Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SENSITIVITY ANALYSIS OF STRUCTURAL PARAMETERS TO MEASUREMENT NONINVARIANCE: A BAYESIAN APPROACH

    Thumbnail
    View/Open
    Kang_umd_0117E_15879.pdf (3.318Mb)
    No. of downloads: 262

    Date
    2014
    Author
    Kang, Yoon Jeong
    Advisor
    HANCOCK, GREGORY R
    DRUM DOI
    https://doi.org/10.13016/M2F32G
    Metadata
    Show full item record
    Abstract
    Most previous studies have argued that the validity of group comparisons of structural parameters is dependent on the extent to which measurement invariance is met. Although some researchers have supported the concept of partial invariance, there is still no clear-cut partial invariance level which is needed to make valid group comparisons. In addition, relatively little attention has been paid to the implications of failing measurement invariance (e.g., partial measurement invariance) on group comparison on the underlying latent constructs in the multiple-group confirmatory factor analysis (MGCFA) framework. Given this, the purpose of the current study was to examine the extent to which measurement noninvariance affects structural parameter comparisons across populations in the MGCFA framework. Particularly, this study takes a Bayesian approach to investigate the sensitivity of the posterior distribution of structural parameter difference to varying types and magnitudes of noninvariance across two populations. A Monte Carlo simulation was performed to empirically investigate the sensitivity of structural parameters to varying types and magnitudes of noninvariant measurement models across two populations from a Bayesian approach. In order to assess the sensitivity of noninvariance conditions, three outcome variables were evaluated: (1) accuracy of statistical conclusion on structural parameter difference, (2) precision of the estimated structural parameter difference, and (3) bias in the posterior mean of structural parameter difference. Inconsistent with findings of previous studies, the results of this study showed that the three outcome variables were not sensitive to varying types and magnitudes of noninvariance across all conditions. Instead, the three outcome variables were sensitive to sample size, factor loading size, and prior distribution. These results indicate that even under a large magnitude of measurement noninvariance, accurate conclusions and inferences on structural parameter differences across populations could be obtained in the MGCFA framework. Implications for practice are discussed for applied researchers who wish to conduct group comparisons of structural parameters across populations under measurement noninvariance.
    URI
    http://hdl.handle.net/1903/16407
    Collections
    • Human Development & Quantitative Methodology Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility