated by an unbiased estimator, whereas in KW, the gradient estimate is

only asymptotically unbiased. Both algorithms have their advantages and will be

discussed in the next two sections.

2.2.1.1 Robbins-Monro

Robbins and Monro pioneered the way for stochastic approximation in [50],

and the number of literature citations since has grown to over 3500. RM was first

20

intended to solve root-finding problems, i.e., h(x⇤) = 0, where h : Rd ! R. The

Robbins-Monro (RM) stochastic approximation algorithm was applied to a stochas-

tic optimization problem with the objective function J by setting h = rJ , where

the true gradient is estimated using an unbiased direct gradient. RM solves this

problem iteratively as in (2.5) by choosing the gradient estimate brJ(x
n

) to be

an unbiased estimator, i.e., E[brJ(x
n

)] = rJ(x
n

), and the output is taken as the

last iterate x⇤
N

, where N is the stopping time. Unfortunately, the direct gradient

measurements are still approximations to the actual gradients because of the noise

(i.e., brJ(x
n

) = rJ(x
n

) + �
n

, where ✏
n

is noise with zero mean). When used in

SA algorithms, unbiased gradients estimates lead to faster convergence rates, and

under certain conditions RM can achieve an asymptotic convergence rate of up to

O(n�1/2) [53]. The following is the original convergence theorem.

Theorem 2.2.1. (Theorem 2 [50]) Assume rJ(x) has a unique root x⇤ and suppose

brJ(x) is an unbiased gradient estimator, i.e., E[brJ(x)] = rJ(x). If the sequence

{x
n

} is generated from (2.5) and the following conditions hold:

1. {a
n

} is a sequence of positive constants such that
P1

n=1 an = 1,
P1

n=1 a
2
n

<

1.

2. rJ(x) � 0 for x > x⇤ and rJ(x) 0 for x < x⇤.

3. There exists a positive constant C such that P (|brJ(x)| C) = 1 8x.

Then x
n

p! x⇤ as n ! 1, where
p! denotes convergence in probability.

The objective function J is assumed to have a global minimum with a bounded

21

derivative. The most well-known conditions are restrictions on the gain sequence

{a
n

}. Generally, the step size a
n

! 0 but
P1

n=1 an = 1, which prevents the step

size from converging to zero too quickly, so the iterates are able to make progress

towards x⇤ and not get stuck at a poor estimate. The typical form for the step

size is a
n

= ✓
a

/(n + A)↵, where ✓
a

> 0, A � 0, and 1
2 < ↵ 1, with A = 0 and

↵ = 1 as a commonly used choice. The restrictions still allow for an uncountable

number of step size options, and the finite-time performance of SA is notoriously

known to be sensitive to the a
n

choice. Theoretically, unbiased gradients lead to

faster convergence rates but are not always available, so the next method addresses

this issue.

2.2.1.2 Kiefer-Wolfowitz

The Kiefer-Wolfowitz stochastic approximation algorithm only requires sample

performances measurements to implement and does not require additional informa-

tion on the system dynamics or input distributions as in RM. The original KW

iterative scheme

x
n+1 = x

n

� a
n

Y (x
n

+ c
n

, ⇠+
n

) � Y (x
n

� c
n

, ⇠�
n

)

2c
n

, (2.6)

estimates the gradient using a symmetric finite di↵erence gradient estimate, and un-

der certain conditions, KW can achieve an asymptotic convergence rate of O(n�1/3).

In addition, common random numbers (CRN) can be employed to decrease the vari-

ance of estimates, and KW can achieve an asymptotic convergence rate of O(n�1/2)

in certain settings [38].

22

Theorem 2.2.2. ([37]) Assume J(x) = E[Y (x, ⇠)]. If the sequence {x
n

} is gener-

ated from (2.6) and the following conditions hold:

1. Let {a
n

} and {c
n

} be positive tuning sequences satisfying the conditions

c
n

! 0,
X

a
n

= 1,
X

a
n

c
n

< 1,
X

a2
n

c�2
n

< 1.

2. J(x) is strictly decreasing for x < x⇤ and strictly increasing for x > x⇤.

3. V ar(Y (x, ⇠)) < 1 and satisfies the following regularity conditions:

1) There exist positive constants � and B such that

|x0 � x⇤| + |x00 � x⇤| < � =) |J(x0) � J(x00)| < B|x0 � x00|.

2) There exist positive ⇢ and R such that

|x0 � x00| < ⇢ =) |J(x0) � J(x00)| < R.

3) For every � > 0 there exists a positive ⇡(�) such that

|x � x⇤| > � =) inf
�/2>✏>0

|J(x+ ✏) � J(x � ✏)|

✏
> ⇡(�).

Then x
n

p! x⇤ as n ! 1, where
p! denotes convergence in probability.

Condition 1 assures that the step size a
n

does not converge to zero too fast, so

the iterates do not get stuck at a poor estimate. In addition, the condition prohibits

the finite di↵erence step size c
n

from decreasing too quickly, as well as to prevent

noisy gradients. The second condition insures that there is a global optimum. The

first regularity condition requires J(x) to be locally Lipschitz in a neighborhood of

23

x⇤; the second one prevents J(x) from changing drastically in the feasible region;

and the last one prohibits the function from being very flat outside a neighborhood

of x⇤ so that the iterates approach the optimum. Although the KW algorithm

converges asymptotically, its finite-time performance is dependent on the choice of

tuning sequences, {a
n

} and {c
n

}. If the current x
n

is in a relatively flat region of

the function and a
n

is small, then the convergence will be slow. On the other hand,

if the x
n

is located in a very steep region of the function and {a
n

} is large, then the

iterates will experience a long oscillation period. If {c
n

} is too small, the gradient

estimates using finite di↵erences could be extremely noisy.

KW has been extended to higher dimensions, and two common gradients con-

sidered are symmetric di↵erences and forward di↵erences as discussed in Section

2.1.1.1. Although using the symmetric di↵erence scheme is computationally more

expensive, it has the potential to reach an asymptotic convergence rate of O(n�1/3)

compared to O(n�1/4) for forward di↵erences. For d = 1, the computational cost is

identical for both gradient estimates. Even though both schemes are easy to imple-

ment, their convergence rates are typically inferior to the RM algorithm, although

under certain conditions with CRN ⇠+
n,i

= ⇠�
n,i

for the symmetric di↵erence, they also

can achieve the O(n�1/2) asymptotic convergence rate. For simulation optimization,

RM is not always applicable since additional information is needed, which may not

be readily available or is di�cult to obtain. For KW, there is an additional task of

appropriately choosing the perturbation sequence {c
n

}. In general, KW is a simple

algorithm to implement for simulation optimization applications, albeit costly in

high-dimensional settings.

24

2.2.2 Robust Gradient

2.2.2.1 Simultaneous Perturbation Stochastic Approximation

Simultaneous perturbation stochastic approximation (SPSA) specifically ad-

dresses multivariate optimization problems [55]. Let ✏+
n

and ✏�
n

be the noise from

the sample performances J(x
n

+ c
n

�
n

) and J(x
n

� c
n

�
n

), respectively.

SPSA Algorithm

• Input. Choose x1 2 ⇥, {a
n

}, {c
n

}, and stopping time N .

• Initialize. Let n = 1.

• While n < N,

– Step 1. Generate a d-dimensional random perturbation vector �
n

.

– Step 2. Generate an estimate of rJ(x
n

):

brJ(x
n

) =
Y (x

n

+ c
n

�
n

, ⇠+
n

) � Y (x
n

� c
n

�
n

, ⇠�
n

)

2c
n

2

6

6

6

6

6

6

4

��1
n,1

...

��1
n,d

3

7

7

7

7

7

7

5

– Step 3. Compute x
n+1 = x

n

� a
n

brJ(x
n

).

– Step 4. Let n = n+ 1. Go to Step 1.

• Output. x⇤
N

= x
N

.

25

Theorem 2.2.3. (Theorem 7.1 [57]) Suppose J has a unique minimum x⇤ 2 ⇥ and

{x
n

} is generated using SPSA. If the following conditions hold:

1. The positive sequences of real numbers {a
n

} and {c
n

} converge to zero such

that
P1

n=0 an = 1 and
P1

n=0 a
2
n

c�2
n

< 1.

2. The function J(x) 2 C3 and bounded on Rd.

3. ||x
n

|| < 1 for all n.

4. E[✏+
n

� ✏�
n

|�
n

,F
n

] = 0 and E[(Y (x
n

± c
n

�
n

, ⇠±
n

)/�
n,i

)2] is uniformly bounded

for all n, i.

5. x⇤ is an asymptotically stable solution of the di↵erential equation @x(t)/@t =

�rJ(x(t)).

6. For each n, {�
n,i

}d

i=1 are identically distributed, {�
n,i

} are independent and

symmetrically distributed with zero mean and uniformly bounded in magnitude

for all n, i.

Then x
n

! x⇤ a.s. as n ! 1.

The optimal convergence rate for SPSA is O(n�1/3) [55]. Various convergence

proofs have been presented with slight modifications to the conditions (cf. [12, 17,

30, 55, 60]). The perturbation sequence {�
n

} where �
n

= (�
n,1, . . . ,�n,d

) with

the sequence {�
n,i

} is independent with mean zero and finite inverse moments (i.e.,

E[�
n,i

] = 0 and E[|�
n,i

|�1] < 1 for i = 1, . . . , d) to guarantee a.s. convergence

when applied to SA. As a result, the Gaussian distribution is not applicable. Instead,

26

the most common distribution used is the symmetric Bernoulli taking a positive and

negative value (e.g., ±1) each with probability 1/2. In addition, an appropriately

scaled x
n

is approximately normal for large n, and the relative e�ciency of SPSA

depends on the geometric shape of J(x), choice of {a
n

}, {c
n

}, distribution of {�
n,i

},

and noise level.

Many extensions to the original SPSA algorithm have been developed, for

example, the constrained setting using projection operators [26, 54]. A slight mod-

ification is the averaging of the SPSA gradient estimators, where instead of gen-

erating one gradient estimate at each iteration, multiple gradient estimates can

be generated at additional computational cost and averaged to reduce the noise.

An accelerated form of SPSA approximates the second-order Hessian r2J(x) to

accelerate the convergence [57], analogous to the Newton-Raphson method. Iter-

ate averaging in the SPSA setting has also been explored, but performs relatively

poor in finite-time [17, 56]. All in all, SPSA has been shown to be an e↵ective SA

method for tackling high-dimensional problems, with ease of implementation and

the asymptotic theory to support it.

2.2.2.2 Gradient Averaging

Gradient averaging can help stabilize the gradient estimate, especially if it is

noisy. One obvious straightforward method is to generate multiple gradient esti-

mates at each iteration and average them to provide a better estimate, but this

process can be expensive and is not worth the computational e↵ort, according to

27

Robbins and Monro. In SA, the gradient estimate is only an intermediate step

that provides a direction for the iterates to move, but the goal is to find the opti-

mum x⇤ and not the best estimate of the gradient as in sensitivity analysis. The

computational cost could be better expended in future iterations. Another form of

gradient averaging uses previous gradient estimates in the current gradient approx-

imation. One of the earliest proposed gradient averaging methods was introduced

in [22] and [27], where “present” and “past” data is used to improve convergence

properties of SA. The method introduced in [22] considers all past gradients with

the gradient update of the form

d
n+1 = d

n

+ b
n

(brJ(x
n

) � d
n

),

where d
n

represents the previous direction, brJ(x
n

, ⇠
n

) is the new gradient, b
n

is the

averaging coe�cient, and d
n+1 is the new updated direction used in the stochastic

approximation algorithm. Later, [27] proposed a modified version of this gradient

averaging technique, which involves an additional step.

d
n+1 = d

n

+ b
n

(brJ(x
n

) � d
n

),

d
n

= d
n

+ T (x
n

,�
n

),

where �
n

= x
n

� x
n�1, T (x

n

,�
n

) represents a updating function with higher

derivatives, and d
n+1 is the new gradient estimate used in SA, which incorporates

higher derivatives. In addition, [27] propose an updating method that averages past

gradient estimates if the change in estimates does not surpass a certain value.

28

2.2.3 Adaptive Step Sizes

2.2.3.1 Kesten’s Rule

It is well-known that the classical SA algorithms are extremely sensitive to the

step size sequence {a
n

}. Therefore, it could be advantageous to consider adaptive

step sizes that adjust based on the ongoing performance of the algorithm, in hopes

of adapting them to the characteristics of the function at the current location of

the iterate and proximity of the current iterate to the optimum. Kesten’s rule [36]

decreases the step size only when there is a directional change in the iterates. The

notion behind this adaptive step size is that, if the iterates continue in the same

direction, there is reason to believe they are approaching the optimum and the pace

should not be decreased in order to accelerate the convergence. If the errors in the

estimate values change signs, it is an indication that either the step size is “too

large” and the iterates are experiencing long oscillation periods or the iterates are

in the vicinity of the true optimum; either way, the step size should be reduced to

a more appropriate step size or to hone in on x⇤. The following algorithm is for the

one-dimensional case d = 1.

SA Algorithm using Kesten’s rule

• Input. Choose x1 2 ⇥, {a
n

}, ⇧⇥, and stopping time N .

• Initialize.

– Let n = 2 and k = 1.

29

– Generate an estimate brJ(x1) of rJ(x1).

– Compute x2 = ⇧⇥(x1 � a1 brJ(x1)).

• While n < N ,

– Step 1. Generate an estimate brJ(x
n

) of rJ(x
n

).

– Step 2. Compute x
n+1 = ⇧⇥(xn

�a
k

brJ(x
n

)). If (x
n+1�x

n

)(x
n

�x
n�1) <

0, go to Step 3. Otherwise, go to Step 4.

– Step 3. Let n = n+ 1 and k = k + 1. Go to Step 1.

– Step 4. Let n = n+ 1. Go to Step 1.

• Output. x⇤
N

= x
N

.

Kesten’s rule can be applied to both RM and KW and still guarantee convergence

in probability, as long as {a
n

} satisfies condition 1 in Theorem 2.2.1 and 2.2.2 for

RM and KW, respectively [36]. An extension of Kesten’s rule to higher dimensions

is discussed in [15]. See [29] for an extensive review of both deterministic and

stochastic step sizes.

2.2.3.2 Scaled-and-Shifted Kiefer-Wolfowitz

The scaled-and-shifted Kiefer-Wolfowitz (SSKW) algorithm [7] adaptively ad-

justs {a
n

} and {c
n

} finitely many times during the course of the algorithm to adapt

to the characteristics of the function and noise level in hopes of preventing slow

convergence in finite-time. The idea is to increase {a
n

} so the iterates are able to

30

make noticeable progress towards the optimum with the option of decreasing {a
n

}

later if it is too large. Furthermore, if the direction of the gradient is classified as

incorrect, then {c
n

} is increased to reduce the noise. Note that KW only requires

two parameter choices {a
n

} and {c
n

}, whereas SSKW requires eleven, as seen in the

algorithm below.

SSKW Algorithm

Scaling Phase

• Input. {a
n

}, {c
n

}, ⇥ = [l, u], ⇧⇥, stopping time N , and

– h0 = number of forced boundary hits,

– �0 = scale up factor for {c
n

},

– k
a

= maximum number of shifts of {a
n

},

– v
a

= initial upper bound of shift,

– �
a

= maximum scale up factor for {a
n

},

– k
c

= maximum number of scale ups for {c
n

},

– c0 = maximum value of {c
n

} after scale ups (i.e., c
n

 cmax = c0(u� l)),

– g0 = maximum number of gradient estimates in scaling phase,

– m
max

= maximum number of adaptive iterations (m
max

 N).

• Initialize.

– Choose x1 2 [l + c1, u � c1].

31

– Let n = 1, m = 1, g = 1, sh = 0, and sc = 0.

• Do while m h0 and g g0.

– Step 1.

⇤ Generate an estimate brJ(x
n

) using symmetric di↵erences.

⇤ Compute x
n+1 = ⇧⇥

⇣

x
n

� a
n

brJ(x
n

)
⌘

.

· If x
n+1 2 (l + c

n

, x
n

), go to Step 2.

· If x
n+1 2 (x

n

, u � c
n

,), go to Step 3.

· If x
n+1 > u � c

n+1 and x
n

= u � c
n

or if x
n+1 < l + c

n+1 and

x
n

= l + c
n

, go to Step 4, if sc k
c

.

· If x
n+1 > u � c

n+1 and x
n

= l + c
n

or if x
n+1 < l + c

n+1 and

x
n

= u � c
n

, go to Step 5.

– Step 2.

⇤ Scale {a
n

} up by ↵ = min{�
a

, (u � c
n+1 � x

n

)/(x
n+1 � x

n

)} and use

{↵a
n

} for the remaining iterations.

⇤ Set x
n+1 = l + c

n+1. Let n = n+ 1, m = m+ 1, g = g + 1 and go to

Step 1.

– Step 3.

⇤ Scale {a
n

} up by ↵ = min{�
a

, (l + c
n+1 � x

n

)/(x
n+1 � x

n

)} and use

{↵a
n

} for the remaining iterations.

⇤ Set x
n+1 = u� c

n+1. Let n = n+1, m = m+1, g = g+1 and go to

Step 1.

32

– Step 4.

⇤ Scale {c
n

} up by � = min{�0, cmax/c
n

} and use {�c
n

} for the remain-

ing iterations.

⇤ Let sc = sc+ 1 and go to Step 5.

– Step 5.

⇤ Set x
n+1 = min{u � c

n+1,max{x
n+1, l + c

n+1}}.

⇤ Let n = n+ 1, g = g + 1 and go to Step 1.

Shifting Phase

• While n m
max

and n N ,

– Step 1.

⇤ Generate an estimate brJ(x
n

) using symmetric di↵erences.

⇤ Compute x
n+1 using (1.2).

· If x
n+1 > u � c

n+1 and x
n

= l + c
n

or if x
n+1 < l + c

n+1 and

x
n

= u � c
n

, go to Step 2, if sh k
a

.

· If x
n+1 > u � c

n+1 and x
n

= u � c
n

or if x
n+1 < l + c

n+1 and

x
n

= l + c
n

, go to Step 3, if sc k
c

.

· Otherwise, go to Step 4.

– Step 2.

⇤ Find smallest integer �0 such that x
n+1 2 (l+ c

n

, u� c
n

) with a
n+�

0 .

⇤ Set � = min(v
a

, �0) and shift {a
n

} to {a
n+�

}. If � = v
a

, set v
a

= 2v
a

.

33

⇤ Let sh = sh+ 1 and go to Step 4.

– Step 3.

⇤ Scale {c
n

} up by � = min{�0, cmax/c
n

} and use {�c
n

} for the remain-

ing iterations.

⇤ Let sc = sc+ 1 and go to Step 4.

– Step 4.

⇤ Set x
n+1 = min{u � c

n+1,max{x
n+1, l + c

n+1}}.

⇤ Let n = n+ 1 and go to Step 1.

KW Algorithm

• If n > m
max

and n < N , then SSKW reverts back to KW and stops when

n = N .

• Output. x⇤
N

= x
N

.

The SSKW algorithm has two pre-processing phases, scaling and shifting,

which adjust the tuning sequences in order to improve the finite-time performance,

before reverting back to the original KW algorithm. In the scaling phase, the {a
n

}

is scaled up by a factor ↵, i.e., {a
n

} to {↵a
n

}, so the iterates can move from one

boundary to the other to ensure the step sizes are not too small relative to the gra-

dient. In the shifting phase, the sequence {a
n

} is decreased by shifting or “skipping”

a finite number (�) of terms from {a
n

} to {a
n+�

}, when the iterates fall outside of

the feasible region when the sign of the gradient is correct. This acts as a recourse

34

stage and reduces the step size faster in case the step size sequence {a
n

} is too large.

During both phases, c
n

is scaled up by �, i.e., {c
n

} to {�c
n

}, if the previous iterate

is at the boundary and the update falls outside the feasible region but is moving in

the wrong direction. This increase is an attempt to reduce the noise of the gradient

estimate. These adjustments do not a↵ect the asymptotic convergence, since the

scaling phase only scales the sequences by a constant and the shifting phase only

scales up the {c
n

} finitely many times and skips a finite number of terms in {a
n

}.

2.2.4 Robust Output

2.2.4.1 Averaging Iterates

Iterate averaging, introduced in [51] and [49], approaches SA from a di↵erent

angle. Instead of fine-tuning the step sizes to adapt to the function characteristics,

iterate averaging takes bigger steps (i.e., a
n

larger than O(n�1)) for the estimates

to oscillate around the optimum, so the average of the iterates will result in a

good approximation to the true optimum. The idea is simple, and yet can be very

e↵ective. It is easy to see that for this method to be successful, it is essential that

the iterates surround the optimum in a balanced manner, and that the domain in

which the iterates oscillate shrinks as n increases. Averaging trajectories reduces

the sensitivity to the initial step size choice. The algorithm follows recursion (1.2)

for the RM case; however, instead of the taking the last iterate x
N

as the output,

35

the optimum is estimated by

x⇤
N

=
1

N

N

X

n=1

x
n

,

which is an average of N iterates, where N is the stopping time. Under “clas-

sic” assumptions, iterate averaging achieves the same convergence rate as the RM

method. Furthermore,
p
n(x⇤

n

� x⇤) is asymptotically normal with mean zero and

the smallest covariance matrix, which is the inverse of the average Fisher informa-

tion matrix. (cf. [49]). A constant step size can be applied and yields convergence

in distribution [42].

A variation of this method is called the “sliding window” average, which is

based on the last m iterates:

x⇤
N

=
1

m

N

X

n=N�m+1

x
n

. (2.7)

An advantage of (2.7) is it ignores the first N � m iterates, which may be poor

estimates, since the first iterate is arbitrary, and averages only the last m, which are

assumed to be closer to x⇤. Asymptotic normality for a growing window is shown

in [40] and [42], which also includes constant step sizes. Another modification of the

original method incorporates x
N

in the components being averaged x⇤
N�1, which is

known as the feedback approach [41]. These methods are suited for problems where

the iterates hover around the optimum. In an empirical study, iterate averaging

was applied to SPSA [44]. The results suggest that if the Hessian of J(x) is large,

averaging is considered ideal, since it is associated with a high variability in J(x),

which indicates the iterates are moving around the optimum. In general, averaging

iterates leads to more robustness with respect to step size sequence because of the

36

reduced sensitivity, while converging at the same optimal asymptotic rate as RM.

Inspired by iterate averaging, weighted averages for KW was presented to achieve the

optimal asymptotic convergence rate O(n�1/2) under certain conditions [17]. Under

certain parameter settings, iterate averaging and weighted averaging produce the

same estimator.

2.2.4.2 Robust Stochastic Approximation

The robust SA (RSA) method is intended to be relatively insensitive to the

choose of the step size sequence, similar to Polyak-Ruppert iterate averaging. The

form of RSA is identical to (1.2) with the exception of the output. Instead of

x⇤
N

= x
N

, where x
N

is the last iterate, x⇤
N

is calculated as

x⇤
N

=

P

N

n=1 anxn

P

N

n=1 an
,

where a
n

> 0 for all n. It is clear that if a
n

= a, where a 2 R+ for all n, then

x⇤
N

= 1
N

P

N

n=1 xn

, giving the uniformly weighted average of Polyak-Ruppert. As

mentioned earlier, iterate averaging under a constant step size for a moving window

is asymptotically normal [42]. A finite-time bound for E[J(x⇤
N

)�J(x)] was derived

under RSA when J is assumed convex [45]. Assume there exists C > 0 such that

E[||rJ(x)||] C2 for all x 2 ⇥. Then for an N -step iteration policy,

E[J(x⇤
N

) � J(x)] ||x0 � x⇤||2 + C2
P

N

n=1 a
2
n

2
P

N

n=1 an
. (2.8)

37

For equal weights or iterate averaging, the bound on the right hand side of (2.8) can

be minimized if

a
n

= a :=
D⇥

C
p
N
,

where D⇥ = max
x,y2⇥ ||x � y||. The distance ||x0 � x⇤|| in place of D⇥ tightens

the bound in (2.8), but x⇤ is unknown so the improvement may not be practically

meaningful. The step size requires the number of iterations N to be fixed. Similar

to iterate averaging, a sliding window average can also be employed in RSA. the

estimate consists of the last N � K + 1 estimates and has the form

x⇤
N,K

=

P

N

n=K

a
n

x
n

P

N

n=K

a
n

.

If we consider the varying step size

a
n

=
✓D⇥

C
p
n
,

for ✓ > 0, then we have the bound

E[J(x⇤
N,K

) � J(x)] D⇥Cp
N

"

2

✓

✓

N

N � K + 1

◆

✓

2

r

N

K

#

,

for 1 K N .

2.2.4.3 Acceleration Stochastic Approximation

The Accelerated SA (AC-SA) algorithm [32] takes a similar approach to iterate

averaging and RSA by taking long strides and incorporating each of the iterates into

the output. The next two algorithms, Accelerated SA for strongly convex and convex

38

functions, take advantage of the smoothness factor of the function if it exists. AC-

SA for convex functions is a special case of AC-SA for strongly convex functions, so

we first introduce AC-SA for strongly convex functions and then restrict the strong

convexity parameter for J(·) for the convex case.

AC-SA is an example of a proximal method, which introduces a proximity

function into the objective function. The prox-function acts as a regularization

term to prevent the next iterate update x
n+1 from being too far from x

n

and is

comprised of a distance generating function or Bregman function ! : ⇥ ! R, which

is continuously di↵erentiable and strongly convex with modulus ⌫ > 0 satisfying

hx � y,r!(x) � r!(y)i � ⌫||x � y||2 8x,y 2 ⇥,

where h·, ·i denotes the inner product. A prox-function with the given distance

generating function is

V (x,y) = V
!

(x,y) = !(y) � [!(x) + hr!(x),y � xi].

As x
n

! x⇤, the regularization term disappears, so minimizing f(x) plus a regular-

izer is equivalent to minimizing the function J(x).

Consider a strongly convex function J(·) satisfying

µ

2
||y � x||2 J(y) � J(x) � hrJ(x),y � xi L

2
||y � x||2 +M ||y � x||,

for all x,y 2 ⇥ where µ > 0 is the strong convexity parameter. If M > 0 and L = 0,

then J is Lipschitz continuous with Lipschitz constant M/2. If M = 0 and L > 0,

then J has Lipschitz continuous gradients with Lipschitz constant L.

39

The AC-SA algorithm updates three sequences, {xmd

n

}, {xag

n

}, and {x
n

}. Here,

“md” and “ag” are abbreviations for median and aggregate, respectively, and median

is used in a loose sense.

Accelerated SA Method for Strongly Convex Functions

• Input.

– Specify V (x,y), {↵
n

} and {�
n

} be given such that ↵1 = 1, ↵
n

2 (0, 1)

for n � 2, and �
n

> 0 for n � 1 and a stopping time N .

• Initialize. Choose xag

0 = x0 2 ⇥ and let n = 1.

• While n < N ,

– Step 1. Generate an estimate brJ(x
n

) of rJ(x
n

).

– Step 2. Compute

xmd

n

=
↵
n

[(1 � ↵
n

)µ+ �
n

]

�
n

+ (1 � ↵2
n

)µ
x
n�1 + (1 � ↵

n

)
(1 � ↵

n

)(µ+ �
n

)

�
n

+ (1 � ↵2
n

)µ
xag

n�1

x
n

= argmin
x2⇥

{↵
n

[hrJ(xmd

n

),xi + µV (xmd

n

)] + [(1 � ↵
n

)µ+ �
n

]V (x
n�1,x)}

xag

n

= ↵
n

x
n

+ (1 � ↵
n

)xag

n�1

– Step 3. Let n = n+ 1 and go to Step 1.

• Output. x⇤
N

= xag

N

.

Note: V (x,y) = 1
2 ||x � y||2 using the Euclidean norm with ⌫ = 1 is a common

prox-function. Refer to [31] for details.

40

Theorem 2.2.4. (Theorem 1 [31]) Assume V (x,y) 1
2 ||x � y||2 for all x,y 2 ⇥

when µ > 0 and E[(brJ(x)) � rJ(x))2] �2 8x 2 ⇥. Choose {↵
n

} and {�
n

} such

that

⌫(µ+ �
n

) > L↵2
n

, (2.9)

�
n

/�
n

= �
n+1/�n+1 for n � 1, (2.10)

where

�
n

=

8

>

>

<

>

>

:

1 if n = 1;

(1 � ↵
n

)�
n�1 if n � 2.

Then,

E[J(xag

N

) � J(x⇤)] �
N

�1V (x0,x
⇤) +

N

X

n=1

2(M2 + �2)↵2
n

�
n

[⌫(µ+ �
n

) � L↵2
n

]

!

. (2.11)

Consider ↵
n

= 2/(n + 1), �
n

= 4L/[⌫n(n + 1)], and �
n

= 2/[n(n + 1)]. It can be

easily checked that these choices satisfy conditions (2.9) and (2.10). Under these

conditions, the right hand side of (2.12) can be bounded by

4LV (x0,x⇤)

⌫N(N + 1)
+

8(M2 + �2)

⌫µ(N + 1)
, (2.12)

for µ > 0. The bounds in (2.11) and (2.12) rely on additional information of the

function and gradient, which are unknown, so they must be approximated.

AC-SA for convex functions is a special case of AC-SA for strongly convex

functions with µ = 0. The algorithm is identical to AC-SA for strongly convex

function with the exception of the xmd

n

and x
n

update since µ = 0. The resulting

41

updates are

xmd

n

= ↵
n

x
n�1 + (1 � ↵

n

)xag

n�1,

x
n

= argmin
x2⇥

{↵
n

hrJ(xmd

n

),xi + �
n

V (x
n�1,x)}.

Interestingly, if V (x,y) = 1
2 ||x � y||2, then the update for x

n

simplifies to

x
n

= ⇧⇥

✓

x
n�1 � ↵

n

�
n

brJ(xmd

n

)

◆

, (2.13)

which has a similar form to the standard SA algorithm. Notice in the update for x
n

in

(2.13), ↵
n

/�
n

takes the place of the step size a
n

in (1.2) and the gradient estimate brJ

is evaluated at xmd

n

as opposed to x
n�1. If we consider the same parameter setting

as in the strongly convex case, the “step size” ↵
n

/�
n

increases with n. Furthermore,

the lower and upper bounds for the optimal objective function can be computed

online and the di↵erence converges to 0 as the number of iterations increases to

infinity [31].

Theorem 2.2.5. (Proposition 7 [31]) Assume that the assumptions in Theorem

3.3.2 hold for µ = 0 and the sequences ↵
n

= 1/(n+ 1) and �
n

= 4�/[⌫n(n+ 1)] for

� � 2L. Then

E[J(xag

N

) � J(x⇤)] 4�V (x0,x⇤)

⌫N(N + 1)
+

4(M2 + �2)(N + 2)

3�
, (2.14)

where

� = max

(

2L,

⌫(M2 + �2)N(N + 1)(N + 2)

3V (x0,x⇤)

�1/2
)

.

minimizes the bound in (2.14).

42

2.2.4.4 Numerical Comparison

We investigate the MSE performance of RSA and AC-SA using direct gradient

estimates and compare the results against the classical RM algorithm and RM with

iterate averaging. We consider the optimal parameter settings for RSA and AC-SA,

which require additional knowledge of the function, its gradient, and the optimum,

so in practice, they must be approximated.

We consider a simple quadratic function, f(x) = �1
3x

2, on the truncated

intervals [�50, 50] and [�5, 95] with x1 = 30.0, � = 1.0, and 1000 sample paths.

For the RM and RM with iterate averaging algorithm, we employ a common step

size a
n

= ✓
a

/n, where ✓
a

= 10.0. RM performed relatively well for a wide range of

multiplicative constants. We chose to use ✓
a

= 10.0, although it did not yield the

lowest MSE at the 1000th or 10000th iteration from preliminary numerical tests.

For RSA, we adopt a constant step size that minimizes the finite-time bound in

(2.8), where C = 100/3, 190/3 for the intervals [-50, 50] and [-5, 95], respectively,

and D⇥ = 100. For the AC-SA algorithm, we consider ↵
n

= 2/(n + 1) and �
n

=

4�/[n(n+ 1)], where � is given in (2.15) with ⌫ = 1, L = 2/3 and M = 0.

Figure 2.1 plots the MSE as a function of the number of iterations from 1 to

10000 on a log scale. The results for both the centered and skew truncated intervals

appear to have the same behavior across all four algorithms. RM performs well

with a good parameter choice, although it is not the best, but averaging the iterates

improves the performance, resulting in a smoother monotonically decreasing MSE

curve as the number of iterations increase. Compared to a decently/reasonably

43

(a) [� 50, 50] (b) [� 5, 95]

Figure 2.1: MSE under AC-SA, RM, RM w/averaging and RSA for

f(x) = �1
3x

2, x1 = 30.0, � = 1.0.

tuned RM and RM with iterate averaging algorithm, RSA appears to be inferior,

at least in this simple numerical experiment. The most interesting curve is from

the AC-SA algorithm, where one can observe periodic oscillations, which decrease

in magnitude as the number of iterations increase. We further investigated this

behavior by analyzing individual sample paths, and the estimates {xag

n

} appear to

have the same behavior, following a smooth oscillating path/curve. From Figure

2.1, the AC-SA curve appears to level o↵ and hover slightly over the RSA curve.

The stopping time dictates relative performance of AC-SA when there are a smaller

number of iterations because of the oscillations. For the case of the skewed interval,

there is a small range of iterations where AC-SA outperforms RSA, RM, and RM

with iterate averaging, as well as other small ranges where it outperforms RSA. Keep

in mind that these experiments are for a simple quadratic function for a particular

setting, so the relative performance will most likely change in a di↵erent setting.

From our numerical experiments, one can conclude that RM and RM with

44

iterate averaging have the potential to outperform RSA and AC-SA if the step size

parameter is chosen appropriately for a wide range of choices. In this case, iterate

averaging improves the performance of RM for all 10000 iterations. Both the AC-SA

and RSA algorithms require additional knowledge to choose the optimal step size

that minimizes the bound in (2.11) and (2.8) for AC-SA and RSA, respectively.

2.2.5 Varying Bounds

Initially, the asymptotic theory for SA only considered functions satisfying

specific global conditions; however, subsequently it was shown the requirements

need only hold on a compact set ⇥ 2 Rd containing the optimum. Therefore,

the projection operator is particularly important in the constrained optimization

setting. Since the optimum is unknown, the compact set should be large enough so

that x⇤ 2 ⇥ with high probability; however, this may increase the potential of an

algorithm to perform poorly due to the size of the parameter search space [2] . For

instance, if the compact set is very large, the step size is extremely small, and the

current iterate is extremely far from the optimum, then the convergence is likely to

be slow; however, if the compact set is small and contains the optimum, then the

iterates will never be too far from the optimum. Even if the step sizes are small,

the convergence will be much faster in comparison to the algorithm restricted to a

much larger set.

One of the first ideas was to project the iterates onto a predetermined fixed

point once the magnitude of the iterate surpassed an arbitrarily specified thresh-

45

old, with the threshold increasing after it is exceeded [13]. This method converges

asymptotically, but in practice, it has its pitfalls. When an iterate is projected onto

an arbitrary fixed point, in a sense, the algorithm restarts from this “initial” value

with a smaller sequence of step sizes. Not only does it lose all of the progress gained

from the iterations prior to the projection, but the reduction in step size could hin-

der the convergence by moving even slower towards the optimum. To circumvent

this issue, it was shown that it su�ces to project the iterates onto a predetermined

bounded set [64]. This is a slight improvement since the iterates do not start from

the same position with an even smaller step size. However, it still has its limitations

since the initial start values are restricted to the predetermined compact set. Later,

an algorithm defined over a growing feasible region by writing ⇥ as an increasing

sequence of compact sets (i.e., ⇥
n

✓ ⇥
n+1, where ⇥ = [⇥

n

) was introduced [2]. The

orthogonal projection operator changes from ⇧⇥
k

to ⇧⇥
k+1

if x
n+1 /2 ⇥

k

. The idea

is to start with a smaller feasible region ⇥1 and only increase when there is reason

to believe the optimum x⇤ /2 ⇥1 (i.e., when the x
k

/2 ⇥1). Since the projection is

made onto the current compact set ⇥
m

, the progress gained up to that point is not

lost. The feasible region ⇥ is written as [
k

⇥
k

, so it is impossible for x⇤ /2 ⇥
k

for

some k. If x⇤ is contained in one of the earlier compact sets and if they grow slowly,

the empirical results could improve significantly. The key in the performance is to

choose the sequence {⇥
n

} appropriately. If it grows too quickly, the results might

be very similar to that of the original SA. The following algorithm and convergence

result are for the RM multidimensional case d � 1, where || · || denotes the Euclidean

norm.

46

SA with Varying Bounds

• Input. Choose x1 2 ⇥1, {a
n

} and {⇥
n

}.

• Initialize. Let n = 1 and m = 1.

• While n < N ,

– Step 1. Generate an estimate brJ(x
n

) of rJ(x
n

).

– Step 2. Compute x0
n+1 = x

n

� a
n

brJ(x
n

). If x0
n+1 2 ⇥

m

, go to Step 3.

Otherwise, go to Step 4.

– Step 3. Let x
n+1 = x0

n+1, n = n+ 1 and go to Step 1.

– Step 4. Let x
n+1 = ⇧⇥

m

(x0
n+1), n = n+ 1, m = m+ 1 and go to Step 1.

• Output. x⇤
N

= x
N

.

Theorem 2.2.6. (Theorem 2 [2]) Let the sequence {x
n

} be generated using the

above algorithm, ✏
n

= brJ(x) � E[brJ(x)|F
n

], and �
n

= E[brJ(x)|F
n

] � rJ(x),

where F
n

is the smallest �-algebra used to generate x
n+1. If the following conditions

hold:

1. The sequence {⇥
k

} is a set of compact convex sets such that ⇥
k

✓ ⇥
k+1 for

all k and [1
k=1⇥k

= ⇥.

2. The positive sequences of real numbers {a
n

} and {c
n

} converge to zero such

that
P1

n=1 an = 1,
P1

n=1 ancn < 1, and
P1

n=1 a
2
n

c�2
n

< 1.

47

3. There exists � 0 such that E[||✏
n

||2|F
n

]

c

2
n

(1 + ||x
n

� x⇤||2) a.s. for all n.

4. ||�
n

|| is bounded a.s. and
P1

n=1 an||�n|| < 1 a.s.

5. There exist a positive sequence of real numbers {M
n

} an integer N � 1 such

that
P1

n=1 a
2
n

M2
n

< 1 and for all n � N , sup
x2⇥

n�1
||J(x)|| M

n

.

6. There exists a unique x⇤ 2 ⇥ such that rJ(x⇤) = 0, and for all 0 < � 1,

inf
x2⇥:�||x�x

⇤||�

�1 J(x)T (x � x⇤) > 0.

Then x
n

! x⇤ a.s. as n ! 1.

If an appropriate increasing sequence of compact sets is chosen, the finite-

time performance can improve significantly, but this optimal choice is still an open

problem.

48

Chapter 3

New Hybrid Stochastic Approximation Methods

3.1 Motivation

Theoretically, unbiased direct gradients lead to faster asymptotic convergence

rates in SA algorithms compared to indirect gradient estimates, but this does not

necessarily translate to better finite-time performance. In the deterministic setting,

where the true gradient is known, indirect gradients are not useful, whereas in

the stochastic setting, direct gradients are noisy and indirect gradients actually

contain information that can be used to better approximate the gradient and in turn

accelerate the SA convergence to a neighborhood of the optimum. To the best of our

knowledge, the current SA algorithms either use direct gradients or indirect gradients

but not both simultaneously. Our algorithms exploit the additional information

provided by indirect gradients by using a gradient that integrates both direct and

indirect gradient estimates.

In this chapter, we do the following:

1. We propose two new hybrid stochastic approximation algorithms, STAR-SA

and STAR-SPSA, which incorporate both direct and indirect gradient esti-

mates, and are provably convergent.

2. We derive variance minimizing weights for the STAR-SA and STAR-SPSA

49

gradient estimates.

3. We show that the variance of the STAR-SA gradient is lower than that of RM

and KW, and that the variance of the STAR-SPSA gradient is less than that

of RM and SPSA, for a deterministic weight sequence.

4. For simple quadratic functions, we show that the MSE of the estimate gener-

ated using STAR-SA is strictly less than that of RM and KW under certain

conditions.

5. We illustrate the robustness/e↵ectiveness of STAR-SA and STAR-SPSA through

numerical experiments.

3.2 Secant-Tangents AveRaged Stochastic Approximation

In this section, we introduce the one-dimensional Secant-Tangents AveRaged

stochastic approximation (STAR-SA) algorithm, which incorporates both direct and

indirect gradient estimates [?, 10]. Figure 3.1 illustrates the STAR gradient estima-

tor, which uses estimates of the sample performance f̃ and its gradient f̃ 0 at two

points, x
n

+ c
n

and x
n

� c
n

, where the values f̃(x
n

+ c
n

) and f̃(x
n

� c
n

) do not lie

on the graph of the true function due to estimation noise error. For the indirect

gradient, the values f̃(x
n

+c
n

) and f̃(x
n

�c
n

) are used to compute a symmetric finite

di↵erence (Secant). The two direct gradient estimates, f̃ 0(x
n

+ c
n

) and f̃ 0(x
n

� c
n

),

can be averaged to provide another gradient estimate (Tangents AveRaged).

The Secant-Tangents AveRaged stochastic approximation (STAR-SA) gra-

50

Introduction
Classical SA methods

STAR-SA & STAR-SPSA
Summary and future work

Motivation
Algorithms
Theoretical results
Numerical experiments

STAR illustration

M. Chau, M.C. Fu, H. Qu: Multivariate SA using a Secant-Tangents AverRaged (STAR) Gradient Estimator
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 5

M. Chau, M.C. Fu, H. Qu: Multivariate SA using a Secant-Tangents AverRaged (STAR) Gradient Estimator
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 5

Introduction
Classical SA methods

STAR-SA
Numerical experiments

Conclusion and future work

Motivation
Algorithm
Theoretical results

STAR illustration

xn + cnxn � cn

f (x)

f̃ (xn � cn)

f̃ (xn + cn)
�2

�1.5

�1

�0.5

0

·104

Secant

f̃ (xn + cn) � f̃ (xn � cn)

2cn

Tangents AveRaged

f̃ 0(xn + cn) + f̃ 0(xn � cn)

2

Marie Chau, Huashuai Qu & Michael C. Fu A New Hybrid Stochastic Approximation Algorithm

Figure 1 Illustration of STAR gardent, where f̃ and f̃ 0 are estimates of f and f 0

y

x

f(x)

˜

f(x+ c)

˜

f(x � c)

x + cx � c

The Secant-Tangents AveRaged stochastic approximation (STAR-SA) gradient estimator is a

convex combination of a symmetric finite di�erence gradient estimator (secant) and an average of

two direct gradient estimators (tangents):

gSTAR(xn) = ↵n

˜

f(xn + cn) � ˜

f(xn � cn)

2cn
+ (1� ↵n)

˜

f

�
(xn + cn) +

˜

f

�
(xn � cn)

2

, (2)

where ↵n 2 [0,1] and cn 2R for all n, and cn ! 0 as n ! 1.

The weight of the convex combination is crucial in the performance of STAR-SA. In fact, for any

non-zero and finite variance level of the function and its gradient, there exists a sequence {↵n} such

that the variance of the STAR-SA gradient estimator is less than the individual gradient estimates,

Secant gS and Tangents AveRaged gTAR.

Now we present theoretical results pertaining to STAR-SA. Let

˜

f(xn ± cn) = f(xn ± cn)+ �

±
n and

˜

f

�
(xn ± cn) = f

�
(xn ± cn)+ �

±
n , where �

±
n and �

±
n are Gaussian noise with zero mean. For notational

Introduction
Classical SA methods

STAR-SA
Numerical experiments

Conclusion and future work

Motivation
Algorithm
Theoretical results

STAR illustration

xn + cnxn � cn

f (x)

f̃ (xn � cn)

f̃ (xn + cn)
�2

�1.5

�1

�0.5

0

·104

Secant

f̃ (xn + cn) � f̃ (xn � cn)

2cn

Tangents AveRaged

f̃ 0(xn + cn) + f̃ 0(xn � cn)

2

Marie Chau, Huashuai Qu & Michael C. Fu A New Hybrid Stochastic Approximation Algorithm

Figure 1 Illustration of STAR gardent, where f̃ and f̃ 0 are estimates of f and f 0

˜

f(xn + cn) and

˜

f(xn � cn) are used to compute a symmetric finite di�erence (Secant). The two

direct gradients estimates,

˜

f

�
(xn +cn) and

˜

f

�
(xn �cn), can be averaged to provide another gradient

estimate (Tangents AveRaged).

y

x

f(x)

˜

f(xn + cn)

˜

f(xn � cn)

xn + cnxn � cn

The Secant-Tangents AveRaged stochastic approximation (STAR-SA) gradient estimator is a

convex combination of a symmetric finite di�erence gradient estimator (secant) and an average of

two direct gradient estimators (tangents):

gSTAR(xn) = ↵n

˜

f(xn + cn) � ˜

f(xn � cn)

2cn
+ (1� ↵n)

˜

f

�
(xn + cn) +

˜

f

�
(xn � cn)

2

, (2)

where ↵n 2 [0,1] and cn 2R for all n, and cn ! 0 as n ! 1.

The weight of the convex combination is crucial in the performance of STAR-SA. In fact, for any

non-zero and finite variance level of the function and its gradient, there exists a sequence {↵n} such

Secant

gS � f̃ (xn + cn) � f̃ (xn � cn)

2cn

Tangents AveRaged

gTAR � f̃ 0(xn + cn) + f̃ 0(xn � cn)

2

Figure: Illustration of STAR gradient, where f̃ and f̃ 0 are estimates
of f and f 0, respectively.

Marie Chau, Michael C. Fu & Huashuai Qu Secant-Tangents AveRaged (STAR) stochastic approximation

Figure 3.1: Illustration of STAR gradient, where f̃ and f̃ 0 are esti-

mates of f and f 0, respectively.

dient estimator is a convex combination of a symmetric finite di↵erence gradient

estimator (secant) and an average of two direct gradient estimators (tangents):

g
STAR

(x
n

) = ↵
n

f̃(x
n

+ c
n

) � f̃(x
n

� c
n

)

2c
n

+ (1 � ↵
n

)
f̃ 0(x

n

+ c
n

) + f̃ 0(x
n

� c
n

)

2
, (3.1)

where ↵
n

2 [0, 1] and c
n

2 R+ for all n, and c
n

! 0 as n ! 1.

The weight ↵
n

in the convex combination is crucial in the performance of

STAR-SA. In fact, for any non-zero and finite variance level of the function and

its gradient, there exists a sequence {↵
n

} such that the variance of the STAR-SA

gradient estimator is less than the individual gradient estimates, Secant g
S

and

Tangents AveRaged g
TAR

.

Now we present theoretical results pertaining to STAR-SA. Let f̃(x
n

± c
n

) =

f(x
n

±c
n

)+✏±
n

and f̃ 0(x
n

±c
n

) = f 0(x
n

±c
n

)+�±
n

, where ✏±
n

and �±
n

are Gaussian noise

51

with zero mean. For notational simplicity, let V ar(f̃(x
n

)) = �2
f

, V ar(f̃ 0(x
n

)) = �2
g

,

V ar(g
STAR

(x
n

)) = �2
n

, V ar(g
S

(x
n

)) = V ar
⇣

f̃(x
n

+c

n

)�f̃(x
n

�c

n

)
2c

n

⌘

=
�

2
f

2c2
n

, V ar(g
TAR

(x
n

))

= V ar
⇣

f̃

0(x
n

+c

n

)+f̃

0(x
n

�c

n

)
2

⌘

=
�

2
g

2 , and Corr(f̃(x
n

), f̃ 0(x
n

)) = ⇢.

3.2.1 Optimal Convex Weight

3.2.1.1 Homogeneous Noise

The following provides a particular weight for minimizing the variance of the

STAR-SA gradient.

Lemma 3.2.1. For g
STAR

defined in (3.1), assume for all n, ✏+
n

? ✏�
n

and �+
n

? ��
n

.

Then V ar(g
STAR

(x
n

)) is minimized when

↵⇤
n

=
�2
g

c2
n

�2
f

+ �2
g

c2
n

. (3.2)

Proof. By the orthogonality assumption, the variance of the STAR-SA gra-

dient (3.1) can be written as

�2
n

= V ar

↵
n

f̃(x
n

+ c
n

) � f̃(x
n

� c
n

)

2c
n

+ (1 � ↵
n

)
f̃ 0(x

n

+ c
n

) + f̃ 0(x
n

� c
n

)

2

!

= V ar

✓

↵
n

2c
n

f̃(x
n

+ c
n

) +
1 � ↵

n

2
f̃ 0(x

n

+ c
n

)

◆

+ V ar

✓

� ↵
n

2c
n

f̃(x
n

� c
n

) +
1 � ↵

n

2
f̃ 0(x

n

� c
n

)

◆

=

✓

↵
n

2c
n

◆2

�2
f

+

✓

1 � ↵
n

2

◆2

�2
g

+ 2
↵
n

2c
n

1 � ↵
n

2
⇢�

f

�
g

+

✓

↵
n

2c
n

◆2

�2
f

+

✓

1 � ↵
n

2

◆2

�2
g

� 2
↵
n

2c
n

1 � ↵
n

2
⇢�

f

�
g

=
↵2
n

2c2
n

�2
f

+
(1 � ↵

n

)2

2
�2
g

, (3.3)

52

where the second equality follows from the independence of the function/gradient

at di↵erent points. Di↵erentiating (3.3) with respect to ↵
n

, we find

@�2
n

@↵
n

=
↵
n

c2
n

�2
f

� (1 � ↵
n

)�2
g

. (3.4)

Setting (3.4) equal to zero and solving for ↵
n

yields (3.2). Since (3.4) is monotoni-

cally increasing in ↵
n

, (3.2) is the global minimum. ⇤

The following result shows that the variance of the STAR-SA gradient is prov-

ably less than the variance of the gradients generated under RM and KW.

Proposition 3.2.2. Let the conditions of Lemma 3.2.1 hold. If the convex weight in

(3.1) is given by (3.2), then V ar(g
STAR

(x
n

)) min {V ar(g
S

(x
n

)), V ar(g
TAR

(x
n

))}

for all n, where the inequality is strict if �
f

, �
g

> 0.

Proof. Under the conditions of Lemma 3.2.1, the variance of the STAR-SA

gradient (3.1) can be written as

�2
n

=
↵2
n

2c2
n

�2
f

+
(1 � ↵

n

)2

2
�2
g

. (3.5)

Substitute ↵⇤
n

from (3.2) into (3.5) for ↵
n

to obtain

�2
n

=
1

2c2
n

�2
g

c2
n

�2
f

+ �2
g

c2
n

!2

�2
f

+
1

2

1 �
�2
g

c2
n

�2
f

+ �2
g

c2
n

!2

�2
g

=
�2
f

�2
g

2
�

�2
f

+ �2
g

c2
n

� .

To show �2
n

is strictly less than min{V ar(g
S

(x
n

)), V ar(g
TAR

(x
n

))}, consider two

cases: 1) �2
n

<
�

2
f

2c2
n

and 2) �2
n

<
�

2
g

2 . However, since c
n

! 0 as n ! 1, then

�

2
f

2c2
n

! 1, so eventually we will be in the latter case.

Case 1: If �2
n

<
�

2
f

2c2
n

, then
�

2
f

�

2
g

2(�2
f

+�

2
g

c

2
n

)
<

�

2
f

2c2
n

, which holds when 0 < �2
f

.

Case 2: If �2
n

<
�

2
g

2 , then
�

2
f

�

2
g

2(�2
f

+�

2
g

c

2
n

)
<

�

2
g

2 , which holds when 0 < �2
g

c2
n

.

53

If �
f

, �
g

> 0, then the inequality is strict; however, if �
f

�
g

= 0, then the same

arguments hold with “ < ” replaced with “ ” for the non-strict case. There-

fore, �2
n

 min
n

�

2
f

2c2
n

,
�

2
g

2

o

= min{V ar(g
S

(x
n

)), V ar(g
TAR

(x
n

))}, and the inequality

is strict for �
f

, �
g

> 0. ⇤

The weight ↵⇤
n

depends on the function and gradient variances, and the finite

di↵erence perturbation size. These values, with the exception of the perturbation

size, are generally unknown and must be estimated. Although the orthogonality con-

dition in Lemma 3.2.1 allows the function and its gradient to be correlated, the op-

timal weight does not depend on the correlation coe�cient, due to the homogeneous

noise assumption. If we eliminate this assumption to allow for non-homogeneous

noise, the weight will depend on the correlation. Also, the STAR-SA gradient es-

timate converges to the average of the direct gradient estimates, since ↵⇤
n

! 0 as

n ! 0.

3.2.1.2 Non-homogeneous Noise

For non-homogeneous noise, �
f

and �
g

depend on x, and we write V ar(f̃±
n

) =

�2
f,n

± , V ar(g̃±
n

) = �2
g,n

± , Corr(f̃�
n

, g̃+
n

) = Corr(f̃+
n

, g̃�
n

) = 0, Corr(f̃+
n

, g̃+
n

) = ⇢+
n

and

Corr(f̃�
n

, g̃�
n

) = ⇢�
n

, with f̃±
n

= f̃(x
n

± c
n

) = f(x
n

± c
n

)+ ✏±
n

and g̃±
n

= f̃ 0(x
n

± c
n

) =

f 0(x
n

± c
n

) + �±
n

, where ✏± and �±
n

is Gaussian noise with zero mean.

Lemma 3.2.3. If the conditions of Lemma 3.2.1 and ⇢�
n

�
f,n

��
g,n

� �⇢+
n

�
f,n

+�
g,n

+ �

0 hold, then V ar(g
STAR

(x
n

)) is minimized when

↵⇤
n

=
c2
n

(�2
g,n

+ + �2
g,n

�) + 2c
n

(⇢�
n

�
f,n

��
g,n

� � ⇢+
n

�
f,n

+�
g,n

+)

�2
f,n

+ + �2
f,n

� + c2
n

(�2
g,n

+ + �2
g,n

�) + 2c
n

(⇢�
n

�
f,n

��
g,n

� � ⇢+
n

�
f,n

+�
g,n

+)
. (3.6)

54

Proof. The variance of the STAR-SA gradient can be written as

�2
n

= V ar

↵
n

f̃+
n

� f̃�
n

2c
n

+ (1 � ↵
n

)
g̃+
n

+ g̃�
n

2

!

= V ar

✓

↵
n

2c
n

f̃+
n

+
1 � ↵

2
g̃+
n

◆

+ V ar

✓

� ↵
n

2c
n

f̃�
n

+
1 � ↵

2
g̃�
n

◆

=

✓

↵
n

2c
n

◆2

V ar(f̃+
n

) +

✓

1 � ↵
n

2

◆2

V ar(g̃+
n

) + 2
↵
n

2c
n

1 � ↵
n

2
Cov(f̃+

n

, g̃+
n

)

+

✓

↵
n

2c
n

◆2

V ar(f̃�
n

) +

✓

1 � ↵
n

2

◆2

V ar(g̃�
n

) � 2
↵
n

2c
n

1 � ↵
n

2
Cov(f̃�

n

, g̃�
n

)

=
↵2
n

4c2
n

�

�2
f,n

+ + �2
f,n

�

�

+
(1 � ↵

n

)2

4
(�2

g,n

+ + �2
g,n

�)

+
↵
n

(1 � ↵
n

)

2c
n

�

⇢+
n

�
f,n

+�
g,n

+ � ⇢�
n

�
f,n

��
g,n

�
�

, (3.7)

where the second equality follows from the independence of the function/gradient at

di↵erent points. Di↵erentiate (3.7) with respect to the convex weight ↵
n

to obtain

@V

@↵
n

=
↵
n

2c2
n

�

�2
f,n

+ + �2
f,n

�

�

� (1 � ↵
n

)

2
(�2

g,n

+ + �2
g,n

�)

+

✓

1 � 2↵
n

2c
n

◆

(⇢+
n

�
f,n

+�
g,n

+ � ⇢�
n

�
f,n

��
g,n

�),

which is monotonically increasing in ↵
n

. Set @V

@↵

n

= 0 to obtain

↵
n

�2
f,n

+ + �2
f,n

�

2c2
n

+
�2
g,n

+ + �2
g,n

�

2
+
⇢�
n

�
f,n

��
g,n

� � ⇢+
n

�
f,n

+�
g,n

+

c
n

!

=
�2
g,n

+ + �2
g,n

�

2
+
⇢�
n

�
f,n

��
g,n

� � ⇢+
n

�
f,n

+�
g,n

+

c
n

,

so the optimal weight is

↵⇤
n

=
2c2

n

�2
f,n

+ + �2
f,n

� + c2
n

(�2
g,n

+ + �2
g,n

�) + 2c
n

(⇢�
n

�
f,n

��
g,n

� � ⇢+
n

�
f,n

+�
g,n

+)
·

c
n

(�2
g,n

+ + �2
g,n

�) + 2⇢�
n

�
f,n

��
g,n

� � 2⇢+
n

�
f,n

+�
g,n

+

2c
n

=
c2
n

(�2
g,n

+ + �2
g,n

�) + 2c
n

(⇢�
n

�
f,n

��
g,n

� � ⇢+
n

�
f,n

+�
g,n

+)

�2
f,n

+ + �2
f,n

� + c2
n

(�2
g,n

+ + �2
g,n

�) + 2c
n

(⇢�
n

�
f,n

��
g,n

� � ⇢+
n

�
f,n

+�
g,n

+)
.⇤

55

Now we prove Proposition 3.2.2 for the non-homogeneous setting. For notation

simplicity, F
n

= �2
f,n

+ +�2
f,n

� , G
n

= �2
g,n

+ +�2
g,n

� , P
n

= ⇢�
n

�
f,n

��
g,n

� �⇢+
n

�
f,n

+�
g,n

+ ,

and D
n

= �2
f,n

+ + �2
f,n

� + c2
n

(�2
g,n

+ + �2
g,n

�) + 2c
n

(⇢�
n

�
f,n

��
g,n

� � ⇢+
n

�
f,n

+�
g,n

+).

Let the conditions of Lemma 3.2.1 hold, then the variance of the STAR-SA

gradient (3.1) can be written as

�2
n

=
↵2
n

4c2
n

�

�2
f,n

+ + �2
f,n

�

�

+
(1 � ↵

n

)2

4
(�2

g,n

+ + �2
g,n

�)

+
↵
n

(1 � ↵
n

)

2c
n

�

⇢+
n

�
f,n

+�
g,n

+ � ⇢�
n

�
f,n

��
g,n

�
�

=
↵2
n

4c2
n

F
n

+
(1 � ↵

n

)2

4
G

n

� ↵
n

(1 � ↵
n

)

2c
n

P
n

. (3.8)

Substitute the weight ↵⇤
n

from (3.6) into each of the three components in (3.8) to

obtain

�2
n

=
c4
n

G2
n

+ 4c3
n

G
n

P
n

+ 4c2
n

P 2
n

4c2
n

D2
n

F
n

+
F 2
n

G
n

4D2
n

� c2
n

G
n

F
n

+ 2c
n

P
n

F
n

2c
n

D2
n

P
n

=
c2
n

G2
n

F
n

+ 4c
n

G
n

P
n

F
n

+ 4P 2
n

F
n

4D2
n

+
F 2
n

G
n

4D2
n

� 2c
n

G
n

F
n

P
n

+ 4P 2
n

F
n

4D2
n

=
F 2
n

G
n

+ 2c
n

G
n

P
n

F
n

+ c2
n

G2
n

F
n

4D2
n

. (3.9)

To show �2
n

is strictly less than min{V ar(g
S

(x
n

)), V ar(g
TAR

(x
n

))}, consider two

cases:

Case 1: If V ar(g
STAR

(x
n

)) < V ar(g
S

(x
n

)), then F

2
n

G

n

+2c
n

G

n

P

n

F

n

+c

2
n

G

2
n

F

4D2
n

< F

n

4c2
n

,

which can be simplified to 0 < F 3
n

+ 4c
n

F 2
n

P
n

+ c2
n

(4P 2
n

F
n

+ F 2
n

G
n

) + 4c3
n

G
n

P
n

F
n

,

and is satisfied if F
n

> 0 and P
n

� 0.

Case 2: If V ar(g
STAR

(x
n

)) < V ar(g
TAR

(x
n

), then F

2
n

G

n

+2c
n

G

n

P

n

F

n

+c

2
n

G

2
n

F

n

4D2
n

< G

n

4 ,

which simplifies to 0 < c4
n

G3
n

+ 4c3
n

P
n

G2
n

+ c2
n

(4P 2
n

G
n

+ F
n

G2
n

) + 2c
n

F
n

P
n

G
n

, and

holds for G
n

> 0 and P
n

� 0.

56

The same argument holds for the non-strict case by replacing “ < ” with “ ”

in both cases and are both satisfied for P
n

� 0. Therefore, �2
n

 min{V ar(g
S

(x
n

)),

V ar(g
TAR

(x
n

))}, where the inequality is strict for F
n

, G
n

> 0. ⇤

3.2.2 Convergence

The next result establishes mean-squared convergence of the STAR-SA algo-

rithm. The proof closely follows [18] and [62].

Theorem 3.2.4. Let {x
n

} be a sequence following recursion (1.2) with ⇥ = R and

brf(x
n

) as the STAR gradient estimate defined in (3.1). If the following conditions

hold:

1. There exist positive sequences {a
n

} and {c
n

} such that
P1

n=1 an = 1,

P1
n=1 ancn < 1,

P1
n=1 a

2
n

< 1, and
P1

n=1 a
2
n

c�2
n

< 1.

2. There exist K0, K1 > 0 such that K0|x � x⇤| |f 0(x)| K1|x � x⇤|

for all x 2 ⇥.

3. f 0(x)(x � x⇤) > 0 for all x 2 ⇥\{x⇤}.

4. For c > 0, �2 = sup
x2⇥ V ar[f̃(x+ c) � f̃(x � c)|x] < 1 for all x 2 ⇥.

5. ✏+
n

, ✏�
n

, �+
n

, ��
n

are i.i.d. with mean zero for all n.

Then x
n

converges to x⇤ in L2 as n ! 1.

Proof. Fix positive sequences {a
n

} and {c
n

} satisfying condition 1. Let {x
n

}

be a sequence of estimates following recursion (1.2) with ⇥ = R and brf(x
n

) =

g
STAR

(x
n

). As defined in Section 3.2, g
STAR

= ↵g
S

+ (1 � ↵)g
TAR

.

57

The mean-squared error of the nth estimate can be expressed as

E
⇥

(x
n+1 � x⇤)2

⇤

= E[(x
n

� x⇤ � a
n

g
STAR

(x
n

))2]

= E[(x
n

� x⇤)2] � 2a
n

E[(x
n

� x⇤)g
STAR

(x
n

)] + a2
n

E[g2
STAR

(x
n

)]. (3.10)

Now we establish necessary bounds in order to generate an upper bound for

(3.10). By the mean-value theorem, there exist ⇠1 and ⇠2 such that 0 ⇠1, ⇠2 1

where f(x
n

+c
n

) = f(x
n

)+f 0(x
n

+⇠1cn)cn and f(x
n

�c
n

) = f(x
n

)�f 0(x
n

�⇠2cn)cn.

E[g
S

(x
n

)|x
n

] =
f(x

n

+ c
n

) � f(x
n

� c
n

)

2c
n

=
f 0(x

n

+ ⇠1cn) + f 0(x
n

� ⇠2cn)

2
(3.11)

= (x
n

� x⇤)
1

2

f 0(x
n

+ ⇠1cn)

x
n

� x⇤ + ⇠1cn
+

f 0(x
n

� ⇠2cn)

x
n

� x⇤ � ⇠2cn

�

+
c
n

2

⇠1
f 0(x

n

+ ⇠1cn)

x
n

� x⇤ + ⇠1cn
� ⇠2

f 0(x
n

� ⇠2cn)

x
n

� x⇤ � ⇠2cn

�

 |x
n

� x⇤|K1 + c
n

K1, (3.12)

where the last inequality follows from

K0
�

�

�

f 0(x)

x � x⇤

�

�

�

=
f 0(x)

x � x⇤ K1, (3.13)

as a result of combining conditions 2 and 3. By applying (3.13),

E[(x
n

� x⇤)g
S

(x
n

)|x
n

] = (x
n

� x⇤)2
1

2

f 0(x
n

+ ⇠1cn)

x
n

� x⇤ + ⇠1cn
+

f 0(x
n

� ⇠2cn)

x
n

� x⇤ � ⇠2cn

�

+
c
n

2
(x

n

� x⇤)

⇠1
f 0(x

n

+ ⇠1cn)

x
n

� x⇤ + ⇠1cn
� ⇠2

f 0(x
n

� ⇠2cn)

x
n

� x⇤ � ⇠2cn

�

� (x
n

� x⇤)2K0 � |x
n

� x⇤|c
n

K1. (3.14)

Using conditional variance, condition 4, and after applying |a+b|r 2r�1(|a|r+ |b|r)

58

for r > 1 to the square of equation (3.12) yields

E[g
S

(x
n

)2|x
n

] = V ar(g
S

(x
n

)|x
n

) + E[g
S

(x
n

)|x
n

]2

 �2

4c2
n

+ 2|x
n

� x⇤|2K2
1 + 2c2

n

K2
1 . (3.15)

The bounds regarding g
TAR

(x
n

) are identical to those of g
S

(x
n

), since g
TAR

(x
n

) is

equal to the RHS of (3.11) with ⇠1 = ⇠2 = 1. Using (3.12), (3.14), and (3.15) yields

E
⇥

(x
n+1 � x⇤)2|x

n

⇤

= E[(x
n

� x⇤ � a
n

g
STAR

(x
n

))2|x
n

]

= E[(x
n

� x⇤)2|x
n

] � 2a
n

E[(x
n

� x⇤)g
STAR

(x
n

)|x
n

] + a2
n

E[g2
STAR

(x
n

)|x
n

]

 (x
n

� x⇤)2 � 2a
n

�

(x
n

� x⇤)2K0 � |x
n

� x⇤|c
n

K1

�

+ 4a2
n

✓

�2

4c2
n

+ 2|x
n

� x⇤|2K2
1 + 2c2

n

K2
1

◆

 (x
n

� x⇤)2
�

1 � 2a
n

K0 + 8a2
n

K2
1

�

+ 2a
n

c
n

K1|xn

� x⇤| + a2
n

�2

c2
n

+ 8a2
n

c2
n

K2
1 . (3.16)

Define b
n

= E[(x
n

�x⇤)2]. Take the expectation of (3.16) and apply the inequalities

E[
p
b
n

]
p

E[b
n

] and
p
b
n

 b
n

+ 1 to obtain

E[(x
n+1 � x⇤)2] E[(x

n

� x⇤)2]
�

1 � 2a
n

K0 + 8a2
n

K2
1

�

+ 2a
n

c
n

K1E[|x
n

� x⇤|]

+
a2
n

�2

c2
n

+ 8a2
n

c2
n

K2
1

 b
n

�

1 � 2a
n

K0 + 8a2
n

K2
1

�

+ 2a
n

c
n

K1

p

b
n

+
a2
n

�2

c2
n

+ 8a2
n

c2
n

K2
1

 b
n

�

1 � 2a
n

K0 + 8a2
n

K2
1

�

+ 2a
n

c
n

K1(bn + 1) +
a2
n

�2

c2
n

+ 8a2
n

c2
n

K2
1

= b
n

�

1 � 2a
n

K0 + 2a
n

c
n

K1 + 8a2
n

K2
1

�

+ 2a
n

c
n

K1 +
a2
n

�2

c2
n

+ 8a2
n

c2
n

K2
1

= b
n

R
n

+ T
n

,

where R
n

= 1 � 2a
n

K0 + 2a
n

c
n

K1 + 8a2
n

K2
1 � 1 � 2a

n

K0 + 8a2
n

K2
1 > 0, which

59

is quadratic in a
n

, and the discriminant 4K2
0 � 16K2

1 is negative if K0 < 2
p
2K1,

which holds by condition 2. The coe�cient for a
n

in R
n

, 2c
n

K1 � 2K0, is negative

for su�ciently large n since c
n

! 0 as n ! 1. By condition 1,
Q1

n=1 Rn

< 1

and
P1

n=1 Tn

< 1. As a result, all partial products are uniformly bounded. Thus,

b
n

 M < 1. Since R
i

> 0 for all i, we have the recursion

b
n+1 b1

n

Y

i=1

R
i

+
n�1
X

i=2

T
i

n

Y

j=i+1

R
j

!

+ T
n

.

Applying b
n

 M to the second terms in both (3.14) and (3.15) yields

E[(x
n+1 � x⇤)2]

 E[(x
n

� x⇤)2]
�

1 � 2a
n

K0 + 8a2
n

K2
1

�

+ 2a
n

c
n

K1E[|x
n

� x⇤|] + a2
n

�2

c2
n

+ 8a2
n

c2
n

K2
1

= E[(x
n

� x⇤)2] (1 � 2a
n

K0) + 8a2
n

K2
1E[(x

n

� x⇤)2] + 2a
n

c
n

K1E[|x
n

� x⇤|]

+
a2
n

�2

c2
n

+ 8a2
n

c2
n

K2
1

 E[(x
n

� x⇤)2] (1 � 2a
n

K0) + 8a2
n

K2
1M + 2a

n

c
n

K1

p
M +

a2
n

�2

c2
n

+ 8a2
n

c2
n

K2
1

= b
n

R0
n

+ T 0
n

.

Since a
n

! 0, there exists n0 such that a
n

< 1/(2K0) for all n � n0, which implies

R0
n

> 0. Then we have the recursion

b
n+1 b

n0

n

Y

i=n0

R0
i

+
n�1
X

i=n0

T 0
i

n

Y

j=i+1

R0
j

!

+ T 0
n

for n = n0 + 1, n0 + 2, ...

Q

n

i=n0
R0

i

! 0 as n ! 1 since
P

a
n

= 1. By condition 1 and Kronecker’s lemma,

P

n�1
i=n0

⇣

T 0
i

Q

n

j=i+1 R
0
j

⌘

! 0 as n ! 1. Therefore, for ✏ > 0, there exists n1 such that

Q

n

j=n0
R0

j

< ✏

3M2 for all n � n1, there exists n2 such that
P

n�1
i=n0

⇣

T 0
i

Q

n

j=i+1 R
0
j

⌘

<

✏/3 for all n � n2, and there exists n3 such that T 0
n

< ✏/3 for all n � n3. Hence, for

all n > max (n1, n2, n3) > n0, bn+1 M2 ✏

3M2 +
✏

3 +
✏

3 = ✏. ⇤

60

We investigate the exact MSE for quadratic functions of the form f(x) = �ax2,

where a > 0 and x⇤ = 0. The finite-time MSE of quadratic functions in this form

can be computed explicitly, which allows us to compare the performance of di↵erent

algorithms analytically.

Proposition 3.2.5. For f(x) = �ax2, a > 0, the respective MSEs after n iterations

following recursion (1.2) can be expressed as

MSE
RM

= A
n

+ �2
g

n�2
X

k=1

a2
k

⇧n�1
j=k+1 (1 � 2a

j

a)2 + �2
g

a2
n�1,

MSE
KW

= A
n

+
�2
f

2

n�2
X

k=1

✓

a2
k

c2
k

◆

⇧n�1
j=k+1 (1 � 2a

j

a)2 +
�2
f

a2
n�1

2c2
n�1

,

MSE
STAR

= A
n

+
n�2
X

k=1

a2
k

2

✓

↵2
k

�2
f

c2
k

+ (1 � ↵
k

)2�2
g

◆

· ⇧n�1
j=k+1(1 � 2a

j

a)2

+
a2
n�1

2

✓

↵2
n�1�

2
f

c2
n�1

+ (1 � ↵
n�1)

2�2
g

◆

,

where A
n

= x2
0⇧

n�1
i=1 (1 � 2a

i

a)2 and x0 is the initial iterate.

Proof. We can express the nth estimates of RM, KW, and STAR-SA respec-

tively as

xRM

n

= x
n�1 + a

n�1f̃(xn�1)

= x
n�1 + a

n�1(�2ax
n�1 + �

n�1)

= x
n�1(1 � 2a

n�1a) + a
n�1�n�1

xKW

n

= x
n�1 + a

n�1f̃(xn�1)

= x
n�1 + a

n�1

✓

�2ax
n�1 +

✏+
n�1 � ✏�

n�1

2c
n�1

◆

= x
n�1(1 � 2a

n�1axn�1) + a
n�1

✏+
n�1 � ✏�

n�1

2c
n�1

61

xSTAR

n

= x
n�1 + a

n�1f̃(xn�1)

= x
n�1 + a

n�1

✓

�2ax
n�1 + ↵

n�1
✏+
n�1 � ✏�

n�1

2c
n�1

+ (1 � ↵
n�1)�n�1

◆

= x
n�1(1 � 2a

n�1axn�1) + a
n�1

✓

↵
n�1

✏+
n�1 � ✏�

n�1

2c
n�1

+ (1 � ↵
n�1)�n�1

◆

.

The recursions can be rewritten in the general form

x
n

= x
n�1Bn�1 + C

n�1,

where B
n�1 = 1 � 2a

n�1a and C
n�1 depends on the algorithm. Then

x
n

= x
n�1Bn�1 + C

n�1

= x
n�2Bn�2Bn�1 + C

n�2Bn�1 + C
n�1

= x
n�3Bn�3Bn�2Bn�1 + C

n�3Bn�2Bn�1 + C
n�2Bn�1 + C

n�1

= x0⇧
n�1
i= B

i

+
n�2
X

j=0

C
j

⇧n�2
k=j+1Bk

+ C
n�1

Then the MSE of the nth estimate can be written as

MSE = E[(x
n

� x⇤)2] = E[x2
n

]

= E[(x0⇧
n�1
i=0 Bi

+
n�2
X

j=0

C
j

⇧n�2
k=j+1Bk

+ C
n�1)

2]

= x2
0⇧

n�1
i=0 B

2
i

+ E[(
n�2
X

j=0

C
j

⇧n�2
k=j+1Bk

)2] + E[C2
n�1]

+ 2x0⇧
n�1
i=0 Bi

E[
n�2
X

j=0

C
j

⇧n�2
k=j+1Bk

] + 2x0⇧
n�1
i=0 Bi

E[C
n�1]

+ 2E[C
n�1

n�2
X

j=0

C
j

⇧n�2
k=j+1Bk

]

= x2
0⇧

n�1
i=0 B

2
i

+
n�2
X

j=0

E[C2
j

]⇧n�2
k=j+1B

2
k

+ E[C2
n�1],

62

where

E[C2
k

] =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

a2
k

�2
g

for RM ;

�2
f

a2
k

2c2
k

for KW ;

a2
k

2

✓

↵2
k

�2
f

c2
k

+ (1 � ↵
k

)2�2
g

◆

for STAR,

which concludes the proof. ⇤

Proposition 3.2.6. If ↵2
k

�2
f

< �2
g

c2
k

for all k, then MSE
STAR

< MSE
RM

. If

2�2
g

c2
k

< �2
f

for all k, then MSE
RM

< MSE
KW

. If 2�2
g

c2
k

< �2
f

and ↵2
k

�2
f

< �2
g

c2
k

for

all k, then MSE
STAR

< MSE
KW

.

Proof. From Proposition 3.2.5,

MSE
STAR

< MSE
RM

() a2
k

2

✓

↵2
k

�2
f

c2
k

+ (1 � ↵
k

)2�2
g

◆

< �2
g

a2
k

()
↵2
k

�2
f

c2
k

+ (1 � ↵
k

)2�2
g

< 2�2
g

() ↵2
k

�2
f

+ c2
k

(1 � ↵
k

)2�2
g

< 2�2
g

c2
k

() ↵2
k

�2
f

+ (1 � ↵
k

)2�2
g

c2
k

< 2�2
g

c2
k

() ↵2
k

�2
f

< (2 � (1 � ↵
k

)2)�2
g

c2
k

() ↵2
k

�2
f

< �2
g

c2
k

,

MSE
RM

< MSE
KW

() �2
g

a2
k

<
�2
f

a2
k

2c2
k

() 2�2
g

c2
k

< �2
f

,

for all k. If ↵2
k

�2
f

< �2
g

c2
k

and 2�2
g

c2
k

< �2
f

, then MSE
STAR

< MSE
KW

.⇤

The exact MSE of the estimators resulting from each of the algorithms has

three components. The first term is identical for all three algorithms and is the only

component that contains the initial value, so it does not a↵ect our comparison of

63

the MSE across algorithms for the unconstrained, quadratic case. From Proposition

3.2.6, if certain conditions are satisfied, the MSE resulting from STAR-SA for all

steepness levels is less than the MSE resulting from RM and KW for the same

number of iterations

3.2.3 Numerical Experiments

We conduct two sets of numerical experiments to compare the performance of

the STAR-SA algorithm against the classical RM and KW methods under various

combinations of noise levels �
f

and �
g

[11]. We implement all three algorithms

and generate the finite-time MSE of the estimate x
N

for quadratic functions of

the form f(x) = �ax2, a > 0, and ⇥ = [�50, 50]. The gain sequence is chosen as

a
n

= ✓
a

(n+1)�1 and the finite di↵erence perturbation sequence is c
n

= ✓
c

(n+1)�1/4.

To illustrate the performance of the proposed algorithm, we choose parameter values

✓
a

2 {1, 10, 100}, ✓
c

2 {0.1, 1.0}, and N 2 {100, 1000, 10000} as well as steepness

level a 2 {10k|k = �3,�2.5, . . . , 1.5, 2} and initial value x0 2 {�50 + 5k|k =

1, . . . , 10}. In a practical setting, the noise level of the function and its gradient could

di↵er, so we consider a variety of noise level combinations, �
f

2 {10k|k = �3, . . . , 1}

and �
g

2 {10k|k = �3, . . . , 1}.

Although we implemented RM, KW, and STAR-SA for all of the parameter

settings mentioned above, we will only discuss two representative subsets of our

results. For both sets of numerical experiments, we choose a
n

= 10(n + 1)�1 and

c
n

= 0.1(n+ 1)�1/4, and N = 1000. The MSE of the 1000th iterate is computed for

64

the algorithms based on 2000 sample paths. In this section, MSE refers to the MSE

of the 1000th iterate for STAR-SA and KW, and 2000th iteration for RM.

3.2.3.1 Experiment 1: vary initial value

For the first set of numerical experiments, we fix the steepness level and

vary the initial value x0 for di↵erent combinations of noise levels, �
f

and �
g

. We

only present the results for f(x) = �0.1x2 for �
f

2 {0.001, 0.1, 1.0} and �
g

2

{0.001, 0.1, 1.0}, to illustrate the potential gains of STAR-SA. The STAR-SA algo-

rithm outperforms KW and RM in six out of the nine combinations for all initial

values, which can be seen in the last two rows of Figure 3.2 (i.e., 3.2d, 3.2e, 3.2f,

3.2g, 3.2h, and 3.2i). The commonality among these six cases is the higher function

noise, i.e., �
f

= 0.1, 1.0. With the exception of Figure 3.2f, RM performs signif-

icantly better than KW, but STAR-SA has the lowest MSE among the three SA

algorithms. Figure 3.2f depicts a case where RM and KW both perform similarly

with intertwining lines, but combining secant and tangents averaged gradients in

STAR-SA results in a much lower MSE.

In two of the remaining three cases, STAR-SA does not necessarily outperform

RM nor KW, but it performs as well as the better of the two algorithms, as seen in

Figures 3.2b and 3.2c. The function noise level is very low and the gradient noise

is higher, i.e., �
f

= 0.001 and �
g

> �
f

, which increases the accuracy of the indirect

gradient and has the opposite e↵ect on the direct gradient. Not surprisingly in the

two cases, KW outperforms RM, but the performance of STAR-SA is on par with

65

(a) �

f

= 0.001, �

g

= 0.001 (b) �

f

= 0.001, �

g

= 0.1 (c) �

f

= 0.001, �

g

= 1.0

(d) �

f

= 0.1, �

g

= 0.001 (e) �

f

= 0.1, �

g

= 0.1 (f) �

f

= 0.1, �

g

= 1.0

(g) �

f

= 1.0, �

g

= 0.001 (h) �

f

= 1.0, �

g

= 0.1 (i) �

f

= 1.0, �

g

= 1.0

Figure 3.2: f(x) = �0.1x2,⇥ = [�50, 50], a
n

= 10(n + 1)�1, c
n

=

0.1(n+ 1)�1/4, N = 1000.

66

KW. From the eight figures discussed, it appears that integrating both indirect

and direct gradients together will either improve the SA performance, which can

be significant, or in the worst case, it will not hurt the performance. The only

case where the MSE of the STAR-SA algorithm is not approximately less than or

equal to the MSE of KW and RM is in the case when both noise levels are very

low, i.e., �
f

= �
g

= 0.001, which is shown in Figure 3.2a. In this instance, RM

performs better than STAR-SA with the exception of when the initial value is close

to the optimum x⇤ = 0. In fact, the MSE of STAR-SA decreases as initial value x0

approaches x⇤.

3.2.3.2 Experiment 2: vary steepness level

In practice, the geometry of the function is unknown, so our second set of nu-

merical experiments investigates the performance of the STAR-SA algorithm com-

pared to RM and KW as a function of the steepness level a for di↵erent combinations

of noise. We set the initial value to be far from the optimum and consider identical

parameters as in the first experiment, i.e., x0 = �30, a
n

= 10(n+1)�1, c
n

= 0.1(n+

1)�1/4, and vary the steepness level a. We implement RM, KW, and STAR-SA and

compute the MSE for N = 1000 and all combinations of �
f

2 {0.001, 0.1, 1.0} and

�
g

2 {0.001, 0.1, 1.0}, illustrated in Figure 3.3. For a fixed step size {a
n

}, the MSE

is much higher for both flat and steep quadratic functions across algorithms, which

is most likely because the selected step size {a
n

} is too small for extremely flat and

too large for steep functions, respectively. If the step size is not chosen

67

(a) �

f

= 0.001, �

g

= 0.001 (b) �

f

= 0.001, �

g

= 0.1 (c) �

f

= 0.001, �

g

= 1.0

(d) �

f

= 0.1, �

g

= 0.001 (e) �

f

= 0.1, �

g

= 0.1 (f) �

f

= 0.1, �

g

= 1.0

(g) �

f

= 1.0, �

g

= 0.001 (h) �

f

= 1.0, �

g

= 0.1 (i) �

f

= 1.0, �

g

= 1.0

Figure 3.3: f(x) = �ax2,⇥ = [�50, 50], a
n

= 10(n + 1)�1, c
n

=

0.1(n+ 1)�1/4, N = 1000.

68

appropriately, all three algorithms perform equally poorly, with the exception of the

case when both noise levels are low, i.e., �
f

= �
g

= 0.001, where KW results in a

lower MSE. The fixed step size and stopping time only appear to be appropriate

for a = 10�1, 10�1/2. For all noise levels under the these two steepness levels, the

MSE of STAR-SA is either less than or equal to RM and KW. The only instance

when combining direct and indirect gradients is inferior is when both noise levels

are low, i.e., �
f

= �
g

= 0.001 for a = 10�1. Otherwise, STAR-SA shows promise

since it either outperforms or at least it never performs worse than either RM or

KW. When the variance of the function is high, i.e., �
f

2 {0.1, 1.0}, KW performs

poorly across steepness levels.

3.2.3.3 Results Summary

The following conclusions are specifically for the fixed parameter setting f(x) =

�ax2, a
n

= 10n�1, c
n

= 0.1n�1/4.

• If the function is neither too steep nor too flat:

• All algorithms are insensitive to the initial start value.

• If �
f

is large, STAR-SA has a significantly lower MSE than that of KW.

• If �
f

and �
g

are high, the MSE of STAR-SA is lower than that of RM, but the

di↵erence is not as prominent as the di↵erence compared to that of KW.

• For very flat functions:

• If �
f

< �
g

, then MSE
STAR

⇡ MSE
KW

and MSE
KW

< MSE
RM

, and this gap

decreases as the function flattens.

69

• If �
g

< �
f

or if �
f

and �
g

are both high, then MSE
STAR

⇡ MSE
RM

and

MSE
RM

< MSE
KW

, and this di↵erence shrinks as the steepness level de-

creases.

• For very steep functions, the performances of the algorithms are equally poor.

Overall, as a result from both sets of numerical tests, the STAR-SA algorithm either

performs significantly better than both KW and RM or the MSE is approximately

equal to that of the algorithm with the lower MSE. Therefore, the new STAR-SA

algorithm is competitive against the classic KW and RM methods.

3.3 STAR-SPSA

Now we extend STAR-SA to the multidimensional case. The direct extension

using finite di↵erences is computationally ine�cient for high-dimensional problems,

so instead, we consider the SP gradient, which only requires the two performance

estimates f̃(x
n

+ c
n

�
n

) and f̃(x
n

� c
n

�
n

) for each indirect gradient (Secant). The

available direct gradient estimates rf̃(x
n

+ c
n

�
n

) and rf̃(x
n

� c
n

�
n

) can be

averaged to provide another gradient estimate (Tangents AveRaged).

For multivariate stochastic optimization problems, we present the Secant-

Tangents AveRaged simultaneous perturbation stochastic approximation (STAR-

SPSA) gradient estimate, which is a convex combination of an SP gradient estimate

and an average of two associated direct gradients. For each dimension i 2 {1, . . . , d},

70

the ith component of the STAR-SPSA gradient can be written as

g
STAR,i

(x
n

) = ↵
n,i

f̃(x
n

+ c
n

�
n

) � f̃(x
n

� c
n

�
n

)

2c
n

�
n,i

+ (1 � ↵
n,i

)
rf̃

i

(x
n

+ c
n

�
n

) + rf̃
i

(x
n

� c
n

�
n

)

2
, (3.17)

where �
n

= (�
n,1, . . . ,�n,d

), ↵
n,i

2 [0, 1], and c
n

2 R+ for n 2 N, and c
n

! 0 as

n ! 1.

Let f̃(x
n

±c
n

�
n

) = f(x
n

±c
n

�
n

)+✏±
n

, rf̃
i

(x
n

±c
n

�
n

) = rf
i

(x
n

±c
n

�
n

)+�±
n,i

,

where ✏±
n

and �±
n,i

are Gaussian noise with zero mean for i = 1, . . . , d. For notational

simplicity, let V ar(f̃(x
n

± c
n

�
n

)) = �2
f

, V ar(rf̃
i

(x
n

± c
n

�
n

)) = �2
g,i

, Corr(f̃(x
n

±

c
n

�
n

),rf̃
i

(x
n

± c
n

�
n

)) = ⇢
i

, V ar(g
SPSA,i

(x
n

)) = V ar
⇣

f̃(x
n

+c

n

�

n

)�f̃(x
n

�c

n

�

n

)
2c

n

�
n,i

⌘

=

�

2
f

2c2
n

�2
n,i

, V ar(g
TAR,i

(x
n

)) = V ar
⇣

rf̃

i

(x
n

+c

n

�

n

)+rf̃

i

(x
n

�c

n

�

n

)
2

⌘

=
�

2
g,i

2 , and V ar(g
STAR,i

(x
n

)) = �2
n,i

for i = 1, . . . , d.

Analogous to Lemma 3.2.1 and Proposition 3.2.2, the next two results provide a

STAR-SPSA gradient variance minimizing deterministic weight sequence that guar-

antees the variance of the STAR-SPSA gradient is strictly less than that of RM and

SPSA.

3.3.1 Optimal Deterministic Weights

Lemma 3.3.1. For g
STAR

defined in (3.17), assume ✏+
n

? ✏�
n

and �+
n,i

? ��
n,i

for all

n and i = 1, . . . , d. Then V ar(g
STAR,i

(x
n

)) is minimized when

↵⇤
n,i

=
�2
g,i

c2
n

�2
n,i

�2
f

+ �2
g,i

c2
n

�2
n,i

. (3.18)

Proof. For notational simplicity, let f̃±
n

= f̃(x
n

± c
n

�
n

), g̃±
n

= rf̃(x
n

±

c
n

�
n

), and g̃±
n

= (g̃±
n,1), . . . , g̃

±
n,d

).

71

By the orthogonality assumption, the ith component of the variance can be

written as

�

2
n,i

= V ar

↵

n,i

˜

f

+
n

� ˜

f

�
n

2c

n

�

n,i

+ (1 � ↵

n,i

)

g̃

+
n,i

+ g̃

�
n,i

2

!

=V ar

✓

↵

n,i

2c

n

�

n,i

˜

f

+
n

+

1 � ↵

n,i

2

g̃

+
n,i

◆

+ V ar

✓

� ↵

n,i

2c

n

�

n,i

˜

f

�
n

+

1 � ↵

n,i

2

g̃

�
n,i

◆

=

✓

↵

n,i

2c

n

�

n,i

◆2

V ar(

˜

f

+
n

) +

✓

1 � ↵

n,i

2

◆2

V ar(g̃

+
n,i

) + 2

↵

n,i

2c

n

�

n,i

1 � ↵

n,i

2

Cov(

˜

f

+
n

, g̃

+
n,i

)

+

✓

↵

n,i

2c

n

�

n,i

◆2

V ar(

˜

f

�
n

) +

✓

1 � ↵

n,i

2

◆2

V ar(g̃

�
n,i

) � 2

↵

n,i

2c

n

�

n,i

1 � ↵

n,i

2

Cov(

˜

f

�
n

, g̃

�
n,i

)

=

✓

↵

n,i

2c

n

�

n,i

◆2

�

2
f

+

✓

1 � ↵

n,i

2

◆2

�

2
g,i

+ 2

↵

n,i

2c

n

�

n,i

1 � ↵

n,i

2

⇢

i

�

f

�

g,i

+

✓

↵

n,i

2c

n

�

n,i

◆2

�

2
f

+

✓

1 � ↵

n,i

2

◆2

�

2
g,i

� 2

↵

n,i

2c

n

�

n,i

1 � ↵

n,i

2

⇢

i

�

f

�

g,i

=

↵

2
n,i

2c

2
n

�

2
n,i

�

2
f

+

(1 � ↵

n,i

)

2

2

�

2
g,i

, (3.19)

where the second equality follows from the independence of the function/gradient

at di↵erent points. Di↵erentiate the variance (3.19) with respect to the weight ↵
n,i

to obtain

@�2
n,i

@↵
n,i

=
↵
n,i

c2
n

�2
n,i

�2
f

� (1 � ↵
n,i

)�2
g,i

. (3.20)

Solve for the zero of (3.20) to obtain (3.18), which is a global minimum since (3.20)

is monotonically increasing in ↵
n,i

. ⇤

Proposition 3.3.2. Let brf(x
n

) be defined as in (3.17) and the convex weight be

defined in (3.18). If the conditions of Lemma 3.3.1 hold, then V ar(g
STAR,i

(x
n

))

min {V ar(g
SPSA,i

(x
n

)), V ar(g
TAR,i

(x
n

))} for i = 1, . . . , d and all n, where the in-

equality is strict if 0 < �2
f

and 0 < �2
g,i

c2
n

�2
n,i

hold.

Proof. By the conditions of Lemma 3.3.1, the ith component of the variance

72

can be written as

�2
n,i

=
↵2
n,i

2c2
n

�2
n,i

�2
f

+
(1 � ↵

n,i

)2

2
�2
g,i

. (3.21)

Substitute ↵⇤
n,i

from (3.18) into the variance (3.21) to obtain

�2
n,i

=
1

2c2
n

�2
n,i

�2
g,i

c2
n

�2
n,i

�2
f

+ �2
g,i

c2
n

�2
n,i

!2

�2
f

+
1

2

1 �
�2
g,i

c2
n

�2
n,i

�2
f

+ �2
g,i

c2
n

�2
n,i

!2

�2
g,i

=
�2
f

�2
g,i

2
�

�2
f

+ �2
g,i

c2
n

�2
n,i

� .

To show �2
n,i

is strictly less than min{V ar(g
SPSA,i

(x
n

)), V ar(g
TAR,i

(x
n

))}, we con-

sider two cases: 1) �2
n,i

<
�

2
f

2c2
n

�2
n,i

and 2) �2
n,i

<
�

2
g,i

2 . However, since c
n

! 0 as

n ! 1, then
�

2
f

2c2
n

�2
n,i

! 1, so eventually, we will be in the latter case.

Case 1: If �2
n,i

<
�

2
f

2c2
n

�2
n,i

, then
�

2
f

�

2
g,i

2(�2
f

+�

2
g,i

c

2
n

�2
n,i

)
<

�

2
f

2c2
n

�2
n,i

, which holds when 0 < �2
f

.

Case 2: If �2
n,i

<
�

2
g,i

2 , then
�

2
f

�

2
g,i

2(�2
f

+�

2
g,i

c

2
n

�2
n,i

)
<

�

2
g,i

2 , which holds when 0 < �2
g,i

c2
n

�2
n,i

.

If 0 < �2
f

and 0 < �2
g,i

c2
n

�2
n,i

, then the strict inequality holds; however if either

�
f

= 0 or �2
g,i

c2
n

�2
n,i

= 0, then the same argument holds for the two cases with

“ < ” replaced with “ , ” resulting in a non-strict inequality. Therefore, �2
n,i

min
n

�

2
f

2c2
n

�2
n,i

,
�

2
g,i

2

o

= min{V ar(g
SPSA,i

(x
n

)), V ar(g
TAR,i

(x
n

))}, where the inequality

is strict for 0 < �2
f

and 0 < �2
g,i

c2
n

�2
n,i

. ⇤

As in the STAR-SA result, the weight ↵⇤
n,i

for STAR-SPSA is also independent

of the correlation coe�cient because of the homogeneous noise

73

3.3.2 Convergence

We define the error and bias of the STAR-SPSA gradient estimate respectively

as

b
n

(x
n

) = E[g
STAR

(x
n

) � rf(x
n

)|x
n

],

e
n

(x
n

) = g
STAR

(x
n

) � E[g
STAR

(x
n

)|x
n

],

where b
n

(x
n

) = (b
n,1(xn

), . . . , b
n,d

(x
n

)) and e
n

(x
n

) = (e
n,1(xn

), . . . , e
n,d

(x
n

)).

The following lemma is used in the convergence proof of Theorem 3.3.4.

Lemma 3.3.3. Suppose {x
n

} is generated under recursion (1.2) with ⇥ = Rd using

the STAR-SPSA gradient estimate defined in (3.17). If {�
n,i

}d

i=1 are i.i.d., symmet-

rically distributed with mean zero, uniformly bounded with finite inverse moments,

and f(·) is three-times continuously di↵erentiable and f (3)(·) is uniformly bounded,

then

b
n

(x
n

) ! 0 as n ! 1.

Proof. We use proof techniques similar to those in [55] by applying results

from [39].

By assumption for each n 2 N, there exist positive constants K1, K2, and K3

such that |�
n,l

| K1 a.s., E[|��1
n,l

|] K2 for l = 1, . . . , d and |f (3)
i,j,k

(·)| K3 8i, j, k.

b
n,i

(x
n

) = E[↵
n,i

· g
SPSA,i

(x
n

) + (1 � ↵
n,i

) · g
TAR,i

(x
n

) � rf
i

(x
n

)|x
n

]

= ↵
n,i

E[g
SPSA,i

(x
n

) � rf
i

(x
n

)|x
n

] + (1 � ↵
n,i

)E[g
TAR,i

(x
n

) � rf
i

(x
n

)|x
n

].

Since E[✏+
n

� ✏�
n

|x
n

] = 0 a.s. and f (3)(·) exists and is continuous, using Taylor’s

74

series expansions, we have

f(x
n

± c
n

�
n

) = f(x
n

) ± c
n

hf 0(x
n

),�
n

i + c2
n

hf 00(x
n

)�
n

,�
n

i

±c3
n

f (3)(t±
n

)[�
n

⌦ �
n

⌦ �
n

], (3.22)

where t+
n

and t�
n

are on the line segment between x
n

and x
n

± c
n

�
n

, respectively,

and ⌦ denotes the Kronecker product. Using (3.22), we have

E[g
SPSA,i

(x
n

) � rf
i

(x
n

)|x
n

]

= E

"

f̃(x
n

+ c
n

�
n

) � f̃(x
n

� c
n

�
n

)

2c
n

�
n,i

� ��1
n,i

hf 0(x
n

),�
n

i
�

�

�

x
n

#

= E

f(x
n

+ c
n

�
n

) � f(x
n

� c
n

�
n

)

2c
n

�
n,i

� ��1
n,i

hf 0(x
n

),�
n

i
�

�

�

x
n

�

=
c2
n

12
E
⇥

��1
n,i

(f (3)(t+
n

) + f (3)(t�
n

))[�
n

⌦ �
n

⌦ �
n

]|x
n

⇤

. (3.23)

The magnitude of the right hand side of (3.23) is bounded by

c2
n

K3

6

d

X

i=1

d

X

j=1

d

X

k=1

E
�

�

�

�
n,i

�
n,j

�
n,k

�
n,i

�

�

�

 c2
n

K3

6
· {[d3 � (d � 1)3]K2

1 + (d � 1)3K2K
3
1}. (3.24)

Similarly, since E[�+
n,i

+��
n,i

|x
n

] = 0 a.s. for i = 1, . . . , d, by Taylor’s series expansions,

rf
i

(x
n

± c
n

�
n

) = rf
i

(x
n

) ± c
n

hr2f
i

(x
n

),�
n

i + c2
n

hr3f
i

(s±
n

)�
n

,�
n

i, (3.25)

where s+
n

and s�
n

are on the line segment between x
n

and x
n

± c
n

�
n

, respectively.

75

Using (3.25),

E[g
TAR,i

(x
n

) � rf
i

(x
n

)|x
n

]

= E

"

rf̃
i

(x
n

+ c
n

�
n

) + rf̃
i

(x
n

� c
n

�
n

)

2
� rf

i

(x
n

)
�

�

�

x
n

#

= E

rf
i

(x
n

+ c
n

�
n

) + rf
i

(x
n

� c
n

�
n

)

2
� rf

i

(x
n

)
�

�

�

x
n

�

=
c2
n

2
E
⇥

�T

n

(f (3)(s+
n

) + f (3)(s�
n

))�
n

|x
n

⇤

. (3.26)

The magnitude of the right hand side of (3.26) is bounded by

c2
n

K3

d

X

i=1

E|�2
n,i

| c2
n

K3dK
2
1 . (3.27)

Apply bounds (3.24) and (3.27) to obtain

b
n,i

(x
n

) (1 � ↵
n,i

)c2
n

K3d
2K2

1

+
↵
n,i

c2
n

K3

6
· {[d3 � (d � 1)3]K2

1 + (d � 1)3K2K
3
1}. (3.28)

The RHS of (3.28) converges to zero since c
n

! 0 as n ! 1, and this holds for all

i, which concludes the proof. ⇤

Theorem 3.3.4. Let {x
n

} be a sequence generated using recursion (1.2) with ⇥ =

Rd using the STAR-SPSA gradient estimate defined in (3.17). Assume the condi-

tions of Lemma 3.3.3 in addition to the following hold:

1. There exist positive sequences {a
n

} and {c
n

} such that c
n

! 0 as n ! 1,

P1
n=1 an = 1,

P1
n=1 a

2
n

c�2
n

< 1.

2. There exist positive constants C1, C2, C3 such that E[rf̃
i

(x
n

± c
n

�
n

)2] C1,

E[f̃(x
n

± c
n

�
n

)4] C2
2 , and E[��4

n,i

] C2
3 for i = 1, . . . , d.

76

3. For all n, ||x
n

|| < 1 a.s.

4. Let x⇤ be an asymptotically stable solution to the ODE @x(t)/@t = �rf(x).

5. There exists a compact set D ✓ D(x⇤) such that x
n

2 D infinitely often, where

D(x⇤) is the domain of attraction (i.e., D(x⇤) = {x0| limt!1 x(t|x0) = x⇤}).

Then x
n

! x⇤ a.s. as n ! 1.

Proof. By Lemma 2.2.1 and Theorem 2.3.1 in [39], if conditions 1 - 5 are

satisfied, then x
n

! x⇤ a.s. as n ! 1 if

(a) ||b
n

(x
n

)|| < 1 for all n and b
n

(x
n

) ! 0 as n ! 1 a.s.,

(b) lim
n!1 P

�

sup
m�n

||
P

m

k=n

a
k

e
k

(x
k

)|| � ⌘
�

= 0 for all ⌘ > 0.

Since (a) follows directly from Lemma 3.3.3, it remains to establish (b). Apply

Doob’s inequality to the martingale sequence {
P

m

i=k

a
i

e
i

(x
i

)}
m�k

to obtain

P

sup
m�n

||
m

X

k=n

a
k

e
k

|| � ⌘

!

 ⌘�2E

"

||
m

X

k=n

a
k

e
k

||2
#

= ⌘�2
m

X

k=n

a2
k

E||e
k

||2. (3.29)

Consider i 2 {1, . . . , d}. Then the variance of the ith gradient component can be

expressed as

E[g2
STAR,i

(x
n

)] = ↵2
n,i

E[g2
SPSA,i

(x
n

)] + 2↵
n,i

(1 � ↵
n,i

)E[g
TAR,i

(x
n

) · g
SPSA,i

(x
n

)]

+ (1 � ↵
n,i

)2E[g2
TAR,i

(x
n

)]. (3.30)

It remains to show that each of the three terms on the right hand side of (3.30) are

bounded. We apply |a+ b|r 2r�1(|a|r + |b|r) and Holder’s inequality to obtain

E[g2
TAR,i

(x
n

)] = E

2

4

rf̃
i

(x
n

+ c
n

�
n

) + rf̃
i

(x
n

� c
n

�
n

)

2

!2
3

5

 1

2
E
h

(rf̃
i

(x
n

+ c
n

�
n

)2 + (rf̃
i

(x
n

� c
n

�
n

)2
i

 C1 (3.31)

77

and

E[g2
SPSA,i

(x
n

)] = E

2

4

f̃(x
n

+ c
n

�
n

) � f̃(x
n

� c
n

�
n

)

2c
n

�
n,i

!2
3

5

 1

2c2
n

E

"

f̃(x
n

+ c
n

�
n

)2 + f̃(x
n

� c
n

�
n

)2

�2
n,i

#

 1

2c2
n

E
h

|(f̃(x
n

+ c
n

�
n

)|4
i1/2

+ E
h

|(f̃(x
n

� c
n

�
n

)|4
i1/2

�

· E

�

�

�

1

�
n,i

�

�

�

4
�1/2

 C2C3

c2
n

. (3.32)

Then we apply Jensen’s inequality, (3.31), and (3.32) to obtain

E[g

TAR,i

(x

n

) · g

SPSA,i

(x

n

)]

= E

"

r ˜

f

i

(x

n

+ c

n

�

n

) + r ˜

f

i

(x

n

� c

n

�

n

)

2

!

·

˜

f(x

n

+ c

n

�

n

) � ˜

f(x

n

� c

n

�

n

)

2c

n

�

n,i

!#

 E

"

�

�

�

r ˜

f

i

(x

n

+ c

n

�

n

) + r ˜

f

i

(x

n

� c

n

�

n

)

2

�

�

�

#

· E

"

�

�

�

˜

f(x

n

+ c

n

�

n

) � ˜

f(x

n

� c

n

�

n

)

2c

n

�

n,i

�

�

�

#

p

C1C2C3

c

n

. (3.33)

Applying (3.31), (3.32), and (3.33) yields

E[||e
n

||2] d

✓

C2C3

4c2
n

+

p
C1C2C3

2c
n

+
C1

4

◆

. (3.34)

By condition 1, (3.34), and (3.29), (b) holds. ⇤

3.3.3 Numerical Experiments

3.3.3.1 9-station Closed Jackson Network

For the multidimensional case, we implement RM, SPSA, and STAR-SPSA on

a 9-station closed Jackson queueing network problem from [35], depicted in Figure

3.4 with associated transition probabilities. In a closed Jackson queueing network,

78

1" 4"

3"

2" 5"

6"

7"

8"

9"

.3" .3"

.3"

.7" .7" .7"

.4" .4" .4"

.6" .6"

.6"

.5"

.5"

.5" .5"

.5"

.5"

Figure 3.4: 9-station closed Jackson queueing network.

the number of customers in the system remains fixed, hence the absence of arrows

from outside.

The objective is to maximize the total throughput of the system TP (x) (to-

tal # of customers served/total time), given restrictions on the mean service time

x(i), i = 1, . . . , d, which can be summarized as

max
x2⇥

TP (x)

s.t.
d

X

i=1

x(i) = M,

x(i) > 0 for i = 1, . . . , d,

where M = 10, d = 9 (number of stations). The network consists of 9 first-come,

first-served stations, where the service time follows an exponential distribution with

mean service time x(i) for station i and with 10 customers in the system.

The (equality and positivity) constraints prevent straightforward implemen-

79

tations of the gradients and projection operator. For the direct gradient, we use

the IPA gradient estimate designed specifically for the total throughput of a closed

Jackson queueing network proposed in [34], with a slight modification by rewriting

one of the estimates as a function of the other components and using the chain rule

to take into account the equality constraint (i.e., x(r) = M �
P

d

i=1,i 6=r

x(i), where r

is an arbitrary integer between 1 and d, inclusive). For the SP gradient estimator,

the components in the random vector �
n

must sum to zero to ensure the perturbed

components satisfy the equality condition (i.e., �
n,r

= 0, �
n,i

= ±1 for i 6= r, where

P9
i=1,i 6=r

�
n,i

= 0). In addition, each perturbed component must be positive, i.e.,

x(i)
n

> c
n

for all i. After each iteration, a projection must be applied to maintain

feasibility; however, an orthogonal projection onto the hyperplane could violate the

x(i)
n

> c
n

condition for some i, so we make a slight adjustment by projecting the

current iterate back to the previous iterate if the condition is violated.

In the SA algorithms, we use the parameters a
n

= ✓
a

(n + 1)�1, ↵
n,i

=

c2
n

/(1 + c2
n

), uniform start values x(i)
0 = 10/9 for i = 1, . . . , 9, c

n

= ✓
c

(n + 1)�1/4,

20 macroreplications, a stopping time of N = 50 for SPSA and STAR-SPSA, and

N = 100 for RM. For simplicity, we drop the second subscript i from the convex

weight ↵
n,i

, since they are identical for all i. The update occurs for only eight es-

timates since the rth component is a result of the binding constraint. However, in

our preliminary experiments, the SA algorithms often performed poorly when r was

fixed for each iteration, so instead, we let r be a uniform random integer between 1

and 9, inclusive. For each simulation run, we generate the throughput and gradient

estimates using 300 customers, which is large enough for a valid non-zero direct

80

10 20 30 40 50
1

1.5

2

2.5

3

3.5

e
xp

(M
S

E
 o

f
X

)

θ
a

RM2
RM
SPSA
STAR

10 20 30 40 50
0

2

4

6

8

10

12

e
xp

(M
S

E
 o

f
T

P
)

θ
a

RM2
RM
SPSA
STAR

10 20 30 40 50
0

1

2

3

4

5

6

7

T
P

θ
a

RM2
RM
SPSA
STAR

(a) c

n

= 0.1(n + 1)

�1/4

10 20 30 40 50
1

1.2

1.4

1.6

1.8

2

2.2

2.4

e
xp

(M
S

E
 o

f
X

)

θ
a

RM2
RM
SPSA
STAR

10 20 30 40 50
1

2

3

4

5

6

7

8

9

10
e
xp

(M
S

E
 o

f
T

P
)

θ
a

RM2
RM
SPSA
STAR

10 20 30 40 50
0

1

2

3

4

5

6

7

T
P

θ
a

RM2
RM
SPSA
STAR

(b) c

n

= 0.3(n + 1)

�1/4

Figure 3.5: 9-station closed Jackson queueing network,
P9

i=1 x
(i) =

10, x(i) > 0, a
n

= ✓
a

/(n + 1), ↵
n

= c2
n

/(1 + c2
n

), N = 50, customers

serviced = 300, macroreplications = 20.

gradient. If the direct IPA gradient is generated with an insu�cient number of cus-

tomers, the the gradient could be exactly zero or invalid since the denominator is

zero.

We compute the total MSE of the estimates x(i)
N

for i = 1, . . . , 9 and MSE of

the throughput TP (x
N

) using x⇤ = (1.66, .68, .983, 1.66, .68, .983, 1.66, .68, .983) and

TP (x⇤) = 4.82, as well as the mean throughput with a 95% confidence band using

20 macroreplications for a range of step sizes and two di↵erent perturbation sizes,

81

i.e., ✓
a

2 {5k|k = 1, . . . , 10} and ✓
c

2 {0.1, 0.3}. Figures 3.5a and 3.5b illustrate the

performances as a function of ✓
a

for two perturbations ✓
c

= 0.1, 0.3, respectively. We

vary the step size and perturbation size to investigate the sensitivity of STAR-SPSA.

The leftmost graph in both figures show that STAR-SPSA significantly outperforms

SPSA for all choices of a
n

, in terms of both MSE of the estimates as well as the

throughput. Similarly, STAR-SPSA performs better than RM in both metrics with

the exception of the case ✓
a

= 15, when RM results in a slightly lower MSE of x
N

and

a higher MSE of TP (x
N

), but the results are fairly close. The standard errors are

within ±0.1. In both Figures 3.5a and 3.5b, the STAR-SPSA results do not appear to

be very sensitive to the step size, especially not the throughput. In fact, combining

the direct and indirect gradients often improves the performance, and sometimes

the di↵erence can be significant, as in the case ✓
a

= 50, c
n

= 0.1(n + 1)�1/4.

Furthermore, the STAR-SPSA mean throughput is always greater than SPSA, and

either greater than RM very close to it. In addition, the confidence bands are much

tighter for STAR-SPSA for both ✓
c

= 0.1, 0.3. From these results, we conclude that

incorporating the SP gradient will either improve the finite time performance or in

the worst case, it will not hurt the performance significantly.

Orthogonal Projection Algorithm

• Step 0. Input: X
n

, M , c
n

• Step 1. Set X
n+1 = X

n

.

• Step 2. For i = 1, . . . , d, if X
n,i

< c
n

, then set X
n+1,i = c

n

.

82

• Step 3. Let

– P0 = M/d ⇤ 1

– N = 1/
p
d

– T = X
n+1 � P0

– t =< T,N >, where < ·, · > denotes dot product

– X
n+1 = X

n+1 � tN

• Step 4. If X
n+1,i � c

n

for all i, return X
n+1. Otherwise, return X

n

.

Random Perturbation �
n

• Step 0. Input: d

• Step 1. If d is odd, generate r ⇠ Unif{1, d}, and set �
n,r

= 0. If d is even,

let r = 0.

• Step 2. Generate r
i

⇠ Unif(0, 1) for i = 1, . . . , d, i 6= r.

Let m = {i|r
i

= median(r1, . . . , rr�1, rr+1, . . . , rd) }.

• Step 3. For i = 1, . . . , d, i 6= r, if r
i

< m, set �
n,i

= �1 and �
n,i

= 1

otherwise.

• Step 4. Return �
n

.

IPA Algorithm: Closed Jackson Queueing Network

83

• Step 0. Set A = 0, where 0 is a dxd zero matrix, n = 1, and N = number of

customers serviced.

• Step 1. Suppose the next customer to finish service is currently located at

node i. Increment A
i,i

by the service time s
i

.

• Step 2. Suppose the customer leaving node i moves to node j. If node j is

empty upon arrival, set A:,j = A:,i.

• Step 3. Set n = n+ 1. If n < N , go back to Step 1. If n = N , set T= current

time, go to Step 4.

• Step 4. Calculate minimum and maximum values of each row and set to

A� = (A�
1 , . . . , A

�
d

) and A+ = (A+
1 , . . . , A

+
d

), respectively.

• Step 5. Compute
S
k

TP
· @TP
@S

k

= � A�
k

T � A+
k

+ A�
k

, where S
k

is the mean service

time of server k and TP = N/(T � A+
k

+ A�
k

).

IPA Algorithm: Closed Jackson Queueing Network w/Equality Con-

straint

• Step 1. Apply IPA gradient method for the unconstrained closed Jackson

queueing network for throughput.

• Step 2. Generate r ⇠ Unif{1, d}.

• Step 3. For k = 1, . . . , d, set
@TP

c

@X
k

=
@TP

@X
k

� @TP

@X
r

.

84

3.4 Summary and Future Work

We have introduced the first set of stochastic approximation algorithms that

integrate both direct and indirect gradient estimates for single and multidimensional

problems. Our new hybrid gradient estimates use a symmetric finite di↵erence-type

gradient estimate for the indirect gradient and an average of the associated direct

gradients for the direct gradient. The crux of the algorithm lies in the convex

weight derived to minimize the variance of the hybrid gradient estimates. Under

mild conditions, we have analytically shown the improvement over individual direct

and indirect gradient estimates in terms of variance, which in turn can improve the

SA performance. We have demonstrated the promise of STAR-SA numerically on

a one-dimensional stylized problem as well as STAR-SPSA on a multidimensional

queueing network. Previous work had only considered SA with either direct or

indirect gradients, but we exploit the information contained in the indirect gradient

estimates, which we have shown to be theoretically and practically beneficial.

Our hybrid technique can be generalized to include other gradient estimates

within the two general gradient categories, e.g., IPA with LR/SF. In addition, we

can adaptively choose both the weight sequence and the perturbation sequence.

Currently, the variance minimizing weights (3.2) for the homogeneous case

are deterministic and depend on both the gradient and function noise, which are

unknown. As c
n

! 0, the influence of the finite di↵erence gradient estimate di-

minishes and the weight on the Tangents AveRaged gradient estimate approaches

1. Ideally, independent of the noise level, the weights will put more emphasis on

85

the gradient with higher accuracy. Since we are in the setting where both direct

and indirect gradients available, we have access to various gradient approximations,

i.e., f 0(x
n

± c
n

), f
0(x

n

+c

n

)+f

0(x
n

�c

n

)
2 , and f(x

n

+c

n

)�f(x
n

�c

n

)
2c

n

. At each iteration, these

values can be used to determine which gradient is more accurate, g
S

or g
TAR

. If

the sample performances are noisy and the perturbation size is very small, then the

finite di↵erence gradient could be very inaccurate, so ideally, less emphasis is placed

on g
S

, but c
n

should not decrease since small perturbation sizes can lead to noisy

gradients. Instead, we propose to decrease ↵
n

in two ways: 1) decrease c
n

and 2)

increase the constant (�
f

/�
g

)2. We can explore how to make the adjustments.

86

Chapter 4

Step Size Selection in Stochastic Approximation

4.1 Sensitivity of Finite-time Performance to Step Size

The asymptotic theory of stochastic approximation algorithms guarantees al-

most sure convergence under certain conditions. The most common requirements

restrict the step size sequence {a
n

}, but even a smaller subset of step size options

still allow for an uncountable number of choices. It is impossible to find a universally

optimal deterministic step size unless more information is known about the geomet-

ric structure of the function. Given a step size, one can always find a function where

it performs poorly. For example in the one-dimensional case, if we consider a large

step size applied to a very steep function, to ensure the iterates have an opportu-

nity to move around the feasible region, then the iterates might oscillate back and

forth, moving further and further away from the optimum for an extended period

before making any progress towards the true solution, as seen in Figure 4.1a. The

opposite could also occur, where the function is extremely flat and the step size is

relatively small in comparison, so as the number of iterations increases, the iterates

barely make any progress, and once the stopping time is reached, the algorithm

returns a poor estimate in the region where it is currently “stuck,” illustrated in

Figure 4.1b. The finite-time performance of stochastic approximation algorithms is

sensitive to the step size, and there are clear disadvantages for using an arbitrarily

87

An Overview of Stochastic Approximation
The Evolution of Stochastic Approximation

Marie Chau and Michael C. Fu

Abstract This chapter...

x1x⇤x2 x3x4 x5x6

0

0.5

1

1.5

2

·104

(a) an is “too large” relative to the gradient

x1x⇤
0

20

40

60

80

100

(b) an is “too small” relative to the gradient

Fig. 1: Sensitivity of SA to step size an.

Marie Chau
University of Maryland, College Park, College Park, MD 20742, e-mail: mchau@math.umd.edu

Michael C. Fu
University of Maryland, College Park, College Park, MD 20742 e-mail: mfu@isr.umd.edu

1

Figure 4.1: Illustration of Sensitivity of SA to {a
n

}.

chosen deterministic step size. To circumvent this issue, adaptive step sizes have

been proposed to adjust based on the ongoing performance of the algorithm. Ideally,

an adaptive step size algorithm is able to recognize/detect the current estimates’

proximity to the true solution, path behavior/trend, and geometric structure near

the current iterate, while adjusting the step size accordingly. Before we propose our

new adaptive step sizes, we conduct preliminary tests on existing finite-time theory

on MSE bounds and two adaptive step sizes, Kesten’s rule and SSKW.

4.1.1 KW and its Variants

For our preliminary numerical experiments, we focus on the one-dimensional

KW algorithm, which generates brf(X
n

) in (1.2) using finite di↵erences. Although

theoretical convergence can be guaranteed by satisfying certain requirements, practi-

cal performance depends on the choice of tuning sequences. In addition to selecting

88

a gain sequence {a
n

} in (1.2), the KW algorithm requires an additional task of

choosing a finite di↵erence perturbation sequence {c
n

} for the gradient. The finite-

time performance of KW depends on both sequences {a
n

} and {c
n

}. Because of the

sensitivity of the KW algorithm to the tuning sequences, it is essential to choose

an appropriate pair. In practice, KW could have the following shortcomings: long

oscillatory period if the gain sequence {a
n

} is “too large,” degraded convergence

rate if {a
n

} is “too small,” and poor gradient estimates if the perturbation sequence

{c
n

} is “too small.”

We conduct an empirical investigation of the sensitivity of KW and two of its

adaptive variants, namely Kesten’s rule and the scaled-and-shifted KW (or SSKW)

algorithm of [7]. Our goal is to identify problem characteristics that exert a strong

impact on algorithm performance, even in the presence of theoretical guarantees.

For example, in the numerical results reported in [7], SSKW outperforms the KW

algorithm in terms of both MSE and oscillatory behavior in finite time; however,

this result is obtained using what seem to be nearly worst-case parameter settings

for KW. We replicate these results, but we also find that the performance of KW can

be significantly improved over a fairly wide choice of parameter settings. Although

the worst-case performance of SSKW is much better than that of KW, it is also the

case that KW provides the best performance in a significant proportion of problem

instances. In addition, we find that Kesten’s rule performs similar to KW, and

sometimes better, when both algorithms begin with the same initial start value. We

also investigate the finite-time MSE bound in [7] and characterize instances where

this bound is tight. These results underscore the well-known di�culty of tuning,

89

even for adaptive versions of KW.

4.2 Finite-time MSE Bound

Asymptotic convergence properties of the KW algorithm and its variations

have been a major research focus in SA. Convergence proofs in MSE appear in

[18], [16], [19], [58], and [49] for various assumptions and modifications of the KW

algorithm. However, in practice, where the run-time is finite, a good finite-time

bound for the MSE is useful.

By applying similar technique as in [18], [7] derived a finite-time bound for

the MSE of the KW algorithm. The MSE bound depends on certain problem-

dependent constants, which are typically di�cult to calculate in practice. However,

in the special case where f is quadratic, the bound can be computed in closed form,

allowing us to observe its tightness. We briefly summarize the bound as follows.

First, we make the following assumptions on the function f(x):

1. There exist positive constants K0, K1, and C0 such that for every c 2 [0, C0],

�K1(x � x⇤)2 f(x+ c) � f(x � c)

c
(x � x⇤) �K0(x � x⇤)2.

2. f 0(x)(x � x⇤) < 0 for all x 2 R\{x⇤}.

We also assume that the tuning sequences satisfy:

1. a
n

/c2
n

 (a
n+1/c2

n+1)(1 + Aa
n+1) for all n � 1,

2. a
n

! 0 as n ! 1,

90

with 0 < A < 2K0. Then,

E(X
n+1 � x⇤)2 Ca

n

/c2
n

for all n � 1, (4.1)

where C is a constant explicitly defined as

C = max

⇢

�2

⇠
, max
1nn0

⇢

c2
n

a
n

B
n+1

��

,

and

D
n

= K2
1Aa

2
n

+ (K2
1 � 2AK0)an � 2K0 � A,

n0 = 1 if D
n

< 0 for all n � 1 and

sup
�

n � 1 : (K2
1 � 2AK0)an +K2

1Aa
2
n

� 2K0 � A

+ 1 otherwise,

⇠ = � sup{A � 2K0 + (K2
1 � 2AK0)an +K2

1Aa
2
n

: n � n0},

B
n

= X2
1

n

Y

i=1

p
i

+
n�1
X

i=2

q
i

n

Y

j=i+1

p
j

+ q
n

,

p
i

= 1 � 2a
i

K0 +K2
1a

2
i

, for i = 1, 2, . . . , n,

q
i

=
a2
i

c2
i

�2, for i = 1, 2, . . . , n,

�2 = sup
x2⇥

Var[f̃(X
n

+ c
n

) � f̃(X
n

� c
n

)|X
n

= x].

Equation (4.1) does not guarantee convergence in MSE, but rather establishes

a finite bound for each iteration. The bound is thus more useful when it is tight.

In Section 4.3.1, we investigate the tightness of (4.1) by comparing the bound with

the exact MSE of simple quadratic functions of the form f(x) = ↵x2 where ↵ < 0

and the optimal x⇤ = 0. The exact MSE can be computed as follows:

E(X
n+1 � x⇤)2 = X2

1⇧
n

i=1(1 + 2↵a
i

)2 +
�2

2

n�1
X

k=1

a2
k

c2
k

⇧n

j=k+1(1 + 2↵a
j

)2 +
a2
n

�2

2c2
n

. (4.2)

91

4.3 Numerical Experiments

4.3.1 Tightness of the Finite-time MSE Bound for Quadratics

We generated the MSE bound in (4.1) and the exact MSE in (4.2) for quadratic

functions with various noise levels and initial starting values for three di↵erent cases:

1) f(x) = �0.001x2, c
n

= 1/n1/2, f(x) = �0.15x2, c
n

= 1/n1/4 and f(x) =

�0.15x2, c
n

= 1/n1/2. The MSE bound is a function of constants that are not

unique, satisfying S1, S3, A1, and A2. We picked the largest K0 and smallest K1

satisfying A1 and A slightly less than 2K0. Table 4.2 lists the constants used in our

calculations for the MSE bound in (4.1), and the exact MSE and MSE bound are

listed in Table 4.1. The exact MSE (4.2) is a sum of three components. The first

term on the right hand side (RHS) of (4.2) is independent of � and is dominated by

the initial starting value, X1. The second and third terms in (4.2) are dominated by

�. When � 2 {0.001, 0.01, 0.1, 1.0}, both terms are small (< 1), but when � = 10,

the RHS is dominated by the second term. Therefore, the exact MSE increases with

X1 and �. Using the parameters in Table 5.1, the constant C in the MSE bound

can be expressed as

C=max

⇢

�2

⇠
,
c21
a1

✓

X1(1 � 2a1K0 +K2
1a

2
1)(1 � 2a2K0 +K2

1a
2
2) +

a22
c22
�2

◆�

. (4.3)

The first term in (4.3) dominates when � is large since ⇠ = 0.001, 0.1 for

f(x) = �0.001x2,�0.15x2, respectively. Therefore, the MSE bound and di↵erence

between the exact MSE and MSE bound increases significantly when � increases

from 1.0 to 10.0. Otherwise, the MSE bound is equal to the second term, which

92

Table 4.1: Finite-time MSE bound and exact MSE for KW with

n = 10000, a
n

= 1/n

f(x) = �0.001x

2
f(x) = �0.15x

2
, f(x) = �0.15x

2

c

n

= 1/n

1/2
c

n

= 1/n

1/4
c

n

= 1/n

1/2

� X1 Exact Bound Exact Bound Exact Bound

0.001

0 0.00 0.00 0.00 0.00 0.00 0.00

-5 24.04 24.85 0.06 8.85 0.06 0.09

-10 96.16 99.40 0.24 35.40 0.24 0.35

-20 384.64 397.61 0.95 141.61 0.95 1.42

-40 1538.56 1590.42 3.78 566.44 3.78 5.66

0.01

0 0.00 0.10 0.00 0.00 0.00 0.00

-5 24.04 24.85 0.06 8.85 0.06 0.09

-10 96.16 99.40 0.24 35.40 0.24 0.35

-20 384.64 397.61 0.95 141.61 0.95 1.42

-40 1538.56 1590.42 3.78 566.44 3.78 5.66

0.1

0 0.05 10.0 0.01 0.10 0.00 0.00

-5 24.09 24.86 0.07 8.86 0.06 0.09

-10 96.21 99.41 0.24 35.41 0.24 0.35

-20 384.69 397.61 0.95 141.62 0.95 1.42

-40 1538.61 1590.43 3.79 566.45 3.78 5.66

1.0

0 4.8 999.99 0.83 10.00 0.03 0.10

-5 28.84 999.99 0.89 10.00 0.09 0.10

-10 100.96 999.99 1.07 35.90 0.27 0.36

-20 389.44 999.99 1.78 142.11 0.98 1.42

-40 1543.36 1590.92 4.61 566.94 3.81 5.67

10.0

0 480.08 99999.20 83.23 999.79 3.20 9.99

-5 504.12 99999.20 83.29 999.79 3.26 9.99

-10 576.24 99999.20 83.47 999.79 3.43 9.99

-20 864.72 99999.20 84.18 999.79 4.14 9.99

-40 2018.64 99999.20 87.01 999.79 6.98 9.99

93

Table 4.2: Finite-time MSE Bound Parameters for KW

f(x) a

n

c

n

K0 K1 A n0 ⇠

�0.001x

2
1/n 1/n

1/2
0.002 0002 0.003 1 0.001

�0.15x

2
1/n 1/n

1/2
0.3 0.3 0.5 1 0.1

�0.15x

2
1/n 1/n

1/4
0.3 0.3 0.5 1 0.1

increases with X1 and �. Table 4.1 contains the exact MSE and MSE bound for

three di↵erent parameter settings and for � 2 {0.001, 0.01, 0.1, 1.0, 10.0}. The first

column in Table 4.1 presents results for f(x) = �0.001x2, c
n

= 1/n1/2. In the

presence of more noise, i.e. � = 10.0, the MSE bound is 99, 999.20, which is the first

term in (4.3) for each initial starting value. The di↵erence between this bound and

the exact MSE is significant with a di↵erence greater than 97, 500. For � = 1.0, the

MSE bound only takes the second term in (4.3), when the starting position is farther

from the optimum, i.e. X1 = �40 and is tight. However, when the initial starting

value is closer to the optimum, i.e. X1 = 0,�5,�10,�20, the MSE bound is equal

to 999.99, which is the first term in (4.3), and thus the MSE bound is significantly

greater than the exact MSE. The MSE bound is very tight for rest of the cases with

the exception of when � = 0.1 and X1 = 0. For the second column with f(x) =

�0.15x2, c
n

= 1/n1/2, the MSE bound is significantly greater than the exact MSE

across the board. The third column reports results for f(x) = �0.15x2, c
n

= 1/n1/2

the MSE bound is tight for all cases with the exception of the case with � = 10.0.

It would seem that the bound is a useful guideline for problems with low variance,

but becomes less tight as the noise level increases.

94

4.3.2 Sensitivity of KW and its Variants

We compare the MSE performance between KW and two of its variants de-

scribed in Section 2.2.3, Kesten’s rule and SSKW. All experiments were implemented

with a
n

= ✓
a

/n, c
n

= ✓
c

/ns where s 2 {1/4, 1/2}, ✓
a

> 0, ✓
c

> 0, 10000 iterations,

and 1000 sample paths.

Not surprisingly, the performance of SSKW relative to KW heavily depends

on the chosen parameters such as truncated interval length, initial starting value,

and tuning sequences. Our analysis replicates the results of [7], where SSKW per-

forms significantly better than KW in terms of MSE and oscillatory period, but

we find that the chosen parameters for this experiment are among the worst pos-

sible parameters for KW as illustrated in Figure 4.2 with KW and SSKW under

✓
a

= ✓
c

= 1. By choosing a di↵erent initial starting position, the performance of

KW can be significantly improved, as demonstrated in Table 4.3 for two functions

f(x) = �0.001x2 and f(x) = 100e�0.006x2
. To o↵er a contrast with the quadratic

function, the second function considered is very steep and has flat tails.

[7] compared the SSKW performance with that of KW whose MSE is highly

reliant on the tuning sequences and initial start value. The MSE performance results

for f(x) = �0.001x2 using KW in [7] were poor because the initial position was

chosen to be far from the optimum and the gain size a
n

was too small to make any

noticeable progress towards it after 10000 iterations, so the iterates hover around

the initial position. In our numerical experiments, we also consider a
n

= ✓

a

n

and

c
n

= ✓

c

n

1/4 for ✓
a

, ✓
c

> 0. If ✓
a

= ✓
c

= 1 as in [7], but the initial start value is 0.01

95

-40 -20 0 20 40

0
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
1
5

0
.0
2
0

X1

M
S
E

-40 -20 0 20 40

0
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
1
5

0
.0
2
0

X1

M
S
E

-40 -20 0 20 40

0
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
1
5

0
.0
2
0

X1

M
S
E

-40 -20 0 20 40

0
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
1
5

0
.0
2
0

X1

M
S
E

-40 -20 0 20 40

0
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
1
5

0
.0
2
0

X1

M
S
E

-40 -20 0 20 40

0
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
1
5

0
.0
2
0

X1

M
S
E

-40 -20 0 20 40

0
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
1
5

0
.0
2
0

X1

M
S
E

-40 -20 0 20 40

0
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
1
5

0
.0
2
0

X1

M
S
E

-40 -20 0 20 40

0
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
1
5

0
.0
2
0

X1

M
S
E

-40 -20 0 20 40

0
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
1
5

0
.0
2
0

X1

M
S
E

-40 -20 0 20 40

0
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
1
5

0
.0
2
0

X1

M
S
E

-40 -20 0 20 40

0
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
1
5

0
.0
2
0

X1

M
S
E

-40 -20 0 20 40

0
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
1
5

0
.0
2
0

X1

M
S
E

-40 -20 0 20 40

0
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
1
5

0
.0
2
0

X1

M
S
E

KW θa = 1, θc = 1

KW θa = 500, θc = 4

KW θa = 90, θc = 5

Kesten θa = 1, θc = 1

Kesten θa = 10, θc = 5

Kesten θa = 100, θc = 1

SSKW θa = 1, θc = 1

Figure 4.2: MSE of the 10000th iterate of KW and Kesten for three

parameter settings and SSKW for f(x) = �0.001x

2
, � = 0.001, a

n

=

✓

a

/n, c

n

= ✓

c

/n

1/4
.

instead of 30, then the MSE from KW is significantly lower compared to SSKW. The

first column in Table 4.3 compares the MSE all three algorithms with X1 = 0.01,

and clearly, KW outperforms SSKW in almost all cases. Of course, a practitioner

would have no way of knowing whether or not the starting iterate was close to the

true optimum, so these results do not indicate that KW will always perform well.

They do indicate, however, that KW exhibits substantial variation in performance.

We also conduct a sensitivity analysis for f(x) = �0.001x2 with various start-

ing positions X1 and multiplicative constants, ✓
a

, and ✓
c

and implement SSKW and

KW using Kesten’s rule. For the sensitivity analysis, we considered a wide selec-

tion of parameters: 19 initial starting values uniformly spaced within the truncated

96

f(x) = �0.001x

2
[-50, 50] f(x) = 100e

�0.006x2
[-50, 50]

X1 = 0.01 X1 = 30

� Alg. 100 1000 10000 100 1000 10000

.001

SSKW 5.10x10

�2
1.70x10

�2
5.00x10

�3
5.07x10

�2
1.68x10

�2
4.84x10

�3

KW 10

�4
10

�4
10

�4
763.8 653.3 431.4

Kesten 1.12x10

�4
1.08x10

�4
1.04x10

�4
10

�7
3x10

�8
10

�8

.01

SSKW 5.10x10

�2
1.70x10

�2
5.00x10

�3
5.07 1.68 4.90x10

�1

KW 10

�4
10

�4
10

�4
763.8 653.3 431.2

Kesten 2.10x10

�3
2.11x10

�3
2.05x10

�3
9.54x10

�6
2.76x10

�6
8.41x10

�7

.1

SSKW 5.10x10

�2
1.70x10

�2
5.00x10

�3
165.8 57.4 16.0

KW 10

�4
10

�4
10

�4
763.4 651.4 418.2

Kesten 2.01x10

�1
2.03x10

�1
1.97x10

�1
5.65x10

�2
2.76x10

�4
8.41x10

�5

1.0

SSKW 5.10x10

�2
1.70x10

�2
5.00x10

�3
187.2 57.8 18.7

KW 10

�4
10

�4
10

�4
722.5 562.5 415.7

Kesten 20.1 20.3 19.7 456.9 315.1 239.7

Table 4.3: MSE of the 100th, 1000th, and 10000th iteration for KW

and its variates with a
n

= 1/n, c
n

= 1/n1/4.

interval X1 2 {�50 + 5k | k = 1, 2, ...19}, 45 di↵erent ✓
a

values parametrized by

✓
a

2 {10sk | k = 1, 2, . . . , 9, s = 0, 1, . . . , 4} and 10 di↵erent ✓
c

values parametrized

by ✓
c

2 {10sk | k = 1, 2, ..., 5, s = 0, 1}. In total, there are 8550 possible combina-

tions of parameters.

The results show that KW and Kesten’s rule are sensitive to the parameter

choice, but near-optimal performance can be obtained with tuning. Figure 4.2 plots

the MSE of KW for f(x) = �0.001x2, � = 0.001 against the initial starting values

X1 for di↵erent sets of parameter choices. These cases serve as a good representation

of the majority of the MSE behaviors among the entire set of results. The case with

✓
a

= ✓
c

= 1 is among the worst for KW and Kesten’s rule. The MSE is represented

by a nearly vertical line for both algorithms. For this parameter setting, SSKW beats

97

KW and Kesten’s rule significantly for all initial values with the exception ofX1 = 0.

For the case where ✓
a

= 90, ✓
c

= 5, KW outperforms SSKW in a neighborhood

around the optimum. However, there are cases such as ✓
a

= 500, ✓
c

= 4 for KW

and ✓
a

= 100, ✓
c

= 1 for Kesten’s rule that outperform SSKW for all initial start

values. Of the 8550 combinations varying all parameters and 450 combinations with

X1 = 30, KW performs better than SSKW in 4275 and 215 cases, respectively,

suggesting that KW requires some tuning to perform well, but that there is a fairly

wide range of tunable parameters that yield good performance. If KW performs

better than KW, the di↵erence is not as pronounced as when SSKW outperforms

KW, but careful tuning can partially mitigate KW’s sensitivity to parameters such

as the initial iterate.

0 2 4 6 8 10

0
4
0
0

8
0
0

σ=0.01

ln(θa)

M
S
E

0 2 4 6 8 10

0
4
0
0

8
0
0

ln(θa)

M
S
E

0 2 4 6 8 10

0
4
0
0

8
0
0

ln(θa)

M
S
E

θc = 1

θc = 10

θc = 40

0 2 4 6 8 10

0
4
0
0

8
0
0

σ=0.1

ln(θa)

M
S
E

0 2 4 6 8 10

0
4
0
0

8
0
0

ln(θa)

M
S
E

0 2 4 6 8 10

0
4
0
0

8
0
0

ln(θa)

M
S
E

0 2 4 6 8 10

0
4
0
0

8
0
0

σ=1.0

ln(θa)

M
S
E

0 2 4 6 8 10

0
4
0
0

8
0
0

ln(θa)

M
S
E

0 2 4 6 8 10

0
4
0
0

8
0
0

ln(θa)

M
S
E

0 2 4 6 8 10

0
4
0
0

8
0
0

σ=10.0

ln(θa)

M
S
E

0 2 4 6 8 10

0
4
0
0

8
0
0

ln(θa)

M
S
E

0 2 4 6 8 10

0
4
0
0

8
0
0

ln(θa)

M
S
E

Figure 4.3: Sensitivity of KW to ✓
a

for f(x) = �0.001x2, a
n

=

✓
a

/n, c
n

= ✓
c

/n1/4, n = 10000.

98

2 4 6 8 10

-5
0

5
1
0

σ = 0.01

φa

ln
(M
S
E
)

2 4 6 8 10

-5
0

5
1
0

φa

ln
(M
S
E
)

2 4 6 8 10

-5
0

5
1
0

φa

ln
(M
S
E
)

2 4 6 8 10

-5
0

5
1
0

σ = 0.1

φa

ln
(M
S
E
)

2 4 6 8 10

-5
0

5
1
0

φa

ln
(M
S
E
)

2 4 6 8 10

-5
0

5
1
0

φa

ln
(M
S
E
)

2 4 6 8 10

-5
0

5
1
0

σ = 1.0

φa

ln
(M
S
E
)

2 4 6 8 10

-5
0

5
1
0

φa

ln
(M
S
E
)

2 4 6 8 10

-5
0

5
1
0

φa

ln
(M
S
E
)

2 4 6 8 10

-5
0

5
1
0

σ = 10.0

φa

ln
(M
S
E
)

2 4 6 8 10

-5
0

5
1
0

φa

ln
(M
S
E
)

2 4 6 8 10

-5
0

5
1
0

φa

ln
(M
S
E
)

Figure 4.4: Sensitivity of SSKW for f(x) = �0.001x2 as a function

of �
a

, n = 10000.

Figure 4.3 plots the MSE f(x) = �0.001x2, a
n

= ✓
a

/n, c
n

= ✓
c

/n1/4of the

10000th iterate as a function of log ✓
a

given ✓
c

= 1, 10, 40. The case where � = 0.001

is omitted, because the results are similar to those for � = 0.01. For log ✓
a

< 4,

the MSE decreases for each given value of ✓
c

. However, for log ✓
a

� 4, the MSE

behaves di↵erently for all noise levels. But, the overall behavior as a function of ✓
c

is similar across noise levels. The MSE decreases for all ✓
a

as ✓
c

increases, so in the

case where ✓
c

= 40, there is a wide range of ✓
a

values where the MSE of KW is lower

than that of SSKW. But the MSE of KW could also be extremely high if the tuning

sequences are not chosen well. Moreover, we investigate the sensitivity of SSKW to

�
a

, which is the upper bound of the scale up factor for {a
n

} as depicted in Figure

4.4. The MSE decreases until �
a

, the maximum scale up factor for {a
n

}, is equal to

99

-40 -20 0 20 40

-1
5

-5
0

5

σ = 0.01

X1

ln
(M
S
E
)

-40 -20 0 20 40

-1
5

-5
0

5

X1

ln
(M
S
E
)

-40 -20 0 20 40

-1
5

-5
0

5

X1

ln
(M
S
E
)

-40 -20 0 20 40

-1
5

-5
0

5

σ = 0.1

X1

ln
(M
S
E
)

-40 -20 0 20 40

-1
5

-5
0

5

X1

ln
(M
S
E
)

-40 -20 0 20 40

-1
5

-5
0

5

X1

ln
(M
S
E
)

-40 -20 0 20 40

-1
5

-5
0

5

σ = 1.0

X1

ln
(M
S
E
)

-40 -20 0 20 40

-1
5

-5
0

5

X1

ln
(M
S
E
)

-40 -20 0 20 40

-1
5

-5
0

5

X1

ln
(M
S
E
)

-40 -20 0 20 40

-1
5

-5
0

5

σ = 10.0

X1
ln
(M
S
E
)

-40 -20 0 20 40

-1
5

-5
0

5

X1
ln
(M
S
E
)

-40 -20 0 20 40

-1
5

-5
0

5

X1
ln
(M
S
E
)

KW

Kesten

SSKW

Figure 4.5: MSE Comparison of KW, Kesten, and SSKW for f(x) =

100e�0.006x2
, a

n

= 1/n, c
n

= 1/n1/4, n = 10000.

4 and increases for � = 0.01, 0.1 while it levels o↵ for � 2 {1.0, 10.0} thereafter. It

seems that for lower noise levels,i.e. � 2 {0.01, 0.1}, �
a

= 4 is a better choice, while

�
a

= 10 leads to a lower MSE for � 2 {1.0, 10.0}.

In addition, we implement KW and its variants using the same parameters

(i.e., a
n

= 1/n, c
n

= 1/n1/4, X1 = 30) as in [7] on f(x) = 100e�0.006x2
to test

the algorithms under the same setting for a di↵erent function. Figure 4.5 plots

the MSE of the 10000th iterate as a function of the initial start value. KW and

Kesten’s rule outperform SSKW within certain intervals around the optimum for

� 2 {0.001, 0.01, 0.1, 1.0} and Kesten’s better performance intervals overlap the

intervals of KW. However, the KW using the deterministic step-size 1/n performs

100

better than using Kesten’s step-size where the intervals overlap, which can be seen

in Figure 4.5. Unfortunately, outside of those intervals, both algorithms have a

tendency to perform poorly. However, for the other four noise levels, the intervals

where KW and Kesten’s rule outperform SSKW are larger. However, there is a

tradeo↵, since if by chance the initial start value is closer to the boundary, the

di↵erence in performance can be drastic.

4.4 PROX-step

The idea behind our adaptive step size can be easily conveyed in the two

examples illustrated in Figures 4.6a and 4.6b. For a well-behaved function without

drastic changes in its gradient in neighborhoods, as depicted in Figure 4.6b, there is

a possibility of selecting a step size that leads to good finite-time performance, where

the iterates can approach the minimum at a good pace without heavy oscillations.

However, the function in Figure 4.6a has a steep valley region around the optimum,

whereas the rest of the function is extremely flat. This type of function arises in

the likelihood function typically used to find maximum likelihood estimators. If we

use a single step size sequence, the performance will often be poor since the two

extreme regions require two drastically di↵erent step sizes. For instance, a larger

step size is appropriate in the flat area to avoid getting stuck at a poor estimate;

however, once the iterate reaches the valley region, the larger step size is no longer

appropriate, and the recursion will overshoot and launch the estimate back into a

flat region. This cycle will continue until the step size is su�ciently small so that

101

−5 −4 −3 −2 −1 0 1 2 3 4 5
−80

−60

−40

−20

0

20

40

(a) Contrasting regions

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

5

10

15

20

25

(b) Well-behaved

Figure 4.6: Illustration of PROX-Step Motivational

the iterates make progress towards the minimum. This is only possible if the step

size was small before entering the valley region, which means many iterations were

necessary to reach that point.

We propose an adaptive step size, inspired by both Kesten’s rule and SSKW,

that adjusts based on sample performances, gradient estimates, and parameter es-

timates, taking advantage of past data. Kesten’s rule is Markovian-like, since the

next step size depends on the previous gradient (or estimate) as well as the current

gradient (or estimate). On the other hand, SSKW’s adaptive mechanisms depend

largely on the feasible search space/region and the two most recent parameter es-

timates. While the aforementioned adaptive step sizes have significantly advanced

SA algorithms, they have their pitfalls. Kesten’s rule starts with an arbitrary non-

increasing step size, which can still fall into shortcomings as in the deterministic

case if a
n

is too large. It does however, prevent the step size from decreasing if a
n

is

too small (assuming consecutive gradients are the same sign). An extension by [53]

102

allows the step size to increase, but it can be slow. SSKW certainly addresses the

issue of implementing SA with an inappropriately small or large a
n

, but di↵erent

regions in the feasible search space call for di↵erent step sizes. For instance, if the

current iterate is in a very steep portion of the function, then under SSKW, it will

reduce the step size faster. However in the next iteration after the step size reduc-

tion, the estimate could be located in a flat region, which requires a larger a
n

to

accelerate the convergence to a neighborhood of the optimum. In the worst case, the

estimate gets stuck in a region because of the newly reduced a
n

is too small, since

aside from the initial phase, SSKW can only reduce a
n

and cannot enlarge/increase

it.

Although the underlying notion of our adaptive step size is motivated by

Kesten and SSKW, we approach adaptivity from a di↵erent angle. Our method

adopts a memory-based approach, where the step size is adjusted based on the

perceived proximity to the optimum as in Kesten and is increased/decreased when

deemed necessary as in SSKW, but the adjustments are determined by the sample

performance(s) in addition to the gradient(s) and parameter estimate(s) used in

other methods. Each simulation run used to obtain the sample performance and

gradient estimate (if available) is expensive and the values generated contain infor-

mation that can be used in future iterations to improve the SA performance. We

e�ciently exploit the data collected in previous iterations to aid in the selection of

an appropriate step size to be used in the current update.

For illustrative purposes, consider the simple one-dimensional KW algorithm.

At each iteration, two sample performances are generated to compute the finite

103

di↵erence gradient estimate for the recursive update. After collecting a su�cient

number of observations, we can roughly guess how close the current estimate is from

the optimum based on the moving average of sample performances in comparison

to the current observation. If the current iterate is considered close, then a smaller

step size could prevent the next iterate from completely overshooting. In contrast,

if the estimate is believed to be further away, then a larger step size could decrease

the amount of e↵ort required to put the iterate in closer range of the optimum. For

a minimization problem, the estimate is perceived to be closer to the optimum if

the current objective value is less than the mean of the past objective values, and

further from the optimum if it is greater than the mean, i.e.,

• f
n

> f̄
n

(farther),

• f
n

< f̄
n

(closer),

where f
n

is the average of sample performances generated at the nth iteration and

f̄
n

is the running average of all sample performances (i.e., for KW with symmetric

di↵erences, f+
n

= f(x
n

+c
n

), f�
n

= f(x
n

�c
n

), f
n

= (f+
n

+f�
n

)/2, and f̄
n

= 1
n

P

n

i=1 fi.

Our adaptive step size begins with two positive fixed sequences {a+
n

} and {a�
n

},

where a�
n

< a+
n

for all n. We first tailor the adaptive step size to SA algorithms

that involve a symmetric finite di↵erence gradient (e.g., KW or STAR-SA), and

then generalize it. We now present PROX-step for one-dimensional SA algorithms

involving a symmetric finite di↵erence, followed by a generalization.

104

PROX-step for KW or STAR-SA

• Step 0. Input: x1 2 ⇥, {a+
n

}, {a�
n

}, {c
n

}, N .

• Step 1. Initialize f̄0 = 0, n = 1.

• Step 2. Generate f+
n

and f�
n

to compute brf(x
n

).

• Step 3. Update mean objective value f̄
n

= n�1
n

f̄
n�1 +

1
n

f
n

.

• Step 4. Set

a
n

=

8

>

>

<

>

>

:

a�
n

if f
n

< f̄
n

,

a+
n

if f
n

> f̄
n

.

• Step 5. Update x
n+1 = ⇧⇥

⇣

x
n

� a
n

brf(x
n

)
⌘

.

• Step 6. If n < N , set n = n+ 1, go to Step 2.

• Step 7. Output: x⇤
N

= x
N

Generalized PROX-step for SA

• Step 0. Input: x1 2 ⇥, {a+
n

}, {a�
n

}, N .

• Step 1. Initialize f̄0 = 0, n = 1.

• Step 2. Generate n
d

sample performances f (i)
n

for i = 1, . . . , n
d

to compute

brf(x
n

).

105

• Step 3. Update mean objective value f̄
n

= n�1
n

f̄
n�1 + 1

n

f
n

, where f
n

=

1
n

d

P

n

d

i=1 f
(i)
n

.

• Step 4. Set

a
n

=

8

>

>

<

>

>

:

a�
n

if f
n

< f̄
n

,

a+
n

if f
n

> f̄
n

.

• Step 5. Update x
n+1 = ⇧⇥

⇣

x
n

� a
n

brf(x
n

)
⌘

.

• Step 6. If n < N , set n = n+ 1, go to Step 2.

• Step 7. Output: x⇤
N

= x
N

4.5 Adaptive PROX-step

Although the PROX-step is adaptive, the two sequences used to generate it

are both deterministic, so in the end, it still faces some of the same shortcomings

of implementing a deterministic step size. Each sequence {a+
n

} and {a�
n

} could be

inappropriately selected for its corresponding feasible region; therefore, we propose a

method to adjust the sequences based on past events. In particular, throughout the

recursion, in addition to the necessary information used to implement the PROX-

step, we track the step size used at each iteration to determine whether or not the

smaller sequence {a�
n

} appropriate. If the step sizes used are alternating between

{a+
n

} and {a�
n

} consistently, then it is an indication that either we are close to the

optimum or the smaller step size is too big. In either case, it would be ideal to

106

decrease the smaller step size sequence. Furthermore, in applying Kesten’s rule, we

do not have a separate step sizes for each dimension, so instead, we look at the the

total number of sign changes in the gradient and if more than half of the dimensions

keep the same sign, then we keep the same two step size sequences for the next

iteration (i.e., {a±
n

} = {a±
n�1}). Lastly, we look at the magnitude of each violation

||x
n+1 � ⇧ (x

n+1) ||2 and of each iteration change ||x
n

� ⇧ (x
n+1) ||2 and reduce or

increase the step sir sequence accordingly while maintaining a�
n

< a+
n

still holds.

Step size adjustments can be done in the following ways:

• Scaling

• Kesten’s rule

Scaling will be used for decreasing and increasing the step size by dividing and

multiplying by the scaling factor, respectively, and Kesten’s rule will keep the step

size constant.

Additional input parameters must be chosen:

• ↵ > 1 is the scale factor

• {d
n

} is the projection violation threshold

• {e
n

} is the no-movement threshold

• n
L

is the number of allowable scales

The asymptotic theory still applies, since the scaling and shifting will only

occur finitely many times.

107

Adaptive PROX-step

• Step 0. Input: x1 2 ⇥, {a+
n

}, {a�
n

}, {d
n

}, ↵, n
L

, N .

• Step 1. Initialize f̄0 = 0, n = 1, n
L

= 0.

• Step 2. Generate n
d

sample performances f (i)
n

for i = 1, . . . , n
d

to compute

brf(x
n

).

• Step 3. Update mean objective value f̄
n

= n�1
n

f̄
n�1 +

1
n

f
n

.

• Step 4. Set

a
n

=

8

>

>

<

>

>

:

a�
n

if f
n

< f̄
n

,

a+
n

if f
n

> f̄
n

.

• Step 5. Set

a[n] =

8

>

>

<

>

>

:

�1 if f
n

< f̄
n

,

1 if f
n

> f̄
n

.

• Step 6. Update x
n+1 = ⇧⇥

⇣

x
n

� a
n

brf(x
n

)
⌘

.

• Step 7. Modify step size sequences.

– Scaling down.

⇤ If n
S

< n
L

and ||x
n+1 � ⇧ (x

n+1) ||2 > d
n

, and

· if a
n

= a+
n

, then set {a+
n

} = {a+
n

/↵}, n
S

= n
S

+ 1.

· if a
n

= a�
n

, then set {a�
n

} = {a�
n

/↵}, n
S

= n
S

+ 1.

108

⇤ If n > 3, n
S

< n
L

, a[n]a[n � 1] < 0, a[n � 1]a[n � 2] < 0, and

a[n � 2]a[n � 3] < 0, then set {a�
n

} = {a�
n

/↵} and n
S

= n
S

+ 1.

– Scaling up.

⇤ If n
S

< n
L

and 0 < ||x
n

� ⇧ (x
n+1) ||2 < e

n

, and

· if a
n

= a+
n

, then set {a+
n

} = {↵a+
n

}, n
S

= n
S

+ 1.

· if a
n

= a�
n

, then set {a�
n

} = {↵a�
n

}, n
S

= n
S

+ 1.

– Kesten.

⇤ If
P

d

i=1 I{brf

i

(x
n

)·brf

i

(x
n+1)>0} > d/2, then {a+

n

} = {a+
n�1} and {a�

n

} =

{a�
n�1}.

• Step 8. If n < N , set n = n+ 1, go to Step 2.

• Step 9. Output: x⇤
N

= x
N

Unfortunately, the input parameters must be chosen by the users, which can

have a significant e↵ect on the performance. In our numerical experiments, we

choose the parameters conservatively so that the original two sequences do not

change dramatically from one iteration to the next.

4.6 Numerical Experiments

We investigate the performance of PROX-step and aPROX-step on two con-

trasting functions with added noise as well as the queueing network example de-

scribed in Section 3.4.

109

4.6.1 Deterministic Problem with Added Noise

For the one-dimensional case, we consider two deterministic functions: 1) ex-

ponential that is very steep near the optimum with very flat tails and 2) a simple

quadratic. We compare the standard decreasing step size, Kesten’s rule, and the

PROX-step and Adaptive PROX-step applied to RM. For the fixed decreasing step

sizes, we look at three di↵erent step size parameters (i.e., from the PROX-step, Big:

{a+
n

}, Small: {a�
n

}, Average: {(a+
n

+a�
n

)/2}). We apply Kesten’s rule to the average

step size sequence {(a+
n

+ a�
n

)/2} and use PROX and aPROX with the parameter

d
n

= 10 for all n. The initial value x1 = 10 and feasible region ⇥ = [�30, 70]

were arbitrarily chosen. We consider N = 50 to be the stopping time, 20 macro

replications, and two step size settings for a±
n

.

To demonstrate the robustness of PROX and aPROX, we fix the smaller se-

quence {a�
n

}, vary the larger sequence {a+
n

}, and plot the MSE of the estimate x
N

and f(x
N

) for both f(x) = 100e�0.006x2
and f(x) = �x2. Figure 4.7 presents results

for the exponential case with a�
n

= 10/n and a+
n

= 5(k+1)/n, where k is the x-axis,

where Figure 4.7a is the full plot and Figure 4.7b is a magnified version. Clearly,

Kesten’s rule applied to the average step size {(a+
n

+ a�
n

)/2} and the larger step size

{a+
n

} perform poorly as a+
n

increases, since their MSEs of the estimate x
N

are much

higher than the rest in the left figure, and the function value f(x
N

) is much lower

in the right graph (higher is better since we are maximizing). The performance of

using the fixed small step size {a�
n

} is represented by the horizontal lines since it

is independent of a+
n

, performs better than Big and KestenAvg, but both PROX

110

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

M
S

E
 o

f
X

N

k

1 2 3 4 5 6 7 8 9 10
20

30

40

50

60

70

80

90

100

1
0

0
e

x
p

(−
0

.0
0

6
x N2

)
k

Avg

PROX

KestenAvg

Small

Big

AdaptPROX

Avg

PROX

KestenAvg

Small

Big

AdaptPROX

(a) MSE of x

N

and f(x

N

)

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

M
S

E
 o

f
X

N

k

1 2 3 4 5 6 7 8 9 10
75

80

85

90

1
0
0
e
x
p
(−

0
.0

0
6
x N2

)

k

Avg

PROX

KestenAvg

Small

Big

AdaptPROX

Avg

PROX

KestenAvg

Small

Big

AdaptPROX

(b) Magnified version

Figure 4.7: f(x) = 100e�0.006x2
, ✓ = [�30, 70], x1 = 10, a�

n

= 10/n,

a+
n

= 5(k + 1)/n, �
f

= �
g

= 0.1, ↵ = 1.025, n
L

= 20, N = 50,

macroreplications = 20.

111

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

M
S

E
 o

f
X

N

k

1 2 3 4 5 6 7 8 9 10
50

55

60

65

70

75

80

85

90

95

100

1
0

0
e

x
p

(−
0

.0
0

6
x N2

)
k

Avg

PROX

KestenAvg

Small

Big

AdaptPROX

Avg

PROX

KestenAvg

Small

Big

AdaptPROX

(a) MSE of x

N

and f(x

N

)

1 2 3 4 5 6 7 8 9 10
0.01

0.0105

0.011

0.0115

0.012

M
S

E
 o

f
X

N

k

1 2 3 4 5 6 7 8 9 10
99.9925

99.993

99.9935

99.994

99.9945

1
0

0
e

x
p

(−
0

.0
0

6
x N2

)

k

Avg

PROX

KestenAvg

Small

Big

AdaptPROX

Avg

PROX

KestenAvg

Small

Big

AdaptPROX

(b) Magnified version

Figure 4.8: f(x) = 100e�0.006x2
, ✓ = [�30, 70], x1 = 10, a�

n

=

1/n, a+
n

= 2k/n, �
f

= �
g

= 0.1, ↵ = 1.025, n
L

= 20, N = 50,

macroreplications = 20.

112

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

M
S

E
 o

f
X

N

Number of Iterations

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

1
0
0
e
x
p
(−

0
.0

0
6
x2

)

Number of Iterations

Avg

PROX

KestenAvg

Small

Big

AdaptPROX

Avg

PROX

AvgKesten

Small

Big

AdaptPROX

(a) a

�
n

= 1/n, a

+
n

= 10/n

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

M
S

E
 o

f
X

N

Number of Iterations

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

1
0

0
e

x
p

(−
0

.0
0

6
x2

)

Number of Iterations

Avg

PROX

KestenAvg

Small

Big

AdaptPROX

Avg

PROX

AvgKesten

Small

Big

AdaptPROX

(b) a

�
n

= 10/n, a

+
n

= 50/n

Figure 4.9: MSE of x
N

and f(x
N

), f(x) = 100 exp�0.006x2
, ↵ = 1.5,

✓ = [�30, 70], x1 = 10, �
f

= �
g

= 0.1,, ↵ = 1.5, n
L

= 50, N = 50,

macroreplications = 20.

and aPROX appear to outperform in almost all cases. Figure 4.7b zooms in on

the better performances for a clearer comparison. Figure 4.8 presents results for a

similar setting with the exception of step sizes, where, a�
n

= 1/n and a+
n

= 2k/n.

The reduction in step sizes result in the same two step sizes (Big and KestenAvg)

performing poorly, but the average step size sequence also joins the group. From

Figure 4.8b, aPROX outperforms all algorithms for the range of step sizes {a+
n

},

and the PROX results are not far behind.

We also plot the MSE of x
N

and the function f(x
N

) as a function of the

113

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600

1800

2000

M
S

E
 o

f
X

N

Number of Iterations

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

1
0
0
e
x
p
(−

0
.0

0
6
x2

)

Number of Iterations

Avg

PROX

KestenAvg

Small

Big

AdaptPROX

Avg

PROX

AvgKesten

Small

Big

AdaptPROX

(a) a

�
n

= .1/n, a

+
n

= 50/n

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

M
S

E
 o

f
X

N

Number of Iterations

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

1
0
0
e
x
p
(−

0
.0

0
6
x2

)

Number of Iterations

Avg

PROX

KestenAvg

Small

Big

AdaptPROX

Avg

PROX

AvgKesten

Small

Big

AdaptPROX

(b) a

�
n

= 1/n, a

+
n

= 50/n

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

M
S

E
 o

f
X

N

Number of Iterations

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

1
0
0
e
x
p
(−

0
.0

0
6
x2

)

Number of Iterations

Avg

PROX

KestenAvg

Small

Big

AdaptPROX

Avg

PROX

AvgKesten

Small

Big

AdaptPROX

(c) a

�
n

= 10/n, a

+
n

= 50/n

Figure 4.10: MSE of x
N

and f(x
N

), f(x) = 100 exp�0.006x2
, ↵ = 2

✓ = [�30, 70], x1 = 10, �
f

= �
g

= 0.1, n
L

= 20, N = 50, macrorepli-

cations = 20.

114

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

M
S

E
 o

f
X

N

k

1 2 3 4 5 6 7 8 9 10
−5000

−4000

−3000

−2000

−1000

0

1
0

0
e

x
p

(−
0

.0
0

6
x N2

)

k

Avg

PROX

KestenAvg

Small

Big

AdaptPROX

Avg

PROX

KestenAvg

Small

Big

AdaptPROX

(a) N = 10, a

�
n

= 1/n, a

+
n

= 2k/n

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

M
S

E
 o

f
X

N

k

1 2 3 4 5 6 7 8 9 10
−1000

−800

−600

−400

−200

0

1
0
0
e
x
p
(−

0
.0

0
6
x N2

)

k

Avg

PROX

KestenAvg

Small

Big

AdaptPROX

Avg

PROX

KestenAvg

Small

Big

AdaptPROX

(b) N = 50, a

�
n

= 10/n, a

+
n

= 5(k + 1)/n

Figure 4.11: MSE of x
N

and f(x
N

), f(x) = �x2, ✓ = [�30, 70],

x1 = 10, �
f

= 0.1, �
g

= 0.1, n
L

= 20, macroreplications = 20.

iteration in Figure 4.9 for two di↵erent step size settings. Figure 4.9a and 4.9a

illustrate the results for the exponential function with smaller and larger step sizes,

respectively. For the smaller step sizes, (i.e., a�
n

= 1/n and a+
n

= 10/n), all of

the algorithms with the exception of Big seem to be approaching the optimum,

but PROX, aPROX, and Small do so earlier on, followed by KestenAvg and then

Avg. With a larger step size, KestenAvg and Big perform very poorly, while the

others make progress as the number of iterations increase. From Figure 4.9b, PROX

appears to outperform all algorithms followed by aPROX. Moreover, Figure 4.10 also

plots the MSE of x
N

and f(x
N

) for a similar setting, but we increase the scale factor

↵ from 1.5 to 2. For all three subfigures a+
n

= 50/n, but the smaller step size a�
n

increases from 0.1/n to 1/n to 10/n. In Figures 4.10a and 4.10c, aPROX performs

115

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

M
S

E
 o

f
X

N

Number of Iterations

0 5 10 15 20 25 30 35 40 45 50
−5000

−4000

−3000

−2000

−1000

0

1
0

0
e

x
p

(−
0

.0
0

6
x2

)

Number of Iterations

Avg

PROX

KestenAvg

Small

Big

AdaptPROX

Avg

PROX

AvgKesten

Small

Big

AdaptPROX

Figure 4.12: MSE of x
N

and f(x
N

), f(x) = �x2, N = 50, x1 = 10,

�
f

= 0.1, �
g

= 1.0, n
L

= 50, a�
n

= 1/n, a+
n

= 20/n

the best followed by PROX, and both algorithms outperform the rest. These figures

show that PROX has promise and aPROX can improve the performance of PROX

in certain cases. The performance for PROX and aPROX in Figure 4.10b are almost

identical.

We also test the adaptive step sizes on the simple quadratic function f(x) =

�x2 for the same two step size settings. The results are similar to those in the

exponential case, which can be seen in Figures 4.11a, 4.11b, and 4.12. This results

shows that PROX and aPROX can be applied to both well-behaved and ill-behaved

functions. In all of the cases, PROX and aPROX perform similarly, which is not a

surprise since we used conservative parameter settings.

4.6.2 9-station Closed Jackson Queueing Network

We empirically test the PROX-step and the aPROX-step on the close queueing

network problem from Section 3.4 with identical settings with the exception of the

step size parameter. Figures 4.13a, 4.13b, 4.13c, 4.14a, 4.14b, and 4.14c illustrate

the results of the MSE of the x
N

as well as the throughput TP (x
N

) for various step

116

sizes for six di↵erent step size parameters. In all of the cases, PROX and aPROX

are either in the top three algorithms or the top two at the stopping time. Figure

4.14c depicts an extreme case where the step sizes are either extremely small or

large, but outperform the other algorithms.

4.7 Summary and Future Work

We investigated the sensitivity of SA algorithms to step size sequences as well

as the tightness of a finite-time MSE bound. In addition, we introduced the first

adaptive step size algorithm based on two deterministic sequences from which the

current step size is selected from, which is determined by the current and past sample

performances. We also propose an adaptive method to adjust the two deterministic

sequences based on current and past events. We empirically show the promise on

stylized problems and a queueing network.

Unfortunately, the adaptive method in modifying the two initial sequences

rely on user chosen parameters, so in the future, we would like to find ways to

automatically select these parameters. In addition, we could apply this step size to

other algorithms and numerical examples.

117

0 5 10 15 20 25 30 35 40 45 50
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

MSE of Estimate x
N

M
S

E
 o

f
x

N

of iterations

0 5 10 15 20 25 30 35 40 45 50
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
Throughput

T
P

(x
N

)

of iterations

Avg

PROX

Sm

Big

aPROX

Avg

PROX

Sm

Big

aPROX

(a) a

�
n

= 0.1/n, a

+
n

= 10/n, ↵ = 1.5, d

n

= 5

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MSE of Estimate x
N

M
S

E
 o

f
x

N

of iterations

0 5 10 15 20 25 30 35 40 45 50
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
Throughput

T
P

(x
N

)

of iterations

Avg

PROX

Sm

Big

aPROX

Avg

PROX

Sm

Big

aPROX

(b) a

�
n

= 0.01/n, a

+
n

= 20/n, ↵ = 1.5, d

n

= 5

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MSE of Estimate x
N

M
S

E
 o

f
x

N

of iterations

0 5 10 15 20 25 30 35 40 45 50
1

2

3

4

5

6

7
Throughput

T
P

(x
N

)

of iterations

Avg

PROX

Sm

Big

aPROX

Avg

PROX

Sm

Big

aPROX

(c) a

�
n

= 10/n, a

+
n

= 20/n, ↵ = 1.5, d

n

= 5

Figure 4.13

118

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

MSE of Estimate x
N

M
S

E
 o

f
x

N

of iterations

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7
Throughput

T
P

(x
N

)

of iterations

Avg

PROX

Sm

Big

aPROX

Avg

PROX

Sm

Big

aPROX

(a) a

�
n

= 10/n, a

+
n

= 50/n, ↵ = 1.5, d

n

= 5

0 5 10 15 20 25 30 35 40 45 50
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

MSE of Estimate x
N

M
S

E
 o

f
x

N

of iterations

0 5 10 15 20 25 30 35 40 45 50
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
Throughput

T
P

(x
N

)

of iterations

Avg

PROX

Sm

Big

aPROX

Avg

PROX

Sm

Big

aPROX

(b) a

�
n

= 0.1/n, a

+
n

= 10/n, ↵ = 2, n

L

= 20

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

MSE of Estimate x
N

M
S

E
 o

f
x

N

of iterations

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7
Throughput

T
P

(x
N

)

of iterations

Avg

PROX

Sm

Big

aPROX

Avg

PROX

Sm

Big

aPROX

(c) a

�
n

= 0.001/n, a

+
n

= 50/n, ↵ = 2, n

L

= 20

Figure 4.14

119

Chapter 5

Greek Kernel Estimators

5.1 Introduction

Financial derivatives have become an integral part of risk management. There-

fore, accessing and quantifying the risk of these assets have sparked great interest

in the finance industry. The Greeks are derivatives of (financial) derivative prices

with respect to an underlying market parameter. Each Greek measures a di↵erent

dimension of market risk. For instance, “delta,” “vega,” and “theta” are first-order

derivatives of the expected payo↵ with respect to price, volatility, and time, respec-

tively, and “gamma” is the second-order derivative with respect to price.

One type of financial derivative used for hedging is an option, which gives the

security holder the right to exercise the option once certain conditions are satisfied,

which is dependent on the option type. For example, the exercise condition for an

Asian digital option depends on depends on the average price over a pre-specified

period, and it pays a lump sum if the option is “in the money” and zero otherwise.

Up-and-out barrier call options can be exercised once the price reaches the strike

price but does not cross the upper barrier. Both of these options have discontinuous

payo↵ functions, and the option price can be written as

E[g(S) · I{h(S)�0}], (5.1)

120

where the expectation is taken under the risk-neutral measure, S is the price modeled

by a stochastic process, I{·} is the indicator function, and g(S) is the discounted

payo↵ when the exercise condition, h(S) � 0, is satisfied. The price S depends on

the market parameters ✓ 2 ⇥, where ⇥ is an open set. For simplicity, assume ✓

is one-dimensional, since we can focus on one market parameter and hold all else

constant. The derivative of the payo↵ function (5.1) with respect to ✓ is a first-order

Greek, and the derivative of the first-order Greek with respect to ✓ is a second-order

Greek, both of which we wish to estimate. Some well-known derivative estimation

methods include finite di↵erence approximation, perturbation analysis (also known

as the pathwise method), the score function or likelihood ratio (SF/LR) method, and

the weak derivative (WD) method. Each method has its advantages and drawbacks.

The most straightforward approach to estimate Greeks is the finite di↵erence

method. Although this method is easy to implement, the resulting estimators are

biased and generally have a high mean-squared error (MSE) [33]. In addition, a per-

turbation sequence {�✓} must be selected, which a↵ects the bias/variance tradeo↵,

although symmetric di↵erences can be used to reduce the order of bias [24]. In

addition, smaller perturbations could lead to more noise because of the stochastic-

ity. The pathwise method, generally known as infinitesimal perturbation analysis

(IPA) in the simulation community, is easy to implement and often performs well in

comparison with other methods, but unfortunately, it is not always applicable. For

instance, it is not suitable for discontinuous functions nor second-order Greeks [43].

Smoothed perturbation analysis (SPA) is able to overcome the discontinuity issue,

and [28] suggest using SPA to smooth out the discontinuity by conditioning on ap-

121

propriate random variables (e.g., [61]). The key, which is the most di�cult part of

this method, is choosing the random variable on which to condition. On the con-

trary, the weak derivative (WD) method is applicable to discontinuous functions,

but may require a high number of simulations [24]. The likelihood ratio method

can also approximate the gradient of discontinuous functions, but usually leads to

high variance. For a comprehensive review of gradient estimation methods, refer

to [33], [23], and [4].

[43] introduces a modified pathwise method to estimate first- and second-

order Greeks for options with discontinuous payo↵s. It is a generalization of the

classical pathwise method, which extends to options with discontinuous payo↵s (5.1)

by rewriting the Greek as a sum of an expectation and a derivative(s) with respect

to an auxiliary parameter. The general pathwise method and kernel method are

applied to the expectation and derivative terms, respectively. The accuracy of the

kernel estimator depends/hinges on the chosen kernel function, which relies on a

bandwidth/smoothing parameter, described in more detail in Section 5.3.3. A pilot

simulation proposed in [43] generates an “optimal” bandwidth parameter prior to

applying the modified pathwise method. The pilot simulation involves various input

parameters, which a↵ect the bandwidth output. The modified pathwise method has

been applied to estimate delta, vega, theta and gamma of the Asian digital option

and up-and-out barrier call option.

In this chapter, we examine the accuracy of the Greeks estimated using a modi-

fied pathwise gradient estimation method for an Asian digital option and up-and-out

barrier call option by conducting two sets of numerical experiments. The first set

122

investigates the sensitivity of the Greek estimators to the bandwidth parameter(s),

and the second explores the sensitivity of a proposed method used to generate “op-

timal” bandwidths for the modified pathwise method to various input parameters.

Our numerical results show that the Greek estimators are quite sensitive to the

bandwidth, so the performance of the pilot simulation is critical.

5.2 Problem Setting

We focus on options with a discontinuous payo↵ function that can be written in

the form in (5.1), where g(·) and h(·) are di↵erentiable functions, and S is a vector of

discretized prices. Let S
t

i

denote the price of the security at time t
i

� 0, where t
i

=

iT/k for i = 0, 1, 2, . . . , k, which are evenly spaced time points between 0 and T. For

simplicity, denote S
t

i

by S
i

, and S = (S0, S1, . . . , Sk

)
0
. Let p(✓) = E[f(S)], where

p
0
(✓) = @p(✓)/@✓ is the first-order Greek with respect to ✓ and p

00
(✓) = @2p(✓)/@✓2

is the second-order Greek with respect to ✓. If ✓ = S0, ✓ = �, and ✓ = ⌧ , then

p
0
(✓) is called delta, vega, and theta, respectively, and if ✓ = S0, then p

00
(✓) is called

gamma.

We explore Asian digital options and up-and-out barrier call options, both

of which have discontinuous payo↵s. For the Asian digital option, the discounted

payo↵ function g(S) = e�rT , where r is the risk-free rate and T is the duration of

time considered, and the exercise criterion is based on an average of k discretized

prices S = 1
k

P

k

i=1 Si

exceeding a pre-specified threshold K over a predetermined

period of time, i.e., whether or not h(S) , S � K � 0. The up-and-out barrier call

123

Table 5.1: Parameters.

r � b µ S0 K T U k

Asian digital option 0.05 0.30 0.2 98 100 100 1 - 10, 20, 50

up-and-out barrier call option 0.05 0.20 - - 100 100 1 120 20, 50

option can be exercised if the final price S
k

is greater than or equal to a threshold

K, but the maximum price S
max

= max{S1, . . . , Sk

} never exceeds an upper barrier

U , i.e., whether or not h(S) = min{S
k

� K,U � S
max

} � 0. The payo↵ function

is the amount by which the final price S
k

exceeds the strike price K discounted by

e�rT , i.e., g(S) = e�rT (S
k

� K).

In the numerical experiments, the prices considered for the Asian digital option

and the up-and-out barrier call option follow an Ornstein-Uhlenbeck process and a

geometric Brownian motion generated, respectively, using

S
i

= S
i�1e

�b⌧ + µ(1 � e�b⌧) + �
p

(1 � e�2b⌧)/(2b)Z
i

for i = 1, 2, ..., k,

S
t

= S0e
(r��

2
/2)t+�B

t for t = T/k, 2T/k, ..., T,

where b, �, µ, r, k, and ⌧ are the mean reversion rate, volatility, mean return, risk-

free interest rate, number of discretized intervals, and incremental time step (T/k),

respectively. The variables Z
i

and B
t

are independent standard normal random

variables and standard Brownian motion, respectively. The values considered are

listed in Table 5.1.

124

5.3 Generalized Pathwise Method

The pathwise method is in general not applicable to second-order Greeks nor

discontinuous functions, but the modified kernel version is one method that circum-

vents this issue.

5.3.1 First-Order Greeks

The first-order Greek estimator based on the modified pathwise method is

based on the following theoretical result from [43].

Assumption 1. For any ✓ 2 ⇥, g(S) and h(S) are di↵erentiable with respect to ✓

with probability 1 (w.p.1), and there exist random variables K
g

and K
h

with finite

second moments that may depend on ✓, such that |g(S(✓+�✓))�g(S(✓))| K
g

|�✓|

and |h(S(✓ +�✓)) � h(S(✓))| K
h

|�✓| when |�✓| is su�ciently small.

Assumption 2. For any ✓ 2 ⇥, @
✓

�(✓, y) exists and is continuous at (✓, y) with

�(✓, y) = E[g(S) · 1{h(S)�y}].

Theorem 5.3.1. Suppose g(·) and h(·) satisfy Assumptions 1 and 2, and E[|g(S)|2] <

+1 and E[|h(S)|2] < +1. Then

p
0
(✓) = E[@

✓

g(S) · 1{h(S)�0}] � @
y

E[g(S)@
✓

h(S) · 1{h(S)�y}]|y=0 (5.2)

The two terms on the right hand side of (2) can be estimated easily, because

the first term is an ordinary expectation, where g(S) is di↵erentiable with respect

to ✓, and the second term is a derivative with respect to y, which is independent

125

of g(S) and h(S). Thus, the first term can be estimated using the law of large

numbers, and finite di↵erences can be used to estimate the second term based on

�@
y

E
⇥

g(S)@
✓

h(S) · 1{h(S)�y}
⇤

|
y=0

= � lim
�!0

1

�
{E

⇥

g(S)@
✓

h(S) · 1{h(S)��/2}
⇤

� E
⇥

g(S)@
✓

h(S) · 1{h(S)���/2}
⇤

}

= lim
�!0

1

�
E[g(S)@

✓

h(S) · 1{��/2h(S)�/2}]

= lim
�!0

1

�
E

g(S)@
✓

h(S) · Z
✓

h(S)

�

◆�

,

where Z(u) = 1{�1/2u1/2}, which is known as the uniform or naive kernel because

u ⇠ U(�1/2, 1/2). It can be replaced with any other kernel, which we elaborate

on in Section 5.3.3. In practice, Assumptions 1 and 2 are typically satisfied. Refer

to [43] for the proof and a discussion of the assumptions.

5.3.2 Second-Order Greeks

The second-order Greeks are estimated using a theorem from [43] based on

the following two assumptions:

Assumption 3. For any (✓1, ✓2) 2 ⇥, g(S) and h(S) are di↵erentiable with respect

to ✓1 with probability 1 (w.p.1), and @
✓1g(S) and @✓1h(S) are di↵erentiable with re-

spect to ✓2 with probability 1 (w.p.1), and there exist variables K
g

, K
h

, L
g

, and L
c

with finite fourth moments, which may depend on (✓1, ✓2), such that |g(S(✓1 +

�✓1, ✓2)) � g(S(✓1, ✓2))| K
g

|�✓1|, |g(S(✓1, ✓2 +�✓2,)) � g(S(✓1, ✓2))| K
g

|�✓2|,

|h(S(✓1 +�✓1, ✓2))� h(S(✓1, ✓2))| K
h

|�✓1|, |h(S(✓1, ✓2 +�✓2,))� h(S(✓1, ✓2))|

K
h

|�✓2|, |@
✓1g(S(✓1 + �✓1, ✓2)) � @

✓1g(S(✓1, ✓2))| L
g

|�✓2|, and |g(S(✓1, ✓2 +

126

�✓2,))@✓1h(S(✓1, ✓2 + �✓2,)) � g(S(✓1, ✓2))@✓1h(S(✓1, ✓2))| L
c

|�✓2|, when |�✓1|

and |�✓2| are su�ciently small.

Assumption 4. For any ✓ 2 ⇥, @
✓1@✓2�(✓1, ✓2, y) exists and is continuous at

(✓1, ✓2, 0), where �(✓1, ✓2, y) = E[g(S) · 1{h(S)�y}].

Theorem 5.3.2. Suppose g(·) and h(·) satisfy Assumptions 3 and 4, and E[|g(S)|4] <

+1 and E[|h(S)|4] < +1. Then

@
✓1@✓2p(✓1, ✓2) = E[@

✓1@✓2g(S) · 1{h(S)�0}]

�@
y

E[(g(S)@
✓1@✓2h(S) + @

✓1g(S)@✓2h(S) + @
✓2g(S)@✓1h(S)) · 1{h(S)�y}]|y=0

+@2
y

E[g(S)@
✓1h(S)@✓2h(S)1{h(S)�y}]|y=0.

We focus on the second-order Greek gamma, where ✓ = S0; therefore,

@2
✓

p(✓) = E[@2
✓

g(S) · 1{h(S)�0}]

�@
y

E[(g(S)@2
✓

h(S) + 2 · @
✓

g(S)@
✓

h(S)) · 1{h(S)�y}]|y=0

+@2
y

E[g(S)@
✓

h(S)@
✓

h(S)1{h(S)�y}]|y=0.

Again, the first term on the right hand side can be estimated using using a sample

mean. The finite di↵erences derivation for the second term is similar to (5.3), and

for the finite di↵erence representation of the third term, observe that

�@
y

E[g(S)(@
✓

h(S))2 · 1{h(S)�y}]|y=0

= lim
�!0

1

�
E

g(S)(@
✓

h(S))2 · Z
✓

h(S) � y

�

◆�

�

�

�

y=0
,

127

and

@2
y

E
⇥

g(S)(@
✓

h(S))2 · 1{h(S)�y}
⇤

|
y=0

= lim
�!0

1

�2
E

g(S)(@
✓

h(S))2 · Z 0
✓

h(S)

�

◆�

, (5.3)

where Z(·) is the kernel function. The approximation of the second-order auxiliary

term (5.3) along with the first-order term (5.3) can be seen in the estimator (5.5).

5.3.3 Kernel

A d-dimensional kernel, K : Rd ! R, is a bounded symmetric density with

respect to the the Lebesgue measure with limkukd!1 k u k K(u) = 0 and
R

Rd

k u k2

K(u)du < 1 where k · k is any norm on Rd [6]. A kernel K has the form

K(u) =
1

h
K
⇣u

h

⌘

, u 2 Rd,

where h is the bandwidth, also known as the smoothing parameter [6]. For this

paper, we focus on the case for d = 1. According to [6], a reasonable kernel does not

a↵ect the asymptotic behavior of the estimator; however, the bandwidth significantly

influences the accuracy of the estimator. Large bandwidths decrease the variance

but increase the bias, whereas small bandwidths lead to the exact opposite; hence,

there is a tradeo↵ between variance and bias. Therefore, careful attention should

be given to the selection process. Although there are other methods to quantify the

accuracy of the kernel estimator, [43] measure it based on the MSE. Consequently,

they attempt to select the bandwidth that maximizes the accuracy using an iterative

pilot simulation.

128

5.3.4 First- and Second-Order Greek Estimators

Based on Theorem 5.3.1 and 5.3.2, the following estimators are used to ap-

proximate the first- and second-order Greeks, respectively:

G
n

=
1

n

n

X

l=1

g
0

l

· 1[h
l

�0] +
1

n�
n

n

X

l=1

g
l

· h0

l

· Z

h
l

�
n

!

, (5.4)

H
n

=
1

n

n

X

l=1

g
00

l

· 1[h
l

0] +
1

n�
n

n

X

l=1

{g
l

· h00

l

+ 2 · g0

l

· h0

l

} · Z

h
l

�
n

!

+
1

n�2
n

n

X

l=1

g
l

· (h0

l

)2 · Z 0

h
l

�
n

!

, (5.5)

where (g
l

, h
l

, g0
l

, h0
l

, g00
l

, h00
l

) is the lth observation of (g(S), h(S), @
✓

g(S), @
✓

h(S), @2
✓

g(S),

@2
✓

h(S), Z(·) is a kernel, and �
n

and �
n

are constant bandwidth parameters gener-

ated using a pilot simulation. The second-order estimator (5.5) is a special case

when both derivatives are taken with respect to the same parameter.

5.4 Pilot Simulation

Ideally, the optimal bandwidth parameter would minimize the error between

the Greek estimator and its true value, and the pilot simulation proposed in [43]

employs an iterative method that generates an “optimal” bandwidth that minimize

the asymptotic mean-squared error (MSE). The MSE of the first-order estimator

can be expressed as

MSE(G
n

) = [E(G
n

) � @
✓

E[g(S) · 1{h(S)�0}]]
2 +Var(G

n

)

= �4
n

00
(0)

2

Z 1

�1
u2Z(u)du+ ✏

n

�2

+
1

n�
n

(�2
1 + ⇠

n

),

129

where (u) = f
h

(u)·E[g(S)·@
✓

h(S)|h(S) = u],
�

(u) = f
h

(u)·E[|g(S)·@
✓

h(S)|�|h(S) =

u], and �2
1 = 2(0)

R1
�1 Z2(u)du. Since ✏

n

! 0 and ⇠
n

! 0 as n ! 1, then the

optimal bandwidth choice is c · n�1/5, where

c =

"

�2
1

(00(0)
R1

�1 u2Z(u)du)2

#1/5

.

This constant c is estimated by

ĉ =

"

V
n

(b 00(0)
R1

�1 u2Z(u)du)2

#1/5

,

where V
n

is the sample variance of G
n

and b
00
(0) is the finite di↵erence approxima-

tion of
00
(0):

b
00
(0) =

G
n

(s) +G
n

(�s) � 2G
n

(0)

s2
,

where s is a su�ciently small step size and

G
n

(u) =
1

n�
n

n

X

l=1

g
l

· h0

l

· Z
✓

h(S) � u

�
n

◆

.

Therefore, the optimal bandwidth is approximated by �?
n

= ĉ · n�1/5. The pilot

simulation begins with ĉ = 1, and is updated after each iteration using the same

sample. More specifically, at each iteration, V
n

and b
00
(0) are simulated using the

updated �?
n

with n = 500. This process continues for a pre-specified number of

iterations, and the bandwidth selected is the one generated after 30 pilot iterations,

as in [43]. The pilot simulation algorithm does not specify the variance sample size

n
v

to generate V
n

, step size s to estimate 00(0), and the number of iterations for the

pilot simulation n
p

, which are all predetermined. Refer to the e-companion of [43]

for the algorithm details and the pilot simulation for the second-order Greeks.

130

5.5 Numerical Experiments

We conduct two sets of numerical experiments to test the robustness of a

modified pathwise method and a pilot simulation used to generate an input pa-

rameter for the modified method [8]. The first is a sensitivity analysis of Greek

estimators for both the Asian digital option and up-and-out barrier call option to

bandwidth parameters, and the second explores the e↵ect of the input parameters to

the bandwidth generated from the pilot simulation. We considered identical settings

as in [43], which are shown in Table 5.1 and described in Section 5.2. However, the

sample size considered here is 100 as opposed to 1000 in [43]. From our preliminary

results, the increase in sample size only tightens the confidence band and smooths

out the curves, but the overall behavior is similar across estimators, so we opt to use

a smaller sample size. Furthermore, we also consider the standard normal density

as the kernel to increase the robustness of the resulting estimator.

5.5.1 Sensitivity to Bandwidth

In our experiment for each Greek, we generate 100 estimators for incremen-

tally increasing bandwidths and observe the e↵ect on the relative root mean-squared

error (RRMSE) and the 95% confidence band (CB). Figures 5.1, 5.2, 5.3, and 5.4

plot the 95% confidence band for the Greek estimator generated using 1000 sample

paths for Asian Greeks, 10000 sample paths for barrier Greeks, and sample size of

100 for incrementally increasing ĉ. The black curve in between is the mean, and the

horizontal dashed line represents the exact Greek value. The three vertical lines in

131

Figures 5.1, 5.2, and 5.3 represent the 95% confidence interval for the ĉ generated

using the pilot simulation with n
p

= 30, n
v

= 100, which we will elaborate on in the

next section. In the same figures, the second row of graphs plots the RRMSE of the

100 generated Greeks for incrementally increasing ĉ, where the additional vertical

dashed line denotes the c⇤ that minimizes the RRMSE. The only di↵erence when

n = 1000 increases to n = 10000 for the Asian Greek estimators is the increased

smoothness of the curves and tighter confidence bands, but again, the overall be-

havior is the same. [43] reports results for n = 103, 104, 105 for the Asian Greeks,

but we only test the case for n = 103.

Not surprisingly, the bandwidth a↵ects the accuracy and precision of the Greek

estimator. Generally, as the bandwidth decreases, the variance increases, which can

be seen in the widening of the 95% confidence band as ĉ ! 0 and is observable in all

of the estimators. Similarly, the 95% confidence band decreases as the bandwidth

increases, but eventually the confidence band no longer contains the exact Greek

value. Figures 5.2, 5.3, and 5.4 for the Asian vega, Asian gamma, and barrier theta

estimators illustrate this behavior, respectively. In addition, the minimum RRMSE

of these estimates occur in one particular region for all discretization levels. Figure

5.2 shows that the Asian vega estimator is rather close to the exact value for a

range of ĉ values less than 0.1. The barrier theta estimator behaves similarly but

for a di↵erent range of ĉ values as seen in Figure 5.4. In contrast, the Asian gamma

estimator is extremely sensitive to ĉ, and the RRMSE increases significantly with

even slight deviations from the optimal bandwidth. Moreover, the 95% confidence

interval (CI) for the bandwidth parameter is very narrow and does not contain the

132

Table 5.2: Asian delta.

�

n

for s

n k c

⇤
RRMSE lower upper range �

⇤
n

0.1 0.01 0.001

500 10 0.64 0.028 0.915 1.021 0.106 0.185 0.14 0.06 0.06

20 0.46 0.038 0.975 1.132 0.156 0.133 0.15 0.05 0.05

50 0.54 0.033 0.998 1.130 0.132 0.156 0.14 0.06 0.06

1000 10 0.74 0.020 0.931 1.005 0.074 0.186 0.14 0.05 0.04

20 0.54 0.028 0.996 1.104 0.108 0.136 0.13 0.05 0.05

50 0.60 0.024 1.019 1.117 0.099 0.151 0.13 0.05 0.05

2000 10 0.84 0.014 0.943 0.996 0.053 0.184 0.13 0.03 0.03

20 0.56 0.021 1.012 1.097 0.084 0.122 0.13 0.03 0.02

50 0.68 0.017 1.034 1.105 0.071 0.149 0.13 0.03 0.02

5000 10 1.00 0.009 0.954 0.988 0.035 0.182 0.15 0.06 0.06

20 0.66 0.014 1.027 1.083 0.055 0.120 0.16 0.07 0.07

50 0.80 0.011 1.050 1.094 0.044 0.146 0.16 0.06 0.06

10000 10 1.14 0.007 0.960 0.985 0.020 0.181 0.15 0.03 0.02

20 0.72 0.011 1.036 1.076 0.040 0.114 0.12 0.03 0.02

50 0.92 0.008 1.056 1.088 0.032 0.146 0.13 0.03 0.02

exact Asian gamma value.

The numerical results for the Asian delta are quite di↵erent as illustrated in

Figure 5.1. The mean of the delta estimator intersects with the exact/analytical

value at least twice for k = 10 and k = 50. For the case k = 10, the RRMSE

has a minimum and a nearly flat region. The minimum of the RRMSE for each

discretization case occurs at di↵erent points for a given number of sample paths

n, unlike the Asian vega, Asian gamma, and barrier theta. The exact ĉ values at

which the minimums occurs, the resulting RRMSE, and 95% confidence interval of

the Asian delta estimators generated using the ĉ are listed in Table 5.2.

Another interesting case is the gamma estimator for the up-and-out barrier

call option, which relies on two bandwidth parameters �
n

and �
n

. The Asian gamma

133

0.0 0.2 0.4 0.6 0.8 1.0
0
.8

1
.0

1
.2

k=10

ĉ

D
e
lt
a

0.0 0.2 0.4 0.6 0.8 1.0
0
.8

1
.0

1
.2

0.0 0.2 0.4 0.6 0.8 1.0
0
.8

1
.0

1
.2

95% CB

mean delta

exact delta

95% CI

0.0 0.2 0.4 0.6 0.8 1.0

0
.8

1
.0

1
.2

k=20

ĉ

D
e
lt
a

0.0 0.2 0.4 0.6 0.8 1.0

0
.8

1
.0

1
.2

0.0 0.2 0.4 0.6 0.8 1.0

0
.8

1
.0

1
.2

0.0 0.2 0.4 0.6 0.8 1.0

0
.8

1
.0

1
.2

k=50

ĉ

D
e
lt
a

0.0 0.2 0.4 0.6 0.8 1.0

0
.8

1
.0

1
.2

0.0 0.2 0.4 0.6 0.8 1.0

0
.8

1
.0

1
.2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0
0

0
.1
0

ĉ

R
R
M
S
E

0.0 0.2 0.4 0.6 0.8 1.0

0
.0
0

0
.1
0

ĉ

R
R
M
S
E

0.0 0.2 0.4 0.6 0.8 1.0

0
.0
0

0
.1
0

ĉ

R
R
M
S
E

95% CI for ĉ

optimal ĉ

Figure 5.1: 95% confidence band for Asian delta (solid curves) for

n = 1000 with w/95% confidence interval for bandwidth (vertical

dashed lines) generated using s = 0.1 and RRMSE for 100 sample

paths.

0.0 0.1 0.2 0.3 0.4

0
.5

0
.7

0
.9

1
.1

k=10

ĉ

V
e
g
a

0.0 0.1 0.2 0.3 0.4

0
.5

0
.7

0
.9

1
.1

0.0 0.1 0.2 0.3 0.4

0
.5

0
.7

0
.9

1
.1

95% CB

mean vega

exact vega

95% CI

0.0 0.1 0.2 0.3 0.4

0
.5

0
.7

0
.9

1
.1

k=20

ĉ

V
e
g
a

0.0 0.1 0.2 0.3 0.4

0
.5

0
.7

0
.9

1
.1

0.0 0.1 0.2 0.3 0.4

0
.5

0
.7

0
.9

1
.1

0.0 0.1 0.2 0.3 0.4

0
.5

0
.7

0
.9

1
.1

k=50

ĉ

V
e
g
a

0.0 0.1 0.2 0.3 0.4

0
.5

0
.7

0
.9

1
.1

0.0 0.1 0.2 0.3 0.4

0
.5

0
.7

0
.9

1
.1

0.0 0.1 0.2 0.3 0.4

0
.0
0

0
.1
5

0
.3
0

ĉ

R
R
M
S
E

0.0 0.1 0.2 0.3 0.4

0
.0
0

0
.1
5

0
.3
0

ĉ

R
R
M
S
E

0.0 0.1 0.2 0.3 0.4

0
.0
0

0
.1
5

0
.3
0

ĉ

R
R
M
S
E

95% CI for ĉ

optimal ĉ

Figure 5.2: 95% confidence band for Asian vega (solid curves) for

n = 1000 w/95% confidence interval for bandwidth (vertical dashed

lines) generated using s = 0.001 and RRMSE for 100 sample paths.

134

0.0 0.1 0.2 0.3 0.4 0.5 0.6

4
6

8
1
0

k=10

ĉ

G
a
m
m
a

0.0 0.1 0.2 0.3 0.4 0.5 0.6

4
6

8
1
0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

4
6

8
1
0

95% CB

mean gamma

exact gamma

95% CI

0.0 0.1 0.2 0.3 0.4 0.5 0.6

4
6

8
1
0

k=20

ĉ

G
a
m
m
a

0.0 0.1 0.2 0.3 0.4 0.5 0.6

4
6

8
1
0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

4
6

8
1
0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

4
6

8
1
0

k=50

ĉ

G
a
m
m
a

0.0 0.1 0.2 0.3 0.4 0.5 0.6

4
6

8
1
0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

4
6

8
1
0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
.0

1
.0

2
.0

3
.0

ĉ

R
R
M
S
E

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
.0

1
.0

2
.0

3
.0

ĉ

R
R
M
S
E

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
.0

1
.0

2
.0

3
.0

ĉ

R
R
M
S
E

95% CI for ĉ

optimal ĉ

Figure 5.3: 95% confidence band for Asian gamma (solid curves) for

n = 1000 w/95% confidence interval for bandwidth (vertical dashed

lines) generated using s = 0.01 and RRMSE for 100 sample paths.

is also a second-order Greek, but the second term in (5.4) containing �
n

disappears

with the given settings. Figure 5.5 plots the barrier gamma as a function of the

bandwidth parameters �
n

(visible horizontal axis) and �
n

(not visible), where the

vertical planes represent the approximately exact gamma for k = 20, 50, respectively.

It is clear that gamma is insensitive to �
n

, but extremely sensitive to �
n

, especially

when �
n

< .03. Unfortunately, this is the region in which the estimator attains the

value closest to the true value. Since the analytical expression is not available for

comparison, the true values are approximated using finite di↵erences with a large

sample of 109. In this case, the steepness of the gamma estimator near the “exact”

value prompts the need for a very accurate and precise �
n

; otherwise, the estimate

could be drastically di↵erent from its true value. As expected, the margin of error

decreases as the number of sample paths n increases. For each discretization level

k, ĉ increases with n, but the resulting �
n

values are similar for each k regardless of

135

0 5 10 15 20 25 30

1
.0

1
.4

1
.8

k=20

ĉ

T
h
e
ta

0 5 10 15 20 25 30

1
.0

1
.4

1
.8

0 5 10 15 20 25 30

1
.0

1
.4

1
.8

0 5 10 15 20 25 30

1
.0

1
.4

1
.8

k=50

ĉ

T
h
e
ta

0 5 10 15 20 25 30

1
.0

1
.4

1
.8

0 5 10 15 20 25 30

1
.0

1
.4

1
.8

0 5 10 15 20 25 30

0
.0
0

0
.1
0

ĉ

R
R
M
S
E

0 5 10 15 20 25 30

0
.0
0

0
.1
0

ĉ

R
R
M
S
E

Figure 5.4: 95% confidence band for barrier theta for n = 10000 and

RRMSE for 100 sample paths.

n.
The conclusions in this section are representative of all of the estimators tested.

For instance, the Asian delta is the only estimator whose mean matches the exact

Greek value for two di↵erent bandwidth values and the barrier gamma is the only

estimator that requires the input of two bandwidth parameters. The Asian vega,

in general, has a decreasing 95% confidence band whose mean also decreases with

ĉ and matches the exact Greek value for one particular ĉ, and there is one global

minimum RRMSE, which represents the results of the remaining Greek estimators.

5.5.2 Sensitivity of Bandwidth Generator to Input Parameters

Our sensitivity analysis of the modified pathwise method applied to Greeks

concludes that it is, in general, very sensitive to the bandwidth parameter(s), so the

key to a good estimator is in the bandwidth selection process. Therefore, we inves-

136

(a) k = 20

(b) k = 50

Figure 5.5: Barrier gamma estimator for n = 10000, 100 sample

paths.

137

tigate the sensitivity of the pilot simulation to the various input parameters such as

variance sample size n
v

, perturbation size s, number of sample paths n, and number

of pilot iterations n
p

, as described in Section 5.4. We considered the following set-

tings: n
v

2 {50, 100, 500, 1000}, s 2 {0.001, 0.01, 0.1}, n 2 {500, 1000, 2000, 5000},

and n
p

2 {1, . . . , 100}. For each setting, we compute the 95% confidence inter-

val for the bandwidth output and compare it against the optimal bandwidth that

minimizes the RRMSE in Table 5.2. The pilot simulation experiments consider a

variance sample size of 100 (i.e., n
v

= 100) and 30 pilot iterations (i.e, n
p

= 30),

unless stated otherwise. Over an extensive set of parameter settings, the results are

quite similar, so we limit our discussion to representative cases.

First, we discuss the results of the pilot simulation for the Asian delta. For

any fixed perturbation size, the average ĉ under the Asian delta estimator is quite

similar across sample paths and discretization level k, with a maximum range of

0.04. As n increases, the average ĉ decreases ever so slightly. One would think that

variance of ĉ decreases with n, i.e., the confidence band would decrease with the n;

however, the perturbation size s appears to be the determining factor from Figure

5.6. In this case, the smaller perturbation size s = 0.1 leads to wider confidence

intervals, which is interesting, because smaller perturbations tend to generate noisier

estimates. Therefore, it could be advantageous to consider an average or a window

average, as opposed to selecting the ĉ generated after a certain number of iterations.

For instance, the average ĉ fluctuates, especially in the case of s = 0.1, so taking

a further average of multiple pilot iterations at the later stage, could generate a

parameter that is more stable.

138

0 10 20 30 40 50

0
.0

0
.2

0
.4

n=500, s=0.1

Number of Pilot Iterations

ĉ

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

n=1000, s=0.1

Number of Pilot Iterations

ĉ

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

n=2000, s=0.1

Number of Pilot Iterations

ĉ

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

n=5000, s=0.1

Number of Pilot Iterations

ĉ

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

n=500, s=0.01

Number of Pilot Iterations

ĉ

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

n=1000, s=0.01

Number of Pilot Iterations

ĉ
0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

n=2000, s=0.01

Number of Pilot Iterations

ĉ

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

n=5000, s=0.01

Number of Pilot Iterations

ĉ

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

n=500, s=0.001

Number of Pilot Iterations

ĉ

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

n=1000, s=0.001

Number of Pilot Iterations

ĉ

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

n=2000, s=0.001

Number of Pilot Iterations

ĉ

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

n=5000, s=0.001

Number of Pilot Iterations

ĉ

0 10 20 30 40 50

0
.0

0
.2

0
.4

0 10 20 30 40 50

0
.0

0
.2

0
.4

Figure 5.6: Asian delta pilot 95% confidence interval for ĉ for k = 10.

Another input parameter that was not specified is the sample size n
v

used to

generate the sample variance V
n

. So we investigate the sensitivity of the bandwidth

parameter to n
v

for each of the perturbation sizes s. Again, we focus on the Asian

delta case for the discretization case k = 10, sample path n = 1000, vary n
v

2

{50, 100, 500, 1000}, and s 2 {0.001, 0.01, 0.1}. Figure 5.7 plots the generated ĉ

against the number of pilot simulations n
p

for a sample size of 100. The results

of the sensitivity to n
v

are inconclusive, since the behavior is inconsistent across

di↵erent parameter settings. For this particular example, the larger perturbation

size s = 0.1 leads to a higher bandwidth parameter, which can also be seen in Figure

5.6.

Clearly, the input parameters have a significant impact on the bandwidth

139

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

k = 10 s = 0.1

np

ĉ

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

vn=50

vn=100

vn=500

vn=1000

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

k = 10 s = 0.01

np

ĉ

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

vn=50

vn=100

vn=500

vn=1000

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

k = 10 s = 0.001

np

ĉ

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

vn=50

vn=100

vn=500

vn=1000

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

k = 20 s = 0.1

np

ĉ

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

vn=50

vn=100

vn=500

vn=1000

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

k = 20 s = 0.01

np

ĉ

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

vn=50

vn=100

vn=500

vn=1000

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

k = 20 s = 0.001

np

ĉ

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

vn=50

vn=100

vn=500

vn=1000

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

k = 50 s = 0.1

np

ĉ

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

vn=50

vn=100

vn=500

vn=1000

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

k = 50 s = 0.01

np

ĉ

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

vn=50

vn=100

vn=500

vn=1000

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

k = 50 s = 0.001

np

ĉ

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

0 20 40 60 80 100

0
.0
6

0
.1
0

0
.1
4

0
.1
8

vn=50

vn=100

vn=500

vn=1000

Figure 5.7: Asian delta pilot, n = 500, sample size = 100.

parameter generated from the pilot simulation, and we investigate further to deter-

mine whether or not the confidence interval of the bandwidth parameter captures

the bandwidth that minimizes the RRMSE for parameters n = 1000, n
v

= 100,

n
p

= 30, sample size 100, s = 0.1 for the delta, s = 0.01 for the gamma, and

s = 0.001 for both vega and theta Asian Greek estimators. Values for the perturba-

tion parameters were not specified in [43], but were obtained from the authors via

personal communication. The sizes were chosen relative to the parameter of interest.

Our results vary significantly, from successfully capturing the optimal bandwidth to

completely missing it. Figures 5.1, 5.2, and 5.3 contain vertical dotted lines rep-

resenting the 95% confidence interval for the optimal c⇤ with the above specified

parameters, the dotted line denotes the mean, and the dashed line is the c⇤ that

140

minimizes the RRMSE from our first set of numerical experiments. None of the 95%

confidence intervals of ĉ capture the minimum RRMSE for the Asian delta Greek

estimator. Instead, the CI contains mean ĉ⇤. The confidence interval for the ĉ gen-

erated from the pilot simulation for the Asian vega, covers the minimum RRMSE

bandwidth, which can be seen in Figure 5.2.

5.6 Summary and Future Work

In this chapter, we analyzed the sensitivity of the Greek kernel estimators

of [43] to the bandwidth parameters and the sensitivity and performance of the

pilot simulation in selecting the “optimal” bandwidth parameters to input parame-

ters. The simulated experiments show that the kernel estimators are quite sensitive

to the bandwidth choice, and the pilot simulation is sensitive to the input param-

eters. Of the input parameters, the perturbation step size s significantly impacts

the generated bandwidth. If s is too small relative to the parameter of interest,

then the pilot simulation could generate bandwidths that lead to poor gradient es-

timates. However, even if the s is chosen proportional to the parameter of interest,

the 95% confidence interval for the ĉ might not capture the c⇤ that minimizes the

RRMSE. The input parameters play a vital role in the performance of the estimator,

so the input selection process of the pilot simulation and other bandwidth selection

methods are important future research areas.

141

Bibliography

[1] S. Andradóttir. A new algorithm for stochastic approximation. Proceedings of
the 1990 Winter Simulation Conference, pages 364–366, 1990.

[2] S. Andradóttir. A stochastic approximation algorithm with varying bounds.
Operations Research, 43(6):1037–1048, 1995.

[3] S. Andradóttir. A scaled stochastic approximation algorithm. Management
Science, 42(4):475–498, 1996.

[4] S. Asmussen and P. Glynn. Stochastic Simulation: Algorithms and Analysis.
Springer, New York, 2007.

[5] J. Blum. Multidimensional stochastic approximation methods. The Annals of
Mathematical Statistics, 25(4):737–744–200, 1954.

[6] D. Bosq. Nonparametric Statistics for Stochastic Processes. Springer, second
edition, 1998.

[7] M. Broadie, D. Cicek, and A. Zeevi. General bounds and finite-time improve-
ment for the Kiefer-Wolfowitz stochastic approximation algorithm. Operations
Research, 59(5):1211–1224, 2011.

[8] M. Chau and M. Fu. On the sensitivity of Greek kernel estimators to band-
width parameters. Proceedings of the 2014 Winter Simulation Conference,
pages 3845–3856, 2014.

[9] M. Chau and M. Fu. An overview of stochastic approximation. In M. Fu, editor,
Handbook of Simulation Optimization, chapter 6, pages 149–178. Springer, 2014.

[10] M. Chau, H. Qu, and M. Fu. A new hybrid stochastic approximation algorithm.
In Proceedings of the 2014 Workshop on Discrete Event Systems, volume 12,
pages 241–246, 2014.

[11] M. Chau, H. Qu, and M. F. I. Ryzhov. An empirical sensitivity analysis of the
Kiefer-Wolfowitz algorithm and its variants. Proceedings of the 2013 Winter
Simulation Conference, pages 945–965, 2013.

[12] H. Chen, T. Duncan, and B. Pasik-Duncan. A Kiefer-Wolfowitz algorithm with
randomized di↵erences. IEEE Transactions on Automatic Control, 44(3):442–
453, 1999.

[13] H. Chen and Y. Zhu. Stochastic approximation procedure with randomly vary-
ing truncations. Scientia Sinica Series A, 29:914–926, 1986.

[14] K. Chung. On a stochastic approximation method. The Annals of Mathematical
Statistics, 25(3):463–483, 1954.

142

[15] B. Delyon and A. Juditsky. Accelerated stochastic approximation. SIAM Jour-
nal on Optimization, 3(4):868–881, 1993.

[16] C. Derman. An application of Chung’s lemma to the Kiefer-Wolfowitz stochas-
tic approximation procedure. The Annals of Mathematical Statistics, 27(2):532–
536, 1956.

[17] J. Dippon and J. Renz. Weighted means in stochastic approximation of minima.
SIAM Journal on Control Optimization, 35(5):1811–1827, 1997.

[18] V. Dupac. On the Kiefer-Wolfowitz approximation method. Časopis pro
péstováńı Matematiky, 082(1):47–75, 1957.

[19] V. Fabian. Stochastic approximation of minima with improved asymptotic
speed. The Annals of Mathematical Statistics, 38(1):191–200, 1967.

[20] V. Fabian. On asymptotic normally in stochastic approximation. The Annals
of Mathematical Statistics, 39(4):1107–1380, 1968.

[21] V. Fabian. Stochastic approximation. In J. Rustagi, editor, Optimizing Methods
in Statistics, pages 439–470. Academic Press, New York, 1971.

[22] E. Fogel. A fundamental approach to the convergence analysis of least squares
algorithms. IEEE Transactions on Automatic Control, 26(3):646 – 655, 1981.

[23] M. Fu. Gradient estimation. In S. Henderson and B. Nelson, editors, Hand-
books in Operations Research and Management Science: Simulation, chapter 19,
pages 575–616. Elsevier, Amsterdam, 2006.

[24] M. Fu. What you should know about simulation and derivatives. Naval Research
Logistics, 55(8):723 – 736, 2008.

[25] M. Fu. Stochastic gradient estimation. In M. Fu, editor, Handbook of Simulation
Optimization, chapter 5, pages 105–147. Springer, 2014.

[26] M. Fu and S. Hill. Optimization of discrete event systems via simultaneous
perturbation stochastic approximation. IIE Transactions, 29(3):233–243, 1997.

[27] M. Fu and Y. Ho. Using perturbation analysis for gradient estimation, averaging
and updating in a stochastic approximation algorithm. Proceedings of the 1988
Winter Simulation Conference, pages 509–517, 1988.

[28] M. Fu and J. Hu. Conditional Monte Carlo: Gradient Estimation and Opti-
mization Applications. Kluwer, Boston, MA, 1997.

[29] A. George and W. Powell. Adaptive stepsizes for recursive estimation
with applications in approximate dynamic programming. Machine Learning,
65(1):167–198, Oct. 2006.

143

[30] L. Gerencsér. Convergence rates of moments in stochastic approximation with
simultaneous perturbation gradient approximation and resetting. IEEE Trans-
actions on Automatic Control, 44(5):894–905, 1998.

[31] S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for
strongly convex stochastic composite optimization I: A generic algorithmic
framework. SIAM Journal on Optimization, 22(4):1469–1492, 2012.

[32] S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for
strongly convex stochastic composite optimization ii: shrinking procedures and
optimal algorithms. SIAM Journal on Optimization, 23(4):2061–2089, 2013.

[33] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer, New
York, NY, 2004.

[34] Y. Ho and X. Cao. Perturbation analysis and optimization of queueing net-
works. Journal of Optimization Theory and Applications, 40(4):550–582, 1983.

[35] Y. Ho, L. Shi, L. Dai, and W.-B. Gong. Optimizing discrete event dynamic
systems via the gradient surface method. Discrete Event Dynamic Systems:
Theory and Applications, 2(2):99–120, 1992.

[36] H. Kesten. Accelerated stochastic approximation. The Annals of Mathematical
Statistics, 29(1):41–59, 1958.

[37] K. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regres-
sion function. The Annals of Mathematical Statistics, 23(3):462–466, 1952.

[38] N. Kleinman, J. Spall, and D. Naiman. Simulation-based optimization with
stochastic approximation using common random numbers. Management Sci-
ence, 45(11):1570–1578, 1999.

[39] H. Kushner and D. Clark. Stochastic Approximation Methods for Constrained
and Unconstrained Systems. Springer, New York, NY, 1987.

[40] H. Kushner and J. Yang. Stochastic approximation with averaging of the it-
erates: Optimal asymptotic rates of convergence for general processes. SIAM
Journal on Control and Optimization, 31:1045–1062, 1993.

[41] H. Kushner and J. Yang. Stochastic approximation with averaging and feed-
back: Rapidly convergent ‘on-line’ algorithms. IEEE Transactions on Auto-
matic Control, 40:24–34, 1995.

[42] H. Kushner and G. Yin. Stochastic Approximation and Recursive Algorithms
and Applications. Springer, New York, NY, 2003.

[43] G. Liu and L. Hong. Kernel estimation of the Greeks for options with discon-
tinuous payo↵s. Operations Research, 59(1):96–108, 2011.

144

[44] J. Maryak. Some guidelines for using iterate averaging in stochastic approx-
imation. Proceedings of the 36th IEEE Conference on Decision and Control,
3:2287–2290, 1997.

[45] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approx-
imation approach to stochastic programming. SIAM Journal on Optimization,
19(4):1574–1609, 2009.

[46] A. Nemirovski and D. Yudin. Problem Complexity and Method E�ciency in
Optimization. John Wiley, New York, NY, 1983.

[47] Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathe-
matical Programming, 120(1):221–259, 2009.

[48] B. Polyak. New stochastic approximation type procedures. Automat. i Tele-
mekh, 51:98–105, 1990.

[49] B. Polyak and A. Juditsky. Acceleration of stochastic approximation by aver-
aging. SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

[50] H. Robbins and S. Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, 22:400–407, 1951.

[51] D. Ruppert. A Newton-Raphson version of the multivariate Robbins-Monro
procedure. The Annals of Statistics, 13(1):236–245, 1985.

[52] D. Ruppert. E�cient estimations from a slowly convergent Robbins-Monro pro-
cess. Technical report, Cornell University Operations Research and Industrial
Engineering, Ithaca, NY, February 1988.

[53] J. Sacks. Asymptotic distribution of stochastic approximation procedures. The
Annals of Mathematical Statistics, 29(2):351–634, 1958.

[54] P. Sadegh. Constrained optimization via stochastic approximation with a si-
multaneous perturbation gradient approximation. Automatica, 33(5):889–892,
1997.

[55] J. Spall. Multivariate stochastic approximation using a simultaneous pertur-
bation gradient approximation. IEEE Transactions on Automatic Control,
37(3):332–341, 1992.

[56] J. Spall. Adaptive stochastic approximation by the simultaneous perturbation
method. IEEE Transactions on Automatic Control, 45(10):1839–1853, 2000.

[57] J. Spall. Introduction to Stochastic Search and Optimization: Estimation, Sim-
ulation, and Control. John Wiley, Hoboken, NJ, 2003.

[58] A. Tsybakov and B. Polyak. Optimal order of accuracy of search algorithms in
stochastic optimization. Problemy Peredachi Informatsii, 26(2):45–63, 1990.

145

[59] J. Venter. An extension of the Robbins-Monro procedure. The Annals of
Mathematical Statistics, 38(1):181–190, 1967.

[60] I. Wang and E. Chong. A deterministic analysis of stochastic approxima-
tion with randomized di↵erences. IEEE Transactions on Automatic Control,
43(12):1745–1749, 1998.

[61] Y. Wang, M. Fu, and S. Marcus. Sensitivity analysis for barrier options. In
M. Rossetti, R. Hill, B. Johansson, and R. Ingalls, editors, Proceedings of the
2009 Winter Simulation Conference, pages 1272 – 1282, Piscataway, New Jer-
sey, 2009. Institute of Electrical and Electronics Engineers, Inc.

[62] M. Wasan. Stochastic Approximation. Cambridge Tracts Mathematics and
Mathematical Physics. Cambridge University Press, London, 1969.

[63] L. Xiao. Dual averaging methods for regularized stochastic learning and online
optimization. Journal of Machine Learning, 11:2543–2596, 2010.

[64] G. Yin and Y. Zhu. Almost sure convergence of stochastic approximation algo-
rithms with nonadditive noise. International Journal of Control, 49(4):1361–
1376, 1989.

[65] F. Yousefian, A. Ned́ıc, and U. Shanbhag. On stochastic gradient and subgra-
dient methods with adaptive steplength sequences. Automatica, 48(1):56–67,
2011.

146

