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Most previous studies have argued that the validity of group comparisons of structural 

parameters is dependent on the extent to which measurement invariance is met. Although 

some researchers have supported the concept of partial invariance, there is still no clear-

cut partial invariance level which is needed to make valid group comparisons. In addition, 

relatively little attention has been paid to the implications of failing measurement 

invariance (e.g., partial measurement invariance) on group comparison on the underlying 

latent constructs in the multiple-group confirmatory factor analysis (MGCFA) framework. 

Given this, the purpose of the current study was to examine the extent to which 

measurement noninvariance affects structural parameter comparisons across populations 

in the MGCFA framework. Particularly, this study takes a Bayesian approach to 

investigate the sensitivity of the posterior distribution of structural parameter difference 

to varying types and magnitudes of noninvariance across two populations. A Monte Carlo 

simulation was performed to empirically investigate the sensitivity of structural 



 

 

parameters to varying types and magnitudes of noninvariant measurement models across 

two populations from a Bayesian approach. In order to assess the sensitivity of 

noninvariance conditions, three outcome variables were evaluated: (1) accuracy of 

statistical conclusion on structural parameter difference, (2) precision of the estimated 

structural parameter difference, and (3) bias in the posterior mean of structural parameter 

difference. Inconsistent with findings of previous studies, the results of this study showed 

that the three outcome variables were not sensitive to varying types and magnitudes of 

noninvariance across all conditions. Instead, the three outcome variables were sensitive to 

sample size, factor loading size, and prior distribution. These results indicate that even 

under a large magnitude of measurement noninvariance, accurate conclusions and 

inferences on structural parameter differences across populations could be obtained in the 

MGCFA framework. Implications for practice are discussed for applied researchers who 

wish to conduct group comparisons of structural parameters across populations under 

measurement noninvariance. 
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Chapter 1: Introduction 

 

In the social and behavioral sciences, many processes are regarded as structural 

processes that conceptualize unobserved attributes (e.g., self-efficacy, quality of life). 

Often group comparisons on such unobserved attributes are at the heart of the research 

questions addressed by researchers. To illustrate, a researcher may investigate whether 

the self-efficacy of male students differs from that of female students. Given the fact that 

the attributes are not directly observed, they must be inferred from the observed variables 

using factor analytic models such as confirmatory factor analysis (CFA) where the 

unobserved attributes are often referred to as latent constructs or factors.  

The validity of group comparisons on latent constructs has been a critical issue in 

social and behavioral studies. The validation of latent constructs for group comparison 

can be performed in the framework of construct validity, particularly related to the 

concept of construct equivalence or comparability in CFA (Little, 1997; Vandenberg & 

Lance, 2000; Wu, Li, & Zumbo, 2007). Although the concepts of construct equivalence 

and comparability slightly differ, they share the same basic idea of the conceptual 

equivalence of the latent constructs across groups. That is, it concerns whether the latent 

constructs inferred by a set of items (i.e., measurement instrument) have the same 

meaning in different populations. If different latent constructs are captured by a 

measurement instrument in different populations, group comparisons involving the latent 

constructs would be meaningless and invalid. As Vandenberg and Lance stated, if a set of 

items does not mean the same thing to different groups, group comparison on the latent 
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constructs “may be tantamount to comparing apples and spark plugs” (Vandenberg & 

Lance, 2000, p. 9).  

Construct equivalence is a conceptual notion and is related to theoretical validity 

(van de Vijver, 1998; van de Vijver & Tanzer, 2004). Thus, construct equivalence cannot 

be statistically tested and often rests on substantial theories or strong beliefs by 

researchers. Despite this, one statistical procedure, measurement invariance testing, has 

been used to collect evidence of construct equivalence. From a statistical standpoint, the 

measurement invariance test involves assessing equality of psychometric properties of a 

measurement instrument as well as equality of theoretical structures of latent constructs 

across populations. In the multi-group confirmatory factor analysis (MGCFA) framework, 

the theoretical structures of latent constructs are considered to be equal when items or 

tests load on the same latent construct across populations; this is often referred to as 

pattern invariance or configural invariance in measurement invariance literature (Horn & 

McArdle, 1992). The psychometric properties of a measurement instrument can be 

defined by three measurement parameters – factor loadings, intercepts, and error 

variances – in the MGCFA framework. Equality of psychometric properties of a 

measurement instrument can be achieved when measurement parameter estimates are 

considered to be equal across populations. In general, previous studies described three 

types of invariance for the measurement model in the MGCFA framework: weak (i.e., 

factor loading invariance), strong (i.e., factor loading and intercept invariance), and strict 

measurement invariance (i.e., factor loading, intercept, and error variance invariance) 

(Meredith, 1993; Meredith & Teresi, 2006). 
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There is agreement in the measurement invariance literature that configural 

invariance is a necessary condition for ensuring construct equivalence (e.g., Millsap & 

Kwok, 2004; Wu et al., 2007). It has been agreed that the latent construct cannot be 

assumed to be equivalent unless groups have the same latent construct structure. 

However, the same agreement has not been achieved regarding the necessity of the three 

types of measurement parameters’ invariance for ensuring construct equivalence. 

Particularly, some researchers have believed that factor loading invariance is essential 

evidence for construct equivalence (e.g., Meredith & Teresi, 2006). Because factor 

loadings indicate the relation between observed variables and latent constructs, those 

researchers argued that factor loading equivalence means that the latent constructs are 

inferred from the observed variables in the same way across populations. Thus, if there is 

no evidence of measurement invariance, particularly factor loading invariance, as stated 

by Horn and McArdle, “the basis for drawing scientific inference is severely lacking: 

findings of differences between individuals and groups cannot be unambiguously 

interpreted” (Horn & McArdle, 1992, p.117).Therefore, some researchers believe that a 

key procedure of collecting evidence of construct equivalence is to assess factor loading 

invariance (Cheung & Rensvold, 1999; Little, 1997; Meredith & Teresi, 2006) and thus 

that measurement invariance is a prerequisite for meaningful and valid group comparison 

on latent constructs.  

In reality, however, the assumption of measurement invariance has been found to 

be hard to achieve (Schmitt & Kuljanin, 2008) and thus some researchers have proposed 

the idea of less stringent measurement invariance (i.e., partial measurement invariance; 

Byrne, Shavelson, & Muthén, 1989) which assumes that only a subset of measurement 
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model parameters is invariant. These researchers have argued that partial measurement 

invariance would be sufficient to make valid group comparisons (Byrne et al., 1989; 

Millsap & Kwok, 2004; Steenkamp & Baumgartner, 1998) if researchers have strong 

beliefs, empirical results, or substantive theory on construct equivalence across 

populations. This more lenient view implicitly implies that the underlying latent 

constructs are assumed to be the same although measurement model parameters may 

differ across populations. It also implies that measurement invariance may not be a 

necessary condition for meaningful group comparison on latent constructs. 

In fact, previous literature has found that although a latent construct measured by 

a set of items is equivalent, nonequivalence of measurement model parameters can still 

occur through, for example, translation errors, different response tendencies, and different 

degrees of familiarity with item format (Bolt, 2000; Taylor & Lee, 2012; van de Vijver & 

Tanzer, 2004). In addition, in the educational measurement field, detecting different 

measurement model parameters across populations has received great attention in the 

literature. It should be noted that testing of equality of measurement model parameters 

within item response theory (e.g., difficulty parameters, discrimination parameters) is 

based on the implicit assumption that the items measure the same underlying construct in 

all populations (Kim, Cohen, & Park, 1995). That is, the presence of noninvariant items 

in terms of measurement model parameters does not imply that the underlying construct 

measured by the test items is different. Instead, it may imply that items simply work 

differently for some reasons that are not related to construct equivalence (Reise, Smith, & 

Furr, 2001).  
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A viewpoint of this dissertation adopted here would be that differences in 

measurement model parameters across populations, particularly factor loading 

differences, do not necessarily indicate construct non-equivalence. Construct equivalence 

can be possible such that the same construct is measured but measurement parameters 

may not be the same across groups (van de Vijver & Tanzer, 2004). In addition, in some 

situations where minor differences in measurement model parameters across populations 

are expected across populations, a small degree of measurement noninvariance could be 

tolerable for group comparison on latent constructs. Under some situations where 

researchers have sufficient theories on latent construct equivalence across populations, 

thus, differences in measurement model parameters may still support the group 

comparison on latent constructs to be meaningful and valid. Given that many more 

studies present measurement models that do not exhibit invariance across populations, 

one of the most important issues is how researchers can get accurate and valid group 

comparison conclusions on underlying constructs particularly when measurement 

invariance does not hold. Although much work has been done in terms of the methods 

and procedures for detecting noninvariant model parameters, relatively little attention has 

been paid to the implications of failing measurement invariance (e.g., partial 

measurement invariance) on group comparison on the underlying latent constructs. In 

order to fill these gaps in the literature, this study particularly concerns the impact of 

noninvariance within the measurement model on group comparison of latent constructs.  

This study adopts a Bayesian approach to investigate the impact of measurement 

noninvariance because it provides a more practical argument in tests of measurement 

invariance.  With typical MGCFA with maximum likelihood, all measurement model 
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parameters are tested for null hypotheses of exact equality in terms of model parameters, 

which is often neither realistic nor practical in tests of measurement invariance. Using a 

Bayesian analysis strategy has the potential to provide a more flexible approach to 

address these limitations than a frequentist approach in invariance testing. Therefore, the 

purpose of the current dissertation is to empirically investigate the extent to which 

measurement noninvariance affects group comparison on latent constructs across 

populations taking a Bayesian approach. A Monte Carlo simulation approach was 

conducted to investigate the sensitivity of the posterior distribution of two structural 

parameters (i.e., structural regression coefficient difference, factor mean difference) to 

varying degrees of noninvariant measurement models across populations. 

The following chapter, Chapter 2, presents a review of existing research, 

providing a context and theoretical framework for Bayesian structural equation modeling, 

measurement invariance, and group comparison within CFA framework and motivation 

for the current study. Chapter 3 specifies the design of the current study, including the 

data generating model, the simulation design factors, and the data analysis procedures. 

Results are reported and described in Chapter 4. Chapter 5 presents a summary and 

discussion of results, implications for practice, and limitations and directions for future 

study.  
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Chapter 2: Literature Review 

 

Theoretical Background of Bayesian Structural Equation Modeling 

Bayesian structural equation modeling (BSEM) has been well recognized as an 

attractive approach to analyze a variety of structural equation models (SEMs) (Lee, 2007). 

The basic attractive feature of a Bayesian approach is that researchers can incorporate 

useful prior knowledge into statistical analysis, potentially yielding better results. 

Therefore, BSEM takes different statistical properties and procedures for analyzing 

SEMs from the traditional maximum likelihood SEM. This section describes a general 

BSEM approach in the context of CFA. The Bayesian approach to CFA will be 

introduced, including Bayesian inference, Bayes’ theorem, Bayesian estimation, and 

model assessment. Further special issues that can occur specifically with Bayesian CFA 

are also outlined. 

Bayesian Inference 

Bayesian inference differs from frequentist inference (e.g., maximum likelihood 

estimation) in two distinct ways. The first key difference is a way of viewing unknown 

parameters (Fox, 2010; Kaplan & Depaoli, 2012; Lee, 2007; Levy & Choi, 2013). In the 

frequentist approach, an unknown parameter is assumed to be fixed and hence the 

principle is to find parameter estimates to make inferences about that fixed parameter. 

For example, maximum likelihood (ML) estimation is one of the most commonly used 

estimation method in SEM and serves as a default in most SEM computer programs (e.g., 

LISREL, EQS, and Mplus). In the context of SEM, ML estimation seeks to find the best 

model point parameter estimates that yield the maximum likelihood of the observed data. 
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The frequentist approach actually focuses on the parameter estimate (Levy & Choi, 2013). 

In Bayesian inference, however, an unknown parameter is assumed to be random with a 

distribution and hence the unknown parameter is estimated as a form of distribution for 

the parameter (i.e., posterior distribution). The posterior distribution for the parameter is 

constructed by combining observed data with prior knowledge or information, which is a 

second key difference. In a Bayesian analysis, researchers need to assign a prior 

distribution for each model parameter to reflect the researchers’ prior knowledge, belief, 

and/or substantive theory and combine these prior distributions with data at hand for 

making inferences about parameters. Accurate results can be obtained by incorporating 

appropriate prior distributions into an analysis. 

In a Bayesian analysis, inferences about parameters are drawn directly from the 

posterior distributions of the parameters of interest. Following the description given by 

Muthén and Asparouhov (2012, p. 315) and Kaplan and Depaoli (2012, p. 651), a joint 

probability distribution of events A  and B  can be written using conditional and marginal 

probabilities: 

 )A(P)A|B(P)B(P)B|A(P)B,A(P   (1) 

where )B,A(P denotes a joint probability distribution of events A  and B , )B|A(P  

represents a conditional probability distribution of event A  given event B , )A|B(P

represents a conditional probability distribution of event B  given event A . )A(P  and 

)B(P  represent marginal distributions of event A  and B , respectively. Equation 1 can be 

rewritten as: 

 
P(A)

P(B)B)|P(A
A)|P(B  , (2) 
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which is Bayes’ theorem. Bayesian inference computes the posterior probability, which is 

)A|B(P in Equation 2, according to Bayes’ theorem. With an unknown parameter ( ) 

given data ( y ), the posterior probability distribution of the unknown parameter ( ) given 

data ( y ) is 

 P(y)

θ)P(θ)|P(y
y)|P(θ  . 

(

(3) 

In Equation 3, y)|P(θ  is a posterior probability distribution of unknown parameter ( ) 

given data ( y ), )|y(P  is the conditional distribution of the data ( y ) given the parameter 

( ), )(P  is the prior distribution of the parameter ( ), and )y(P is the marginal 

distribution of the data ( y ). Equation 3 states that the posterior distribution is a product 

of the conditional distribution of the data ( y ) given the parameter ( ) and the prior 

distribution of the parameter ( ), normalized by the marginal distribution of the data ( y ), 

so that the posterior distribution integrate to one. Because the marginal distribution of the 

data ( y ) does not involve the parameter ( ), dropping the marginal distribution of the 

data ( y ) yields the unnormalized posterior distribution, which is expressed as: 

 θ)P(θ)|P(y y)|P(θ  . (4) 

Although the posterior distribution is a probability in Equation 4, the area of posterior 

distribution is no longer 1, being posterior distribution proportional to the conditional 

distribution of data given the parameter times the prior distribution. Given that the 

conditional distribution of the data given the parameter is equivalent to the likelihood 

distribution of the parameters given the data (i.e., )|y(P   = y)|L(θ ), Equation 4 is 

equivalent to  
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 y)P(θ)|L(θy)|P(θ  . (5) 

Equation 5 implies that a Bayesian inference is drawn from the posterior distribution that 

is constructed by combining the likelihood distribution of data with the parameter’s prior 

distribution (Kaplan & Depaoli, 2012; Lee, 2007). 

Bayesian Approach to the CFA Model 

The traditional form of a CFA measurement model with p indicators of m latent 

variables can be expressed as: 

 δΛξτY  , (6) 

where Y is the p×1 vector of observed scores, τ is the p×1 vector of intercepts, Λ is the 

p×m factor loading matrix, ξ  is the m×1 vector of theoretical latent variable scores, and 

δ  is the p×1 vector of error terms. It is typically assumed that latent variables are not 

correlated with error terms and hence the covariance structure of observed variables can 

be written as: 

 ΘΛΦΛ'Σ  , (7) 

where Σ  is the model-implied covariance matrix, Φ  is the matrix of latent variables’ 

variances and covariances, and Θ  is the matrix of error variances and covariances (if 

any). Further, assuming that means of error terms are zero, the expectation of the 

observed variables Y is: 

 Λκτ(Y) E , (8) 

where κ  is the vector of latent variables’ means.  

Unlike the traditional form of a CFA measurement model, a Bayesian approach to 

a CFA measurement aims to find posterior distributions for the unknown parameters. For 

a Bayesian analysis of one factor model, for instance, the posterior distributions of 
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unknown parameters such as intercepts, factor loadings, error variances, latent variables’ 

variances, and latent variables’ means can be expressed as follows:  

 
)(P

)(P)(P)(P)(P)(P),,,,|(P
)|,,,,(P

Y

κΦΘΛτκΦΘΛτY
YκΦΘΛτ  , (9) 

where ),,,,|(P κΦΘΛτY  represents the conditional distribution of data given the unknown 

parameters ( ,,,, ΦΘΛτ  and κ ), and )(P τ , )(P Λ , )(P Θ , )(P Φ , and )(P κ are the prior 

distributions for intercepts, factor loadings, error variances, latent variables’ variances, 

and latent variables’ means, respectively. It is assumed that the prior distribution of a 

specific parameter is independent of the prior distribution of the other parameters. It 

should be noted that in a Bayesian analysis, all unknown parameters are assigned prior 

distributions. Literature has stated that specification of correct prior distributions plays an 

important role in the Bayesian inference on the unknown parameters in CFA (Fox, 2010; 

Kaplan & Depaoli, 2012; Levy & Choi, 2013; MacCallum, Edwards, & Cai, 2012; 

Muthén & Asparouhov, 2012). Some Bayesian SEM resources (Kaplan & Depaoli, 2012; 

Palomo, Dunson, & Bollen, 2007; Lee, 2007; Levy & Choi, 2013) have suggested that 

the choice of prior distributions should be based on substantive theory or previous 

empirical results about the parameters. When researchers have strong prior knowledge 

about model parameters, the information can be added into the model to estimate 

posterior distribution of the model parameters. In this case, such prior distributions are 

referred to as informative priors. In Bayesian SEM textbooks, often conjugate prior 

distributions are recommended as informative priors (Fox, 2010; Kaplan & Depaoli, 2012; 

Lee, 2007; Levy & Choi, 2013). A conjugate prior distribution describes a prior 

distribution that results in the posterior distribution following the same distributional 

form as the prior distribution (Gelman, Carlin, Stern, & Rubin, 2004). As an example of 
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using the univariate binominal model (e.g., success vs. fail), success follows the 

binominal distribution and the probability of getting y success in n trials can expressed as: 

 
yny )(

y

n
)|y(P 








  1 . (10) 

Suppose that a beta distribution is regarded as a prior distribution. The probability density 

function of the beta distribution follows as: 

 
11 1     )(*k)(P , (11) 

where k is constant. When the beta prior distribution is combined with the likelihood 

function, the posterior distribution follows the beta distribution, similar to the prior 

distribution.  

 

11

11

11

1

11

11
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y
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y

n

)(P)|y(P)y|(P

 (12) 

In this example, the beta distribution is called a conjugate prior distribution. In a 

Bayesian approach, choice of conjugate prior distribution is a convenient feature because 

use of conjugate prior distributions yields a posterior distribution of known form that is 

analytically to solve (Kaplan & Depaoli, 2012; Levy & Choi, 2013). If a prior 

distribution is not a conjugate prior distribution, the posterior distribution is often not a 

known form and thus the estimation of the posterior distribution may not be analytically 

solved. In this case, a special estimation, the Markov chain Monte Carlo estimation, can 

be used to obtain the posterior distribution (Kaplan & Depaoli, 2012). In a typical SEM 

analysis, a normal distribution with small variance is often used as a prior distribution for 
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a factor loading, intercept, or mean of a latent variable because the normal prior 

distribution is a conjugate prior distribution for the parameter. For the same reason, an 

inverse-gamma distribution is used as a prior distribution for an error variance and 

inverse-Wishart distribution is typically used as a prior distribution for a variance or 

covariance of a latent variable. Following the description given by Levy and Choi (2013), 

these conjugate prior distributions for the unknown parameters in Equation 9 can be 

expressed as: 

 ),,(N~ 2

   (13) 

 ),,(N~ 2

    

 ),,(G~   1
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    

 )d,d(W~
0

1     

As seen in Equation 13, these conjugate prior distributions have their own 

parameters, which are referred to as hyperparameters. Existing Bayesian textbooks (e.g., 

Kaplan & Depaoli, 2012; Lee, 2007; Levy & Choi, 2013) recommend using fixed known 

values for the hyperparameters in that they reduce computational complexity. In this case, 

the values of hyperparameters  , 
2

 ,  , 2

 ,  ,  ,  , 2
 , 0d , and d  should be 

chosen to be consistent with researchers’ prior knowledge (Lee, 2007). If the 

hyperparameters in the conjugate prior distributions are not known, researchers may use 

ML estimates for the parameters obtained from part of the data (Lee, 2007). It should be 

noted that by specifying the values of hyperparameters by researchers, it is implicitly 

assumed that the prior knowledge on model parameters is known without any uncertainty. 

When prior knowledge on model parameters is based on the estimates from previous data 
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analyses, however, the prior knowledge is subject to uncertainty. In this case, the 

hyperparameters can be treated as unknown parameters and hence have their own prior 

distributions, resulting in a fully Bayesian approach. The advantage of the fully Bayesian 

approach is that all uncertainties are fully accounted for in the analyses and hence yield 

estimates with realistic standard errors (Bernardinelli & Montomoli, 1992; Carriquiry, & 

Pawlovich, 2004).  

When there is no existing substantive theory, knowledge, or empirical results 

about parameters, noninformative or diffuse prior distributions can be assigned to 

parameters instead of informative prior distributions. Either uniform distributions or 

conjugate prior distributions with very large variance are commonly recommended as 

noninformative prior distributions in the literature (Lee, 2007). For example, default prior 

distributions used in Mplus are normal distributions with a means of zero and variances 

of 10
10

 for the factor loadings and intercepts. It should be noted that the current Bayesian 

textbooks do not recommend the use of the default prior distributions used in some 

software programs (e.g., Mplus). The default prior distribution for the error variance used 

in Mplus, for instance, is an inverse gamma distribution with hyperparameters -1 and 0. 

Given that this prior is uniformly 1 on the entire line from minus infinity to plus infinity, 

an inverse gamma distribution with hyperparameters -1 and 0 can be an improper prior 

distribution and hence is not recommended to be used in other software programs (e.g., 

WinBUGS). Although the Mplus developers argued that such an improper prior 

distribution was selected based on extensive simulation studies and has little effect on 

estimation (Mplus team, email communication, July 11, 2014), more thorough 



15 

 

investigation might be required to assess the impact of such an improper prior distortion 

on Bayesian estimation.  

Markov Chain Monte Carlo Estimation  

In a Bayesian analysis, the posterior distribution is commonly obtained through 

Markov chain Monte Carlo (MCMC) estimation. MCMC estimation in Bayesian analyses 

is an algorithm that approximates the posterior distributions by repeatedly drawing a 

series of values of unknown parameters from approximate distributions (Gelman et al., 

2004). For MCMC estimation, there are several algorithms to estimate actual posterior 

distributions such as Gibbs sampling, Metropolis-Hastings sampling, and Metropolis 

sampling. 

 Among them, Gibbs sampling is one of the popular algorithms in Bayesian SEM 

(Fong & Ho, 2013; Golay, Reverte, Rossier, Favez, & Lecerf, 2012; Kaplan & Depaoli, 

2012; Muthén & Asparouhov, 2012). Following the description given in Levy and Choi 

(2013), Gibbs sampling begins with initial values for the parameters, denoted as (0)

1
θ , 

(0)

2
θ ,…, (0)

R
θ , where (t)

r
θ denotes the value of model parameter r at iteration t. Given the 

starting point, values for parameter θ  are repeatedly drawn from its full conditional 

distribution given the observed data and the current values of all other model parameters. 

In other words, for each parameter 
r

θ , we obtain the t +1
st
 iteration value of the chain by 

drawing from ),...,,,..., Y,|P(θ )t(
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This step is repeated for a large number t iterations until the posterior distributions are 

considered to be converged according to some convergence criterion. Although the Gibbs 

sampling method has been commonly used in Bayesian software programs (e.g., 

WinBUGS), it should be noted that the Gibbs sampling method tends to get stuck, 

leading to slow convergence when there is a high level of posterior correlations between 

parameters or when posterior distributions are bimodal (Justel & Pena, 1996; Raftery & 

Lewis, 1992a; Smith & Roberts, 1993). 

Typically, multiple MCMC chains and large number of iterations are commonly 

used for the determination of convergence of the MCMC process. The multiple chains are 

in parallel and independent in that each chain has different staring values and different 

random seeds for the random draws of values for unknown parameters (Muthén & 

Asparouhov, 2012). Convergence of the MCMC process can also be obtained from one 

single chain with a considerable larger number of iterations. Regarding the number of 

chains necessary for Bayesian inferences and diagnostics, some researchers recommend 

to use one chain with a large number of iterations because use of multiple chains has few 

benefits and one chain with a  large number iterations performs equally well in most 

standard statistical models (Geyer, 1991; Raftery & Lewis, 1992b). However, it should be 

noted that use of one chain in Bayesian analysis may lead to slow convergence if a 
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random starting value is poorly chosen. With a single chain, thus, a starting value should 

be carefully chosen based on preliminary experimentation (Raftery & Lewis, 1992b). For 

the multiple chain situations, convergence of the MCMC process can be investigated by a 

formal comparison of the between-chain variance with within-chain variance, referred to 

as the potential scale reduction factor (PSRF) (Gelman et al., 2004), is commonly 

recommended (Fong & Ho, 2013; Gelman et al., 2004; Golay et al., 2013; Kaplan & 

Depaoli, 2012; Muthén & Asparouhov, 2012). The PSRF can be calculated as (e.g., 

Muthén & Asparouhov, 2012) 
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(14) 

where withinVar  is a within-chain variance, betweenVar  is a between-chain variance, c is the 

number of chains, t is the number of iterations, and 
ij

 denotes the value of parameter   

in the t
th

 iteration of chain j. With a single chain, PSRF can be calculated using the third 

and the fourth quarters of the chain (Muthén & Muthén, 1998-2012). Equation 11 states 

that when PSRF is near 1, between-chain variance is relatively small compared to within-

chain variance and hence implies the convergence. Previous literature has suggested that 

if PSRF values are between 1 and 1.1, satisfactory convergence is achieved (Fong & Ho, 

2013; Gelman et al., 2004, Golay et al., 2013; Kaplan & Depaoli, 2012; Muthén & 

Asparouhov, 2012).  
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Model Fit Assessment and Significance Tests  

In Bayesian SEM, model fit assessment is commonly conducted using posterior 

predictive model checking (PPMC). PPMC involves generating a posterior predicted 

distribution and a posterior predicted dataset. Conceptually, the posterior predicted 

distribution is the distribution of future observations from both the observed data and the 

model (Levy & Choi, 2013). Following the descriptions given by Levy and Choi, first the 

posterior predicted distribution is constructed via simulation by taking random draws 

from the posterior distributions. Letting random draws of vector of model parameters 

denoted as, )(1 , )( 2 ,…, )t( , where )t( denotes the vector of model parameters at t
th

 

draw. Using those drawn parameters, a posterior predicted dataset is generated 

conditional on the observed data and the model. Then, the discrepancy measure is 

evaluated between the random draws for the model parameters and the posterior 

predicted datasets at each draw. PPMC works by comparing discrepancy between model 

parameters and the observed data with model parameters and the posterior predicted 

dataset. This can be done using posterior predicted p-value (PPP) and is defined as 

(Kaplan & Depaoli, 2012), 

 )y|y(D)y|y(D(pPPP
predicted

  , (15) 

where )y|y(D
predicted

  is a discrepancy measure between model parameters and the 

posterior predicted data and  )y|y(D   is a discrepancy measure between model 

parameters and the observed data.  Perfect model fit is expected to have a PPP of .5 (Lee, 

2007). 

In practice, researchers are often interested in testing the statistical significance 

associated with the estimates (e.g., factor loading, factor mean) as well as model fit 
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assessment. In the Bayesian approach, inference about parameters is based on their 

posterior distributions. The posterior distributions are often summarized into point 

estimates (e.g., posterior means, posterior median, posterior standard deviations) or 

interval estimates (e.g., 95% credibility intervals) for Bayesian hypothesis testing. In 

general, the point estimates based on the posterior distributions are related to the loss 

function. The posterior mean is associated with the square loss function, which finds 

parameter estimates by minimizing the mean squared error between the true parameters 

and corresponding parameter estimates. The posterior median is linked to the absolute 

deviation loss function, which finds parameter estimates by minimizing the absolute error 

between the true parameters and corresponding parameter estimates. When the true 

parameter is continuous, the posterior mean has been commonly recommended and used 

for Bayesian hypothesis testing (Kaplan & Depaoli, 2012). With continuous indicator 

variables, the mean of the posterior distribution can be calculated as (Kaplan & Depaoli, 

2012): 

 




  d)y|(p)y\(E
. 

(16) 

The posterior mean is often referred to as the expected a posteriori or EAP estimate. 

Similarly, the variance of   can be written as, 

 
22 )y|(E)y|(E)y|var(   . (17) 

In addition, 95% central credibility intervals can be constructed by computing the 2.5
th

 

and 97.5
th

 percentiles of the posterior distribution. Unlike the frequentist approach, the  

95% central credibility interval might not be symmetric.  
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Issues in Bayesian SEM 

There are some issues to consider when employing Bayesian analysis. First of all, 

the choice of prior distributions can have a great impact on both the results on posterior 

distribution of parameters and the performance of the MCMC estimation (Kaplan & 

Depaoli, 2012; MacCallum et al., 2012), and thus researchers should be careful when 

selecting prior distributions for parameters. In general, prior distributions should be 

chosen based on substantive knowledge about the parameters of interests (Kaplan & 

Depaoli, 2012; Lee, 2007; Levy & Choi, 2013). When researchers have strong knowledge 

about parameters such as factor loadings or intercepts, this knowledge can be 

incorporated into the model. In such cases, informative prior distributions can be assigned 

to parameters. For the factor loadings, for example, normal distributions can be used as 

informative prior distributions and their means and standard deviations can be 

specifically chosen to reflect a researcher’s prior knowledge. As the strength of 

researchers’ knowledge increases for parameters, the variance of normal distribution 

would decrease to reflect confidence of precision in the prior distribution. On the other 

hand, researchers might not have prior knowledge about parameters and in this case 

noninformative prior distributions can be used. As noninformative priors, normal 

distribution with mean and large variance or uniform distribution can be assigned to 

factor loadings to reflect little prior knowledge about those parameters. As Levy and Choi 

(2013) mentioned, the prior distributions do not need to follow the same prior 

distributions for parameters. In other words, based on substantive knowledge about the 

parameters, the prior distribution for each factor loading can differ by specifying different 

prior means and variances for different factor loadings or take different distributional 
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forms. Similar approaches are applied to the prior distributions for intercepts, error 

variances, and factor variances. Although Bayesian SEM resources (Kaplan & Depaoli, 

2012; Levy & Choi, 2013; Palomo et al., 2007) provide these general guidelines for prior 

distributions, it may not be easy to choose prior distributions. As MacCallum, Edwards, 

and Cai (2012) mentioned, when choosing prior distributions about parameters, 

researchers need to make decisions on the values of hyperparameters governing selected 

distributions (i.e., prior distributions) as well as the forms of distributions. The problem is 

that applied researchers do not often have such detailed knowledge about parameters in 

reality.  Therefore, it is recommended to perform sensitivity analysis of different choice 

of prior distribution on parameter estimates before making inference on parameters (e.g., 

MacCallum et al., 2012). 

 

Theoretical Framework for Measurement Invariance 

Measurement Invariance 

Measurement invariance conceptually expresses the idea that a measurement 

instrument designed to capture underlying latent constructs operates in the same way over 

times or in different populations (Horn & McArdle, 1992; Millsap, 2011; Vandenberg & 

Lance, 2000). When the same instrument is administered over repeated occasions, for 

instance, measurement invariance holds if the latent construct assesses in the same way 

across time points, which is often referred to as longitudinal invariance. More often, 

measurement invariance is a research of interest to many applied researchers who wish to 

compare latent construct across groups. In this case, measurement invariance holds if the 

latent construct operates in the same way across different populations. This conceptual 



22 

 

definition of measurement invariance across different populations is also expressed as 

probability terms in the previous literature (Millsap, 2011; Wu et al., 2007) such as  

 F)|P(YG)F,|P(Y  , (18) 

where Y  is the observed score from a measurement instrument, F  is the theoretical 

latent construct score, and G  represents group membership. Equation 18 states that the 

conditional probability of attaining the observed scores of Y  given the theoretical latent 

construct score, F , is independent of the group membership. In measurement invariance 

testing, groups are often categorized as a reference group and a focal group. In general, 

the majority group is referred to as a reference group while the minority group is referred 

to as a focal group. The reference group becomes a basis of reference for making 

comparison and the focal group becomes a typical concern for investigating measurement 

invariance. This conceptual probabilistic definition of measurement invariance is defined 

as the equality of measurement model parameters across groups from the statistical 

standpoint (e.g., MGCFA) and will be further discussed in the next section.  

Measurement Invariance in MGCFA Model 

In the SEM framework, the tests of measurement invariance are typically 

conducted through the multi-group confirmatory factor analysis (MGCFA) model. The 

following equation describes the MGCFA model with continuous observed variables for 

multiple groups. The measurement model with p observed variables and m common 

factors in MGCFA is specified as:  

 ,δξΛτY
GGGGG

  (19) 

where G  indicates group membership. For group G , 
G

Y  is the p×1 vector of observed 

scores, 
G
τ is the p×1 vector of intercepts, 

G
Λ is the p×m matrix of factor loadings, 

G
ξ  is 
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the m×1 vector of theoretical latent construct scores, and 
G

δ is the p×1 vector of error 

terms. It is typically assumed that latent construct scores are not correlated with error 

variances and hence the covariance structure of observed variables, Y , in group G  can be 

written as, 

 GGGGG ΘΛ'ΦΛΣ  , (20) 

where,  for group G , G
Σ  represents the matrix of the variance and covariance of 

observed variables , G
Φ  is the matrix of the variances and covariances of the latent 

constructs, and G
Θ  is the matrix of error variances and covariances. Equation 18 states 

that the variances and covariances of observed variables are functions of three types of 

model parameters, which are factor loadings, variances, and covariances of latent 

constructs, and error variances. Equation 20 suggests that if the factor loadings and error 

variances for observed variables are equivalent across groups (i.e., 1Λ = 2Λ =…= GΛ ), the 

difference in variances and covariances for the observed variables across groups can be a 

true representation of the difference in variances and covariances for the latent construct. 

Further, under the assumption of zero means for error terms, the expectation of observed 

variables in group G  is written as, 

 ,κΛτ)YE(
GGGG

  (21) 

where for group G , G
κ is the mean of the latent constructs.  Equation 21 states that the 

means of observed variables are functions of three parameters: intercepts, factor loadings, 

and means of latent constructs. Equation 21 also suggests that if the factor loadings and 

intercepts for observed variables are equivalent across groups, the difference in means for 

the observed variables is a direct reflection of differences in latent construct means.  
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Meredith (1993) and Meredith and Teresi (2006) described three types of 

invariance for the measurement model in the MGCFA framework: weak, strong, and 

strict measurement invariance. Weak invariance has factor loading invariance across 

populations ( 1Λ = 2Λ =…= GΛ ) while intercepts and error variances may vary across 

populations. Strong measurement invariance indicates that both the factor loadings and 

intercepts of observed variables are the same across populations ( 1Λ = 2Λ =…= GΛ  and 1τ

= 2τ =…= Gτ ) while error variances may still vary across populations. Finally, with strict 

measurement invariance, error variances as well as factor loadings and intercepts of 

measures are assumed to be the same across populations ( 1Λ = 2Λ =…= GΛ , 1τ = 2τ =…=

Gτ , and 1Θ = 2Θ =…= GΘ ).  

Frequentist Approach to Tests of Measurement Invariance  

Historically, tests of measurement invariance have been primarily conducted 

through the frequentist approach in both applied studies and methodological studies. 

Often, maximum likelihood estimation for continuous indicators and weighted least 

squares estimation for ordered categorical indicators have been commonly used in tests of 

measurement invariance in the frequentist approach. In the frequentist approach, 

measurement invariance tests involve assessing whether model parameters are exactly the 

same across populations.  

In general, measurement invariance tests are conducted in hierarchical order: 

weak invariance, strong invariance, and strict invariance. In order to test each level of 

measurement invariance, two measurement models (i.e., unconstrained model vs. 

constrained model in terms of factor loadings, intercepts, and/or error variances) are fit to 

the same sample data and are compared, typically using chi-square statistics or goodness 
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of fit indices (GOFs). Although the chi-square difference test (likelihood ratio test) is 

most frequently used, it has been found to be highly sensitive to sample size in invariance 

testing (Chen, 2007; Cheung & Rensvold, 2002; Meade, Johnson, & Braddy, 2008). For 

this reason, recent research has suggested to use alternative GOFs in invariance testing 

that are not sample size sensitive. Of these studies, Cheung and Rensvold’s work is 

particularly important in that they specified four desirable properties of change of GOFs 

(ΔGOFs) used for testing measurement invariance. These include the following: (1) 

ΔGOFs should not be sensitive to the overall fit in the baseline model, (2) ΔGOFs should 

not be sensitive to model complexity, (3) ΔGOFs should not be redundant with other 

GOFs, and (4) ΔGOFs should not be sensitive to sample size. Following these four 

criteria, they examined 20 GOFs based on the minimum value of the fit function through 

the simulation works and found that ΔCFI, ΔGamma-hat, ΔMcDonald’s NCI, ΔIFI, and 

ΔRNI have those desirable properties. Due to high correlation among ΔIFI, ΔCFI, and 

ΔRNI, they suggested reporting only one of these three indices. Given that CFI is a 

popular index in CFA, they recommended using ΔCFI, ΔGamma hat, and ΔMcDonald’s 

NCI to assess measurement invariance. Further, they provided empirically derived cutoff 

values for ΔCFI, ΔGamma-hat, and ΔMcDonald’s NCI that were .01, .001, and .02, 

respectively, at an α-level of .01 across all types of invariance tests. Chen (2007) and 

Meade and colleagues (2008) extended Cheung and Rensvold’s (2002) study by further 

examining the performance of these ΔGOFs detecting a lack of measurement invariance. 

In Chen’s study, it was found that ΔCFI, ΔRMSEA, ΔGamma Hat, and ΔMcDonald’s 

NCI performed well in tests of measurement invariance in terms of Type I error and 

power. Hence, Chen provided empirically derived cutoff values for ΔCFI, ΔRMSEA, 
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ΔGamma Hat, and ΔMcDonald’s NCI that were .005, .01, .005, and .01, respectively, at 

an α-level of .01 across three types of invariance tests. Similar to Cheung and Rensvold’s 

(2002) study, they recommended using one of the following four indices for tests of 

measurement invariance: ΔGamma-hat, ΔIFI, ΔRNI, and ΔCFI and ΔMcDonald’s NCI. 

The same authors provided a common cutoff value for ΔCFI, .002, to assess either weak 

or strong factorial invariance while they provided empirically derived cutoff values for 

ΔMcDonald’s NCI based on the number of factors and items. Although these studies 

suggested using common cutoff values for some ΔGOFs, however, use of the common 

cutoff values particularly for CFI should be done cautiously. According to Kang and 

Hancock’s (2013) recent study, the cutoff values particularly for the ΔCFI were greatly 

influenced by measurement quality and sample size. Their simulation results showed that 

as sample size or factor loading size increased, the cutoff values for the ΔCFI was smaller, 

indicating that the use of a common cutoff value for the ΔCFI in measurement invariance 

testing may be inappropriate regardless of measurement quality. However, ΔMcDonald’s 

NCI was not affected by sample size and measurement quality, indicating that the use of 

a common cutoff value for ΔMcDonald’s NCI in measurement invariance testing may be 

appropriate regardless of measurement quality. 

Although measurement invariance tests from the frequentist approach have been 

widely conducted in applied studies, there are several issues to consider when employing 

a frequentist approach to measurement invariance. First of all, the selection of a reference 

indicator is of great importance in measurement invariance testing. Given that latent 

variables have no defined metric, every latent variable must be assigned its own scale in 

order to make the model and the variables’ implied characteristics identified. When the 
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frequentist approach to measurement invariance tests is employed, such scaling is most 

commonly accomplished by linking the metric of the latent variable to one of its 

measured indicators by fixing the associated loading (i.e., reference indicator). For the 

remainder of the dissertation, the chosen indicator is referred to as the reference indicator. 

Linking based on a reference indicator could be problematic in measurement invariance 

testing when the true factor loading of the reference indicator differs across populations. 

Previous literature demonstrated that the noninvariance of the reference indicator is likely 

to cause severe problems because all parameter estimates are adjusted by the different 

scaling constants across populations and hence make invalid comparison of measurement 

parameters (Cheung & Rensvold, 1999; Hancock, Stapleton, & Arnold-Berkovits, 2009; 

Johnson, Meade, & DuVernet, 2009; Stark, Chernyshenko, & Drasgow, 2006). Despite 

this issue, in the reality of measurement invariance studies, a reference indicator has 

typically been selected with relatively little consideration or possibly even by default in a 

given software package (Schmitt & Kuljanin, 2008). Although methodological 

researchers have proposed several ways to identify an invariant indicator across groups 

for the reference indicator (e.g., Cheung & Rensvold, 1999; Yoon & Millsap, 2007), 

these methods are not commonly used because they can be labor intensive and/or 

ineffective. For example, Yoon and Millsap (2007) found that their proposed approach to 

find invariant factor loadings consistently failed to find noninvariant items when there are 

large number of noninvariant items, small samples, and small differences between 

parameters. For this reason, unfortunately the current frequentist approach to 

measurement invariance may produce misleading tests of measurement invariance.  
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Another issue is that the frequentist approach to measurement invariance test can 

be greatly inefficient when there are many groups to be tested. That is, with a large 

number of groups (e.g., 10 groups), it may not be feasible to find an invariant reference 

indicator across groups. Further, under measurement noninvariance, identifying 

noninvariant items across multiple groups may be very cumbersome particularly when 

for some groups a measurement parameter (e.g., factor loading) may be invariant, but for 

some other groups the measurement parameter may be noninvariant (Muthén & 

Asparouhov, 2013). Similarly, detecting noninvariant items can be inefficient when a 

measurement instrument contains more than two latent variables with a large number of 

items per each latent construct. In this sense, the current frequentist approach may 

provide inefficient tests of measurement invariance particularly with large number of 

groups, latent constructs, and/or items. 

 Lastly, measurement invariance tests with the frequentist approach may be too 

strict for measurement invariance testing. With typical MGCFA with the frequentist 

approach (e.g., maximum likelihood), all measurement model parameters are tested for 

null hypotheses of exact equality in terms of model parameter estimates, which are 

unlikely to hold in reality. From a practical point of view, small differences between 

model parameter estimates could be equally compatible with theory or the researchers’ 

hypotheses and thus could ensure sufficient support to make valid comparisons on latent 

construct across populations. Unfortunately, the frequentist approach to measurement 

invariance test does not allow for even small differences in model parameters across 

groups.   
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Bayesian Approach to Tests of Measurement Invariance 

Given these issues of measurement invariance tests with the frequentist approach, 

a Bayesian approach has emerged as a more flexible alternative to measurement 

invariance. A Bayesian approach to measurement invariance has recently been proposed 

by Muthén and Asparouhov (2013) and hence the Bayesian analysis of testing 

measurement parameters across groups described here is based on the work by Muthén 

and Asparouhov (2013). One of the features in the Bayesian approach to measurement 

invariance is that researchers can incorporate hypotheses or substantive theory into tests 

of measurement invariance. That is, if researchers have strong knowledge about 

differences in parameters before conducting a measurement invariance test, the 

information can be incorporated into tests of measurement invariance. If small 

differences between model parameters could be tolerable for group comparison in latent 

construct, for example, then researchers can allow for small differences in the model 

parameters across groups and the small differences between model parameters could 

provide sufficient evidence for valid comparison on latent construct across populations. 

Muthén and Asparouhov introduced this concept of approximate measurement 

invariance using Bayesian SEM that relaxes the constraint that differences in parameters 

be exactly zero, allowing these parameters to be estimated slightly differently, but 

approximately the same. This approximate measurement invariance can be accomplished 

by assigning the prior distribution with mean of zero and small variance to the difference 

in measurement model parameters. The authors explained that from the Bayesian 

approach, the frequentist approach to measurement invariance can be seen as test of 
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stringent invariance that differences of all the measurement parameters can be considered 

to have a very strong prior distribution with mean of zero and variance of zero.  

Approximate measurement invariance, proposed by Muthén and Asparouhov 

(2013), takes a two-step approach to detect measurement noninvariance. First, all 

measurement model parameters are estimated with Bayesian estimation in each group 

simultaneously. Under Muthén’s and Asparouhov’s approach, there is no need to choose 

a reference indicator to be constrained to be equal across groups in the Bayesian 

approximate measurement invariance test. By assigning the strong informative prior 

distributions to differences in parameter estimates, the model has enough information for 

identification. The second step, then, involves testing differences in terms of model 

parameters. Given that Bayesian inference yields posterior distributions of the model 

parameters, measurement invariance tests involve testing hypotheses about differences 

between posterior means of individual parameter and corresponding parameters’ averages 

across the groups. A z-test is used for testing the statistical significance of the differences. 

If a posterior mean of a parameter in a group significantly deviates from its average 

across groups, it is considered to reflect noninvariance. Unlike the frequentist approach, 

approximate measurement invariance tests are not performed in hierarchical order and 

instead all levels of measurement invariance are tested simultaneously.  

Muthén and Asparouhov (2013) noted that the estimated parameters through 

approximate measurement invariance test are biased estimates due to the alignment issue. 

That is, an alignment issue occurs because estimation through approximate measurement 

invariance tends to pull all of the parameters toward their averages across groups. Thus, it 

results in biased measurement model parameters (e.g., factor loadings and intercepts) and 
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structural parameters. To resolve this problem, they recommended freeing the determined 

noninvariant items to get correct estimation of parameters.  

Given that the exact equality of parameters across population is unlikely to hold 

in practice, a Bayesian approach to measurement invariance provides a flexible and 

practical approach to testing hypotheses about parameter differences. Recently, two 

studies compared the Bayesian and frequentist approaches to measurement invariance 

and found that the Bayesian approach is more likely to conclude in favor of measurement 

invariance than the frequentist approach through real data analyses (Cieciuch, Davidov, 

Schmidt,  Algesheimer, & Schwartz, 2014; van de Schoot, Kluytmans, Tummers, 

Lugting, Hox, & Muthén, 2013). For example, van de Schoot and colleagues (2013) 

presented an example of a real data analysis of measurement invariance that the 

frequentist approach to measurement invariance yielded poor-fitting model, but when 

they applied Bayesian approximate measurement invariance, data-model fit turned out to 

be good while providing evidence of measurement invariance. These authors explained 

that researchers who employ approximate measurement invariance make tradeoff 

between the degree of measurement invariance and the degree of model fit. Further, they 

conducted a simulation study and found that approximate measurement invariance 

performed better than the frequentist approach to measurement invariance in terms of 

detecting true difference in mean of latent construct under the presence of partial 

invariance.  

In addition, Muthén and Asparouhov (2013) have pointed out that approximate 

measurement invariance can be a very useful approach because all factor loadings related 

to the latent construct can be tested. Unlike a frequentist approach to tests of 
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measurement invariance, a Bayesian approach does not require choosing a reference 

indicator for model identification when assessing measurement invariance. Because no 

reference indicator is chosen and constrained to be equal across groups for model 

identification, all factor loadings can be freely estimated and tested for approximate 

measurement invariance. Given that the reference indicator will not be tested for 

measurement invariance when estimation methods from the frequentist approach are used, 

this may be viewed as a distinct advantage over the frequentist approach to measurement 

invariance test. Further, the Bayesian approach to measurement invariance test becomes 

greatly efficient when there are many groups to be tested and also identifying 

noninvariant items across multiple groups easily can be done within approximate 

measurement invariance test. With these advantages, a Bayesian approach to 

measurement invariance can be expected to play an increasing role in the future of 

measurement invariance testing. 

Although the Bayesian approach to test measurement invariance proposed by 

Muthén and Asparouhov (2013) provides potential benefits, particularly compared to the 

frequentist approach, there are still some issues to be considered. It should be first noted 

that although a reference indicator does not need to be chosen and constrained to be equal 

across groups in measurement invariance testing, it is needed when structural parameters 

are estimated and compared across groups for metric equivalence of structural parameters 

as well as model identification. In addition, like general Bayesian analysis, the choice of 

prior distribution is very important role in measurement invariance testing (Muthén & 

Asparouhov, 2013; Steinmetz, 2013). van de Schoot and colleagues (2013) demonstrated 

that the posterior mean estimates of model parameters as well as model fit were affected 
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by different specification of prior distributions to difference in parameters. These results 

imply that one can lead to different conclusions about measurement invariance depending 

on how prior distributions are specified. Therefore, prior distributions on difference 

between parameters should be carefully chosen based on substantive knowledge about 

the parameters when the Bayesian approach is taken to test measurement invariance.  

It is worthwhile to note two issues. First, prior distributions on the difference 

between parameters suggested by Muthén and Asparouhov (2013) have some limitations 

when understanding approximate measurement invariance. In unstandardized solutions, 

variance of differences between parameters can represent different magnitudes of 

variability of differences depending on scales of factors’ indicators. In other words, 

although Muthén and Asparouhov recommended zero-mean, small variance (i.e., 

variance of .01) prior distributions on differences between parameters, variances of .01 

may have very small or large magnitude of variability depending on scales of factors’ 

indicators. Given that the choice of the variance for prior distributions can affect the 

significance of measurement parameter differences and hence power of noninvariance 

detection (Muthén & Asparouhov, 2013), simply choosing a variance of .01 could 

theoretically lead to incorrect results in approximate measurement invariance testing and 

thus researchers should choose the variance of prior distribution with caution based on 

the scales of factors’ indicators. Further, in their examples, Muthén and Asparouhov 

(2013) assigned strong informative prior distributions (i.e., normal distribution with mean 

of zero and variance of .01) to differences between parameters for all factor loadings and 

intercepts. It should be noted, however, that this approach might not be appropriate unless 

researchers have substantive theories on the differences between parameters. Particularly, 
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when researchers do not have such detailed knowledge about parameter differences, they 

should not assign strong prior distributions to differences between parameters, but instead 

use noninformative prior distributions.  

 

Group Comparisons Involving Latent Construct Parameters 

Issue of Partial Invariance in Group Comparison  

Under partial invariance, noninvariant items are allowed to vary across groups in 

the model when assessing group difference in latent constructs. If partial measurement 

invariance holds, however, it is debatable whether comparisons of latent constructs across 

populations are valid in the previous literature. Some researchers have argued that 

measurement invariance, particularly factor loading invariance, is a prerequisite for 

meaningful group comparison on latent constructs (e.g., Cheung & Rensvold, 1999; 

Meredith, 1993; Meredith & Teresi, 2006). It has been believed that different magnitudes 

of factor loadings across populations mean different magnitudes of association of 

observed variables with latent constructs, indicating possible different meaning of latent 

constructs in different populations. From this perspective, partial invariance could be 

problematic because it fails to ensure that the construct measured by a set of items is not 

equivalent or comparable.  

However, many more researchers differentiate construct equivalence from 

measurement invariance (Byrne et al., 1989; Millsap & Kwok, 2004; Steenkamp & 

Baumgartner, 1998; van de Vijver & Tanzer, 2004; Wu et al., 2007). These researchers 

believe that although latent constructs are equivalent across populations, it could be 

possible to have different relations between observed variables and their associated latent 
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construct. When researchers have strong beliefs of construct equivalence across 

populations based on the theories or previous empirical studies, construct equivalence can 

be assumed even under measurement noninvariance. Therefore, the concept of construct 

equivalence should not be tested simply through measurement invariance tests, but be 

justified based on substantive theories, researcher’s strong beliefs, and/or previous 

empirical studies. In fact, previous literature has found that measurement noninvariance 

can occur because of translation errors, cultural bias, or unequal familiarity with the item 

content or format (Taylor & Lee, 2012; van de Vijver & Tanzer, 2004) although the 

underlying latent construct is assumed to be equivalent across populations. Another good 

example is items showing differential item functioning (DIF) in the field of educational 

measurement. Suppose, for example, that a set of test items are developed to measure 

students’ general math ability and a researcher wants to test whether the test items 

function differently between genders. Although the construct (i.e., general math ability) is 

equivalent between girls and boys, items function differently due to different degrees of 

familiarity with the test item format or context, which results in DIF (Bolt, 2000). In DIF 

assessment, the presence of DIF items does not imply that the underlying construct 

measured by the test items is different across genders. Instead it is assumed that they 

simply function differently due to item impact (i.e., presence of DIF is due to true 

different ability) or item bias (i.e., presence of DIF is due to some technical issue 

unintentionally favoring a certain group) (Reise, Smith, & Furr, 2001). Thus, although 

item parameters may differ between populations, it is still assumed that the underlying 

construct is equivalent across populations. In addition to conceptual equivalence of latent 

constructs, Wu and colleagues suggested metric equivalence of the latent construct for 
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validity of group comparison of latent constructs. That is, the valid group comparisons of 

latent construct necessitate that the same latent constructs are measured on the same 

metric across groups. Under the conceptual equivalence of latent constructs, this can be 

achieved by linking the metric of the latent variable to its reference indicator which is 

truly invariant in MGCFA framework.  

In summary, although noninvariance of factor loadings across populations may 

reflect that latent constructs measured by a set of items are different under some 

situations, it is not always true. As described earlier, although equivalent constructs are 

measured, there are more situations where the same underlying construct may function 

differently in different populations. In addition, given that measurement invariance can 

be difficult to achieve, small parameter differences may be tolerable for making inference 

about measurement invariance. From this perspective, partial invariance might not be 

problematic in terms of construct validity under the assumption of conceptual 

equivalence and metric equivalence of latent constructs. Instead, one of the important 

issues to be addressed is the extent to which the measurement noninvariance influences 

statistical conclusions and inferences about group differences in underlying constructs.  

Group Comparison of Observed Composite Scores  

The common procedure to test for a latent construct mean difference is to create 

observed composite scores and then test mean differences using a traditional t-test or 

analysis of variance (ANOVA), in large part because composites are easy to create and 

easily understood by applied researchers (Allen, 1999; Borsboom, 2006). Given that 

latent constructs are measured using measurement instruments with multiple items, group 

comparisons regarding latent construct using observed composite scores often raise 
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concern about whether differences in observed composite scores reflect true differences 

in the latent construct. Regarding this issue, there is agreement that valid comparisons of 

observed composite scores across groups greatly rests on the extent to which 

measurement invariance is achieved (Little, 1997; Millsap & Kwok, 2004; Steinmetz, 

2013; Vandenberg & Lance, 2000; Wu et al., 2007) unless the effect of noninvariance is 

inferentially benign. That is, under the situation where the effect of noninvariance is 

benign, conclusions on group difference in latent constructs can remain valid and 

meaningful; otherwise, validity of group comparison depends on the degree of 

measurement invariance (Borsboom, 2006). 

Recently, Steinmetz (2013) conducted a simulation study to investigate the impact 

of partial invariance on accuracy of statistical conclusion of latent mean differences 

across groups when observed composite score is used. In simulation, two-group one-

factor models with four or six indicators were used for data generation. Steinmetz 

manipulated varying degrees of partial invariance with varying factor loading and 

intercept differences across groups as well as latent mean differences and sample size. 

Using individual composite scores that were created from several indicators, regression 

was conducted to investigate latent mean differences across groups. The results showed 

that the presence of one or two noninvariant factor loadings and intercepts in the model 

increased Type I error. Also, it was observed that power of detecting true mean difference 

in the latent construct decreased. Further results showed that the effect of unequal 

intercepts substantially affected the observed mean difference while the effect of unequal 

factor loadings was relatively small. As the number of unequal intercepts increased or 

sample size decreased, the percentage of correct conclusions on true difference in latent 
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construct decreased. Given these results, the author concluded that use of the observed 

composite scores from the model with partial invariance across populations can lead to 

inaccurate conclusions on group differences in the latent construct.  

Millsap and Kwok (2004) conducted a simulation study to investigate the impact 

of using observed sum scores from several partial invariant measurement models on the 

selection accuracy of persons. Through Monte Carlo simulation study, they compared the 

selection accuracy using the observed sum scores with selection accuracy with the known 

factor scores in terms of four different indices of selection accuracy. These include (1) 

proportion of persons selected per group, (2) the success ratio (the proportion of persons 

selected using their true scores among those selected using the observed sum scores), (3) 

sensitivity (the proportion of persons selected using their observed sum scores among 

those selected using the true scores) and (4) specificity (the proportion of persons not 

selected using their observed sum scores among those not selected using their true scores). 

In their simulation, lack of invariance always had smaller parameter values of factor 

loadings and intercepts in the focal group. The results showed that lack of both weak and 

strong invariance resulted in a lower sum of observed scores in the focal group and hence 

the proportion of people selected based on the observed sum scores became lower 

compared to the proportion of people selected based on the factor scores in the focal 

group, and in turn, this increased the selection proportion in the reference group. The 

results of these previous studies imply that group comparisons on the latent variable 

using observed scores may not be the true representation of difference in latent constructs 

unless measurement invariance holds. 
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These studies demonstrated that if measurement invariance does not hold, group 

comparison of observed scores may yield misleading conclusions on group difference in 

the latent construct. As stated earlier, observed score means are a function of factor 

loadings, intercepts, and latent construct means, and hence differences in observed score 

means can unambiguously be true differences in the latent construct means only when the 

factor loadings and intercepts are invariant across populations. When factor loadings for 

observed variables are equivalent, but intercepts differ across groups, the difference in 

means on the observed variables is due to not only the difference in means of latent 

construct, but also the difference in intercepts for the observed variables (Thompson & 

Green, 2013). Therefore, group comparisons of observed scores to make inference in 

latent construct differences can be drawn only when measurement invariance holds. In 

other words, the presence of measurement invariance is a critical assumption for valid 

comparisons of observed scores across groups. 

Group Comparison Involving Latent Construct Parameters 

Given that many studies are presenting noninvariant measurement models across 

populations (Schmitt & Kuljanin, 2008), group comparisons of observed scores are more 

likely to lead to incorrect conclusions on group differences in latent constructs. As such, 

some methodological researchers have suggested analyzing group differences in the 

latent constructs within the MGCFA model rather than using traditional methods (e.g., 

ANOVA) to test group differences with the observed scores when studying group 

differences in the latent constructs (Steinmetz, 2013; Thompson & Green, 2013). Under 

the assumption of conceptual equivalence of latent constructs and metric equivalence of 

latent constructs, researchers may assess group difference in latent construct mean within 
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the MGCFA while allowing only a set of parameters to vary across populations and 

constraining another subset of parameters to be invariant under the partial invariance 

condition. For example, some researchers have argued that comparison of latent construct 

means across populations can be meaningful and valid when a few items are not invariant, 

and that under these conditions, failure to achieve  measurement invariance does not 

affect a significant portion of the results (e.g., Byrne et al., 1989). Other researchers have 

suggested that group comparisons of latent construct are meaningful as long as two of the 

factor loadings (including reference indicator) are invariant across populations (e.g., 

Steenkamp & Baumgartner, 1998). From a statistical viewpoint, the number of 

noninvariant item may not be important. Under noninvariance situations, researchers may 

directly perform group comparison involving latent constructs within the MGCFA 

framework while not imposing any constraints in the first place. Note that from the 

frequentist approach, freely estimating all of the factor loadings is not feasible because at 

least one indicator variable must be fixed (e.g., to 1) in each group for model 

identification.  

Although a reference indicator also should be chosen for model identification in 

the Bayesian MGCFA framework, a Bayesian approach provides more flexibility than a 

frequentist approach in that researchers can allow for small differences in the reference 

indicators’ parameters across groups. For the Bayesian approach, by assigning a strong 

prior distribution with small variance to differences between reference indicators’ 

parameters across groups, researchers can have the measurement model to be identified 

(Muthén & Asparouhov, 2013). It should be noted that the imposed constraint on the 

reference indicators is necessary for metric equivalence as well as model identification in 
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the MGCFA framework. When the parameters are estimated separately for each group, 

the estimate of the parameters of the same item might be on different metrics (Zumbo, 

2007), making group comparison of latent constructs invalid. Therefore, different item 

parameter estimate metrics need to be linked in order to place them on a common metric 

(i.e., metric equivalence). In order to ensure metric equivalence, a constraint is imposed 

so that reference indicators are the same across groups. When the strong prior 

distributions were assigned to the reference indicators’ parameters in the Bayesian 

MGCFA framework, it should be noted that the exact metric equivalence may not be 

achieved, but approximate metric equivalence may be achieved. If small differences in 

the metric of model parameter estimates could be tolerated for group comparisons in 

latent constructs, this could be sufficient evidence for making valid comparisons on latent 

constructs across populations. Given that it is not clear what degrees of approximate 

metric equivalence may be appropriate for comparison of latent constructs, it is 

recommended to perform a sensitivity analysis of parameter estimates to varying degrees 

of variance of prior distributions for the differences between reference indicators’ 

parameters across populations. 

However, previous studies have demonstrated that measurement noninvariance 

could yield incorrect conclusions of group differences in latent construct parameters 

within the MGCFA framework (Beuckelaer & Swinnen, 2011; Kaplan & George, 1995). 

Within the context of a population analysis, for example, Kaplan and George (1995) 

examined the power of detecting a latent construct mean difference between two groups 

under partial factor loading invariance and factor loading noninvariance. Kaplan and 

George (1995) used a six-item, two-factor model and a 12-item, two-factor model. They 
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also varied factor loading sizes and sample sizes (i.e., equal vs. unequal). In their study, 

latent construct means were estimated for both groups under the assumption of strict 

invariance (i.e., the factor loadings, the intercepts, and the error terms are equal across 

populations), which was not true. They found that increased levels of noninvariance 

decreased power of detecting latent mean difference although magnitude of latent mean 

difference had more substantial effect on power than other factors. Beuckelaer and 

Swinnen (2011) expanded on the work of Kaplan and George by considering both factor 

loading partial invariance and intercept partial invariance through a simulation study. 

They investigated the impact of weak or strong partial invariance on statistical 

conclusions regarding the latent variable mean difference between two groups. The 

models they investigated were a 3-item, one-factor model and a 4-item, one-factor model. 

In their simulation, only one indicator variable was noninvariant in terms of factor 

loadings or both factor loadings and intercepts. Similar to Kaplan and George’s study, 

latent construct means were estimated for both groups under the assumption of strict 

measurement invariance between two groups. They found that when there is no true 

difference in the latent construct mean, the Type I error increased to 45% for the 3-item, 

one factor model, and 37.2% for 4-item, one factor model. When there was true 

difference in the latent construct mean, the power of detecting latent mean difference 

greatly varied ranging from 28.7% to 95.5%. In addition, this study revealed that the 

number of indicators (i.e., 3 indicators vs. 4 indicators) did not have an impact on the 

percentage of correct conclusions on the latent variable mean difference.  

Those findings from Kaplan and George (1995) and Beuckelaer and Swinnen 

(2011) imply the negative impact of partial invariance on structural parameter estimates 
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(i.e., latent construct mean) and suggested that the validity of group comparisons of the 

latent construct mean is dependent on the extent to which measurement invariance is met. 

They do, however, have an important limitation. Specifically, although these two studies 

explicitly or implicitly mentioned the negative impact of model misspecification on 

structural parameter estimates, in these two studies latent variable means were estimated 

for both groups under the incorrect assumption of measurement invariance. For instance, 

in both Kaplan and George’s study and that of Beuckelaer and Swinnen, latent variable 

means were estimated for both groups under the assumption of strict invariance (i.e., the 

factor loadings, the intercepts, and the error terms are equal across populations) which 

was not true. That is, equality constraints were imposed that were not true in the 

population, making their models fundamentally misspecified. Given this, results of 

previous studies regarding the impact of partial invariance on the correct conclusion for 

the difference in latent constructs may be confounded with model misspecification. For 

example, if measurement parameters are constrained to be equal across groups even 

though they are actually noninvariant, latent construct parameter estimates can be biased 

and hence comparison of group means on latent construct estimates could yield incorrect 

conclusions.  

 

Reviews of Simulation Designs 

As discussed above, most previous simulation studies related to measurement 

invariance have been conducted through MGCFA from a frequentist approach. The 

measurement invariance literature primarily focuses on detecting noninvariant items, 

while a relatively small number of studies have examined the impact of partial invariance 
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and noninvariance on subsequent comparisons of structural parameters across groups 

within the MGCGA framework (Beuckelaer & Swinnen, 2011; Kaplan & George, 1995). 

Although each of previous simulation studies on measurement invariance included 

conditions that were expected to be found in real data analysis contexts and thus may 

allow for researchers to generalize to a wider range of conditions, there are some 

limitations in their simulation design. 

First, research on the impact of noninvariance has been conducted by varying the 

magnitude of the parameter differences and/or by varying the number of invariant items 

(Beuckelaer & Swinnen, 2011; Finch & French, 2012; Kaplan & George, 1995; Kim & 

Yoon, 2011; Kim, Yoon, & Lee, 2012; Meade & Bauer, 2007; Millsap & Kwok, 2004). 

These previous simulation studies simulated noninvariant items in terms of the 

measurement model parameters by subtracting or adding some values from the reference 

group parameters for the focal groups. For instance, Kim and Yoon created noninvariant 

factor loadings in the focal group by subtracting .2 and .4 from reference group’s factor 

loadings for small and large amounts of DIF, respectively. The same study simulated 

intercept invariant items by adding values of .3 and .6 to the intercept of the reference 

group for small and large DIF, respectively. Another study by Finch and French created 

noninvariant factor loading in focal group by subtracting values from .1 through .4 

increments of .1 from reference group factor loading. Similarly, Millsap and Kwok 

created noninvariant factor loading in by subtracting values from .1 through .3 increments 

of .1 from reference group factor loading. Although some researchers argued that the 

differences of .2 and .4 in factor loadings represents moderate and large differences, it is 

not clear whether these differences represent a meaningful factor loading differences in 
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other studies because these differences are not on a standardized scale in most of 

measurement invariance simulation studies (Beuckelaer & Swinnen, 2011; Kaplan & 

George, 1995; Kim et al., 2012; Meade & Bauer, 2007). Factor loading differences such 

as .2 or .4 may have different magnitudes of noninvariance depending on scales of factors’ 

indicators. Although this is a popular way to create noninvariant items in literature, it 

should be noted that a fixed parameter difference might represent different magnitudes of 

noninvariance depending on scales of factors’ indicators. 

Second, previous literature has demonstrated that measurement quality (e.g., 

factor loading magnitude or communality) plays a critical role in measurement invariance 

testing (Meade & Bauer, 2007) as well as in parameter estimation (Gagné & Hancock, 

2006). Gagné and Hancock found that factor loading magnitude played a significant role 

in convergence and accuracy of parameter estimates. Specifically, their results showed as 

the factor loading size increases, the convergence and accuracy of parameter estimates 

improve, precision and power of measurement invariance testing increases, and accuracy 

of selection improves. Further, high factor loading magnitude is a significant factor in 

increasing precision and power of measurement invariance testing (Meade & Bauer, 2007) 

and further impact of partial invariance on selection of persons based on observed 

measures (Millsap & Kwok, 2004). This finding also implies that factor loading 

magnitude can be an important factor to be considered when studying measurement 

invariance testing. 
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Summary of the Current Study 

Understanding group differences in latent constructs is the basis for some of the 

most commonly investigated research questions addressed by social and educational 

researchers. Historically, the group comparisons regarding latent constructs have been 

conducted with observed composite scores through traditional group comparison 

procedures, but this common procedure provides valid conclusions on latent construct 

differences only when measurement invariance indeed holds. Since measurement 

invariance is difficult to achieve in reality, it is more likely to misinform conclusions on 

group differences in latent constructs. Given this, what would seem ideal is to directly 

examine group difference in a latent construct within the MGCFA model and to make 

inferences regarding group differences. Whereas the measurement invariance literature 

has emphasized that measurement invariance is prerequisite for valid comparisons of 

latent construct scores across groups, it is in the case only when observed scores are used 

for group comparison in latent constructs. Since we expect some noninvariance in places 

researchers might not be able to detect, researchers may build it into the model and 

examine group difference in latent constructs.  

The purpose of this study is, thus, to empirically investigate the extent to which 

measurement noninvariance affects structural parameter comparisons across populations 

from a Bayesian approach. Particularly, this study aims to investigate the sensitivity of 

the posterior distribution of two of structural parameters, structural regression coefficient 

differences and factor mean differences, to varying degrees of noninvariant measurement 

models across populations when noninvariance exists in model. This study uses three 

types of evaluation criteria along with four simulation design factors (i.e., sample size, 
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factor loading size, structural parameter difference, and prior distribution). In this study, 

the degrees of noninvariance will be manipulated with two factors (i.e., percentage of 

noninvariant item and total magnitude of noninvariance). The inference on structural 

parameters is “sensitive” if varying degrees of noninvariance between populations causes 

a significant change of (1) accuracy of statistical conclusion on structural parameters 

(Type I error and power), (2) precision of structural parameter estimates, and (3) bias of 

structural parameter estimates. In particular, the research questions under study are:  

(1) how will varying degrees of factor loading noninvariance influence Type I error 

and power, precision of structural parameter estimates, and bias of structural 

parameter difference estimates?  

(2) how will varying degrees of intercept noninvariance influence the three outcomes?  

(3) how will varying degrees of both factor loading and intercept noninvariance 

influence the three outcomes? 

(4) how will total sample size, factor loading size, and the prior distribution in three 

types of noninvariance conditions influence the three outcomes?  

The following section describes the methods used to investigate the above research 

questions including the design of the current study: data generating model, simulation 

design factors, and data analysis. 
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Chapter 3: Methods 

 

Data Generating Model 

Two-group two-factor models with mean structure were used to generate data 

from a multivariate normal distribution. Selection of the data generating model in this 

study was based on previous measurement invariance testing application studies 

(Anderson, Hughes, Fisher, & Nicklas, 2005; Byrne, Shavelson, & Muthén, 1989; Chen 

& Tang, 2006; Cheung & Watkins, 2000; Crockett, Randall, Shen, & Driscoll, 2005; 

Dolan, Colom, Abad, Wicherts, Hessen, & Sluis, 2006; Marsh, 1993; Yoo & Donthu, 

2001) as well as simulation studies (Beuckelaer & Swinnen, 2011; Finch & French, 

2012). Assuming that two populations have the same factor structure (i.e., configural 

invariance) across all conditions, the data generating model for only one population (i.e., 

reference population) is presented in Figure 1. Varying degrees of factor loading and 

intercept difference were manipulated while the other parameters (e.g., factors’ variances, 

error variances) were held constant across all generating conditions. Note that the 

differences in factor loadings and intercepts between two populations only occurred on 

the exogenous factor while all model parameters on the endogenous factor were invariant 

across all generating conditions. The critical parameters of interest in this study were (1) 

group difference in the regression coefficients from exogenous to endogenous factors 

between two populations, which is R - F  , where the superscripts ‘R’ and ‘F’ represent 

reference population and focal population, respectively, and (2) factor mean differences 

in the exogenous and endogenous factors between two populations, which are captured 

by F and  F respectively, where F and  F are the latent intercepts in the focal 
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population. It should be noted that the exogenous and endogenous factors’ means were 

set to zero in the reference population for model identification, and hence F  represents 

the relative difference in the exogenous factor mean between two populations and F

represents the relative difference in the endogenous factor mean after controlling for 

differences in the exogenous factor between two populations.  

Given that factor variances are not likely to be same across populations in reality, 

factor variances were simulated to be different across populations. The variances of both 

the exogenous and the endogenous factors in the reference populations were set to 1 

while the corresponding variances in the focal group were set to 1.3 across all conditions. 

Across all conditions, for the reference population the regression coefficient between 

exogenous and endogenous factors was set to .5 and the disturbance variance of 

endogenous factor was set to .75, resulting in variance of the endogenous factor being 1 

as previously stated. Because the regression coefficient between exogenous and 

endogenous factors varied in the focal group, the values of disturbance variance of the 

endogenous factor in the focal group were chosen to achieve variance of the endogenous 

factor of 1.3 across all conditions. In addition, error variances were generated as invariant 

between the two populations across all conditions. The error variances for both the 

reference and focal populations were assumed to be homogeneous and were set to .32, 

resulting in the construct reliability coefficient H (Hancock & Mueller, 2001) 

approximately ranging from .70 and .90 across all conditions. The parameter values for 

factors variances and error variances were selected with reference to previous similar 

simulation studies on measurement invariance test (Beuckelaer & Swinnen, 2011; Kaplan 
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& George, 1995; Kim et al., 2012). Population generating values for the factor loadings 

and intercepts in the reference group and focal group are presented in Tables 1 through 3. 

 

 
Figure 1. Data Generating Model  
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Table 1 

Population Generating Values for Factor Loading Noninvariance Only Conditions 

High factor loading size 
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









99990000

00009999

....

....
'

Λ ,  88888888 ........τ , 

 3232323232323232 ........' θ  

Focal Group 










99990000

0000

....

________
'

Λ ,  88888888 ........τ , 

 3232323232323232 ........' θ  

Total magnitude 

of noninvariance 

Percentage of noninvariant items 

25%  75% 

20% 









99990000

000072999

....

....
'

Λ   









99990000

00008484849

....

....
'

Λ  

50% 









99990000

000045999

....

....
'

Λ   









99990000

00007575759

....

....
'

Λ  

80% 









99990000

000018999

....

....
'

Λ   









99990000

00006666669

....

....
'

Λ  

Moderate factor loading size 

Reference Group     










55550000

00005555

....

....
'

Λ ,  88888888 ........τ , 

 3232323232323232 ........' θ  

Focal Group 










55550000

0000

....

________
'

Λ ,  88888888 ........τ , 

 3232323232323232 ........' θ  

Total magnitude 

of noninvariance 

Percentage of noninvariant items 

25%  75% 

20% 









55550000

000040555

....

....
'

Λ   









55550000

00004747475

....

....
'

Λ  

50% 









55550000

000025555

....

....
'

Λ   









55550000

00004242425

....

....
'

Λ  

80% 









55550000

000010555

....

....
'

Λ   









55550000

00003737375

....

....
'

Λ  
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Table 2 

Population Generating Values for Intercept Noninvariance Only Conditions 

High factor loading size 

Reference Group 










99990000

00009999

....

....
'

Λ ,  88888888 ........τ , 

 3232323232323232 ........' θ  

Focal Group 










99990000

00009999

....

....
Λ ,  8888 ....________τ , 

 3232323232323232 ........' θ  

Total magnitude 

of noninvariance 

Percentage of noninvariant items 

25%  75% 

20%  888864888 ........' τ    88887575758 ........' τ  

50%  888840888 ........' τ    88886767678 ........' τ  

80%  888816888 ........' τ    88885959598 ........' τ  

Moderate factor loading size 

Reference Group     










55550000

00005555

....

....
'

Λ ,  88888888 ........τ , 

 3232323232323232 ........' θ  

Focal Group 










55550000

00005555

....

....
'

Λ ,  8888 ....________τ , 

 3232323232323232 ........' θ  

Total magnitude 

of noninvariance 

Percentage of noninvariant items 

25%  75% 

20%  888864888 ........' τ    88887575758 ........' τ  

50%  888840888 ........' τ    88886767678 ........' τ  

80%  888816888 ........' τ    88885959598 ........' τ  
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Table 3 

Population Generating Values for Both Factor Loading and Intercept Noninvariance 

Conditions 

High factor loading size 

Reference Group 










99990000

00009999

....

....
'

Λ ,  88888888 ........τ , 

 3232323232323232 ........' θ  

Focal Group 










99990000

0000

....

________
'

Λ ,  8888 ....________τ , 

 3232323232323232 ........' θ  

Total magnitude 

of noninvariance 

Percentage of noninvariant items 

25%  75% 

20% 










99990000

000072999

....

....
'

Λ  

 888864888 ........' τ  
 











99990000

00008484849

....

....
'

Λ  

 88887575758 ........' τ  

50% 










99990000

000045999

....

....
'

Λ  

 888840888 ........' τ  
 











99990000

00007575759

....

....
'

Λ  

 88886767678 ........' τ  

80% 










99990000

000018999

....

....
'

Λ  

 888816888 ........' τ  
 











99990000

00006666669

....

....
'

Λ  

 88885959598 ........' τ  

Moderate factor loading size 

Reference Group 










55550000

00005555

....

....
'

Λ ,  88888888 ........τ , 

 3232323232323232 ........' θ  

Focal Group 










55550000

0000

....

________
'

Λ ,  8888 ....________τ , 

 3232323232323232 ........' θ  

Total magnitude 

of noninvariance 

Percentage of noninvariant items 

25%  75% 

20% 










55550000

000040555

....

....
'

Λ  

 888864888 ........' τ  
 











55550000

00004747475

....

....
'

Λ  

 88887575758 ........' τ  

50% 










55550000

000025555

....

....
'

Λ  

 888840888 ........' τ  
 











55550000

00004242425

....

....
'

Λ  

 88886767678 ........' τ  

80% 










55550000

000010555

....

....
'

Λ  

 888816888 ........' τ  
 











55550000

00003737375

....

....
'

Λ  

 88885959598 ........' τ  
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Manipulated Factors 

The simulation design used in this study was 3 (noninvariance conditions) × 2 

(percentage of noninvariant items) × 3 (total magnitudes of noninvariance) × 2 (factor 

loading magnitudes) × 3 (total sample sizes) × 3 (structural parameter differences) × 3 

(prior distribution) for 972 conditions for this study. In addition, measurement invariance 

conditions (i.e., 0% of noninvariant items) for 54 conditions were included to serve as a 

baseline conditions against noninvariance conditions. Previous simulation studies on 

SEM from a Bayesian approach used various numbers of replications, ranging from 100 

(Lee, Song, & Cai, 2010) to 1,000 replications (Sass & Smith, 2006). In order to decide 

the replication size for this study, a pilot study was conducted with three different 

replication sizes (100, 500, and 1,000) under the various degrees of invariance conditions. 

Although there were small differences in precision between two replication sizes (500 

and 1,000) in terms of outcomes of this study, 1,000 replications were set in simulation to 

ensure the stability of outcome measures of the study. 

Type of noninvariance. Three different types of noninvariance were examined: 

(1) factor loading noninvariance only, (2) intercept noninvariance only, and (3) both 

factor loading and intercept noninvariance. Under the factor loading noninvariance only 

conditions, various degrees of factor loading difference were manipulated while intercept 

parameters were generated as invariant between two populations, which is referred to as 

weak measurement noninvariance in literature. Under the intercept noninvariance only 

conditions, varying degrees of intercept difference were manipulated while factor loading 

parameters were generated as invariant between two populations across all conditions. 

Under the both factor loading and intercept noninvariance conditions, varying degrees of 
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both factor loading and intercept differences were manipulated. Both intercept 

noninvariance only conditions and both factor loading and intercept noninvariance 

conditions are often referred to as strong measurement noninvariance in literature. Note 

that error variances were generated as invariant between the two populations across all 

conditions.  

Magnitude of noninvariance. Because it is not clear whether the impacts of 

degrees of noninvariance for individual items are confounded with overall magnitudes of 

noninvariance, the degrees of noninvariance for individual items varied in several ways 

while the overall magnitudes of noninvariance were controlled. Specifically, this study 

systematically varied the degrees of noninvariance using two design conditions: 

percentage of noninvariant items and total magnitude of noninvariance. Although 

previous studies directly manipulate magnitude of noninvariance for each item (e.g., .2 

for small factor loading difference, .4 for large factor loading difference), this study 

indirectly manipulated magnitude of noninvariance for each item using the percentage of 

noninvariant items and the total magnitude of noninvariance.  

Percentage of noninvariant items. Two levels of percentage of noninvariant 

items were manipulated (25% and 75%). The 25% and 75% conditions represent 25% of 

noninvariant items (1 out of 4 items) and 75% of noninvariant items (3 out of 4 items), 

respectively. For all simulation conditions, all model parameters that differ between two 

populations only occurred on the exogenous factor (while all model parameters on the 

endogenous factor () were the same between two populations. For example, in the 25% 

factor loading difference conditions, one factor loading was different on while all factor 

loadings on were the same between two populations. The fourth item (x4) of  was 
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generated as noninvariant for 25% conditions and the second, third, and fourth items (i.e.,  

x2, x3, x4) were generated as noninvariant for 75%. The first item of (x1) was generated 

as invariant across all conditions for scaling purposes.  

Given the limitations surrounding the generation of noninvariant items in previous 

studies, this study used a different approach to create noninvariant items for the 

simulation. That is, the degree of noninvariance for a model parameter was defined in a 

relative manner which was calculated as the relative difference of the model parameter 

from the corresponding model parameter value of the reference group. Specifically, the 

degree of noninvariance was expressed as percentages that represent the relative 

magnitude in difference in model parameters of the focal group from the corresponding 

parameters of the reference group. For example, the 10% noninvariance for a model 

parameter represents that the noninvariant item in the focal group differs by 10% lower 

than the corresponding factor loading in the reference group. This can give more 

meaningful parameter difference even in the unstandardized solution. To do so, 

noninvariant item parameters were simulated by multiplying a multiplicative factor, say k, 

to the population parameter values of the reference group. For the focal group, population 

measurement parameters of the noninvariant factor indicator were specified to be always 

smaller than the corresponding factor loading in the reference group. To illustrate, one of 

the population values of a factor loading in the reference group was set to .8. The 

population factor loadings in the focal group that is 10% (i.e., k =.9) smaller than the 

corresponding loading of .8 would be .72 (.8*.9=.72) and thus the value of .72 was used 

as a population factor loading for the focal group representing 10% difference in factor 
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loading. For the factor loading of .5, the value of .45 (.5*.9=.45) was used as the 

population factor loading for the focal group that represents 10% difference. 

Total magnitude of noninvariance. As the degrees of noninvariance for each 

item parameter and percents of noninvariant item vary in simulation conditions, the 

overall magnitude of noninvariance also varies. Thus, this study also controlled the 

overall magnitude of noninvariance. In this study, the total magnitude of noninvariance 

was defined as the total amount of noninvariance calculated by summing individual 

percentages of the parameters that showed measurement noninvariance. The overall 

magnitude of noninvariance was manipulated at 3 levels: 20%, 50%, and 80%. Given that 

there is no previous study to manipulate the overall magnitude in measurement invariance 

testing within the MGCFA, these levels are selected considering the percentage of 

noninvariant items and magnitude of noninvariance in each item. Specifically, the total 

magnitude of 20% noninvariance condition may be considered as small magnitude of 

total noninvariance in that magnitude of noninvariance in each item has small factor 

loading difference which has been defined in the previous literature (i.e., less than factor 

loading difference of .2). Similarly, the total magnitude of 80% noninvariance may be 

considered as large magnitude of total noninvariance in that at least one noninvariant 

item has larger factor loading difference which has been defined in the previous literature 

(i.e., greater than factor loading difference of .4) in majority of conditions. The total 

magnitude of 20% noninvariance indicates that the total amount of noninvariance for the 

focal group model is smaller than that for the reference group by 20%, and so on. To 

illustrate, suppose that there are two noninvariant items and each factor loading differs by 

being 10% lower than the corresponding factor loading in the reference group. Then the 
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total amount of noninvariance can be calculated by summing individual magnitude of 

noninvariance, which is 20% (i.e., 10%+10%=20%).  Across all conditions, the 

magnitude of noninvariance for each item was assumed to be equal. To illustrate, when 

the total amount of invariance is 50% and there are 75% of noninvariant items (i.e., three 

items noninvariant), then each item contributes approximately 16.17% noninvariance 

each, leading to total amount of 50% noninvariance.  

Factor loading magnitude. Factor loading magnitude for the reference group 

was manipulated with two levels: moderate and high. In selection of population values 

for moderate and high factor loading, this study refers to a previous simulation study 

(Finch & French, 2012; Kim & Yoon, 2011). Homogeneous factor loadings of .5 and .9 

were used as moderate and high factor loading that represent moderate measurement 

quality and high measurement quality, respectively (Finch & French).  

Total sample size. This study manipulated total sample size. Based on the 

previous simulation studies in measurement invariance (Beuckelaer & Swinnen, 2011; 

Kaplan & George, 1995; Kim & Yoon, 2011; French & Finch, 2011), the total sample 

size of 200, 800, and 2,000 was used in this study, which represents small, moderate, and 

large sample size. The total sample size of 200 has been used as a small size but seems to 

occur in applied measurement invariance research (Anderson, Hughes, Fisher, & Nicklas, 

2005), while total sample size of 2,000 reflects a cross-national research situation where 

the sample size per country is relatively large (Steenkamp & Baumgartner, 1998). Across 

all conditions, equal sample size per group was used, reflecting a research situation in 

which two groups have similar sample sizes and these approximately equal sample sizes 

commonly occur in measurement invariance research in a MGCFA framework.  
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Structural parameter differences. The structural parameters of interest in this 

study were differences in regression coefficients from exogenous to endogenous factors 

between reference and focal groups (i.e., 
R
- 

F
) and latent intercepts of exogenous and 

endogenous factors in the focal group (i.e., F and F ). For the regression coefficient 

from exogenous to endogenous factors in the focal group, it varied with values of .2, .5, 

and .8 while that in the reference group was set to .5 across all conditions, resulting in the 

difference in the regression coefficients between two populations of -.3, 0, and .3. The 

intercepts of F and F used in this study were set to -.57, 0, and .57 yielding moderate, 

zero, and moderate effect sizes (i.e., d =-.5, 0, .5). The standardized effect sizes for mean 

differences in exogenous and endogenous factors are calculated such that the factor mean 

in the focal group is divided by the square root of the variance of that factor (Hancock, 

2001).  The population values of factor mean difference are very similar to previous 

simulation studies (Beuckelaer & Swinnen, 2011; Kaplan & George, 1995) and 

application studies (Byrne et al., 1989) and thus are considered reasonable.  

Prior distribution. Across all conditions, the first item of each factor (i.e., x1, y1) 

was selected as reference indicators for model identification. This study employs three 

different prior distributions that were assigned to ratios of reference indicators’ factor 

loadings and intercepts between groups (i.e., F

1x
 / R

1x
 , F

1y
 / R

1y
 , F

1x / R

1x , and F

1y / R

1y ,). 

Although Muthén and Asparouhov (2013) used prior distributions for differences 

between parameters through use of Bayesian measurement invariance, this specification 

has a limitation in that values of variance of prior distributions may represent different 

magnitudes of variability of noninvariance depending on scales of factors’ indicators in 

unstandardized solution. Instead, specification of prior distributions for ratio of two factor 
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loadings can provide meaningful variability of parameter difference even in the 

unstandardized solution. In this study, normal distributions with mean of 1 were used as 

prior distributions for ratios of reference indicators’ factor loadings and intercepts 

between groups with varying degrees of variances across all conditions. Three levels of 

prior distribution’s variance were manipulated such that noninvariance of the reference 

indicators’ factor loadings and intercepts between two populations vary within 0%, 10%, 

and 20%. As seen in Figure 2(a), the variance of the first prior distribution was set at zero, 

which means that the prior distribution does not allow noninvariance of the reference 

indicators’ parameters between two populations. A prior distribution with zero variance 

can be regarded as a traditional scaling method that constrains reference indicators’ factor 

loadings and intercepts to be equal across groups. This prior distribution is hereafter 

referred to as prior distribution with zero variation. The second level of prior distribution 

is presented in Figure 2 (b) and was designed to represent situations in which prior 

distributions allow magnitudes of noninvariance of the reference indicators’ factor 

loadings and intercepts approximately within 10% between two populations, 95% of the 

time. The second level of the prior distribution is hereafter referred to as prior 

distribution with 10% variation. As shown in Figure 2 (c), the third level of variance for 

prior distribution was designed to represent situations in which prior distributions allow 

magnitudes of noninvariance of the reference indicators’ factor loadings and intercepts 

approximately within 20% between two populations, 95% of the time. The third level of 

the prior distribution is hereinafter referred to as prior distribution with 20% variation. 

At the time of writing, the software program used in this study, Mplus, does not 

allow using prior distributions for the ratio between parameters and only has an option to 



61 

 

use prior distributions for the difference between parameters. Given this, this study used 

an alternative specification, which is to fix reference indicators’ factor loadings and 

intercepts to their population values in the reference group and let those in the focal 

group have means of the population values and varying small-variance prior distributions. 

As a result, magnitudes of noninvariance of the reference indicators’ factor loadings and 

intercepts vary approximately within 0%, 10%, and 20% as stated previously. For 

example, for a measurement model with a factor loading of .9 and intercept of .8 for the 

reference indicators, N(.9, .002) and N(.8, .002) were used as prior distributions for the 

factor loadings and intercepts, respectively, in the focal group. With a normal prior 

distribution with mean of .9 and variance of .002, a reference indicator’s factor loading in 

the focal group is allowed to be freely estimated approximately within 10% (i.e., factor 

loading of between .81 and .99) from factor loading value of .9, 95% of the time. 

Similarly, with a normal prior distribution with mean of .8 and variance of .002, a 

reference indicator’s intercept in the focal group is allowed to be freely estimated 

approximately within 10% (i.e., intercept of between .71 and .88) from intercept value 

of .8, 95% of the time. 

For the other factor loadings and intercepts, this study specifies a noninformative 

prior that reflected no prior knowledge across all conditions. A normal distribution with a 

mean of zero and variance of 10
10

 was used as a noninformative prior which is a default 

prior for factor loadings in Mplus. Across all conditions, noninformative priors based on 

inverse-gamma distributions (IG(0, -1)) were used as prior distributions for factor 

variances and error variances, which is also a default prior for those parameters in Mplus.   
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Figure 2. Three Types of Prior Distributions  

 

Outcome Variables 

To assess the sensitivity of noninvariance conditions, the three outcome variables 

from the varying noninvariance conditions were compared with those from the baseline 

conditions (i.e., invariance conditions). The three primary outcome variables are: (1) 

accuracy of statistical conclusion on structural parameter comparisons, (2) precision of 

the estimated structural parameter difference, and (3) bias in the posterior mean of 

structural parameter difference. The accuracy of statistical conclusions on the structural 
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parameter comparisons was evaluated using the Type I error and power that is 

determined based on a 95% credibility interval of the posterior distributions of 

parameters of interest. If the interval from the 2.5
th

 and 97.5
th

 percentiles of the posterior 

distribution include zero, it is concluded such that there is no structural parameter 

difference across populations; meanwhile, if the interval from the 2.5
th

 and 97.5
th

 

percentiles of the posterior distribution do not include zero, it is concluded such that there 

is structural parameter difference across populations. In addition, a 95% credibility 

interval was used to evaluate the precision of the structural parameter difference 

estimates by examining the width of 95% credibility interval of individual structural 

parameter difference estimates of interest. Finally, bias is defined as “a systematic 

difference between a sample estimate and the corresponding population value” (Bandalos 

& Leite, 2013, p. 642). For bias in the posterior mean of structural parameter difference, 

average relative bias (ARB) and average bias (AB) were calculated. The ARB of the 

parameter estimate is defined as “the average deviation of a sample estimate from its 

population value, relative to the population value” (Bandalos & Leite, 2013) and it has 

been frequently used to assess bias because it provides a common scale for researchers to 

compare magnitude of bias across different population parameter values. When the true 

population difference is zero, the ARB cannot be calculated. Thus, this study also 

calculated average bias (AB), which is defined as a simple average deviation of a sample 

estimate from its population value. If the absolute values of ARB are less than .15, they 

are considered not to be serious, and thus acceptable in most SEM analyses (Muthén, 

Kaplan, & Hollis, 1987). The ARB and AB are calculated as (Bandalos & Leite, 2013), 

  
 












 

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r
r

i

iij

i n/
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   



rn

r
riiji n/ˆˆbiasAverage

1

  

where 
ij̂  is the sample  estimate, i  is the population value, and nr is the number of 

replications within the cell. Although there are substantial biases under some conditions, 

the measures of AB and ARB cannot capture them particularly in cases where both 

positive and negative biases exist, averaging to zero. In order to obtain a measure of 

amount of unsigned bias, average absolute relative bias (AARB) and average absolute 

bias (AAB) were also calculated by taking the absolute values of deviation of a sample 

estimate from its population value. The AAB and AARB were calculated as (Bandalos & 

Leite, 2013), 

  



rn

r
riiji n/|ˆ|ˆbiasabsoluteAverage

1

  

  
 












 


rn

r
r

i

iij

i n/
||

|ˆ|ˆbiasrelativeabsoluteAverage
1 


  

It should be noted that when the true population difference is zero, the AARB were not 

calculated.  

 

Analysis 

Mplus 7.11 was used to simulate and analyze sample data from a Bayesian 

approach. Given that the Gibbs sampler method is a popular method in Bayesian SEM 

(Fong & Ho, 2013; Golay, Reverte, Rossier, Favez, & Lecerf, 2012; Kaplan & Depaoli, 

2012; Muthén & Asparouhov, 2012), the posterior distribution was estimated through the 

MCMC algorithm with the Gibbs sampler method for the analysis. As recommended by 

Muthén and Asparouhov (2012) and other application studies (Fong & Ho, 2013; Golay 
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et al., 2012), the Gelman and Rubin convergence diagnostic, PSRF, was used to assess 

convergence. When PSRF values are between 1 and 1.1, convergence was considered to 

be achieved. Two MCMC chains were used in this study because use of two chains 

provides sufficient PSRF information compared to more chains and hence have been 

often used in previous studies (Muthén & Asparouhov, 2013). In order to determine the 

number of iterations, a pilot study was conducted. Under both large and small magnitudes 

of noninvariance conditions with moderate sample size, PSRF values reached to 1.1, on 

average, at 4,000 iterations and the PSRF values less than 1.1 were maintained until 

80,000 iterations. Also, there were negligible differences in and parameter estimates 

among three iteration sizes (10,000, 50,000, and 80,000) across conditions. Therefore, in 

each chain, 10,000 iterations were used in the main simulation. The first half of the 

iteration per chain (i.e., 5,000 iterations) was burn-in iterations and thus was discarded. 

The remaining 5,000 iterations were used to calculate the posterior mean and 95% 

credibility intervals in this study. Model fit was assessed with PPP value recommended 

by previous studies (Lee & Song, 2004; Muthén & Asparouhov, 2012). A model with 

PPP value less than .05 was considered as a poor model fit; otherwise, it was considered 

as an adequate model fit. The properly converged replications with adequate model fit 

were used to evaluate the three outcome measures using SAS 9.2. 
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Chapter 4: Results 

 

Chapter 4 provides the results of the current simulation study. Convergence and 

results of model fit assessment are presented in the first section. The remaining three 

sections present simulation results regarding the three outcome measures (i.e., accuracy 

of statistical conclusion on structural parameter comparisons, precision of structural 

parameter estimates, bias of structural parameter estimates) under three different types of 

noninvariance conditions. The results of each condition represent the average values of 

the outcome measures over properly converged replications with adequate model fit. 

Convergence and Model Fit Assessment 

In this study, a replication where the PSRF values ranged between 1 and 1.1 was 

considered as a properly converged replication. Convergence rates are calculated as the 

percentage of times a model properly converged over 1,000 replications for each 

condition. Table 4 presents the convergence rates obtained from the measurement 

invariance conditions by sample size, factor loading size, and prior distribution. As seen 

in Table 4, overall convergence rates across all conditions were found to be very good, 

yielding convergence rates greater than 99.0% in most conditions. All conditions where 

there were large sample sizes, high factor loadings, and prior distributions with 20% 

variation provided about 84% in both convergence rates and convergence rates with 

adequate model fit.  

Similar to convergence rates under measurement invariance conditions, varying 

types and magnitudes of noninvariance conditions yielded good convergence rates. As 

shown in Table 5, overall convergence rates ranged from 83.3% to 100% in all conditions. 



67 

 

In most conditions, the convergence rates reached 100%. The low convergence rates were 

observed in the conditions where there were large sample sizes, high factor loadings, and 

prior distributions with 20% variation. Under those conditions, the convergence rates 

ranged from 83.3% to 93.0%. Furthermore, the percentage of time a model converged 

with adequate model fit over 1,000 replications was also kept track for each condition. In 

this study, a model with PPP value greater than .05 was considered as an adequate model 

fit. As shown in Tables 5 and 6, converged replications showed adequate model fits in 

terms of PPP value in most conditions. The convergence rates with adequate model fit 

were also very similar to those in both measurement invariance and measurement 

noninvariance conditions.  

Given that both measurement invariance and noninvariance conditions provided 

similar convergence rates and convergence rates with adequate model fit in this 

simulation, it seemed that the type and magnitude of noninvariance did not impact the 

convergence and model fit in this study. The properly converged replications with 

adequate model fit presented in Table 6 were used to evaluate the three main outcome 

measures. 
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Table 4 

Percentage of Model Convergence and Model Convergence with Adequate Model Fit 

under Measurement Invariance  

   

Convergence Rates 

 

Convergence Rates with Adequate Model Fit 

N 
 

P0 P1 P2 

 

P0 P1 P2 

100 .5 
 

98.4 98.7 98.6 
 

97.8 97.9 97.9 

100 .9 
 

100 100 100 
 

99.8 99.6 99.6 

400 .5 
 

100 100 100 
 

99.6 99.5 98.4 

400 .9 
 

100 100 99.8 
 

99.2 99.5 99.5 

1,000 .5 
 

100 100 98.9 
 

99.7 99.6 99.4 

1,000 .9 
 

100 100 84.6 
 

99.6 99.5 84.2 

Note. 

1. N: sample size per group,factor loading. 

2. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 5 

Percentage of Model Convergence under Measurement Noninvariance 

   

Factor Loading Noninvariance Only 

   

NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 

 

98.4 98.6 98.6 98.1 98.4 98.4 97.0 97.6 97.3 97.0 97.2 97.0 96.1 96.9 96.6 93.6 94.1 93.6 

100 .9 

 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

400 .5 

 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

400 .9 

 

100 100 99.9 100 100 99.9 100 100 100 100 100 100 100 100 100 100 100 100 

1,000 .5 

 

100 100 99.4 100 100 99.1 100 100 99.0 100 100 99.1 100 100 99.1 100 100 99.2 

1,000 .9 

 

100 99.9 84.2 100 100 86.2 100 100 85.3 100 100 88.2 100 100 85.7 100 100 90.3 

   

Intercept Noninvariance Only 

   

NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

98.9 99.0 98.9 98.5 99.0 99.0 98.2 98.4 98.3 98.6 98.9 98.8 99.2 99.2 99.0 98.9 99.2 99.3 

100 .9 
 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

400 .5 
 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

400 .9 
 

100 100 99.8 100 100 99.7 100 100 99.8 100 100 99.8 100 100 99.7 100 100 99.7 

1,000 .5 
 

100 100 99.4 100 100 99.1 100 100 99.0 100 100 98.9 100 100 99.1 100 100 99.3 

1,000 .9 
 

100 100 83.3 100 100 85.1 100 100 83.7 100 100 83.9 100 100 83.9 100 100 84.2 

   

Both Factor Loading and Intercept Noninvariance 

   

NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 

 

98.1 98.6 98.5 97.9 98.3 98.2 97.4 97.4 97.2 97.2 96.9 96.6 96.1 96.9 96.7 93.7 93.9 93.7 

100 .9 

 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

400 .5 

 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

400 .9 

 

100 100 99.8 100 100 99.9 100 100 100 100 100 99.9 100 100 100 100 100 100 

1,000 .5 

 

100 100 99.2 100 100 99.0 100 100 99.2 100 100 99.5 100 100 99.1 100 100 99.3 

1,000 .9 

 

100 99.9 83.3 100 100 84.5 100 100 84.7 100 100 87.9 100 100 84.0 100 100 90.4 

Note. 

1. N: sample size per group, factor loading. 

2. NF: factor loading noninvariance only, NI: intercept noninvariance only, NFI: both factor loading and intercept 

noninvariance, NF_2025: factor loading noninvariance only with 20% of total magnitudes of noninvariance and 25% of 

noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 6 

Percentage of Model Convergence with Adequate Model Fit under Measurement 

Noninvariance 

   

Factor Loading Noninvariance Only 

   

NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 

 

98.1 98.4 98.3 97.5 97.6 97.6 96.3 96.8 96.5 96.3 96.5 96.3 95.5 96.1 95.8 93.0 93.3 92.8 

100 .9 

 

99.2 99.0 99.0 99.8 99.6 99.6 99.8 99.7 99.7 99.9 99.6 99.6 99.9 99.8 99.8 99.8 99.6 99.6 

400 .5 

 

99.6 99.4 98.8 99.6 99.5 98.6 99.6 99.4 98.4 99.5 99.5 98.6 99.7 99.5 98.5 99.6 99.5 98.7 

400 .9 

 

99.6 99.8 99.8 99.2 99.5 99.6 99.3 99.5 99.5 99.2 99.5 99.6 99.3 99.5 99.4 99.2 99.5 99.5 

1,000 .5 

 

99.0 98.8 98.8 99.7 99.6 99.5 99.8 99.6 99.6 99.7 99.6 99.6 99.7 99.6 99.7 99.7 99.6 99.6 

1,000 .9 

 

99.6 99.3 83.7 99.6 99.5 85.7 99.5 99.5 84.9 99.5 99.5 87.7 99.4 99.3 85.1 99.5 99.4 89.8 

   

Intercept Noninvariance Only 

   

NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 98.7 98.8 98.7 97.8 98.2 98.3 97.3 97.5 97.3 97.9 98.0 97.9 98.5 98.4 98.2 98.8 99.0 99.0 

100 .9 
 99.2 99.0 99.0 99.4 99.1 99.1 99.6 99.7 99.6 99.4 99.3 99.3 99.5 99.2 99.2 99.5 99.5 99.5 

400 .5 
 99.6 99.4 98.8 99.6 99.2 98.3 99.7 99.7 98.6 99.3 99.1 98.0 99.5 99.4 98.6 99.7 99.5 98.7 

400 .9 
 99.6 99.8 99.8 99.6 99.3 99.4 99.0 99.2 99.2 99.1 99.1 99.1 99.2 99.2 99.2 99.9 99.9 99.9 

1,000 .5 
 99.1 98.8 98.6 99.4 99.2 99.0 99.5 99.5 99.3 99.4 99.3 99.1 99.5 99.1 98.9 99.1 99.4 99.1 

1,000 .9 
 99.6 99.3 82.8 99.5 99.1 84.4 99.7 99.6 83.4 99.3 99.1 83.2 99.4 99.2 83.1 99.7 99.4 83.8 

   

Both Factor Loading and Intercept Noninvariance 

   

NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 

 

97.6 97.9 97.8 97.3 97.7 97.6 96.7 96.5 96.3 96.7 96.4 96.1 95.5 96.1 96.1 93.2 93.3 93.1 

100 .9 

 

99.2 99.3 99.3 99.8 99.6 99.5 99.7 99.1 99.2 99.6 99.6 99.5 99.9 99.8 99.6 99.6 99.6 99.6 

400 .5 

 

99.7 99.8 99 99.6 99.5 98.5 99.5 99.2 98.4 99.4 99.1 98.6 99.7 99.5 98.4 99.4 99.2 98.6 

400 .9 

 

99.6 99.3 99.3 99.4 99.5 99.4 99.3 99.4 99.4 99.4 99.5 99.5 99.3 99.5 99.6 99.3 99.5 99.5 

1,000 .5 

 

99.2 99.2 99.1 99.8 99.5 99.4 99.5 99.2 99.1 99.5 99.3 99.3 99.7 99.6 99.5 99.7 99.7 99.6 

1,000 .9 

 

99.7 99.4 82.9 99.7 99.6 84.1 99.2 99.1 84.1 99.5 99.3 87.2 99.4 99.3 83.3 99.5 99.2 89.5 

Note. 

1. N: sample size per group, factor loading. 

2. NF: factor loading noninvariance only, NI: intercept noninvariance only, NFI: both factor loading and intercept 

noninvariance, NF_2025: factor loading noninvariance only with 20% of total magnitudes of noninvariance and 25% of 

noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Accuracy of Statistical Conclusion for Structural Parameter Comparisons 

The accuracy of statistical conclusions for structural parameter comparisons 

between two populations was evaluated using Type I error and empirical power. In this 

study, the Type I error rate is the percentage of replications in which models erroneously 

detect the structural parameter differences when population differences in structural 

parameters are truly zero. The empirical power is the percentage of replications in which 

models properly detect the structural parameter differences when population differences 

in the structural parameters truly exist. Type I error and empirical power were determined 

based on 95% credibility intervals of the posterior distributions of the three structural 

parameter differences: structural regression coefficient difference, exogenous factor mean 

difference, and endogenous factor mean difference.  

Type I Error  

Table 7 presents the Type I error rates obtained from the measurement invariance 

models by sample size, factor loading size, and prior distribution. The Type I error rates 

ranged from < .1% and to 5.3% across all sample sizes, factor loading sizes, and prior 

distributions. Interestingly, most Type I error rates of the three structural parameter 

differences decreased as prior distributions allowed more degrees of noninvariance in 

reference indicators’ parameters between populations. For example, all conditions with 

prior distributions with zero variation (i.e., prior distributions did not allow noninvariance 

of reference indicators’ parameters between two populations) provided the Type I error 

rates that were close to the nominal 5% error rate. However, all conditions with prior 

distributions with 10% or 20% variation (i.e., prior distributions allowed noninvariance of 

the reference indicators’ parameters within 10% or 20% between two populations, 
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respectively) provided Type I error rates that were much lower than the nominal 5% error 

rate. Particularly, the Type I error rates for both exogenous and endogenous factor mean 

differences were substantially lower, with Type I error rates being close to zero with 

moderate or large sample sizes and prior distributions with 20% variation.  

The results of the Type I error rates in three types of measurement noninvariance 

conditions are summarized by magnitude of noninvariance, sample size, factor loading 

size, and prior distribution. As seen in Tables 8 through 10, the three types of 

noninvariance conditions (i.e., factor loading noninvariance only, intercept noninvariance 

only, both factor loading and intercept noninvariance) provided very similar patterns of 

Type I error rates. For example, the three types of measurement noninvariance conditions 

yielded very similar ranges of Type I error rates which are from < .1% to 6.0% for factor 

loading noninvariance only conditions, from < .1%  to 6.2% for intercept noninvariance 

only conditions, and from < .1%  to 6.1%  for both factor loading and intercept 

noninvariance conditions. The six different magnitudes of noninvariance conditions also 

provided similar patterns of Type I error rates which are less than 6% in most conditions. 

In the current study, the Type I error rates obtained from varying degrees of measurement 

invariance models were not worse than those obtained from the measurement invariance 

models. These results indicate that the different types and magnitudes of noninvariance 

do not have an impact on the Type I error rates. 

As observed in measurement invariance conditions, it seemed that the sample size 

and prior distribution impacted the Type I error rates. As sample sizes and variance of 

prior distributions increased, the Type I error rates decreased in all different types and 

magnitudes of noninvariance conditions. Under prior distributions with zero variation 



73 

 

conditions, the Type I error rates were close to the nominal 5% error rate, yielding 

excellent Type I error controls across different levels of measurement noninvariance, 

sample size, and factor loading size. Interestingly, under prior distributions with 10% or 

20% variation, the Type I error rates generally tended to fall below the nominal 5% error 

rate. Under prior distributions with 20% variation, the Type I error rates of structural 

regression coefficient difference, exogenous factor mean difference, and endogenous 

factor mean difference were very close to zero particularly when sample size was 

moderate or large. 

 



74 

 

Table 7 

Type I Error Rates (%): Measurement Invariance  

   

Structural Regression 

Coefficient Difference 

( R - F ) 

Exogenous Factor Mean 

Difference ( F ) 

Endogenous Factor Mean 

Difference ( F  ) 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

4.0 4.2 2.9 4.3 2.5 .6 4.0 2.2 .4 

100 .9 
 

3.9 3.5 2.3 4.2 3.8 1.4 3.8 3.3 1.0 

400 .5 
 

3.5 2.3 1.5 4.3 .1 < .1 5.3 .1 < .1 

400 .9 
 

3.9 2.4 .9 4.2 1.1 < .1 5.2 .6 < .1 

1,000 .5 
 

3.7 1.5 .4 4.0 < .1 < .1 4.5 < .1 < .1 

1,000 .9 
 

4.0 .8 .1 4.0 .1 < .1 4.2 .1 < .1 

Note. 

1. N: sample size per group, factor loading. 

2. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 8 

Type I Error Rates (%): Factor Loading Noninvariance Only 

   
Structural Regression Coefficient Difference ( R - F ) 

   
NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

4.1 4.0 3.1 4.0 3.9 2.8 3.8 3.8 2.8 3.8 3.5 2.9 4.1 3.7 2.7 4.0 3.3 2.7 

100 .9 
 

4.3 4.1 3.2 3.9 3.5 2.3 3.9 3.4 2.4 3.9 3.5 2.2 3.6 3.5 2.4 3.7 3.4 2.0 

400 .5 
 

5.4 3.2 1.1 3.7 2.4 1.5 3.7 2.5 1.8 3.4 2.4 1.6 3.6 3.2 1.5 3.8 2.5 1.6 

400 .9 
 

5.2 3.4 .3 3.8 2.3 .9 4.1 2.4 .9 3.7 2.3 .9 3.8 2.5 .9 3.7 2.3 1.0 

1,000 .5 
 

4.7 1.9 .2 3.7 1.5 .4 3.4 1.5 .4 3.8 1.5 .4 3.7 1.5 .4 3.8 1.7 .4 

1,000 .9 
 

4.0 1.4 .1 4.0 .8 .1 4.2 .9 .1 4.0 .9 .1 3.9 .9 < .1 4.0 .9 .1 

   
Exogenous Factor Mean Difference ( F ) 

   
NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

6.1 3.1 .7 4.3 2.5 .6 4.5 3.2 .6 4.4 2.7 .6 4.5 3.4 .6 4.3 2.6 .7 

100 .9 
 

5.9 3.9 2.1 4.2 3.8 1.5 4.0 3.8 1.5 4.1 3.8 1.5 4.0 4.0 1.5 4.3 3.8 1.5 

400 .5 
 

4.2 .6 < .1 4.3 .1 < .1 4.5 .1 < .1 4.4 .1 < .1 4.5 .1 < .1 4.6 .1 < .1 

400 .9 
 

4.0 1.6 .1 4.2 1.2 < .1 4.2 1.2 < .1 4.2 1.2 < .1 4.2 1.2 < .1 4.2 1.2 < .1 

1,000 .5 
 

4.5 < .1 < .1 4 < .1 < .1 4.2 < .1 < .1 4.0 < .1 < .1 4.2 < .1 < .1 4.0 < .1 < .1 

1,000 .9 
 

4.5 .2 < .1 4 .1 < .1 4.0 .1 < .1 4.0 .1 < .1 4.1 .1 < .1 4.1 .1 < .1 

   
Endogenous Factor Mean Difference ( F  ) 

   
NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

3.3 1.0 .1 3.8 2.3 .4 3.8 2.2 .4 3.7 2.4 .4 3.6 2.3 .5 3.8 2.3 .4 

100 .9 
 

3.2 2.2 .5 3.8 3.2 1.0 3.9 3 1.0 3.8 3.2 1.0 3.7 3.3 1.2 3.9 3.2 1.0 

400 .5 
 

4.5 < .1 < .1 5.4 .1 < .1 5.6 .2 < .1 5.3 .1 < .1 5.5 .2 < .1 5.4 .1 < .1 

400 .9 
 

3.9 .7 < .1 5.3 .6 < .1 5.0 .4 < .1 5.3 .6 < .1 5.2 .4 < .1 5.2 .6 < .1 

1,000 .5 
 

4.7 < .1 < .1 4.5 < .1 < .1 4.5 < .1 < .1 4.5 < .1 < .1 4.3 < .1 < .1 4.6 < .1 < .1 

1,000 .9 
 

4.3 < .1 < .1 4.2 .1 < .1 4.2 .1 < .1 4.4 .1 < .1 4.1 .1 < .1 4.4 .1 < .1 

Note. 

1. N: sample size per group, factor loading. 

2. NF: factor loading noninvariance only, NF_2025: factor loading noninvariance only with 20% of total magnitudes of 

noninvariance and 25% of noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 9 

Type I Error Rates (%): Intercept Noninvariance Only 

   
Structural Regression Coefficient Difference ( R - F ) 

   
NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

4.0 4.4 3.4 4.6 3.5 3.1 5.4 5.1 3.9 5.1 3.9 3.3 5.4 5.5 4.4 4.0 3.6 3.0 

100 .9 
 

4.3 4.0 3.2 4.7 4.1 3.3 4.4 4.8 2.9 3.8 3.2 2.3 4.9 5.4 3.5 4.0 4.0 2.4 

400 .5 
 

5.4 3.3 1.2 5.2 3.0 1.7 5.2 3.5 1.2 4.7 2.7 .9 3.8 2.3 .7 5.6 2.9 1.2 

400 .9 
 

5.2 3.3 .3 4.7 3.1 .8 4.0 2.3 .4 3.7 2.1 .3 3.9 2.0 .6 4.8 2.7 1.1 

1,000 .5 
 

4.7 1.8 .3 3.3 1.2 .3 3.9 1.4 .5 3.6 1.1 .2 4.1 .9 .2 4.3 1.7 .4 

1,000 .9 
 

3.9 1.4 .1 4.1 1.3 .1 4.1 1.4 .1 4.2 1.3 .1 4.1 1.0 .2 5.0 1.3 .3 

   
Exogenous Factor Mean Difference ( F ) 

   
NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

6.2 3.0 .7 5.1 2.3 .4 5.2 3.3 .7 4.5 1.7 .5 5.7 2.5 .5 4.8 2.6 .5 

100 .9 
 

6.0 3.9 2.2 5.0 3.6 1.2 5.2 4.7 2.1 4.3 3.2 1.3 5.7 4.3 1.5 4.9 3.7 1.8 

400 .5 
 

3.9 .6 < .1 4.2 .1 < .1 5.2 .4 < .1 4.1 .5 < .1 4.0 .3 < .1 4.7 .3 < .1 

400 .9 
 

4.0 1.6 .2 4.1 1.0 < .1 5.3 2.2 .1 4.0 1.5 .2 4.0 1.5 < .1 4.7 1.3 < .1 

1,000 .5 
 

4.4 < .1 < .1 4.6 < .1 < .1 4.6 < .1 < .1 3.7 < .1 < .1 4.2 < .1 < .1 5.2 .1 < .1 

1,000 .9 
 

4.5 .2 < .1 4.8 .3 < .1 4.8 .2 < .1 4.2 .1 < .1 4.2 .1 < .1 5.1 .4 < .1 

   
Endogenous Factor Mean Difference ( F  ) 

   
NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

3.1 1.0 .1 3.9 1.6 .1 4.0 1.6 .2 4.5 1.7 .1 4.3 1.6 < .1 3.5 1.2 < .1 

100 .9 
 

3.2 2.3 .5 4.0 2.6 .7 3.9 2.9 .8 4.6 2.7 .9 3.9 2.8 .5 4.0 2.3 .7 

400 .5 
 

4.3 < .1 < .1 5.0 .1 < .1 4.5 < .1 < .1 4.1 < .1 < .1 4.8 .1 < .1 5.8 .2 < .1 

400 .9 
 

3.8 .7 < .1 5.2 .8 .1 4.4 .3 < .1 3.9 .6 < .1 4.7 .6 < .1 5.3 1.3 < .1 

1,000 .5 
 

4.6 < .1 < .1 3.8 < .1 < .1 3.6 < .1 < .1 5.0 < .1 < .1 4.3 < .1 < .1 4.3 < .1 < .1 

1,000 .9 
 

4.4 < .1 < .1 4.2 .1 < .1 3.7 < .1 < .1 5.4 .3 < .1 4.0 .1 < .1 4.7 < .1 < .1 

Note. 

1. N: sample size per group, factor loading. 

2. NI: intercept noninvariance only, NI_2025: intercept noninvariance only with 20% of total magnitudes of 

noninvariance and 25% of noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 10 

Type I Error Rates (%): Both Factor Loading and Intercept Noninvariance 

   
Structural Regression Coefficient Difference ( R - F ) 

   
NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

4.9 4.5 3.7 3.0 2.8 2.1 4.4 4.3 3.5 3.6 2.9 2.4 4.1 3.7 2.8 5.0 4.4 3.9 

100 .9 
 

4.2 3.5 2.9 3.0 3.0 1.9 3.9 3.8 2.3 2.9 3.1 2.0 3.6 3.5 3.0 4.4 4.2 2.3 

400 .5 
 

5.1 2.8 .9 4.0 2.2 1.1 3.4 2.0 .9 4.3 2.5 1.4 3.6 3.2 1.7 3.4 2.4 1.4 

400 .9 
 

4.0 2.6 .4 3.9 2.4 .6 3.2 2.0 .6 3.6 2.4 .8 3.8 2.5 .9 3.9 2.0 .6 

1,000 .5 
 

4.4 2.1 .3 4.7 1.8 .5 3.9 1.4 .6 3.9 1.6 .5 3.7 1.5 .3 5.7 2.3 .8 

1,000 .9 
 

4.1 1.9 .2 4.9 1.3 < .1 4.8 1.4 .1 4.7 1.6 .1 3.9 .9 < .1 5.6 2.0 .3 

   
Exogenous Factor Mean Difference ( F ) 

   
NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

6.1 4.0 .9 4.9 2.7 .4 5.0 2.7 .2 5.2 2.9 .3 4.5 3.4 .4 4.9 3.0 .5 

100 .9 
 

6.0 4.6 2.7 5.0 4.1 1.4 5.0 3.8 1.2 5.0 4.2 1.4 4.0 4.0 1.6 4.7 4.3 1.7 

400 .5 
 

4.1 .4 < .1 4.9 .3 < .1 5.1 .1 < .1 4.1 < .1 < .1 4.5 .1 < .1 4.0 .1 < .1 

400 .9 
 

4.0 1.2 .1 5.0 1.6 .1 4.8 1.4 < .1 3.9 1.1 < .1 4.2 1.2 < .1 3.6 1.1 < .1 

1,000 .5 
 

4.0 < .1 < .1 3.3 < .1 < .1 4.1 < .1 < .1 3.9 < .1 < .1 4.2 < .1 < .1 4.4 < .1 < .1 

1,000 .9 
 

3.9 .3 < .1 3.3 .1 < .1 3.9 .1 < .1 4.0 .2 < .1 4.1 .1 < .1 4.9 .1 < .1 

   
Endogenous Factor Mean Difference ( F  ) 

   
NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

3.1 1.4 .1 4.2 1.7 .1 3.8 1.6 .1 4.4 2.0 .2 3.6 2.3 .3 3.9 1.8 .3 

100 .9 
 

2.9 3.0 .8 4.3 3.1 .7 3.9 2.4 .7 4.4 3.1 .9 3.7 3.3 1.1 3.4 2.7 .8 

400 .5 
 

5.0 .2 < .1 5.2 < .1 < .1 5.5 .1 < .1 4.7 < .1 < .1 5.5 .2 < .1 4.5 < .1 < .1 

400 .9 
 

4.2 1.1 < .1 4.8 .6 < .1 5.2 .8 < .1 5.0 .8 < .1 5.2 .4 < .1 4.1 .8 < .1 

1,000 .5 
 

5.0 < .1 < .1 3.8 < .1 < .1 4.3 < .1 < .1 4.3 < .1 < .1 4.3 < .1 < .1 3.1 < .1 < .1 

1,000 .9 
 

4.8 < .1 < .1 3.6 .1 < .1 4.0 .1 < .1 4.6 .1 < .1 4.1 .1 < .1 3.3 .1 < .1 

Note. 

1. N: sample size per group, factor loading. 

2. NFI: both factor loading and intercept noninvariance, NFI_2025: both factor loading and intercept noninvariance 

with 20% of total magnitudes of noninvariance and 25% of noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Power  

Table 11 summarizes the empirical power rates obtained from the measurement 

invariance models by sample size, factor loading size, and prior distribution. In general, 

the power rates for detecting exogenous factor mean differences were highest, followed 

by power rates of endogenous factor mean differences and power rates of structural 

regression coefficient differences. The power rates of structural regression coefficient 

differences were much lower than those of exogenous factor mean differences when 

sample size was small or moderate. As expected, the sample size and factor loading size 

impacted the empirical power rates. As sample size and factor loading size increased, the 

power rates for detecting the three structural parameter differences increased. It seemed 

that prior distribution and interaction between prior distribution and sample size also 

impacted the empirical power rates. Most conditions with prior distributions with 10% 

variation provided the highest power rates, followed by conditions with prior 

distributions with zero variation and conditions with prior distributions with 20% 

variation when sample size was small. When sample size was moderate or large, the 

empirical power rates for detecting exogenous and endogenous factor mean differences 

were equal to or close to 100%. For power rates for detecting structural regression 

coefficient differences, both prior distribution with zero variation and with 10% variation 

provided similar power rates while prior distribution with 20% variation provided lowest 

power rates when sample size was moderate or large. 

Tables 12 through 14 summarize the empirical power rates obtained from the 

three types of measurement noninvariance conditions by magnitude of noninvariance, 

sample size, factor loading size, and prior distribution. It should be noted that when 
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sample size was small or moderate, overall empirical power rates for detecting all three 

structural parameter differences were slightly lower when the focal group had higher 

values of the three structural parameters rather than when focal group had lower values of 

the three structural parameters in population models. However, the difference between 

the two conditions was small and the pattern of power results was similar across most of 

other conditions and hence the results were averaged over these conditions. 

In general, the three types of noninvariance conditions provided very similar 

patterns of power rates across all conditions. The differences in empirical power rates 

across the three types of noninvariance conditions were within 3% for structural 

regression coefficient differences, within 3.4% for exogenous factor mean differences, 

and within 4.2% for endogenous factor mean differences. It seemed that the different 

magnitudes of measurement noninvariance also did not impact empirical power rates for 

the three structural parameter differences in this simulation. The empirical power rates 

for detecting the three structural parameter differences were very similar across different 

magnitudes of measurement noninvariance when holding the other factors constant. As 

observed in the measurement invariance conditions, the empirical power rates for 

detecting exogenous factor mean differences were highest while the empirical power 

rates for detecting structural regression coefficient differences were lowest. In the current 

study, empirical power rates obtained on the basis of varying degrees of measurement 

noninvariance models were not worse than those obtained from the measurement 

invariance models. These results indicate that the different types and magnitudes of 

noninvariance have no effect on the power rate. 
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As observed in measurement invariance conditions, most power rates of the three 

structural parameter differences were influenced by sample sizes, factor loadings, and 

prior distributions across all measurement noninvariance conditions. As sample size and 

factor loading increased, the power rates also increased in all different types and 

magnitudes of noninvariance conditions. Regarding the prior distributions, most 

conditions with prior distributions with 10% variation provided highest power rates of all 

three structural parameter differences when sample size was small. When sample size 

was moderate or large, both prior distributions with zero variation and prior distributions 

with 10% variation provided similar power rates while prior distributions with 20% 

variation provided lowest power rates. Irrespective of prior distributions, all conditions 

with moderate or large sample size showed almost perfect power for detecting the 

exogenous and endogenous factor mean differences. 
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Table 11 

Power Rates (%): Measurement Invariance  

   

Structural Regression 

Coefficient Difference 

( R - F ) 

Exogenous Factor Mean 

Difference ( F ) 

Endogenous Factor Mean 

Difference ( F  ) 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

28.9 31.7 28.9 73.3 88.5 73.3 54.9 67.5 48.2 

100 .9 
 

49.5 51.0 46.1 89.3 98.6 96.4 84.0 95.2 90.6 

400 .5 
 

82.6 81.2 70.4 100 100 99.0 99.0 99.7 93.7 

400 .9 
 

97.8 96.5 87.5 100 100 100 100 100 100 

1,000 .5 
 

99.2 99.0 96.0 100 100 100 100 100 99.0 

1,000 .9 
 

100 100 99.8 100 100 100 100 100 100 

Note. 

1. N: sample size per group, factor loading. 

2. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 12 

Power Rates (%): Factor Loading Noninvariance Only 

   
Structural Regression Coefficient Difference ( R - F ) 

   
NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

27.9 31.8 29.0 28.6 31.3 28.4 27.7 30.7 28.4 28.1 30.4 27.8 27.5 30.6 28.5 27.3 29.3 26.9 

100 .9 
 

49.9 51.0 46.0 49.4 50.9 46.0 49.4 50.3 46.2 48.6 50.5 45.6 49.3 50.2 45.9 48.3 49.7 45.2 

400 .5 
 

81.2 80.5 70.2 82.2 80.8 70.1 81.5 80.4 69.8 81.2 79.4 69.2 80.9 80.0 69.2 79.5 78.2 68.3 

400 .9 
 

97.6 96.3 87.7 97.8 96.5 87.2 97.5 96.6 87.2 97.6 96.5 86.9 97.4 96.7 87.3 97.6 96.4 86.6 

1,000 .5 
 

99.3 99.4 96.3 99.2 99.0 95.8 99.0 99.0 95.4 99.0 98.8 95.3 99.2 98.8 95.3 98.8 98.6 94.7 

1,000 .9 
 

100 100 100 100 100 99.8 100 100 99.8 100 100 99.8 100 100 99.8 100 100 99.8 

   
Exogenous Factor Mean Difference ( F ) 

   
NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

73.0 90.1 75.0 73.3 88.8 73.3 72.8 88.9 74.4 73.2 88.5 73.4 72.6 89.0 74.8 72.8 88.5 73.0 

100 .9 
 

89.1 98.7 97.3 89.2 98.6 96.4 89.1 98.6 96.4 89.1 98.5 96.4 88.9 98.6 96.6 89.1 98.6 96.4 

400 .5 
 

99.9 100 99.2 100 100 99.2 100 100 99.3 100 100 99.2 100 100 99.4 100 100 99.2 

400 .9 
 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

1,000 .5 
 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

1,000 .9 
 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

   
Endogenous Factor Mean Difference ( F  ) 

   
NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 


P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

55.4 68.5 50.5 54.4 67.1 47.8 53.7 66.8 47.0 53.3 66.1 46.9 53.0 66.4 47.2 52.3 63.9 45.4 

100 .9 
 

85.2 96.5 92.2 84.0 95.1 90.5 84.0 95.2 90.2 83.8 94.9 90.2 83.9 95.1 90.2 83.5 94.5 90.0 

400 .5 
 

99.0 99.6 93.8 99.0 99.7 93.7 99.0 99.4 93.0 99.0 99.6 93.5 99.0 99.4 92.7 99.0 99.5 93.0 

400 .9 
 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

1,000 .5 
 

100 100 99.1 100 100 99.0 100 100 99.1 100 100 98.8 100 100 99.1 100 100 98.6 

1,000 .9 
 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Note. 

1. N: sample size per group, factor loading. 

2. NF: factor loading noninvariance only, NF_2025: factor loading noninvariance only with 20% of total magnitudes of 

noninvariance and 25% of noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 13 

Power Rates (%): Intercept Noninvariance Only 

   
Structural Regression Coefficient Difference ( R - F ) 

   
NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

28.6 32.6 29.4 30.0 32.0 29.8 30.7 32.5 30.6 30.6 32.2 30.2 30.0 33.2 29.9 30.1 32.1 29.3 

100 .9 
 

50.5 51.2 46.2 50.1 50.7 45.3 49.2 50.8 46.4 50.2 50.8 46.0 49.4 50.8 46.2 50.1 51.5 45.8 

400 .5 
 

81.5 80.8 70.8 82.2 81.3 71.0 82.2 82.5 71.5 82.0 81.0 70.6 82.3 81.0 69.5 81.5 80.5 69.8 

400 .9 
 

97.6 96.4 88.0 97.6 96.2 87.9 97.3 95.8 88.2 98.0 96.8 88.3 98.0 97.0 88.0 97.6 97.0 88.1 

1,000 .5 
 

99.4 99.4 96.4 99.7 99.2 96.0 99.6 99.0 96.0 99.6 99.2 96.8 99.2 99.2 96.5 99.0 99.0 96.6 

1,000 .9 
 

100 100 100 100 100 99.9 100 100 99.8 100 100 99.8 100 100 99.7 100 100 99.7 

   
Exogenous Factor Mean Difference ( F ) 

   
NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

73.2 90.1 74.4 74.6 89.7 76.0 73.1 88.5 75.1 74.5 89.1 76.8 72.4 88.9 74.2 73.3 90.3 75.4 

100 .9 
 

89.2 98.7 97.2 90.5 98.8 97.1 88.8 98.4 96.6 89.6 99.0 97.0 89.4 98.5 96.8 90.4 98.6 97.0 

400 .5 
 

99.9 100 99.2 100 100 99.4 99.9 100 99.0 99.8 100 99.2 100 100 99.3 99.8 100 99.1 

400 .9 
 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

1,000 .5 
 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

1,000 .9 
 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

   
Endogenous Factor Mean Difference ( F  ) 

   
NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

56.0 69.5 50.8 56.5 67.7 48.4 55.5 68.0 48.7 53.9 67.7 47.8 53.9 66.3 47.5 55.1 68.0 49.6 

100 .9 
 

85.1 96.8 92.2 85.9 95.8 91.8 84.0 95.2 90.9 83.7 95.6 91.4 83.0 95.8 90.9 84.5 96.2 90.8 

400 .5 
 

99.0 99.6 94.1 98.9 99.4 93.2 99.0 99.9 94.2 98.9 99.6 93.2 98.8 99.8 92.8 99.0 99.4 94.0 

400 .9 
 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

1,000 .5 
 

100 100 99.0 100 100 99.0 100 100 99.4 100 100 99.0 100 100 99.4 100 100 99.2 

1,000 .9 
 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Note. 

1. N: sample size per group, factor loading. 

2. NI: intercept noninvariance only, NI_2025: intercept noninvariance only with 20% of total magnitudes of 

noninvariance and 25% of noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
 



84 

 

Table 14 

Power Rates (%): Both Factor Loading and Intercept Noninvariance 

   
Structural Regression Coefficient Difference ( R - F ) 

   
NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

29.3 32.0 29.3 29.4 32.1 29.3 27.5 30.7 28.4 27.4 29.3 26.7 27.5 30.6 28.5 27.4 30.3 27.5 

100 .9 
 

50.0 51.4 45.6 48.9 50.7 45.9 48.4 50.1 46.5 48.2 49.9 44.9 49.3 50.2 46.2 47.7 49.2 44.7 

400 .5 
 

80.7 80.3 69.2 81.5 79.8 70.0 81.0 80.0 70.0 80.8 79.7 69.8 80.9 80.0 69.4 78.3 77.6 67.7 

400 .9 
 

97.8 96.6 87.6 97.6 96.4 87.0 97.8 97.2 87.7 97.7 96.7 87.1 97.4 96.7 87.7 97.5 96.4 86.3 

1,000 .5 
 

99.4 99.4 96.1 99.0 99.0 95.9 99.2 98.7 95.2 99.1 98.8 95.1 99.2 98.8 95.3 98.4 98.2 95.0 

1,000 .9 
 

100 100 100 100 100 99.7 100 100 99.6 100 100 99.7 100 100 99.8 100 100 99.8 

   
Exogenous Factor Mean Difference ( F ) 

   
NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

73.2 90.3 76.2 72.9 88.7 74.0 72.3 89.9 75.7 73.2 89.4 74.2 72.6 89.0 75.0 73.1 88.5 74.6 

100 .9 
 

89.9 98.1 96.6 88.3 98.5 96.2 89.7 99.0 96.8 89.1 98.4 96.5 88.9 98.6 96.6 89.1 98.5 96.2 

400 .5 
 

99.9 100 99.4 100 100 98.8 100 100 99.2 100 100 99.4 100 100 99.1 100 100 99.2 

400 .9 
 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

1,000 .5 
 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

1,000 .9 
 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

   
Endogenous Factor Mean Difference ( F  ) 

   
NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

54.2 66.8 49.0 53.6 66.0 46.1 52.7 66.3 46.0 52.2 65.7 45.5 53.0 66.4 46.9 49.6 63.4 44.1 

100 .9 
 

84.2 96.0 91.5 84.0 95.1 90.8 84.6 95.0 90.2 85.0 95.9 91.0 83.9 95.1 90.5 83.4 94.8 89.5 

400 .5 
 

98.8 99.4 93.0 99.0 99.6 93.7 98.8 99.5 92.3 99.0 99.8 92.8 99.0 99.4 92.0 98.8 99.4 92.9 

400 .9 
 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

1,000 .5 
 

100 100 98.7 100 100 99.1 100 100 98.6 100 100 99.2 100 100 99.0 100 100 99.0 

1,000 .9 
 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Note. 

1. N: sample size per group, factor loading. 

2. NFI: both factor loading and intercept noninvariance, NFI_2025: both factor loading and intercept noninvariance 

with 20% of total magnitudes of noninvariance and 25% of noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Precision of the Estimated Structural Parameter Difference 

The precision of the estimated structural parameter difference between two 

populations was evaluated using the width of 95% credibility intervals of individual 

structural parameter difference estimates. Tables 15 through 18 present the precision of 

the estimated three structural parameter differences by magnitude of invariance, sample 

size, factor loading size, and prior distribution in  measurement invariance and 

noninvariance conditions. It should be noted that the pattern of results was similar to 

different magnitudes of structural parameter differences and hence the results were 

averaged over these conditions. 

Table 15 summarizes the precision of the estimated three structural parameter 

differences obtained from measurement invariance conditions by sample size, factor 

loading size, and prior distribution. It was clear that the width of 95% credibility intervals 

of all structural parameter difference parameter estimates became smaller when sample 

size or factor loading size increased. It seemed that prior distribution also had an impact 

on the width of 95% credibility intervals of all structural parameter difference parameter 

estimates. Generally, the width of 95% credibility intervals were narrowest under the 

conditions with the prior distribution with zero variation while the width of 95% 

credibility intervals were widest under the conditions with prior distributions with 20% 

variation. 

Tables 16 through 18 summarize the width of 95% credibility intervals of the 

estimated three structural parameter differences obtained from the three types of 

measurement noninvariance conditions by magnitude of noninvariance, sample size, 

factor loading size, and prior distribution. In general, the three types of noninvariance 
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conditions provided very similar patterns of precision. The averaged differences in the 

width of 95% credibility intervals between factor loading noninvariance only conditions 

and intercept noninvariance only conditions were trivial, yielding less than .001 for all 

three structural parameter differences. The largest differences in the width of 95% 

credibility intervals between factor loading noninvariance only conditions and intercept 

noninvariance only conditions were .009 for structural regression coefficient 

differences, .022 for exogenous factor mean differences, and .038 for endogenous factor 

mean differences when holding the other factors constant. Further, it was observed that 

the width of 95% credibility interval of individual structural parameter difference 

estimates was very similar across different magnitudes of measurement noninvariance. 

These results indicate that the magnitude of measurement noninvariance has no impact on 

the precision of the three structural parameter difference estimates.  

Instead, it seemed that sample size, factor loading size, and prior distribution 

influenced the precision of the three structural parameter difference estimates. As 

expected, the precision increased as sample size or factor loading increased. As observed 

in measurement invariance conditions, prior distribution with 10% variation provided 

highest precision levels when sample size was small while prior distribution with zero 

variation conditions provided highest precision levels when sample size was moderate or 

large. Generally, prior distribution with 20% variation conditions provided the lowest 

precision levels.  

Tables 19 through 21 summarize the results of the factorial ANOVA on the 

precision of the three structural parameter difference estimates with five main 

manipulated factors (i.e., total magnitude of noninvariance, percentage of noninvariance 
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items, sample size, factor loading size, prior distribution) and their combinations (i.e., 

two-way interactions) in three types of measurement invariance conditions. The effect 

size measure, totaleffect SS/SS2 ,  was used to examine significant main and interaction 

effects on the precision of the three structural parameter difference estimates. 2 can be 

interpreted as the proportion of variance associated with each of main or interaction 

effects in an ANOVA study (Thompson, 2013).  2  of .01, .06, and .14 were used to 

represent small, moderate, and large effects, respectively, for factorial ANOVA analysis 

(Cohen, 1988). As seen in Tables 19 through 21, the results of ANOVA were very similar 

across three types of noninvariance conditions. The total magnitude of noninvariance and 

percentage of noninvariance items had no effects on the precision of the three structural 

parameter difference estimates. The significant factors influencing precision of the three 

structural parameter difference estimates were sample size, factor loading size, and prior 

distribution. Interestingly, the sample size, factor loading size, and prior distribution were 

found to have large, moderate, and small effects, respectively, on the precision of 

structural regression coefficient differences while the sample size, factor loading size, 

and prior distribution were found to have large effects on the precision of both exogenous 

and endogenous factor mean differences. For interaction effects, two interaction effects 

(i.e., sample size × factor loading size, sample size × prior distribution) were found to 

have small effects on the precision of structural regression coefficient difference 

estimates. For the precision of exogenous factor mean difference estimates, two 

interaction effects (i.e., sample size × prior distribution, factor loading size × prior 

distribution) were found to have moderate and small effects. Lastly, for the precision of 

endogenous factor mean difference estimates, three interaction effects (i.e., sample size × 
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prior distribution, sample size × prior distribution, factor loading size × prior distribution) 

were found to have small, moderate, and small effects, respectively. 
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Table 15 

Average Precision: Measurement Invariance 

   

Structural Regression 

Coefficient Difference 

( R - F ) 

Exogenous Factor Mean 

Difference ( F ) 

Endogenous Factor Mean 

Difference ( F  ) 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

1.066 .879 .928 .948 .741 .948 1.175 .879 1.127 

100 .9 
 

.652 .613 .670 .706 .562 .671 .754 .594 .723 

400 .5 
 

.442 .444 .527 .469 .492 .776 .501 .549 .880 

400 .9 
 

.311 .331 .426 .361 .338 .491 .360 .356 .543 

1,000 .5 
 

.276 .308 .396 .300 .421 .698 .319 .473 .770 

1,000 .9 
 

.193 .233 .325 .232 .269 .430 .23 .294 .475 

Note. 

1. N: sample size per group, factor loading. 

2. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 16 

Average Precision: Factor Loading Noninvariance Only 

   
Structural Regression Coefficient Difference ( R - F ) 

   
NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 
1.050 .880 .927 1.079 .891 .941 1.094 .911 .959 1.106 .917 .964 1.107 .930 .976 1.148 .950 .997 

100 .9 
 

.650 .617 .670 .655 .615 .672 .657 .618 .676 .660 .619 .676 .660 .621 .678 .666 .625 .682 

400 .5 
 

.447 .443 .523 .446 .447 .530 .451 .450 .532 .452 .453 .536 .455 .452 .533 .461 .461 .545 

400 .9 
 

.310 .333 .423 .312 .332 .427 .313 .332 .426 .314 .333 .429 .314 .332 .426 .316 .335 .431 

1,000 .5 
 

.277 .310 .397 .277 .310 .397 .279 .312 .398 .280 .313 .400 .281 .313 .399 .285 .317 .403 

1,000 .9 
 

.193 .233 .323 .194 .234 .326 .195 .234 .326 .195 .234 .327 .195 .234 .327 .196 .235 .328 

   
Exogenous Factor Mean Difference ( F ) 

   
NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.947 .743 .947 .948 .741 .948 .956 .737 .940 .949 .741 .948 .962 .733 .934 .949 .742 .949 

100 .9 
 

.707 .567 .670 .707 .562 .671 .711 .560 .668 .707 .561 .670 .714 .559 .666 .708 .561 .670 

400 .5 
 

.467 .493 .773 .469 .492 .778 .464 .493 .776 .469 .493 .780 .461 .494 .774 .469 .494 .781 

400 .9 
 

.363 .340 .493 .361 .338 .491 .360 .338 .489 .361 .338 .491 .359 .339 .487 .361 .338 .491 

1,000 .5 
 

.297 .420 .697 .299 .421 .697 .297 .422 .698 .299 .421 .695 .297 .423 .700 .298 .421 .693 

1,000 .9 
 

.230 .270 .427 .232 .269 .429 .231 .270 .430 .231 .269 .428 .229 .270 .430 .230 .270 .427 

   
Endogenous Factor Mean Difference ( F  ) 

   
NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 
1.150 .873 1.117 1.179 .884 1.131 1.186 .886 1.130 1.187 .892 1.138 1.194 .889 1.129 1.198 .904 1.148 

100 .9 
 

.750 .593 .720 .753 .594 .724 .754 .594 .721 .754 .595 .724 .753 .593 .719 .755 .596 .725 

400 .5 
 

.500 .550 .880 .501 .550 .882 .501 .551 .884 .503 .550 .885 .501 .552 .887 .504 .552 .888 

400 .9 
 

.360 .357 .543 .360 .356 .544 .359 .357 .544 .360 .356 .545 .359 .357 .544 .361 .356 .545 

1,000 .5 
 

.320 .470 .770 .320 .473 .770 .320 .472 .772 .320 .472 .769 .320 .472 .773 .321 .472 .769 

1,000 .9 
 

.230 .297 .477 .230 .293 .475 .230 .293 .474 .230 .293 .473 .230 .293 .474 .230 .292 .472 

Note. 

1. N: sample size per group, factor loading. 

2. NF: factor loading noninvariance only, NF_2025: factor loading noninvariance only with 20% of total magnitudes of 

noninvariance and 25% of noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 17 

Average Precision: Intercept Noninvariance Only 

   
Structural Regression Coefficient Difference ( R - F ) 

   
NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 
1.035 .872 .917 1.053 .884 .934 1.075 .886 .934 1.055 .886 .933 1.058 .884 .933 1.058 .877 .921 

100 .9 
 

.648 .611 .667 .651 .614 .671 .656 .613 .671 .649 .613 .670 .651 .615 .672 .651 .611 .667 

400 .5 
 

.441 .442 .525 .443 .444 .528 .442 .443 .526 .442 .443 .527 .444 .446 .531 .441 .442 .525 

400 .9 
 

.312 .331 .424 .311 .332 .427 .312 .331 .426 .311 .331 .426 .312 .333 .430 .311 .331 .425 

1,000 .5 
 

.275 .308 .395 .274 .308 .395 .275 .307 .394 .275 .308 .396 .275 .308 .395 .275 .308 .395 

1,000 .9 
 

.193 .233 .324 .193 .233 .325 .193 .233 .324 .193 .233 .326 .193 .233 .324 .193 .233 .325 

   
Exogenous Factor Mean Difference ( F ) 

   
NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.943 .742 .949 .94 .739 .946 .937 .739 .946 .941 .742 .948 .94 .741 .947 .937 .743 .949 

100 .9 
 

.705 .563 .671 .703 .560 .669 .701 .561 .669 .703 .562 .671 .704 .561 .670 .703 .563 .672 

400 .5 
 

.467 .492 .777 .469 .492 .777 .467 .492 .776 .469 .492 .776 .470 .492 .776 .468 .492 .776 

400 .9 
 

.361 .337 .491 .361 .337 .491 .361 .337 .490 .362 .338 .491 .361 .337 .491 .361 .338 .491 

1,000 .5 
 

.299 .421 .698 .300 .421 .698 .299 .421 .698 .300 .421 .698 .300 .421 .698 .299 .421 .697 

1,000 .9 
 

.232 .269 .430 .232 .269 .430 .232 .269 .43 .233 .269 .430 .232 .269 .431 .232 .269 .429 

   
Endogenous Factor Mean Difference ( F  ) 

   
NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 
1.146 .872 1.119 1.156 .881 1.129 1.179 .881 1.13 1.153 .881 1.13 1.156 .883 1.131 1.165 .876 1.126 

100 .9 
 

.749 .592 .721 .751 .594 .723 .755 .593 .722 .747 .594 .723 .750 .595 .724 .751 .591 .721 

400 .5 
 

.500 .548 .879 .501 .549 .880 .500 .548 .879 .501 .549 .88 .502 .55 .881 .500 .549 .881 

400 .9 
 

.360 .356 .543 .360 .356 .543 .36 .356 .543 .360 .356 .544 .361 .357 .544 .359 .356 .544 

1,000 .5 
 

.319 .473 .769 .319 .473 .769 .319 .473 .769 .320 .473 .770 .319 .473 .769 .319 .473 .769 

1,000 .9 
 

.229 .294 .474 .229 .294 .474 .230 .294 .475 .229 .294 .475 .229 .294 .474 .229 .294 .475 

Note. 

1. N: sample size per group, factor loading. 

2. NI: intercept noninvariance only, NI_2025: intercept noninvariance only with 20% of total magnitudes of 

noninvariance and 25% of noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 



92 

 

Table 18 

Average Precision: Both Factor Loading and Intercept Noninvariance  

   
Structural Regression Coefficient Difference ( R - F ) 

   
NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 
1.079 .893 .942 1.076 .899 .949 1.094 .919 .969 1.091 .917 .963 1.107 .930 .981 1.142 .948 .998 

100 .9 
 

.656 .616 .674 .654 .615 .672 .656 .621 .678 .656 .619 .676 .660 .621 .678 .666 .626 .684 

400 .5 
 

.446 .446 .529 .446 .447 .529 .450 .449 .532 .451 .453 .537 .455 .452 .533 .462 .463 .547 

400 .9 
 

.312 .332 .426 .312 .332 .427 .313 .332 .426 .313 .334 .430 .314 .332 .426 .316 .336 .433 

1,000 .5 
 

.277 .309 .397 .276 .309 .397 .279 .310 .397 .279 .312 .399 .281 .313 .398 .284 .317 .404 

1,000 .9 
 

.194 .234 .326 .194 .234 .326 .195 .234 .326 .195 .234 .326 .195 .234 .327 .196 .235 .328 

   
Exogenous Factor Mean Difference ( F ) 

   
NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.943 .739 .945 .940 .739 .946 .963 .737 .940 .946 .741 .948 .962 .733 .933 .949 .740 .947 

100 .9 
 

.707 .561 .669 .703 .560 .669 .712 .560 .668 .705 .561 .670 .714 .559 .665 .707 .560 .668 

400 .5 
 

.465 .492 .777 .469 .492 .778 .464 .493 .776 .468 .493 .780 .461 .494 .773 .469 .493 .782 

400 .9 
 

.360 .337 .490 .362 .338 .491 .359 .338 .489 .361 .338 .491 .359 .339 .486 .361 .338 .491 

1,000 .5 
 

.298 .422 .698 .299 .421 .697 .297 .422 .698 .298 .421 .695 .297 .423 .700 .298 .421 .693 

1,000 .9 
 

.231 .269 .430 .232 .269 .430 .230 .270 .430 .231 .269 .428 .229 .270 .430 .230 .270 .427 

   
Endogenous Factor Mean Difference ( F  ) 

   
NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 
1.173 .88 1.128 1.167 .886 1.134 1.185 .890 1.136 1.166 .892 1.138 1.194 .889 1.131 1.191 .902 1.152 

100 .9 
 

.754 .593 .722 .750 .592 .722 .752 .595 .722 .749 .595 .723 .753 .593 .718 .753 .595 .725 

400 .5 
 

.501 .550 .882 .503 .550 .881 .50 .551 .885 .501 .551 .885 .501 .552 .887 .504 .552 .888 

400 .9 
 

.360 .356 .544 .361 .356 .544 .359 .357 .544 .360 .357 .545 .359 .357 .544 .360 .356 .545 

1,000 .5 
 

.320 .473 .771 .319 .473 .769 .320 .472 .772 .319 .472 .769 .320 .472 .773 .320 .472 .768 

1,000 .9 
 

.229 .293 .475 .230 .293 .474 .230 .293 .474 .230 .293 .473 .230 .293 .474 .229 .293 .471 

Note. 

1. N: sample size per group, factor loading. 

2. NFI: both factor loading and intercept noninvariance, NFI_2025: both factor loading and intercept noninvariance 

with 20% of total magnitudes of noninvariance and 25% of noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 19  

ANOVA Results on Precision: Factor Loading Noninvariance Only 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F p 

Structural regression coefficient difference ( R - F ) 

Total magnitude of noninvariance (Tot_NI) 11.682 2 5.841 249.340 <.001 <.001 

Percentage of noninvariant items (Per_NI) 2.117 1 2.117 9.360 <.001 <.001 

Sample size 1615.107 2 8075.053 344691 <.001 .579 

Loading size 2573.886 1 2573.886 109869 <.001 .092 

Prior distribution 329.413 2 164.706 703.640 <.001 .012 

Tot_NI * Per_NI .509 2 .254 1.860 <.001 <.001 

Tot_NI * Sample size 1.215 4 2.554 109.01 <.001 <.001 

Tot_NI * Loading size 5.876 2 2.938 125.4 <.001 <.001 

Tot_NI * Prior distribution .091 4 .023 .97 .420 <.001 

Per_NI * Sample size 1.406 2 .703 30 <.001 <.001 

Per_NI * Factor loading size .885 1 .885 37.76 <.001 <.001 

Per_NI * Prior distribution .058 2 .029 1.23 .292 <.001 

Sample size * Loading size 1049.100 2 524.550 2239.9 <.001 .038 

Sample size * Prior distribution 388.750 4 97.187 4148.53 <.001 .014 

Loading size * Prior distribution 68.338 2 34.169 1458.54 <.001 .002 

Error 7451.693 318082 .023    

Corrected Total 27913.982 318115     

Exogenous factor mean difference ( F ) 

Total magnitude of noninvariance (Tot_NI) .014 2 .007 1.96 .141 <.001 

Percentage of noninvariant items (Per_NI) .049 1 .049 13.55 <.001 <.001 

Sample size 783.393     2 3915.196 1085957 <.001 .497 

Loading size 2936.408      1 2936.408      814471 <.001 .186 

Prior distribution 2359.409      2 1179.705     327214 <.001 .150 

Tot_NI * Per_NI .011 2 .006 1.55 .212 <.001 

Tot_NI * Sample size .001 4 <.001 .05 .996 <.001 

Tot_NI * Loading size <.001 2 <.001 < .01 .997 <.001 

Tot_NI * Prior distribution .067 4 .017 4.65 <.001 <.001 

Per_NI * Sample size .117 2 .058 16.19 <.001 <.001 

Per_NI * Factor loading size .027 1 .027 7.36 .007 <.001 

Per_NI * Prior distribution .054 2 .027 7.53 .001 <.001 

Sample size * Loading size 67.417       2 33.708     9349.70 <.001 .004 

Sample size * Prior distribution 1107.659       4 276.915     76807.8 <.001 .070 

Loading size * Prior distribution 288.684       2 144.342   40036.1 <.001 .018 

Error 1146.780 318082 .004    

Corrected Total 15769.365 318115     

Endogenous factor mean difference ( F  ) 

Total magnitude of noninvariance (Tot_NI) 1.152 2 .576 43.58 <.001 <.001 

Percentage of noninvariant items (Per_NI) .546 1 .546 41.31 <.001 <.001 

Sample size 1182.020 2 591.010 447115 <.001 .432 

Loading size 555.523 1 555.523 419918 <.001 .203 

Prior distribution 3235.421 2 1617.710 122386 <.001 .118 

Tot_NI * Per_NI .096 2 .048 3.64 .026 <.001 

Tot_NI * Sample size 1.550 4 .387 29.31 <.001 <.001 

Tot_NI * Loading size .949 2 .474 35.89 <.001 <.001 

Tot_NI * Prior distribution .069 4 .017 1.31 .263 <.001 

Per_NI * Sample size .956 2 .478 36.16 <.001 <.001 

Per_NI * Factor loading size .207 1 .207 15.64 <.001 <.001 

Per_NI * Prior distribution .005 2 .002 .18 .836 <.001 

Sample size * Loading size 536.913 2 268.457 20309.8 <.001 .020 

Sample size * Prior distribution 1746.797 4 436.699 33038 <.001 .064 

Loading size * Prior distribution 287.541 2 143.770 10876.8 <.001 .011 

Error 4204.442 318082 .013    

Corrected Total 27368.056 318115     
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Table 20  

ANOVA Results on Precision: Intercept Noninvariance Only 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F p 

Structural regression coefficient difference ( R - F ) 

Total magnitude of noninvariance (Tot_NI) .292 2 .146 7.38 .001 <.001 

Percentage of noninvariant items (Per_NI) .001 1 .001 .06 .800 <.001 

Sample size 1507.729 2 7535.365 380390 <.001 .597 

Loading size 2208.446 1 2208.446 111484 <.001 .087 

Prior distribution 337.225 2 168.612 8511.66 <.001 .013 

Tot_NI * Per_NI .594 2 .297 15 <.001 <.001 

Tot_NI * Sample size .557 4 .139 7.03 <.001 <.001 

Tot_NI * Loading size .173 2 .086 4.36 .013 <.001 

Tot_NI * Prior distribution .085 4 .021 1.07 .369 <.001 

Per_NI * Sample size .009 2 .004 .21 .807 <.001 

Per_NI * Factor loading size .002 1 .002 .11 .739 <.001 

Per_NI * Prior distribution .012 2 .006 .3 .742 <.001 

Sample size * Loading size 847.240 2 423.620 21384.6 <.001 .034 

Sample size * Prior distribution 371.268 4 92.817 4685.46 <.001 .015 

Loading size * Prior distribution 61.313 2 3.656 1547.55 <.001 .002 

Error 6303.998 318230 .020    

Corrected Total 25246.848 318263     

Exogenous factor mean difference ( F ) 

Total magnitude of noninvariance (Tot_NI) .009 2 .004 1.29 .276 <.001 

Percentage of noninvariant items (Per_NI) .002 1 .002 .53 .467 <.001 

Sample size 7757.234 2 3878.617 1119964 <.001 .495 

Loading size 2924.905 1 2924.905 844576 <.001 .187 

Prior distribution 2402.201 2 1201.101 346822 <.001 .153 

Tot_NI * Per_NI .036 2 .018 5.22 .005 <.001 

Tot_NI * Sample size .017 4 .004 1.23 .297 <.001 

Tot_NI * Loading size .001 2 .001 .22 .806 <.001 

Tot_NI * Prior distribution .009 4 .002 .65 .625 <.001 

Per_NI * Sample size .002 2 .001 .23 .797 <.001 

Per_NI * Factor loading size <.001 1 <.001 .01 .917 <.001 

Per_NI * Prior distribution <.001 2 <.001 .02 .984 <.001 

Sample size * Loading size 65.841 2 32.920 9505.88 <.001 .004 

Sample size * Prior distribution 1024.581 4 256.145 73962.8 <.001 .065 

Loading size * Prior distribution 291.050 2 145.525 4202.8 <.001 .019 

Error 1102.082 318230 .003    

Corrected Total       

Endogenous factor mean difference ( F  ) 

Total magnitude of noninvariance (Tot_NI) .162 2 .081 7.11 .001 <.001 

Percentage of noninvariant items (Per_NI) .001 1 .001 .06 .808 <.001 

Sample size 11487.066 2 5743.533 503133 <.001 .437 

Loading size 534.425 1 534.425 467821 <.001 .203 

Prior distribution 3259.973 2 1629.987 142787 <.001 .124 

Tot_NI * Per_NI .203 2 .102 8.9 .000 <.001 

Tot_NI * Sample size .255 4 .064 5.59 .000 <.001 

Tot_NI * Loading size .113 2 .057 4.95 .007 <.001 

Tot_NI * Prior distribution .044 4 .011 .96 .426 <.001 

Per_NI * Sample size .002 2 .001 .1 .906 <.001 

Per_NI * Factor loading size .002 1 .002 .18 .674 <.001 

Per_NI * Prior distribution .022 2 .011 .95 .386 <.001 

Sample size * Loading size 476.017 2 238.008 20849.5 <.001 .018 

Sample size * Prior distribution 1671.773 4 417.943 36611.8 <.001 .064 

Loading size * Prior distribution 29.711 2 145.356 12733.1 <.001 .011 

Error 3632.766 318230 .011    

Corrected Total 26308.495 318263     
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Table 21  

ANOVA Results on Precision: Both Factor Loading and Intercept Noninvariance 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F p 

Structural regression coefficient difference ( R - F ) 

Total magnitude of noninvariance (Tot_NI) 11.605 2 5.802 247.7 < .0001 .000 

Percentage of noninvariant items (Per_NI) 2.089 1 2.089 89.19 < .0001 .000 

Sample size 16151.817 2 8075.909 344755 < .0001 .579 

Loading size 2574.256 1 2574.256 109893 < .0001 .092 

Prior distribution 328.898 2 164.449 702.22 < .0001 .012 

Tot_NI * Per_NI .491 2 .246 1.49 < .0001 .000 

Tot_NI * Sample size 1.274 4 2.569 109.65 < .0001 .000 

Tot_NI * Loading size 5.901 2 2.951 125.96 < .0001 .000 

Tot_NI * Prior distribution .097 4 .024 1.04 .387 .000 

Per_NI * Sample size 1.426 2 .713 3.44 < .0001 .000 

Per_NI * Factor loading size .893 1 .893 38.12 < .0001 .000 

Per_NI * Prior distribution .060 2 .030 1.28 .278 .000 

Sample size * Loading size 1048.782 2 524.391 22385.9 < .0001 .038 

Sample size * Prior distribution 388.438 4 97.110 4145.54 < .0001 .014 

Loading size * Prior distribution 68.268 2 34.134 1457.15 < .0001 .002 

Error 745.784 318069 .023    

Corrected Total 27914.241 318102     

Exogenous factor mean difference ( F ) 

Total magnitude of noninvariance (Tot_NI) .015 2 .007 2.07 .126 .000 

Percentage of noninvariant items (Per_NI) .048 1 .048 13.25 .000 .000 

Sample size 783.464 2 3915.232 1085919 < .0001 .497 

Loading size 2936.227 1 2936.227 814385 < .0001 .186 

Prior distribution 2358.861 2 1179.430 327124 < .0001 .150 

Tot_NI * Per_NI .011 2 .005 1.46 .233 .000 

Tot_NI * Sample size .001 4 .000 .05 .995 .000 

Tot_NI * Loading size .000 2 .000 0 .998 .000 

Tot_NI * Prior distribution .069 4 .017 4.78 .001 .000 

Per_NI * Sample size .119 2 .059 16.47 < .0001 .000 

Per_NI * Factor loading size .026 1 .026 7.33 .007 .000 

Per_NI * Prior distribution .053 2 .026 7.33 .001 .000 

Sample size * Loading size 67.419 2 33.709 9349.56 < .0001 .004 

Sample size * Prior distribution 1107.486 4 276.872 76792.4 < .0001 .070 

Loading size * Prior distribution 288.637 2 144.319 40027.9 < .0001 .018 

Error 1146.783 318069 .004    

Corrected Total 15769.130 318102     

Endogenous factor mean difference ( F  ) 

Total magnitude of noninvariance (Tot_NI) 1.134 2 .567 42.88 < .0001 .000 

Percentage of noninvariant items (Per_NI) .534 1 .534 4.42 < .0001 .000 

Sample size 11821.206 2 591.603 447155 < .0001 .432 

Loading size 555.376 1 555.376 419903 < .0001 .203 

Prior distribution 3233.818 2 1616.909 122324 < .0001 .118 

Tot_NI * Per_NI .094 2 .047 3.56 .029 .000 

Tot_NI * Sample size 1.569 4 .392 29.68 < .0001 .000 

Tot_NI * Loading size .950 2 .475 35.94 < .0001 .000 

Tot_NI * Prior distribution .072 4 .018 1.37 .241 .000 

Per_NI * Sample size .969 2 .485 36.65 < .0001 .000 

Per_NI * Factor loading size .207 1 .207 15.68 < .0001 .000 

Per_NI * Prior distribution .005 2 .003 .19 .823 .000 

Sample size * Loading size 536.854 2 268.427 20307.3 < .0001 .020 

Sample size * Prior distribution 1746.280 4 436.570 33027.8 < .0001 .064 

Loading size * Prior distribution 287.552 2 143.776 10877.1 < .0001 .011 

Error 4204.313 318069 .013    

Corrected Total 27367.660 318102     
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Bias in Posterior Mean of Structural Parameter Difference 

In this study, the bias of the three structural parameter difference estimates was 

assessed using the four measures (i.e., ARB, AB, AAB, and AARB). Tables 22 through 

33 present the four measures of bias in posterior means of the three structural parameter 

differences by varying magnitude of invariance, sample size, factor loading size, and 

prior distribution under the three types of measurement invariance conditions. It should 

be noted that the patterns of the four measures of bias were similar across three structural 

parameter differences and hence the results were averaged over these conditions. 

As seen in Tables 22 through 24, all three types of noninvariance conditions 

generally provided acceptable ARB values of the three structural parameter difference 

estimates across varying magnitudes of noninvariance conditions. The ARB values of the 

exogenous and endogenous factor mean difference estimates were all less than .050, 

ranging from -.014 to .033 for exogenous factor mean differences and from -.042 to .032 

for endogenous factor mean differences across different types and magnitudes of 

invariance conditions. For the structural regression coefficient difference estimates, the 

ARB values yielded less than .110 across types and magnitudes of noninvariance with 

one exception. The exception was observed when sample size was small, factor loading 

was low, and prior distribution had no variance. Under that cell, the ARB values 

exceeded .150 and reached up to .204. Similarly, the AB values of the three structural 

parameter difference estimates were acceptable across different types and magnitudes of 

noninvariance conditions. As seen in Tables 25 through 27, the AB values of the 

exogenous and endogenous factor mean difference estimates were all less than .025 while 

the AB values yielded less than .076 for the structural regression coefficient difference 
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estimates. These results suggest that there was no systematic difference between sample 

estimates of the three structural parameter differences and corresponding population 

values. Further it indicates that measurement noninvariance conditions provide 

acceptable parameter estimates of the three structural parameter differences.  

As seen in Tables 28 through 33, further examination using AARB and AAB 

revealed that there were substantial unsigned amounts of bias particularly when sample 

size was small. For example, the AARB values of structural regression coefficient 

difference estimates yielded less than .150 only when sample size was large and factor 

loading was high regardless of prior distribution. When sample size was small and factor 

loading was low, the AARB values of structural regression coefficient difference 

estimates reached up to .714. For both exogenous and endogenous factor mean 

differences, the AARB values yielded less than .150 when sample size was moderate and 

factor loading was high or sample size was large. The AAB values of structural 

regression coefficient difference estimates were much smaller in magnitude compared to 

AARB values. When sample size was moderate or large, the AAB values of all three 

structural parameter difference estimates were less than .15. When sample size was small 

and factor loading was high, the AAB values of all three structural parameter difference 

estimates were also less than .15.  

As seen in Tables 34 through 37, a comparison of the four measures of biases 

obtained from the measurement invariance conditions and varying degrees of 

noninvariance conditions indicate that the different types and magnitudes of 

noninvariance do not have impact on the biases in the estimates of structural parameter 

differences in these simulations. Using the four measures of bias for the three structural 
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parameter differences as the dependent variables, several factorial ANOVAs were 

conducted to examine the effects of the five main manipulated factors on each of the four 

bias measures. Five main effects of the manipulated factors and all two-way interaction 

effects were included in the ANOVA model. Effect size, 
2
, was also calculated to 

examine significant main and interaction effects on the four measures of bias. Tables 38 

through 49 summarize the results of the factorial ANOVA on the ARB, AB, AARB, and 

AAB. The results of ANOVA showed that the total magnitude of noninvariance and 

percentage of noninvariance items had no effects on the four bias measures for the three 

structural parameter difference estimates. All effect sizes of these two factors were all 

less than .001 across three types of noninvariance conditions. Sample size, factor loading 

size, prior distribution, and any two-way interactions had little effects on both ARB and 

AB for all three structural parameter differences. However, sample size and factor 

loading size were found to have large and small effects on both AARB and AAB for all 

three structural parameter differences. The prior distribution appeared to have little 

effects on AARB and AAB for structural regression coefficient differences and had small 

effects on AARB and AAB for exogenous and endogenous factor mean differences.  
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Table 22 

Average Relative Bias (ARB): Factor Loading Noninvariance Only 

   

Structural Regression Coefficient Difference ( R - F ) 

   

NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 

 

.155 .070 .085 .178 .074 .086 .180 .079 .090 .182 .085 .094 .184 .080 .092 .204 .098 .105 

100 .9 

 

.045 .020 .030 .048 .018 .030 .048 .019 .032 .050 .018 .032 .048 .020 .034 .051 .020 .034 

400 .5 

 

.040 .020 .025 .043 .022 .032 .045 .024 .032 .044 .024 .033 .046 .024 .033 .046 .026 .036 

400 .9 

 

.015 .005 .010 .016 .006 .011 .016 .007 .010 .016 .007 .012 .016 .007 .010 .016 .008 .012 

1,000 .5 

 

.020 .030 .055 .020 .027 .057 .021 .027 .057 .020 .028 .058 .022 .028 .057 .022 .030 .060 

1,000 .9 

 

<.001 .010 .040 .004 .012 .039 .005 .012 .038 .005 .012 .040 .005 .012 .038 .005 .012 .040 

   

Exogenous Factor Mean Difference ( F ) 

   

NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.020 .005 .010 .026 .006 .010 .030 .006 .010 .026 .006 .010 .033 .005 .010 .020 .004 .008 

100 .9 
 
-.010 .005 .005 -.007 .002 .007 -.005 .002 .006 -.008 .002 .007 -.004 .002 .006 -.008 .002 .006 

400 .5 
 
<.001 <.001 <.001 <.001 .002 .004 <.001 .002 .004 <.001 .002 .003 -.001 .002 .005 <.001 .001 .002 

400 .9 
 
-.010 <.001 .005 -.007 .001 .003 -.008 .001 .004 -.007 <.001 .002 -.008 .002 .004 -.007 <.001 .002 

1,000 .5 
 

.005 <.001 <.001 .006 <.001 -.002 .006 <.001 -.002 .006 -.001 -.002 .005 <.001 -.002 .005 -.002 -.003 

1,000 .9 
 
<.001 -.005 -.005 .002 <.001 -.007 .002 <.001 -.006 .002 -.001 -.007 .001 <.001 -.006 .002 -.002 -.007 

   

Endogenous Factor Mean Difference ( F  ) 

   

NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 

 

.025 -.020 -.020 .028 -.032 -.032 .027 -.034 -.034 .024 -.035 -.034 .022 -.040 -.040 .017 -.042 -.040 

100 .9 

 

.005 <.001 .005 -.004 -.006 -.002 -.004 -.005 -.002 -.004 -.006 -.003 -.006 -.006 -.003 -.006 -.007 -.005 

400 .5 

 

.020 .010 .030 .013 .006 .026 .012 .004 .024 .012 .005 .024 .012 .002 .022 .011 .003 .023 

400 .9 

 

.005 .005 .025 .002 .007 .024 .002 .006 .022 .002 .006 .024 .002 .005 .022 .002 .006 .022 

1,000 .5 

 

<.001 -.005 -.010 -.002 -.005 -.009 -.003 -.005 -.008 -.002 -.005 -.009 -.003 -.005 -.008 -.003 -.005 -.010 

1,000 .9 

 

-.005 -.005 <.001 -.005 -.002 -.001 -.005 -.002 <.001 -.005 -.001 -.001 -.005 -.002 <.001 -.005 -.001 -.001 

Note. 

1. N: sample size per group, factor loading. 

2. NF: factor loading noninvariance only, NF_2025: factor loading noninvariance only with 20% of total magnitudes of 

noninvariance and 25% of noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 23 

Average Relative Bias (ARB): Intercept Noninvariance Only 

   
Structural Regression Coefficient Difference ( R - F ) 

   
NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.156 .068 .079 .167 .075 .088 .190 .074 .088 .156 .070 .083 .162 .075 .087 .175 .069 .086 

100 .9 
 

.047 .018 .031 .046 .019 .032 .056 .018 .032 .042 .016 .028 .044 .018 .031 .055 .019 .032 

400 .5 
 

.041 .020 .028 .037 .018 .028 .040 .018 .027 .038 .018 .028 .043 .024 .032 .038 .018 .027 

400 .9 
 

.016 .006 .010 .013 .006 .008 .015 .004 .009 .012 .005 .010 .017 .006 .011 .016 .005 .010 

1,000 .5 
 

.017 .026 .054 .014 .024 .053 .020 .024 .053 .016 .023 .053 .019 .025 .053 .018 .025 .055 

1,000 .9 
 

.004 .011 .038 .002 .011 .040 .005 .012 .038 .003 .011 .038 .004 .011 .037 .003 .012 .038 

   
Exogenous Factor Mean Difference ( F ) 

   
NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.020 .004 .008 .022 .006 .010 .014 .006 .010 .019 .006 .010 .020 .006 .010 .014 .006 .009 

100 .9 
 
-.010 .002 .007 -.008 .002 .007 -.014 .002 .007 -.012 .002 .007 -.008 .002 .006 -.013 .002 .007 

400 .5 
 
-.001 <.001 .002 .002 .002 .003 -.003 .002 .003 .001 .001 .002 .003 .001 .002 -.001 .001 .003 

400 .9 
 
-.007 <.001 .002 -.005 .001 .003 -.008 <.001 .002 -.006 .001 .002 -.006 .001 .002 -.008 .001 .003 

1,000 .5 
 

.005 <.001 -.002 .007 <.001 -.002 .004 <.001 -.002 .006 <.001 -.002 .005 -.001 -.002 .004 <.001 -.002 

1,000 .9 
 

.002 -.001 -.007 .002 <.001 -.008 .002 -.001 -.007 .002 <.001 -.006 .002 <.001 -.007 .002 <.001 -.008 

   
Endogenous Factor Mean Difference ( F  ) 

   
NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.032 -.019 -.018 .018 -.034 -.034 .026 -.034 -.034 .006 -.034 -.034 .012 -.038 -.037 .030 -.027 -.026 

100 .9 
 

.002 <.001 .003 -.006 -.005 -.002 -.005 -.008 -.005 -.017 -.007 -.004 -.011 -.008 -.006 -.002 -.003 <.001 

400 .5 
 

.017 .009 .030 .010 .003 .024 .012 .007 .027 .012 .006 .027 .010 -.001 .020 .010 .007 .028 

400 .9 
 

.006 .008 .025 <.001 .004 .022 .001 .006 .024 <.001 .007 .024 <.001 .001 .018 -.002 .006 .024 

1,000 .5 
 
-.003 -.005 -.009 -.005 -.005 -.009 <.001 -.002 -.006 -.003 -.005 -.009 -.002 -.003 -.008 -.004 -.002 -.007 

1,000 .9 
 
-.004 -.001 -.001 -.008 -.002 -.001 -.005 <.001 <.001 -.007 -.002 -.001 -.006 -.002 <.001 -.006 <.001 .002 

Note. 

1. N: sample size per group, factor loading. 

2. NI: intercept noninvariance only, NI_2025: intercept noninvariance only with 20% of total magnitudes of 

noninvariance and 25% of noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 24 

Average Relative Bias (ARB): Both Factor Loading and Intercept Noninvariance 

   
Structural Regression Coefficient Difference ( R - F ) 

   
NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.184 .077 .090 .180 .084 .096 .170 .083 .096 .164 .080 .091 .184 .080 .098 .188 .093 .105 

100 .9 
 

.051 .020 .034 .049 .018 .031 .043 .020 .033 .044 .018 .030 .048 .020 .034 .052 .022 .036 

400 .5 
 

.042 .019 .028 .042 .020 .030 .040 .020 .029 .040 .024 .034 .046 .024 .032 .046 .028 .037 

400 .9 
 

.015 .005 .009 .015 .004 .010 .014 .005 .008 .014 .006 .012 .016 .007 .010 .017 .008 .012 

1,000 .5 
 

.022 .028 .056 .018 .026 .055 .020 .026 .055 .019 .028 .057 .022 .028 .055 .019 .029 .059 

1,000 .9 
 

.004 .012 .040 .004 .011 .040 .005 .011 .038 .004 .012 .038 .005 .012 .038 .004 .013 .039 

   
Exogenous Factor Mean Difference ( F ) 

   
NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.022 .006 .010 .020 .006 .010 .041 .006 .011 .023 .006 .011 .033 .005 .010 .026 .005 .011 

100 .9 
 
-.008 .002 .006 -.009 .002 .007 -.003 .002 .006 -.012 .002 .006 -.004 .002 .006 -.008 .002 .007 

400 .5 
 
-.002 .002 .004 .003 .002 .003 -.001 .002 .004 <.001 .001 .002 -.001 .002 .004 .001 .001 .002 

400 .9 
 
-.008 .001 .003 -.006 <.001 .002 -.008 .001 .003 -.007 <.001 .002 -.008 .002 .004 -.007 <.001 .002 

1,000 .5 
 

.005 <.001 -.002 .006 <.001 -.002 .003 -.001 -.002 .003 -.002 -.003 .005 <.001 -.002 .005 -.002 -.003 

1,000 .9 
 

.002 <.001 -.007 .002 -.001 -.007 <.001 -.001 -.007 .002 -.001 -.007 .001 <.001 -.006 .002 -.002 -.007 

   
Endogenous Factor Mean Difference ( F  ) 

   
NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.030 -.030 -.030 .014 -.039 -.038 .010 -.04 -.041 .005 -.040 -.040 .022 -.040 -.043 -.008 -.052 -.052 

100 .9 
 
<.001 -.006 -.003 -.005 -.008 -.005 -.008 -.008 -.005 -.010 -.007 -.004 -.006 -.006 -.005 -.016 -.012 -.010 

400 .5 
 

.014 .006 .026 .014 .006 .026 .009 .002 .021 .006 .002 .022 .012 .002 .020 .006 -.002 .018 

400 .9 
 

.002 .006 .022 .003 .007 .024 <.001 .004 .020 -.002 .005 .022 .002 .005 .019 -.002 .002 .019 

1,000 .5 
 
-.003 -.005 -.008 -.003 -.004 -.008 -.004 -.004 -.008 -.005 -.004 -.008 -.003 -.005 -.006 -.008 -.006 -.010 

1,000 .9 
 
-.005 -.002 <.001 -.005 -.002 -.002 -.006 -.002 <.001 -.006 -.001 <.001 -.005 -.002 <.001 -.008 -.003 -.002 

Note. 

1. N: sample size per group, factor loading. 

2. NFI: both factor loading and intercept noninvariance, NFI_2025: both factor loading and intercept noninvariance 

with 20% of total magnitudes of noninvariance and 25% of noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 25 

Average Bias (AB): Factor Loading Noninvariance Only 

   
Structural Regression Coefficient Difference ( R - F ) 

   
NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 
-.043 -.017 -.023 -.068 -.032 -.038 -.068 -.035 -.041 -.071 -.035 -.041 -.068 -.038 -.043 -.076 -.04 -.045 

100 .9 
 
-.003 .003 <.001 -.014 -.007 -.012 -.014 -.007 -.013 -.015 -.008 -.013 -.014 -.008 -.013 -.016 -.009 -.014 

400 .5 
 
-.017 -.007 -.020 -.012 -.007 -.016 -.014 -.007 -.017 -.013 -.007 -.017 -.015 -.008 -.017 -.014 -.009 -.018 

400 .9 
 
-.003 <.001 -.010 <.001 .001 -.007 -.001 .001 -.007 <.001 .001 -.008 -.001 <.001 -.007 <.001 <.001 -.008 

1,000 .5 
 
-.007 -.013 -.030 -.006 -.013 -.027 -.007 -.013 -.028 -.007 -.013 -.028 -.008 -.014 -.028 -.007 -.014 -.029 

1,000 .9 
 
<.001 -.007 -.020 -.001 -.005 -.017 -.001 -.005 -.017 -.001 -.005 -.017 -.001 -.005 -.017 -.001 -.005 -.018 

   
Exogenous Factor Mean Difference ( F ) 

   
NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 
-.023 -.007 -.017 -.015 -.006 -.015 -.014 -.005 -.014 -.014 -.005 -.014 -.012 -.005 -.014 -.011 -.004 -.012 

100 .9 
 
-.023 <.001 -.007 -.014 -.001 -.007 -.014 -.001 -.006 -.013 -.001 -.006 -.012 -.001 -.006 -.012 -.001 -.005 

400 .5 
 
<.001 <.001 <.001 .004 <.001 -.002 .003 .001 <.001 .004 .001 <.001 .002 .002 .002 .004 .001 .001 

400 .9 
 
<.001 <.001 <.001 .001 <.001 -.003 <.001 <.001 -.003 .001 <.001 -.003 -.001 .001 -.001 .001 <.001 -.002 

1,000 .5 
 

.003 <.001 .007 .003 .002 .006 .002 .001 .004 .002 .002 .006 .003 .001 .002 .002 .002 .005 

1,000 .9 
 
<.001 <.001 .003 .001 .001 .002 .001 .001 .001 .001 .001 .002 .001 <.001 .001 .001 .001 .002 

   
Endogenous Factor Mean Difference ( F  ) 

   
NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.013 .003 .013 .001 -.001 .009 .001 -.001 .007 <.001 -.001 .007 <.001 -.001 .007 -.001 -.003 .006 

100 .9 
 

.010 .003 .010 .004 .002 .006 .004 .002 .006 .004 .001 .006 .003 .001 .006 .004 .001 .006 

400 .5 
 
-.007 -.003 -.013 -.006 -.004 -.012 -.006 -.005 -.014 -.006 -.004 -.014 -.006 -.005 -.016 -.007 -.005 -.015 

400 .9 
 
-.003 -.003 -.003 -.003 <.001 -.005 -.003 -.001 -.006 -.003 -.001 -.006 -.003 -.001 -.007 -.003 -.001 -.006 

1,000 .5 
 
<.001 <.001 .007 -.002 .002 .007 -.002 .002 .009 -.002 .002 .007 -.002 .003 .010 -.002 .002 .008 

1,000 .9 
 
<.001 <.001 .010 <.001 .003 .010 <.001 .003 .010 <.001 .003 .010 <.001 .003 .011 <.001 .003 .010 

Note. 

1. N: sample size per group, factor loading. 

2. NF: factor loading noninvariance only, NF_2025: factor loading noninvariance only with 20% of total magnitudes of 

noninvariance and 25% of noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 26 

Average Bias (AB): Intercept Noninvariance Only 

   
Structural Regression Coefficient Difference ( R - F ) 

   
NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 
-.041 -.013 -.019 -.057 -.026 -.032 -.062 -.023 -.029 -.059 -.025 -.031 -.058 -.025 -.031 -.054 -.016 -.024 

100 .9 
 
-.003 .003 -.002 -.006 <.001 -.005 -.011 -.002 -.007 -.007 <.001 -.005 -.006 .001 -.004 -.004 .004 -.001 

400 .5 
 
-.014 -.008 -.017 -.011 -.006 -.015 -.012 -.006 -.015 -.013 -.008 -.017 -.016 -.011 -.021 -.015 -.009 -.019 

400 .9 
 
-.004 -.003 -.010 -.001 -.001 -.009 -.001 .001 -.007 -.001 -.001 -.009 -.005 -.004 -.012 -.005 -.004 -.011 

1,000 .5 
 
-.008 -.015 -.029 -.005 -.012 -.026 -.004 -.009 -.024 -.007 -.014 -.029 -.003 -.009 -.023 -.003 -.009 -.024 

1,000 .9 
 
-.002 -.007 -.018 -.001 -.006 -.017 .001 -.003 -.015 -.003 -.007 -.019 .002 -.003 -.014 .001 -.003 -.016 

   
Exogenous Factor Mean Difference ( F ) 

   
NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 
-.025 -.007 -.017 -.011 -.001 -.011 -.018 -.013 -.022 -.011 -.011 -.021 -.018 -.005 -.015 -.023 -.014 -.025 

100 .9 
 
-.022 -.003 -.009 -.013 .001 -.004 -.019 -.007 -.013 -.012 -.006 -.011 -.018 -.001 -.007 -.021 -.009 -.015 

400 .5 
 

.002 <.001 -.002 .006 .001 -.002 .008 -.001 -.004 .005 -.002 -.005 .003 <.001 -.003 .006 -.006 -.009 

400 .9 
 
-.001 <.001 -.004 .002 <.001 -.004 .004 -.002 -.005 .002 -.002 -.006 <.001 <.001 -.004 .002 -.006 -.009 

1,000 .5 
 

.003 .005 .009 .004 .003 .007 .004 .002 .006 .004 .003 .007 .006 .004 .008 .005 .002 .006 

1,000 .9 
 

.002 .003 .004 .002 .002 .003 .002 .001 .002 .003 .002 .003 .004 .003 .004 .003 .001 .002 

   
Endogenous Factor Mean Difference ( F  ) 

   
NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.013 .006 .014 -.005 -.004 .004 .012 .003 .011 .001 .003 .012 -.001 -.002 .006 .001 .001 .010 

100 .9 
 

.010 .005 .010 <.001 -.001 .004 .009 .003 .009 .005 .003 .007 <.001 -.001 .005 .002 <.001 .005 

400 .5 
 
-.005 -.004 -.012 -.009 -.007 -.015 -.014 -.006 -.015 -.015 -.006 -.015 -.013 -.007 -.015 -.013 -.007 -.016 

400 .9 
 
-.003 <.001 -.005 -.005 -.003 -.008 -.009 -.003 -.008 -.010 -.003 -.007 -.008 -.003 -.007 -.008 -.004 -.009 

1,000 .5 
 
<.001 .001 .007 -.003 <.001 .005 -.007 -.002 .003 -.006 <.001 .006 -.001 .002 .008 <.001 .001 .006 

1,000 .9 
 

.002 .003 .009 -.001 .001 .007 -.004 -.001 .006 -.003 .001 .008 .001 .003 .010 .001 .002 .009 

Note. 

1. N: sample size per group, factor loading. 

2. NI: intercept noninvariance only, NI_2025: intercept noninvariance only with 20% of total magnitudes of 

noninvariance and 25% of noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 27 

Average Bias (AB): Both Factor Loading and Intercept Noninvariance 

   
Structural Regression Coefficient Difference ( R - F ) 

   
NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 
-.054 -.020 -.027 -.073 -.039 -.046 -.066 -.037 -.043 -.064 -.030 -.036 -.068 -.038 -.037 -.079 -.044 -.050 

100 .9 
 
-.007 <.001 -.005 -.015 -.008 -.013 -.010 -.004 -.009 -.011 -.004 -.009 -.014 -.008 -.008 -.016 -.009 -.015 

400 .5 
 
-.014 -.007 -.017 -.011 -.006 -.015 -.014 -.008 -.018 -.015 -.010 -.019 -.015 -.008 -.019 -.015 -.010 -.020 

400 .9 
 
-.003 -.002 -.009 <.001 .001 -.007 -.001 -.001 -.009 -.002 -.001 -.010 -.001 <.001 -.010 -.001 -.001 -.009 

1,000 .5 
 
-.010 -.016 -.031 -.007 -.013 -.028 -.007 -.012 -.027 -.005 -.011 -.026 -.008 -.014 -.027 -.007 -.014 -.030 

1,000 .9 
 
-.004 -.008 -.020 -.002 -.006 -.018 -.001 -.005 -.016 <.001 -.004 -.016 -.001 -.005 -.017 -.001 -.006 -.019 

   
Exogenous Factor Mean Difference ( F ) 

   
NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 
-.034 -.018 -.028 -.017 <.001 -.010 -.011 -.001 -.010 -.018 -.004 -.013 -.012 -.005 -.014 -.005 -.005 -.014 

100 .9 
 
-.029 -.011 -.017 -.016 .003 -.003 -.010 .003 -.002 -.016 <.001 -.005 -.012 -.001 -.005 -.007 -.001 -.006 

400 .5 
 

.003 <.001 -.002 .006 <.001 -.002 .004 .003 .002 .003 .001 <.001 .002 .002 <.001 .002 -.001 -.001 

400 .9 
 
<.001 -.001 -.004 .003 -.001 -.004 .001 .001 -.001 .001 <.001 -.003 -.001 .001 -.003 <.001 -.001 -.004 

1,000 .5 
 

.004 .003 .006 .003 .002 .005 .004 .003 .005 .004 .003 .006 .003 .001 .002 .004 .001 .005 

1,000 .9 
 

.003 .002 .003 .002 .001 .002 .003 .002 .003 .003 .002 .002 .001 <.001 .001 .002 <.001 .002 

   
Endogenous Factor Mean Difference ( F  ) 

   
NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.012 .007 .016 .004 .002 .010 .004 .001 .010 .016 .004 .012 <.001 -.001 .007 -.001 .003 .011 

100 .9 
 

.009 .005 .010 .006 .004 .009 .005 .002 .007 .013 .004 .009 .003 .001 .005 .004 .003 .007 

400 .5 
 
-.010 -.007 -.016 -.009 -.003 -.012 -.004 -.001 -.011 -.003 -.003 -.012 -.006 -.005 -.017 .001 -.001 -.011 

400 .9 
 
-.006 -.003 -.008 -.005 <.001 -.005 -.002 .002 -.004 -.001 .001 -.004 -.003 -.001 -.008 .002 .002 -.004 

1,000 .5 
 
<.001 .001 .007 -.004 .002 .008 -.004 .002 .008 -.004 .002 .007 -.002 .003 .008 -.005 <.001 .007 

1,000 .9 
 

.002 .003 .010 -.001 .003 .009 -.001 .003 .010 -.001 .003 .009 <.001 .003 .009 -.001 .002 .009 

Note. 

1. N: sample size per group, factor loading. 

2. NFI: both factor loading and intercept noninvariance, NFI_2025: both factor loading and intercept noninvariance 

with 20% of total magnitudes of noninvariance and 25% of noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 28 

Average Absolute Relative Bias (AARB): Factor Loading Noninvariance Only 

   
Structural Regression Coefficient Difference ( R - F ) 

   
NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.670 .555 .56 .692 .560 .565 .698 .575 .580 .698 .572 .575 .706 .585 .588 .714 .586 .587 

100 .9 
 

.425 .395 .395 .431 .398 .400 .433 .400 .402 .434 .401 .403 .436 .402 .404 .436 .404 .406 

400 .5 
 

.310 .275 .280 .300 .268 .273 .302 .271 .276 .303 .272 .277 .304 .273 .278 .308 .277 .284 

400 .9 
 

.210 .200 .200 .210 .199 .202 .211 .200 .202 .211 .200 .202 .211 .200 .202 .212 .201 .204 

1,000 .5 
 

.180 .170 .190 .190 .178 .196 .190 .179 .198 .192 .181 .200 .191 .179 .198 .196 .184 .204 

1,000 .9 
 

.125 .125 .140 .132 .127 .142 .132 .128 .141 .132 .128 .142 .132 .127 .140 .134 .129 .144 

   
Exogenous Factor Mean Difference ( F ) 

   
NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.350 .230 .230 .347 .239 .241 .350 .240 .240 .348 .240 .241 .350 .240 .241 .346 .240 .242 

100 .9 
 

.260 .180 .190 .260 .194 .196 .260 .194 .196 .260 .194 .196 .260 .194 .195 .259 .194 .195 

400 .5 
 

.165 .110 .110 .170 .118 .118 .170 .118 .118 .170 .118 .118 .170 .118 .118 .170 .117 .118 

400 .9 
 

.125 .090 .090 .132 .095 .096 .132 .095 .096 .132 .095 .096 .132 .095 .096 .132 .095 .096 

1,000 .5 
 

.105 .070 .070 .106 .071 .071 .106 .071 .071 .106 .071 .071 .106 .071 .070 .106 .071 .071 

1,000 .9 
 

.080 .060 .060 .082 .058 .058 .082 .058 .058 .082 .058 .058 .082 .058 .058 .082 .058 .058 

   
Endogenous Factor Mean Difference ( F  ) 

   
NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.385 .255 .255 .407 .276 .278 .405 .278 .281 .407 .279 .280 .407 .282 .283 .409 .284 .283 

100 .9 
 

.260 .190 .190 .271 .200 .201 .271 .200 .201 .272 .200 .201 .271 .200 .201 .272 .201 .202 

400 .5 
 

.185 .130 .135 .188 .131 .136 .188 .131 .136 .188 .131 .136 .188 .132 .138 .189 .132 .138 

400 .9 
 

.130 .095 .100 .134 .097 .101 .134 .097 .101 .134 .097 .101 .134 .097 .101 .134 .098 .101 

1,000 .5 
 

.120 .085 .085 .120 .084 .085 .120 .084 .085 .120 .085 .086 .120 .085 .086 .121 .085 .087 

1,000 .9 
 

.085 .060 .065 .086 .062 .064 .086 .062 .065 .086 .062 .065 .086 .062 .065 .086 .063 .065 

Note. 

1. N: sample size per group, factor loading. 

2. NF: factor loading noninvariance only, NF_2025: factor loading noninvariance only with 20% of total magnitudes of 

noninvariance and 25% of noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 29 

Average Absolute Relative Bias (AARB): Intercept Noninvariance Only 

   
Structural Regression Coefficient Difference ( R - F ) 

   
NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.663 .552 .556 .690 .568 .573 .727 .582 .589 .702 .580 .585 .715 .594 .599 .690 .548 .557 

100 .9 
 

.424 .391 .393 .438 .407 .409 .449 .414 .417 .436 .400 .402 .448 .416 .418 .422 .385 .388 

400 .5 
 

.308 .271 .277 .301 .263 .269 .298 .261 .268 .302 .267 .274 .298 .262 .269 .306 .271 .277 

400 .9 
 

.213 .200 .204 .209 .196 .200 .209 .196 .199 .207 .194 .199 .208 .196 .200 .215 .200 .205 

1,000 .5 
 

.180 .167 .186 .177 .168 .186 .187 .174 .189 .181 .168 .187 .182 .166 .182 .189 .171 .187 

1,000 .9 
 

.125 .122 .136 .126 .122 .136 .132 .127 .137 .128 .125 .141 .130 .124 .136 .131 .127 .140 

   
Exogenous factor mean difference ( F ) 

   
NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.348 .229 .231 .338 .226 .228 .346 .233 .236 .338 .222 .226 .350 .234 .238 .334 .226 .228 

100 .9 
 

.262 .185 .186 .254 .183 .184 .262 .188 .190 .253 .179 .181 .264 .191 .192 .252 .182 .184 

400 .5 
 

.162 .112 .112 .165 .116 .116 .170 .116 .116 .167 .110 .110 .164 .112 .112 .167 .115 .116 

400 .9 
 

.125 .091 .091 .128 .094 .094 .132 .094 .094 .128 .090 .090 .126 .091 .091 .129 .094 .094 

1,000 .5 
 

.104 .069 .069 .105 .074 .074 .104 .070 .070 .102 .070 .071 .105 .070 .070 .108 .075 .075 

1,000 .9 
 

.080 .056 .056 .082 .060 .060 .080 .057 .058 .078 .058 .058 .081 .057 .058 .084 .061 .062 

   
Endogenous factor mean difference ( F  ) 

   
NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.383 .254 .255 .394 .258 .260 .416 .268 .270 .400 .267 .269 .403 .272 .273 .408 .267 .270 

100 .9 
 

.261 .186 .186 .262 .186 .187 .273 .192 .194 .268 .192 .193 .269 .194 .196 .270 .194 .195 

400 .5 
 

.186 .129 .135 .186 .131 .136 .189 .128 .133 .190 .130 .136 .192 .132 .137 .192 .132 .138 

400 .9 
 

.132 .096 .100 .134 .097 .100 .134 .094 .098 .135 .096 .100 .138 .099 .102 .137 .098 .103 

1,000 .5 
 

.120 .081 .083 .117 .082 .083 .114 .079 .08 .116 .081 .083 .114 .079 .081 .118 .082 .083 

1,000 .9 
 

.087 .062 .063 .083 .060 .062 .082 .058 .060 .084 .061 .064 .082 .059 .061 .084 .060 .064 

Note. 

1. N: sample size per group, factor loading. 

2. NI: intercept noninvariance only, NI_2025: intercept noninvariance only with 20% of total magnitudes of 

noninvariance and 25% of noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 30 

Average Absolute Relative Bias (AARB): Factor Loading and Intercept Noninvariance 

   
Structural Regression Coefficient Difference ( R - F ) 

   
NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.704 .567 .572 .695 .564 .57 .702 .584 .590 .676 .552 .557 .706 .585 .590 .719 .603 .609 

100 .9 
 

.438 .400 .402 .420 .388 .391 .426 .399 .400 .415 .382 .384 .436 .402 .405 .446 .416 .418 

400 .5 
 

.311 .272 .279 .303 .271 .276 .302 .267 .273 .302 .268 .275 .304 .273 .282 .315 .282 .289 

400 .9 
 

.213 .198 .203 .211 .200 .203 .210 .198 .201 .211 .198 .202 .211 .200 .205 .217 .206 .210 

1,000 .5 
 

.187 .174 .192 .191 .176 .194 .190 .177 .196 .190 .176 .194 .191 .179 .196 .202 .186 .200 

1,000 .9 
 

.130 .126 .142 .134 .128 .143 .134 .129 .143 .134 .127 .140 .132 .127 .143 .137 .132 .144 

   
Exogenous factor mean difference ( F ) 

   
NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.348 .229 .232 .349 .241 .242 .349 .230 .230 .346 .234 .236 .350 .240 .240 .348 .236 .238 

100 .9 
 

.262 .184 .186 .262 .195 .196 .26 .186 .187 .258 .190 .191 .260 .194 .194 .262 .193 .194 

400 .5 
 

.164 .108 .109 .172 .116 .116 .171 .118 .118 .173 .116 .116 .170 .118 .118 .168 .116 .116 

400 .9 
 

.127 .088 .088 .132 .094 .094 .132 .096 .096 .134 .094 .094 .132 .095 .095 .130 .094 .095 

1,000 .5 
 

.102 .070 .070 .105 .072 .071 .105 .072 .072 .106 .069 .069 .106 .071 .072 .106 .074 .074 

1,000 .9 
 

.079 .057 .058 .081 .058 .058 .082 .059 .06 .082 .056 .056 .082 .058 .059 .082 .060 .060 

   
Endogenous factor mean difference ( F  ) 

   
NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.396 .261 .264 .411 .280 .282 .405 .276 .278 .399 .268 .270 .407 .282 .282 .405 .288 .290 

100 .9 
 

.263 .188 .190 .276 .201 .202 .271 .198 .200 .270 .194 .196 .271 .200 .201 .270 .206 .206 

400 .5 
 

.189 .129 .135 .190 .129 .134 .188 .130 .134 .186 .131 .136 .188 .132 .136 .185 .130 .134 

400 .9 
 

.132 .095 .100 .134 .096 .100 .134 .096 .099 .133 .097 .100 .134 .097 .100 .132 .096 .099 

1,000 .5 
 

.119 .081 .083 .115 .081 .082 .118 .086 .088 .115 .084 .085 .120 .085 .087 .116 .084 .085 

1,000 .9 
 

.086 .060 .062 .082 .060 .064 .085 .064 .066 .083 .062 .065 .086 .062 .066 .083 .061 .062 

Note. 

1. N: sample size per group, factor loading. 

2. NFI both factor loading and intercept: noninvariance, NFI_2025: both factor loading and intercept noninvariance 

with 20% of total magnitudes of noninvariance and 25% of noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 

 

 



108 

 

Table 31 

Average Absolute Bias (AAB): Factor Loading Noninvariance Only 

   
Structural Regression Coefficient Difference ( R - F ) 

   
NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.197 .163 .170 .202 .167 .168 .205 .171 .172 .205 .170 .171 .207 .174 .175 .210 .173 .174 

100 .9 
 

.127 .117 .117 .127 .120 .120 .128 .120 .120 .128 .120 .120 .128 .120 .121 .129 .121 .122 

400 .5 
 

.093 .080 .083 .089 .080 .082 .090 .081 .083 .090 .082 .083 .090 .082 .083 .091 .083 .085 

400 .9 
 

.063 .060 .060 .062 .059 .061 .063 .060 .061 .063 .060 .061 .063 .06 .061 .063 .060 .061 

1,000 .5 
 

.053 .053 .057 .056 .053 .058 .056 .053 .059 .057 .054 .059 .056 .054 .059 .058 .055 .060 

1,000 .9 
 

.040 .037 .043 .039 .038 .042 .039 .038 .042 .039 .038 .042 .039 .038 .042 .039 .038 .042 

   
Exogenous factor mean difference ( F ) 

   
NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.197 .130 .130 .193 .137 .138 .194 .137 .137 .193 .137 .138 .194 .137 .138 .192 .137 .138 

100 .9 
 

.147 .110 .110 .146 .111 .111 .146 .111 .111 .146 .111 .111 .146 .111 .111 .145 .111 .111 

400 .5 
 

.087 .060 .060 .095 .067 .067 .095 .067 .067 .095 .067 .067 .095 .067 .067 .095 .067 .067 

400 .9 
 

.070 .050 .050 .074 .054 .054 .074 .054 .054 .074 .054 .054 .074 .054 .054 .074 .054 .054 

1,000 .5 
 

.057 .040 .040 .059 .041 .041 .059 .041 .040 .059 .041 .040 .059 .041 .040 .059 .041 .040 

1,000 .9 
 

.043 .030 .030 .046 .033 .033 .046 .033 .033 .046 .033 .033 .046 .033 .033 .046 .033 .033 

   
Endogenous factor mean difference ( F  ) 

   
NF_2025 NF_2075 NF_5025 NF_5075 NF_8025 NF_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.207 .140 .140 .219 .150 .152 .218 .152 .153 .220 .152 .153 .219 .152 .153 .220 .153 .154 

100 .9 
 

.143 .100 .100 .149 .110 .111 .148 .110 .111 .149 .110 .111 .148 .110 .111 .149 .111 .111 

400 .5 
 

.103 .073 .073 .102 .071 .074 .102 .072 .074 .102 .072 .074 .102 .072 .075 .102 .072 .075 

400 .9 
 

.073 .053 .057 .073 .053 .055 .073 .053 .055 .073 .053 .055 .073 .053 .055 .073 .053 .055 

1,000 .5 
 

.063 .043 .043 .065 .046 .047 .065 .046 .047 .065 .046 .047 .065 .046 .047 .065 .046 .047 

1,000 .9 
 

.047 .033 .037 .047 .034 .036 .047 .035 .036 .047 .035 .036 .047 .035 .036 .047 .035 .036 

Note. 

1. N: sample size per group, factor loading. 

2. NF: factor loading noninvariance only, NF_2025: factor loading noninvariance only with 20% of total magnitudes of 

noninvariance and 25% of noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 32 

Average Absolute Bias (AAB): Intercept Noninvariance Only 

   
Structural Regression Coefficient Difference ( R - F ) 

   
NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.196 .165 .166 .204 .168 .171 .215 .174 .176 .207 .173 .174 .212 .177 .179 .204 .165 .167 

100 .9 
 

.126 .117 .118 .129 .122 .122 .133 .124 .125 .129 .119 .120 .133 .125 .125 .125 .115 .116 

400 .5 
 

.091 .081 .083 .089 .078 .081 .088 .078 .080 .089 .080 .082 .087 .079 .081 .091 .081 .083 

400 .9 
 

.063 .060 .061 .062 .058 .06 .062 .059 .060 .061 .058 .059 .062 .058 .060 .064 .060 .061 

1,000 .5 
 

.053 .050 .055 .052 .050 .055 .056 .052 .056 .054 .050 .056 .054 .050 .054 .056 .051 .055 

1,000 .9 
 

.037 .036 .041 .037 .037 .041 .039 .038 .041 .038 .037 .042 .039 .037 .040 .039 .038 .042 

   
Exogenous factor mean difference ( F ) 

   
NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.194 .131 .132 .188 .129 .130 .193 .133 .135 .187 .127 .129 .195 .134 .135 .185 .129 .130 

100 .9 
 

.147 .105 .106 .142 .104 .105 .147 .107 .108 .142 .102 .103 .148 .109 .110 .141 .104 .105 

400 .5 
 

.090 .064 .064 .092 .066 .066 .095 .066 .066 .093 .063 .063 .091 .064 .064 .093 .066 .066 

400 .9 
 

.070 .052 .052 .071 .054 .054 .074 .053 .054 .072 .051 .052 .070 .052 .052 .072 .053 .054 

1,000 .5 
 

.058 .039 .040 .059 .042 .043 .058 .040 .040 .057 .040 .041 .058 .040 .040 .061 .043 .043 

1,000 .9 
 

.045 .032 .032 .046 .034 .034 .045 .033 .033 .044 .033 .033 .045 .032 .032 .047 .035 .035 

   
Endogenous factor mean difference ( F  ) 

   
NI_2025 NI_2075 NI_5025 NI_5075 NI_8025 NI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.208 .138 .139 .212 .139 .14 .224 .146 .147 .216 .145 .146 .218 .147 .148 .22 .145 .147 

100 .9 
 

.142 .102 .102 .142 .101 .102 .149 .106 .107 .146 .105 .106 .147 .106 .107 .147 .106 .107 

400 .5 
 

.101 .071 .073 .100 .071 .074 .102 .069 .072 .103 .072 .074 .104 .072 .075 .104 .073 .075 

400 .9 
 

.072 .053 .055 .072 .053 .055 .073 .051 .053 .074 .053 .055 .075 .054 .056 .074 .054 .056 

1,000 .5 
 

.065 .045 .046 .063 .044 .045 .061 .043 .044 .064 .045 .046 .062 .043 .045 .064 .045 .046 

1,000 .9 
 

.047 .034 .035 .046 .033 .034 .044 .032 .033 .046 .033 .035 .045 .032 .034 .046 .033 .035 

Note. 

1. N: sample size per group, factor loading. 

2. NI: intercept noninvariance only, NI_2025: intercept noninvariance only with 20% of total magnitudes of 

noninvariance and 25% of noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 33 

Average Absolute Bias (AAB): Both Factor Loading and Intercept Noninvariance 

   
Structural Regression Coefficient Difference ( R - F ) 

   
NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.208 .169 .171 .205 .168 .169 .206 .173 .175 .200 .164 .165 .207 .174 .175 .214 .179 .181 

100 .9 
 

.130 .120 .120 .125 .116 .117 .126 .119 .12 .122 .114 .115 .128 .120 .121 .132 .124 .125 

400 .5 
 

.092 .081 .083 .089 .081 .083 .089 .080 .082 .089 .080 .082 .090 .082 .085 .093 .085 .087 

400 .9 
 

.063 .059 .061 .062 .060 .061 .062 .059 .061 .062 .060 .061 .063 .06 .062 .064 .061 .063 

1,000 .5 
 

.055 .052 .057 .056 .052 .057 .056 .053 .058 .056 .052 .057 .056 .054 .058 .060 .056 .060 

1,000 .9 
 

.038 .038 .042 .040 .038 .042 .039 .038 .042 .039 .038 .042 .039 .038 .042 .040 .039 .043 

   
Exogenous factor mean difference ( F ) 

   
NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.194 .131 .132 .195 .138 .138 .194 .131 .132 .192 .134 .135 .194 .137 .137 .193 .135 .136 

100 .9 
 

.147 .105 .106 .147 .111 .112 .146 .106 .106 .145 .109 .109 .146 .111 .111 .147 .110 .111 

400 .5 
 

.091 .062 .062 .096 .066 .066 .095 .067 .068 .096 .066 .066 .095 .067 .067 .094 .066 .066 

400 .9 
 

.071 .050 .051 .074 .053 .054 .074 .055 .055 .075 .053 .054 .074 .054 .054 .073 .054 .054 

1,000 .5 
 

.057 .040 .04 .058 .041 .041 .058 .041 .041 .059 .039 .039 .059 .041 .041 .059 .042 .042 

1,000 .9 
 

.045 .032 .033 .045 .033 .033 .046 .033 .033 .046 .032 .032 .046 .033 .033 .046 .034 .034 

   
Endogenous factor mean difference ( F  ) 

   
NFI_2025 NFI_2075 NFI_5025 NFI_5075 NFI_8025 NFI_8075 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.214 .143 .144 .223 .152 .153 .218 .150 .152 .216 .145 .147 .219 .152 .152 .220 .156 .157 

100 .9 
 

.144 .103 .104 .151 .110 .111 .148 .109 .110 .148 .107 .107 .148 .110 .110 .149 .113 .113 

400 .5 
 

.103 .071 .074 .102 .071 .073 .102 .071 .073 .100 .071 .074 .102 .072 .073 .100 .071 .073 

400 .9 
 

.073 .052 .054 .073 .053 .054 .073 .053 .054 .072 .053 .055 .073 .053 .054 .071 .053 .054 

1,000 .5 
 

.065 .045 .046 .062 .045 .046 .064 .048 .048 .062 .046 .047 .065 .046 .048 .063 .045 .046 

1,000 .9 
 

.047 .033 .034 .045 .033 .035 .046 .035 .036 .046 .034 .036 .047 .035 .036 .045 .033 .034 

Note. 

1. N: sample size per group, factor loading. 

2. NFI: both factor loading and intercept noninvariance, NFI_2025: both factor loading and intercept noninvariance 

with 20% of total magnitudes of noninvariance and 25% of noninvariant items, etc. 

3. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 34  

Average Relative Bias (ARB): Measurement Invariance 

   

Structural Regression 

Coefficient Difference 

( R - F ) 

Exogenous Factor Mean 

Difference ( F ) 

Endogenous Factor Mean 

Difference ( F  ) 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.172 .074 .085 .028 .005 .009 .030 -.030 -.030 

100 .9 
 

.047 .018 .030 -.006 .002 .007 -.003 -.005 -.002 

400 .5 
 

.042 .022 .032 < .001 .002 .003 .014 .006 .026 

400 .9 
 

.016 .006 .010 -.008 < .001 .002 .002 .007 .024 

1,000 .5 
 

.020 .027 .056 .006 < .001 -.002 -.002 -.005 -.008 

1,000 .9 
 

.004 .012 .040 .002 < .001 -.007 -.005 -.002 -.001 

 

Note. 

1. N: sample size per group, factor loading. 

2. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 35  

Average Bias (AB): Measurement Invariance  

   

Structural Regression 

Coefficient Difference 

( R - F ) 

Exogenous Factor Mean 

Difference ( F ) 

Endogenous Factor Mean 

Difference ( F  ) 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

-.065 -.030 -.037 -.016 -.006 -.015 .002 < .001 .009 

100 .9 
 

-.014 -.007 -.012 -.015 -.002 -.007 .005 .002 .007 

400 .5 
 

-.012 -.006 -.016 .004 < .001 -.003 -.006 -.003 -.012 

400 .9 
 

< .001 .001 -.007 .001 -.001 -.004 -.003 < .001 -.005 

1,000 .5 
 

-.006 -.012 -.027 .003 .002 .006 -.002 .002 .007 

1,000 .9 
 

< .001 -.005 -.017 .002 .001 .003 < .001 .003 .010 

 

Note. 

1. N: sample size per group, factor loading. 

2. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 

 



113 

 

Table 36  

Average Absolute Relative Bias (AARB): Measurement Invariance 

   

Structural Regression 

Coefficient Difference 

( R - F ) 

Exogenous Factor Mean 

Difference ( F ) 

Endogenous Factor Mean 

Difference ( F  ) 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.683 .555 .56 .348 .240 .242 .406 .276 .277 

100 .9 
 

.430 .397 .399 .260 .194 .196 .271 .200 .200 

400 .5 
 

.298 .266 .271 .170 .118 .118 .188 .130 .136 

400 .9 
 

.209 .198 .202 .132 .095 .096 .134 .097 .101 

1,000 .5 
 

.188 .176 .194 .106 .071 .071 .120 .084 .085 

1,000 .9 
 

.132 .126 .142 .082 .058 .058 .086 .062 .064 

 

Note. 

1. N: sample size per group, factor loading. 

2. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 

3. All results are rounded to three decimal places. 
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Table 37  

Average Absolute Bias (AAB): Measurement Invariance  

   

Structural Regression 

Coefficient Difference 

( R - F ) 

Exogenous Factor Mean 

Difference ( F ) 

Endogenous Factor Mean 

Difference ( F  ) 

N 
 

P0 P1 P2 P0 P1 P2 P0 P1 P2 

100 .5 
 

.201 .165 .167 .193 .137 .138 .219 .150 .151 

100 .9 
 

.127 .119 .120 .146 .111 .111 .148 .110 .110 

400 .5 
 

.088 .079 .081 .095 .067 .067 .101 .071 .074 

400 .9 
 

.062 .059 .060 .074 .054 .054 .073 .053 .055 

1,000 .5 
 

.055 .053 .058 .059 .041 .041 .065 .046 .047 

1,000 .9 
 

.039 .038 .042 .046 .033 .033 .047 .034 .036 

Note. 

1. N: sample size per group, factor loading. 

2. P0: prior distribution with zero variation, P1: prior distribution with 10% variation, P2: prior distribution with 20% 

variation 
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Table 38  

ANOVA Results on Average Relative Bias: Factor Loading Noninvariance Only 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F p 

Structural regression coefficient difference ( R - F ) 

Total magnitude of noninvariance (Tot_NI) 1.059 2 .529 2.61 .074 < .001 

Percentage of noninvariant items (Per_NI) .378 1 .378 1.87 .172 < .001 

Sample size 128.275 2 64.137 316.21 < .001 .003 

Loading size 91.957 1 91.957 453.37 < .001 .002 

Prior distribution 21.963 2 1.982 54.14 < .001 .001 

Tot_NI * Per_NI .094 2 .047 .23 .792 < .001 

Tot_NI * Sample size .824 4 .206 1.02 .398 < .001 

Tot_NI * Loading size .649 2 .325 1.6 .202 < .001 

Tot_NI * Prior distribution .029 4 .007 .04 .998 < .001 

Per_NI * Sample size .318 2 .159 .78 .456 < .001 

Per_NI * Factor loading size .242 1 .242 1.19 .275 < .001 

Per_NI * Prior distribution .005 2 .003 .01 .988 < .001 

Sample size * Loading size 53.713 2 26.856 132.41 < .001 .001 

Sample size * Prior distribution 54.662 4 13.666 67.37 < .001 .001 

Loading size * Prior distribution 8.684 2 4.342 21.41 < .001 < .001 

Error 4297.172 211854 .203    

Corrected Total 43329.173 211887     

Exogenous factor mean difference ( F ) 

Total magnitude of noninvariance (Tot_NI) .007 2 .003 .08 .926 < .001 

Percentage of noninvariant items (Per_NI) .008 1 .008 .18 .672 < .001 

Sample size 2.382 2 1.191 27.22 < .001 < .001 

Loading size 1.895 1 1.895 43.32 < .001 < .001 

Prior distribution .121 2 .060 1.38 .251 < .001 

Tot_NI * Per_NI .052 2 .026 .59 .555 < .001 

Tot_NI * Sample size .007 4 .002 .04 .997 < .001 

Tot_NI * Loading size .002 2 .001 .03 .975 < .001 

Tot_NI * Prior distribution .008 4 .002 .05 .996 < .001 

Per_NI * Sample size .004 2 .002 .04 .956 < .001 

Per_NI * Factor loading size < .001 1 < .001 .01 .929 < .001 

Per_NI * Prior distribution .001 2 < .001 .01 .990 < .001 

Sample size * Loading size 1.248 2 .624 14.26 < .001 < .001 

Sample size * Prior distribution 1.590 4 .397 9.09 < .001 < .001 

Loading size * Prior distribution 1.883 2 .941 21.52 < .001 < .001 

Error 9266.715 211854 .044    

Corrected Total 9275.817 211887     

Endogenous factor mean difference ( F  ) 

Total magnitude of noninvariance (Tot_NI) .534 2 .267 4.82 .008 < .001 

Percentage of noninvariant items (Per_NI) .068 1 .068 1.22 .269 < .001 

Sample size 17.396 2 8.698 157.09 < .001 .001 

Loading size .699 1 .699 12.62 < .001 < .001 

Prior distribution 3.952 2 1.976 35.69 < .001 < .001 

Tot_NI * Per_NI .084 2 .042 .76 .468 < .001 

Tot_NI * Sample size .397 4 .099 1.79 .127 < .001 

Tot_NI * Loading size .129 2 .065 1.17 .311 < .001 

Tot_NI * Prior distribution .006 4 .002 .03 .998 < .001 

Per_NI * Sample size .092 2 .046 .83 .434 < .001 

Per_NI * Factor loading size .005 1 .005 .09 .761 < .001 

Per_NI * Prior distribution .001 2 .000 .01 .992 < .001 

Sample size * Loading size 1.726 2 .863 15.58 < .001 < .001 

Sample size * Prior distribution 13.888 4 3.472 62.71 < .001 .001 

Loading size * Prior distribution 7.524 2 3.762 67.94 < .001 .001 

Error 1173.273 211854 .055    

Corrected Total 11776.414 211887     



116 

 

Table 39  

ANOVA Results on Average Relative Bias: Intercept Noninvariance Only 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F p 

Structural regression coefficient difference ( R - F ) 

Total magnitude of noninvariance (Tot_NI) .059 2 .030 .15 .862 <.001 

Percentage of noninvariant items (Per_NI) .059 1 .059 .3 .585 <.001 

Sample size 112.132 2 56.066 281.89 <.001 .003 

Loading size 7.108 1 7.108 352.49 <.001 .002 

Prior distribution 2.932 2 1.466 52.62 <.001 <.001 

Tot_NI * Per_NI .251 2 .125 .63 .532 <.001 

Tot_NI * Sample size .062 4 .016 .08 .989 <.001 

Tot_NI * Loading size .037 2 .019 .09 .911 <.001 

Tot_NI * Prior distribution .092 4 .023 .12 .977 <.001 

Per_NI * Sample size .019 2 .009 .05 .954 <.001 

Per_NI * Factor loading size .014 1 .014 .07 .792 <.001 

Per_NI * Prior distribution .050 2 .025 .13 .882 <.001 

Sample size * Loading size 41.978 2 2.989 105.53 <.001 .001 

Sample size * Prior distribution 51.468 4 12.867 64.69 <.001 .001 

Loading size * Prior distribution 7.392 2 3.696 18.58 <.001 <.001 

Error 4214.263 211874 .199    

Corrected Total 42445.575 211907     

Exogenous factor mean difference ( F ) 

Total magnitude of noninvariance (Tot_NI) .009 2 .004 .1 .901 <.001 

Percentage of noninvariant items (Per_NI) .003 1 .003 .07 .790 <.001 

Sample size 1.397 2 .698 16.31 <.0001 <.001 

Loading size 1.636 1 1.636 38.21 <.0001 <.001 

Prior distribution .027 2 .014 .32 .729 <.001 

Tot_NI * Per_NI .043 2 .022 .51 .602 <.001 

Tot_NI * Sample size .009 4 .002 .05 .995 <.001 

Tot_NI * Loading size <.001 2 <.001 <.001 .999 <.001 

Tot_NI * Prior distribution .036 4 .009 .21 .933 <.001 

Per_NI * Sample size <.001 2 <.001 <.001 .998 <.001 

Per_NI * Factor loading size .003 1 .003 .08 .778 <.001 

Per_NI * Prior distribution .001 2 <.001 .01 .989 <.001 

Sample size * Loading size 1.006 2 .503 11.76 <.001 <.001 

Sample size * Prior distribution 1.443 4 .361 8.43 <.001 <.001 

Loading size * Prior distribution 1.502 2 .751 17.55 <.001 <.001 

Error 9069.121 211874 .043    

Corrected Total 9076.231 211907     

Endogenous factor mean difference ( F  ) 

Total magnitude of noninvariance (Tot_NI) .234 2 .117 2.17 .114 <.001 

Percentage of noninvariant items (Per_NI) .068 1 .068 1.27 .261 <.001 

Sample size 16.959 2 8.480 157.6 <.001 .001 

Loading size .242 1 .242 4.49 .034 <.001 

Prior distribution 2.574 2 1.287 23.92 <.001 <.001 

Tot_NI * Per_NI .980 2 .490 9.1 .000 <.001 

Tot_NI * Sample size .556 4 .139 2.58 .035 <.001 

Tot_NI * Loading size <.001 2 <.001 <.001 .997 <.001 

Tot_NI * Prior distribution .023 4 .006 .11 .981 <.001 

Per_NI * Sample size .022 2 .011 .21 .812 <.001 

Per_NI * Factor loading size .004 1 .004 .07 .785 <.001 

Per_NI * Prior distribution .100 2 .050 .93 .394 <.001 

Sample size * Loading size 1.790 2 .895 16.63 <.001 <.001 

Sample size * Prior distribution 12.231 4 3.058 56.83 <.001 .001 

Loading size * Prior distribution 6.585 2 3.293 61.2 <.001 .001 

Error 11399.771 211874 .054    

Corrected Total 11442.097 211907     
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Table 40  

ANOVA Results on Average Relative Bias: Both Factor Loading and Intercept Noninvariance 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F p 

Structural regression coefficient difference ( R - F ) 

Total magnitude of noninvariance (Tot_NI) 1.029 2 .514 2.54 .079 .000 

Percentage of noninvariant items (Per_NI) .363 1 .363 1.79 .181 .000 

Sample size 128.445 2 64.223 316.72 <.0001 .003 

Loading size 91.858 1 91.858 453.01 <.0001 .002 

Prior distribution 21.936 2 1.968 54.09 <.0001 .001 

Tot_NI * Per_NI .085 2 .043 .21 .810 .000 

Tot_NI * Sample size .846 4 .211 1.04 .383 .000 

Tot_NI * Loading size .639 2 .320 1.58 .207 .000 

Tot_NI * Prior distribution .035 4 .009 .04 .997 .000 

Per_NI * Sample size .329 2 .164 .81 .445 .000 

Per_NI * Factor loading size .237 1 .237 1.17 .280 .000 

Per_NI * Prior distribution .007 2 .003 .02 .983 .000 

Sample size * Loading size 53.766 2 26.883 132.58 <.0001 .001 

Sample size * Prior distribution 54.447 4 13.612 67.13 <.0001 .001 

Loading size * Prior distribution 8.704 2 4.352 21.46 <.0001 .000 

Error 42956.426 211844 .203    

Corrected Total 43315.308 211877     

Exogenous factor mean difference ( F ) 

Total magnitude of noninvariance (Tot_NI) .007 2 .003 .08 .925 .000 

Percentage of noninvariant items (Per_NI) .008 1 .008 .19 .666 .000 

Sample size 2.385 2 1.193 27.27 <.0001 .000 

Loading size 1.889 1 1.889 43.2 <.0001 .000 

Prior distribution .121 2 .060 1.38 .252 .000 

Tot_NI * Per_NI .052 2 .026 .6 .550 .000 

Tot_NI * Sample size .007 4 .002 .04 .997 .000 

Tot_NI * Loading size .002 2 .001 .03 .975 .000 

Tot_NI * Prior distribution .008 4 .002 .05 .996 .000 

Per_NI * Sample size .004 2 .002 .04 .958 .000 

Per_NI * Factor loading size .000 1 .000 .01 .921 .000 

Per_NI * Prior distribution .001 2 .000 .01 .989 .000 

Sample size * Loading size 1.251 2 .626 14.3 <.0001 .000 

Sample size * Prior distribution 1.595 4 .399 9.12 <.0001 .000 

Loading size * Prior distribution 1.887 2 .943 21.57 <.0001 .000 

Error 9265.173 211844 .044    

Corrected Total 9274.287 211877     

Endogenous factor mean difference ( F  ) 

Total magnitude of noninvariance (Tot_NI) .533 2 .267 4.82 .008 .000 

Percentage of noninvariant items (Per_NI) .067 1 .067 1.22 .270 .000 

Sample size 17.398 2 8.699 157.13 <.0001 .001 

Loading size .700 1 .700 12.65 .000 .000 

Prior distribution 3.953 2 1.977 35.7 <.0001 .000 

Tot_NI * Per_NI .084 2 .042 .76 .467 .000 

Tot_NI * Sample size .397 4 .099 1.79 .127 .000 

Tot_NI * Loading size .130 2 .065 1.18 .309 .000 

Tot_NI * Prior distribution .007 4 .002 .03 .998 .000 

Per_NI * Sample size .093 2 .046 .84 .434 .000 

Per_NI * Factor loading size .005 1 .005 .09 .758 .000 

Per_NI * Prior distribution .001 2 .000 .01 .992 .000 

Sample size * Loading size 1.725 2 .862 15.58 <.0001 .000 

Sample size * Prior distribution 13.886 4 3.471 62.71 <.0001 .001 

Loading size * Prior distribution 7.524 2 3.762 67.96 <.0001 .001 

Error 11728.059 211844 .055    

Corrected Total 11774.204 211877     
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Table 41  

ANOVA Results on Average Bias: Factor Loading Noninvariance Only 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F p 

Structural regression coefficient difference ( R - F ) 

Total magnitude of noninvariance (Tot_NI) .727 2 .363 2.84 <.001 <.001 

Percentage of noninvariant items (Per_NI) .190 1 .190 1.92 .010 <.001 

Sample size 23.010 2 11.505 659.87 <.001 .004 

Loading size 25.686 1 25.686 1473.25 <.001 .005 

Prior distribution 4.566 2 2.283 13.94 <.001 .001 

Tot_NI * Per_NI .159 2 .079 4.55 .011 <.001 

Tot_NI * Sample size 1.736 4 .434 24.89 <.001 <.001 

Tot_NI * Loading size .259 2 .129 7.41 .001 <.001 

Tot_NI * Prior distribution .005 4 .001 .07 .992 <.001 

Per_NI * Sample size .865 2 .432 24.79 <.001 <.001 

Per_NI * Factor loading size .055 1 .055 3.15 .076 <.001 

Per_NI * Prior distribution .012 2 .006 .35 .704 <.001 

Sample size * Loading size 12.774 2 6.387 366.32 <.001 .002 

Sample size * Prior distribution 1.595 4 2.649 151.92 <.001 .002 

Loading size * Prior distribution 1.512 2 .756 43.35 <.001 <.001 

Error 5545.792 318082 .017    

Corrected Total 5626.931 318115     

Exogenous factor mean difference ( F ) 

Total magnitude of noninvariance (Tot_NI) .059 2 .030 2.14 .117 <.001 

Percentage of noninvariant items (Per_NI) .025 1 .025 1.81 .178 <.001 

Sample size 8.281 2 4.140 299.24 <.001 .002 

Loading size .002 1 .002 .16 .689 <.001 

Prior distribution .580 2 .290 2.96 <.001 <.001 

Tot_NI * Per_NI .005 2 .002 .17 .846 <.001 

Tot_NI * Sample size .244 4 .061 4.4 .002 <.001 

Tot_NI * Loading size .003 2 .001 .11 .898 <.001 

Tot_NI * Prior distribution .048 4 .012 .87 .482 <.001 

Per_NI * Sample size .037 2 .018 1.33 .264 <.001 

Per_NI * Factor loading size .001 1 .001 .06 .808 <.001 

Per_NI * Prior distribution .024 2 .012 .88 .417 <.001 

Sample size * Loading size .639 2 .319 23.07 <.001 <.001 

Sample size * Prior distribution 1.919 4 .480 34.67 <.001 <.001 

Loading size * Prior distribution .062 2 .031 2.26 .105 <.001 

Error 4401.254 318082     

Corrected Total 4413.140 318115     

Endogenous factor mean difference ( F  ) 

Total magnitude of noninvariance (Tot_NI) .162 2 .081 4.970 .007 <.001 

Percentage of noninvariant items (Per_NI) .066 1 .066 4.010 .045 <.001 

Sample size 6.235 2 3.117 19.810 <.001 .001 

Loading size .500 1 .500 3.580 <.001 <.001 

Prior distribution .422 2 .211 12.920 <.001 <.001 

Tot_NI * Per_NI .058 2 .029 1.780 .168 <.001 

Tot_NI * Sample size .206 4 .051 3.150 .013 <.001 

Tot_NI * Loading size .023 2 .011 .700 .497 <.001 

Tot_NI * Prior distribution .012 4 .003 .180 .951 <.001 

Per_NI * Sample size .084 2 .042 2.570 .077 <.001 

Per_NI * Factor loading size .010 1 .010 .600 .440 <.001 

Per_NI * Prior distribution .008 2 .004 .250 .782 <.001 

Sample size * Loading size .195 2 .097 5.960 .003 <.001 

Sample size * Prior distribution 3.093 4 .773 47.320 <.001 .001 

Loading size * Prior distribution .003 2 .002 .110 .900 <.001 

Error 5196.859 318082     

Corrected Total 5207.814 318115     
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Table 42  

ANOVA Results on Average Bias: Intercept Noninvariance Only 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F p 

Structural regression coefficient difference ( R - F ) 

Total magnitude of noninvariance (Tot_NI) .072 2 .036 2.08 .125 <.001 

Percentage of noninvariant items (Per_NI) .006 1 .006 .37 .545 <.001 

Sample size 6.063 2 3.031 175.02 <.001 .001 

Loading size 19.181 1 19.181 1107.47 <.001 .003 

Prior distribution 4.693 2 2.347 135.49 <.001 .001 

Tot_NI * Per_NI .172 2 .086 4.96 .007 <.001 

Tot_NI * Sample size .927 4 .232 13.38 <.001 <.001 

Tot_NI * Loading size .045 2 .022 1.3 .273 <.001 

Tot_NI * Prior distribution .039 4 .010 .57 .685 <.001 

Per_NI * Sample size .029 2 .014 .82 .439 <.001 

Per_NI * Factor loading size .006 1 .006 .36 .548 <.001 

Per_NI * Prior distribution .004 2 .002 .1 .902 <.001 

Sample size * Loading size 1.509 2 5.254 303.38 <.001 .002 

Sample size * Prior distribution 1.916 4 2.729 157.56 <.001 .002 

Loading size * Prior distribution 1.520 2 .760 43.89 <.001 <.001 

Error 5511.580 318231 .017    

Corrected Total 5565.864 318264     

Exogenous factor mean difference ( F ) 

Total magnitude of noninvariance (Tot_NI) .242 2 .121 8.94 .000 <.001 

Percentage of noninvariant items (Per_NI) .000 1 <.001 .02 .883 <.001 

Sample size 14.973 2 7.486 554.16 <.001 .003 

Loading size .004 1 .004 .31 .575 <.001 

Prior distribution .420 2 .210 15.53 <.001 <.001 

Tot_NI * Per_NI .616 2 .308 22.8 <.001 <.001 

Tot_NI * Sample size .208 4 .052 3.85 .004 <.001 

Tot_NI * Loading size .002 2 .001 .06 .940 <.001 

Tot_NI * Prior distribution .309 4 .077 5.71 .000 <.001 

Per_NI * Sample size .080 2 .040 2.97 .051 <.001 

Per_NI * Factor loading size <.001 1 <.001 .01 .929 <.001 

Per_NI * Prior distribution .184 2 .092 6.8 .001 <.001 

Sample size * Loading size .693 2 .347 25.65 <.001 <.001 

Sample size * Prior distribution 3.233 4 .808 59.83 <.001 .001 

Loading size * Prior distribution .122 2 .061 4.53 .011 <.001 

Error 4299.175  .014    

Corrected Total 432.243      

Endogenous factor mean difference ( F  ) 

Total magnitude of noninvariance (Tot_NI) .115 2 .057 3.62 .027 <.001 

Percentage of noninvariant items (Per_NI) .236 1 .236 14.87 <.001 <.001 

Sample size 9.507 2 4.753 299.51 <.001 .002 

Loading size .347 1 .347 21.88 <.001 <.001 

Prior distribution .738 2 .369 23.24 <.001 <.001 

Tot_NI * Per_NI .460 2 .230 14.49 <.001 <.001 

Tot_NI * Sample size .607 4 .152 9.57 <.001 <.001 

Tot_NI * Loading size .001 2 .000 .03 .975 <.001 

Tot_NI * Prior distribution .085 4 .021 1.33 .255 <.001 

Per_NI * Sample size .141 2 .070 4.44 .012 <.001 

Per_NI * Factor loading size .005 1 .005 .3 .583 <.001 

Per_NI * Prior distribution .040 2 .020 1.25 .288 <.001 

Sample size * Loading size .405 2 .203 12.76 <.001 <.001 

Sample size * Prior distribution 2.347 4 .587 36.97 <.001 <.001 

Loading size * Prior distribution .004 2 .002 .12 .890 <.001 

Error 505.530  .016    

Corrected Total 5065.425      
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Table 43  

ANOVA Results on Average Bias: Both Factor Loading and Intercept Noninvariance 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F p 

Structural regression coefficient difference ( R - F ) 

Total magnitude of noninvariance (Tot_NI) .760 2 .380 21.81 <.0001 .000 

Percentage of noninvariant items (Per_NI) .207 1 .207 11.91 .001 .000 

Sample size 22.931 2 11.465 657.85 <.0001 .004 

Loading size 25.780 1 25.780 1479.19 <.0001 .005 

Prior distribution 4.656 2 2.328 133.59 <.0001 .001 

Tot_NI * Per_NI .153 2 .077 4.4 .012 .000 

Tot_NI * Sample size 1.707 4 .427 24.48 <.0001 .000 

Tot_NI * Loading size .269 2 .135 7.72 .000 .000 

Tot_NI * Prior distribution .004 4 .001 .06 .993 .000 

Per_NI * Sample size .842 2 .421 24.15 <.0001 .000 

Per_NI * Factor loading size .059 1 .059 3.41 .065 .000 

Per_NI * Prior distribution .011 2 .005 .31 .736 .000 

Sample size * Loading size 12.724 2 6.362 365.03 <.0001 .002 

Sample size * Prior distribution 1.735 4 2.684 153.99 <.0001 .002 

Loading size * Prior distribution 1.500 2 .750 43.03 <.0001 .000 

Error 5543.467 318069 .017    

Corrected Total 5624.801 318102     

Exogenous factor mean difference ( F ) 

Total magnitude of noninvariance (Tot_NI) .070 2 .035 2.54 .079 .000 

Percentage of noninvariant items (Per_NI) .032 1 .032 2.29 .130 .000 

Sample size 8.384 2 4.192 302.98 <.0001 .002 

Loading size .002 1 .002 .17 .677 .000 

Prior distribution .572 2 .286 2.66 <.0001 .000 

Tot_NI * Per_NI .006 2 .003 .23 .796 .000 

Tot_NI * Sample size .221 4 .055 3.99 .003 .000 

Tot_NI * Loading size .003 2 .001 .1 .903 .000 

Tot_NI * Prior distribution .049 4 .012 .88 .477 .000 

Per_NI * Sample size .032 2 .016 1.15 .315 .000 

Per_NI * Factor loading size .001 1 .001 .05 .816 .000 

Per_NI * Prior distribution .021 2 .011 .77 .465 .000 

Sample size * Loading size .637 2 .318 23.01 <.0001 .000 

Sample size * Prior distribution 1.956 4 .489 35.35 <.0001 .000 

Loading size * Prior distribution .063 2 .032 2.29 .102 .000 

Error 44.500 318069 .014    

Corrected Total 4412.501 318102     

Endogenous factor mean difference ( F  ) 

Total magnitude of noninvariance (Tot_NI) .166 2 .083 5.08 .006 .000 

Percentage of noninvariant items (Per_NI) .068 1 .068 4.16 .041 .000 

Sample size 6.217 2 3.109 19.3 <.0001 .001 

Loading size .501 1 .501 3.67 <.0001 .000 

Prior distribution .414 2 .207 12.66 <.0001 .000 

Tot_NI * Per_NI .057 2 .029 1.75 .173 .000 

Tot_NI * Sample size .202 4 .051 3.09 .015 .000 

Tot_NI * Loading size .023 2 .012 .71 .492 .000 

Tot_NI * Prior distribution .011 4 .003 .17 .952 .000 

Per_NI * Sample size .083 2 .042 2.55 .078 .000 

Per_NI * Factor loading size .010 1 .010 .61 .435 .000 

Per_NI * Prior distribution .008 2 .004 .23 .794 .000 

Sample size * Loading size .194 2 .097 5.95 .003 .000 

Sample size * Prior distribution 3.072 4 .768 47.02 <.0001 .001 

Loading size * Prior distribution .004 2 .002 .11 .896 .000 

Error 5196.001 318069 .016    

Corrected Total 5206.912 318102     
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Table 44  

ANOVA Results on Average Absolute Relative Bias: Factor Loading Noninvariance Only 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F p 

Structural regression coefficient difference ( R - F ) 

Total magnitude of noninvariance (Tot_NI) 2.919 2 1.460 17.09 <.001 <.001 

Percentage of noninvariant items (Per_NI) .317 1 .317 3.71 .054 <.001 

Sample size 4772.849 2 2386.425 27944.7 <.001 .200 

Loading size 681.093 1 681.093 7975.5 <.001 .029 

Prior distribution 5.863 2 25.432 297.8 <.001 .002 

Tot_NI * Per_NI .132 2 .066 .77 .462 <.001 

Tot_NI * Sample size 1.868 4 .467 5.47 <.001 <.001 

Tot_NI * Loading size .922 2 .461 5.4 .005 <.001 

Tot_NI * Prior distribution .006 4 .001 .02 1.000 <.001 

Per_NI * Sample size .202 2 .101 1.18 .307 <.001 

Per_NI * Factor loading size .022 1 .022 .26 .610 <.001 

Per_NI * Prior distribution .012 2 .006 .07 .930 <.001 

Sample size * Loading size 225.441 2 112.720 1319.94 <.001 .009 

Sample size * Prior distribution 52.161 4 13.040 152.7 <.001 .002 

Loading size * Prior distribution 17.677 2 8.838 103.5 <.001 .001 

Error 18091.944 211854 .085    

Corrected Total 23845.491 211887     

Exogenous factor mean difference ( F ) 

Total magnitude of noninvariance (Tot_NI) .248 2 .124 7.75 <.001 <.001 

Percentage of noninvariant items (Per_NI) .098 1 .098 6.14 .013 <.001 

Sample size 1102.750 2 551.375 34528.5 <.001 .233 

Loading size 63.013 1 63.013 3946.01 <.001 .013 

Prior distribution 137.191 2 68.595 4295.62 <.001 .029 

Tot_NI * Per_NI .271 2 .135 8.48 <.001 <.001 

Tot_NI * Sample size .045 4 .011 .71 .587 <.001 

Tot_NI * Loading size .004 2 .002 .11 .894 <.001 

Tot_NI * Prior distribution .025 4 .006 .39 .816 <.001 

Per_NI * Sample size .015 2 .007 .46 .633 <.001 

Per_NI * Factor loading size <.001 1 <.001 0 .981 <.001 

Per_NI * Prior distribution .021 2 .010 .65 .522 <.001 

Sample size * Loading size 17.597 2 8.799 55.99 <.001 .004 

Sample size * Prior distribution 29.284 4 7.321 458.46 <.001 .006 

Loading size * Prior distribution 6.298 2 3.149 197.19 <.001 .001 

Error 3383.034 211854 .016    

Corrected Total 4728.596 211887     

Endogenous factor mean difference ( F  ) 

Total magnitude of noninvariance (Tot_NI) .798 2 .399 18.78 <.001 <.001 

Percentage of noninvariant items (Per_NI) .339 1 .339 15.98 <.001 <.001 

Sample size 1323.222 2 661.611 31144.7 <.001 .213 

Loading size 157.353 1 157.353 7407.28 <.001 .025 

Prior distribution 155.935 2 77.968 367.26 <.001 .025 

Tot_NI * Per_NI .407 2 .204 9.59 <.001 <.001 

Tot_NI * Sample size .939 4 .235 11.05 <.001 <.001 

Tot_NI * Loading size .111 2 .056 2.62 .073 <.001 

Tot_NI * Prior distribution .015 4 .004 .17 .952 <.001 

Per_NI * Sample size .438 2 .219 1.3 <.001 <.001 

Per_NI * Factor loading size .031 1 .031 1.47 .226 <.001 

Per_NI * Prior distribution .001 2 <.001 .02 .979 <.001 

Sample size * Loading size 49.615 2 24.807 1167.79 <.001 .008 

Sample size * Prior distribution 43.132 4 1.783 507.6 <.001 .007 

Loading size * Prior distribution 1.054 2 5.027 236.63 <.001 .002 

Error 45.435 211854 .021    

Corrected Total 6224.340 211887     
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Table 45  

ANOVA Results on Average Absolute Relative Bias: Intercept Noninvariance Only 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F p 

Structural regression coefficient difference ( R - F ) 

Total magnitude of noninvariance (Tot_NI) 1.435 2 .717 8.89 .000 <.001 

Percentage of noninvariant items (Per_NI) .378 1 .378 4.69 .030 <.001 

Sample size 4971.868 2 2485.934 30789 <.001 .216 

Loading size 63.789 1 63.789 7812.52 <.001 .027 

Prior distribution 57.087 2 28.543 353.52 <.001 .002 

Tot_NI * Per_NI 1.254 2 .627 7.77 <.001 <.001 

Tot_NI * Sample size 2.792 4 .698 8.64 <.001 <.001 

Tot_NI * Loading size .314 2 .157 1.94 .143 <.001 

Tot_NI * Prior distribution .146 4 .037 .45 .771 <.001 

Per_NI * Sample size 1.192 2 .596 7.38 .001 <.001 

Per_NI * Factor loading size .002 1 .002 .03 .863 <.001 

Per_NI * Prior distribution .005 2 .003 .03 .969 <.001 

Sample size * Loading size 231.734 2 115.867 1435.05 <.001 .010 

Sample size * Prior distribution 51.649 4 12.912 159.92 <.001 .002 

Loading size * Prior distribution 19.467 2 9.733 12.55 <.001 .001 

Error 17106.892 211874 .081    

Corrected Total 23064.213 211907     

Exogenous factor mean difference ( F ) 

Total magnitude of noninvariance (Tot_NI) .060 2 .030 1.88 .153 <.001 

Percentage of noninvariant items (Per_NI) .135 1 .135 8.4 .004 <.001 

Sample size 1018.962 2 509.481 31729.1 <.001 .218 

Loading size 6.259 1 6.259 3752.75 <.001 .013 

Prior distribution 141.986 2 7.993 4421.26 <.001 .030 

Tot_NI * Per_NI .259 2 .130 8.07 .000 <.001 

Tot_NI * Sample size .062 4 .016 .97 .423 <.001 

Tot_NI * Loading size .001 2 <.001 .02 .984 <.001 

Tot_NI * Prior distribution .015 4 .004 .23 .920 <.001 

Per_NI * Sample size 1.115 2 .558 34.72 <.001 <.001 

Per_NI * Factor loading size .001 1 .001 .07 .786 <.001 

Per_NI * Prior distribution .041 2 .021 1.28 .277 <.001 

Sample size * Loading size 16.211 2 8.106 504.8 <.001 .003 

Sample size * Prior distribution 35.628 4 8.907 554.7 <.001 .008 

Loading size * Prior distribution 5.981 2 2.991 186.25 <.001 .001 

Error 3402.107 211874 .016    

Corrected Total 4677.647 211907     

Endogenous factor mean difference ( F  ) 

Total magnitude of noninvariance (Tot_NI) .779 2 .389 18.82 <.001 <.001 

Percentage of noninvariant items (Per_NI) .020 1 .020 .97 .325 <.001 

Sample size 1251.741 2 625.871 30248.6 <.001 .207 

Loading size 149.567 1 149.567 7228.65 <.001 .025 

Prior distribution 17.765 2 85.383 4126.58 <.001 .028 

Tot_NI * Per_NI .006 2 .003 .16 .856 <.001 

Tot_NI * Sample size 1.429 4 .357 17.26 <.001 <.001 

Tot_NI * Loading size .083 2 .042 2.01 .134 <.001 

Tot_NI * Prior distribution .050 4 .013 .61 .658 <.001 

Per_NI * Sample size .030 2 .015 .73 .484 <.001 

Per_NI * Factor loading size .003 1 .003 .13 .720 <.001 

Per_NI * Prior distribution .005 2 .002 .11 .895 <.001 

Sample size * Loading size 46.713 2 23.356 1128.82 <.001 .008 

Sample size * Prior distribution 51.791 4 12.948 625.77 <.001 .009 

Loading size * Prior distribution 11.245 2 5.623 271.75 <.001 .002 

Error 4383.863 211874 .021    

Corrected Total 6061.005 211907     
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Table 46  

ANOVA Results on Average Absolute Relative Bias: Both Factor Loading and Intercept Noninvariance 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F p 

Structural regression coefficient difference ( R - F ) 

Total magnitude of noninvariance (Tot_NI) 2.672 2 1.336 15.65 <.0001 .000 

Percentage of noninvariant items (Per_NI) .248 1 .248 2.9 .089 .000 

Sample size 4781.408 2 239.704 27998.9 <.0001 .200 

Loading size 679.909 1 679.909 7962.82 <.0001 .029 

Prior distribution 51.286 2 25.643 3.32 <.0001 .002 

Tot_NI * Per_NI .115 2 .058 .68 .509 .000 

Tot_NI * Sample size 1.992 4 .498 5.83 .000 .000 

Tot_NI * Loading size .868 2 .434 5.08 .006 .000 

Tot_NI * Prior distribution .041 4 .010 .12 .976 .000 

Per_NI * Sample size .164 2 .082 .96 .383 .000 

Per_NI * Factor loading size .016 1 .016 .18 .667 .000 

Per_NI * Prior distribution .036 2 .018 .21 .812 .000 

Sample size * Loading size 225.994 2 112.997 1323.38 <.0001 .009 

Sample size * Prior distribution 51.271 4 12.818 15.11 <.0001 .002 

Loading size * Prior distribution 17.788 2 8.894 104.17 <.0001 .001 

Error 18088.403 211844 .085    

Corrected Total 23848.974 211877     

Exogenous factor mean difference ( F ) 

Total magnitude of noninvariance (Tot_NI) .237 2 .118 7.41 .001 .000 

Percentage of noninvariant items (Per_NI) .088 1 .088 5.51 .019 .000 

Sample size 1103.831 2 551.915 34566.1 <.0001 .233 

Loading size 62.994 1 62.994 3945.27 <.0001 .013 

Prior distribution 137.471 2 68.735 4304.84 <.0001 .029 

Tot_NI * Per_NI .283 2 .142 8.88 .000 .000 

Tot_NI * Sample size .053 4 .013 .83 .507 .000 

Tot_NI * Loading size .003 2 .002 .11 .898 .000 

Tot_NI * Prior distribution .023 4 .006 .36 .836 .000 

Per_NI * Sample size .021 2 .010 .65 .522 .000 

Per_NI * Factor loading size .000 1 .000 0 .971 .000 

Per_NI * Prior distribution .018 2 .009 .56 .572 .000 

Sample size * Loading size 17.603 2 8.801 551.23 <.0001 .004 

Sample size * Prior distribution 29.162 4 7.291 456.61 <.0001 .006 

Loading size * Prior distribution 6.300 2 3.150 197.29 <.0001 .001 

Error 3382.507 211844 .016    

Corrected Total 4729.233 211877     

Endogenous factor mean difference ( F  ) 

Total magnitude of noninvariance (Tot_NI) .775 2 .387 18.24 <.0001 .000 

Percentage of noninvariant items (Per_NI) .323 1 .323 15.19 <.0001 .000 

Sample size 1324.216 2 662.108 31174.6 <.0001 .213 

Loading size 157.262 1 157.262 7404.49 <.0001 .025 

Prior distribution 156.177 2 78.089 3676.71 <.0001 .025 

Tot_NI * Per_NI .419 2 .209 9.86 <.0001 .000 

Tot_NI * Sample size .957 4 .239 11.27 <.0001 .000 

Tot_NI * Loading size .109 2 .054 2.56 .077 .000 

Tot_NI * Prior distribution .014 4 .004 .17 .954 .000 

Per_NI * Sample size .451 2 .225 1.61 <.0001 .000 

Per_NI * Factor loading size .030 1 .030 1.41 .236 .000 

Per_NI * Prior distribution .002 2 .001 .05 .954 .000 

Sample size * Loading size 49.655 2 24.827 1168.97 <.0001 .008 

Sample size * Prior distribution 43.010 4 1.752 506.26 <.0001 .007 

Loading size * Prior distribution 1.067 2 5.034 237.01 <.0001 .002 

Error 4499.292 211844     

Corrected Total 6224.217 211877     
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Table 47  

ANOVA Results on Average Absolute Bias: Factor Loading Noninvariance Only 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F p 

Structural regression coefficient difference ( R - F ) 

Total magnitude of noninvariance (Tot_NI) .360 2 .180 24.59 <.001 <.001 

Percentage of noninvariant items (Per_NI) .039 1 .039 5.30 .021 <.001 

Sample size 628.170 2 314.085 42942.3 <.001 .204 

Loading size 88.313 1 88.313 12074.3 <.001 .029 

Prior distribution 5.368 2 2.684 366.98 <.001 .002 

Tot_NI * Per_NI .014 2 .007 .99 .372 <.001 

Tot_NI * Sample size .202 4 .051 6.92 <.001 <.001 

Tot_NI * Loading size .108 2 .054 7.39 .001 <.001 

Tot_NI * Prior distribution .001 4 .000 .03 .998 <.001 

Per_NI * Sample size .023 2 .011 1.56 .211 <.001 

Per_NI * Factor loading size .002 1 .002 .30 .585 <.001 

Per_NI * Prior distribution .002 2 .001 .14 .871 <.001 

Sample size * Loading size 28.346 2 14.173 1937.73 <.001 .009 

Sample size * Prior distribution 5.964 4 1.491 203.85 <.001 .002 

Loading size * Prior distribution 2.195 2 1.097 15.02 <.001 .001 

Error 2326.489 318082 .007    

Corrected Total 3078.476 318115     

Exogenous factor mean difference ( F ) 

Total magnitude of noninvariance (Tot_NI) .119 2 .059 11.81 <.001 <.001 

Percentage of noninvariant items (Per_NI) .048 1 .048 9.5 .002 <.001 

Sample size 529.677 2 264.838 52612.3 <.001 .237 

Loading size 29.452 1 29.452 585.9 <.001 .013 

Prior distribution 57.838 2 28.919 5745.04 <.001 .026 

Tot_NI * Per_NI .129 2 .065 12.81 <.001 <.001 

Tot_NI * Sample size .021 4 .005 1.04 .384 <.001 

Tot_NI * Loading size .001 2 .001 .14 .870 <.001 

Tot_NI * Prior distribution .014 4 .003 .69 .601 <.001 

Per_NI * Sample size .008 2 .004 .75 .474 <.001 

Per_NI * Factor loading size .000 1 .000 .01 .936 <.001 

Per_NI * Prior distribution .011 2 .005 1.05 .349 <.001 

Sample size * Loading size 8.243 2 4.121 818.73 <.001 .004 

Sample size * Prior distribution 12.074 4 3.019 599.66 <.001 .005 

Loading size * Prior distribution 2.390 2 1.195 237.36 <.001 .001 

Error 1601.151 318082 .005    

Corrected Total 2235.986 318115     

Endogenous factor mean difference ( F  ) 

Total magnitude of noninvariance (Tot_NI) .304 2 .152 24.38 <.001 <.001 

Percentage of noninvariant items (Per_NI) .139 1 .139 22.25 <.001 <.001 

Sample size 585.917 2 292.958 46938.9 <.001 .214 

Loading size 65.997 1 65.997 10574.3 <.001 .024 

Prior distribution 66.439 2 33.219 5322.55 <.001 .024 

Tot_NI * Per_NI .189 2 .094 15.12 <.001 <.001 

Tot_NI * Sample size .393 4 .098 15.74 <.001 <.001 

Tot_NI * Loading size .030 2 .015 2.39 .092 <.001 

Tot_NI * Prior distribution .006 4 .002 .25 .912 <.001 

Per_NI * Sample size .196 2 .098 15.71 <.001 <.001 

Per_NI * Factor loading size .009 1 .009 1.46 .227 <.001 

Per_NI * Prior distribution <.001 2 <.001 .04 .964 <.001 

Sample size * Loading size 2.001 2 1.001 1602.34 <.001 .007 

Sample size * Prior distribution 17.971 4 4.493 719.85 <.001 .007 

Loading size * Prior distribution 4.009 2 2.005 321.18 <.001 .001 

Error 1985.237 318082 .006    

Corrected Total 2738.934 318115     
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Table 48  

ANOVA Results on Average Absolute Bias: Intercept Noninvariance Only 
 

Source 

Sum of 

Squares 
DF 

Mean 

Square 
F p 

Structural regression coefficient difference ( R - F ) 

Total magnitude of noninvariance (Tot_NI) .207 2 .103 14.88 <.001 <.001 

Percentage of noninvariant items (Per_NI) .053 1 .053 7.57 .006 <.001 

Sample size 661.244 2 33.622 47528.4 <.001 .220 

Loading size 82.933 1 82.933 11921.9 <.001 .028 

Prior distribution 6.144 2 3.072 441.62 <.001 .002 

Tot_NI * Per_NI .153 2 .077 11 <.001 <.001 

Tot_NI * Sample size .394 4 .099 14.16 <.001 <.001 

Tot_NI * Loading size .048 2 .024 3.43 .033 <.001 

Tot_NI * Prior distribution .021 4 .005 .76 .549 <.001 

Per_NI * Sample size .172 2 .086 12.37 <.001 <.001 

Per_NI * Factor loading size <.001 1 <.001 .04 .839 <.001 

Per_NI * Prior distribution .001 2 <.001 .05 .954 <.001 

Sample size * Loading size 3.315 2 15.158 2178.99 <.001 .010 

Sample size * Prior distribution 6.078 4 1.520 218.45 <.001 .002 

Loading size * Prior distribution 2.423 2 1.212 174.17 <.001 .001 

Error 2213.713 318231 .007    

Corrected Total 3002.077 318264     

Exogenous factor mean difference ( F ) 

Total magnitude of noninvariance (Tot_NI) .030 2 .015 2.93 .054 <.001 

Percentage of noninvariant items (Per_NI) .075 1 .075 14.79 <.001 <.001 

Sample size 489.097 2 244.548 48150 <.001 .221 

Loading size 28.139 1 28.139 554.45 <.001 .013 

Prior distribution 59.955 2 29.977 5902.35 <.001 .027 

Tot_NI * Per_NI .140 2 .070 13.75 <.001 <.001 

Tot_NI * Sample size .031 4 .008 1.51 .196 <.001 

Tot_NI * Loading size <.001 2 <.001 .02 .981 <.001 

Tot_NI * Prior distribution .007 4 .002 .35 .843 <.001 

Per_NI * Sample size .600 2 .300 59.1 <.001 <.001 

Per_NI * Factor loading size .001 1 .001 .2 .657 <.001 

Per_NI * Prior distribution .028 2 .014 2.79 .061 <.001 

Sample size * Loading size 7.519 2 3.759 74.19 <.001 .003 

Sample size * Prior distribution 15.085 4 3.771 742.54 <.001 .007 

Loading size * Prior distribution 2.271 2 1.136 223.59 <.001 .001 

Error 1616.258 318231 .005    

Corrected Total 2216.899 318264     

Endogenous factor mean difference ( F  ) 

Total magnitude of noninvariance (Tot_NI) .367 2 .183 3.05 <.001 <.001 

Percentage of noninvariant items (Per_NI) .003 1 .003 .49 .486 <.001 

Sample size 552.699 2 276.350 45285.1 <.001 .207 

Loading size 63.507 1 63.507 10406.8 <.001 .024 

Prior distribution 73.246 2 36.623 6001.37 <.001 .027 

Tot_NI * Per_NI .001 2 .001 .1 .904 <.001 

Tot_NI * Sample size .669 4 .167 27.41 <.001 <.001 

Tot_NI * Loading size .031 2 .016 2.56 .077 <.001 

Tot_NI * Prior distribution .017 4 .004 .69 .597 <.001 

Per_NI * Sample size .022 2 .011 1.78 .168 <.001 

Per_NI * Factor loading size <.001 1 <.001 .07 .796 <.001 

Per_NI * Prior distribution .004 2 .002 .32 .730 <.001 

Sample size * Loading size 19.262 2 9.631 1578.18 <.001 .007 

Sample size * Prior distribution 22.102 4 5.526 905.46 <.001 .008 

Loading size * Prior distribution 4.595 2 2.297 376.45 <.001 .002 

Error 1941.988 318231 .006    

Corrected Total 2675.521 318264     
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Table 49  

ANOVA Results on Average Absolute Bias: Both Factor Loading and Intercept Noninvariance 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F p 

Structural regression coefficient difference ( R - F ) 

Total magnitude of noninvariance (Tot_NI) .330 2 .165 22.54 <.0001 .000 

Percentage of noninvariant items (Per_NI) .030 1 .030 4.15 .042 .000 

Sample size 629.259 2 314.630 43022.9 <.0001 .204 

Loading size 88.168 1 88.168 12056.2 <.0001 .029 

Prior distribution 5.413 2 2.706 37.09 <.0001 .002 

Tot_NI * Per_NI .012 2 .006 .82 .439 .000 

Tot_NI * Sample size .216 4 .054 7.4 <.0001 .000 

Tot_NI * Loading size .102 2 .051 6.97 .001 .000 

Tot_NI * Prior distribution .005 4 .001 .17 .955 .000 

Per_NI * Sample size .018 2 .009 1.2 .301 .000 

Per_NI * Factor loading size .001 1 .001 .2 .651 .000 

Per_NI * Prior distribution .004 2 .002 .31 .737 .000 

Sample size * Loading size 28.413 2 14.207 1942.64 <.0001 .009 

Sample size * Prior distribution 5.860 4 1.465 2.31 <.0001 .002 

Loading size * Prior distribution 2.208 2 1.104 15.96 <.0001 .001 

Error 2326.059 318069 .007    

Corrected Total 3078.945 318102     

Exogenous factor mean difference ( F ) 

Total magnitude of noninvariance (Tot_NI) .114 2 .057 11.34 <.0001 .000 

Percentage of noninvariant items (Per_NI) .043 1 .043 8.62 .003 .000 

Sample size 53.143 2 265.071 52664.7 <.0001 .237 

Loading size 29.444 1 29.444 585.04 <.0001 .013 

Prior distribution 57.951 2 28.976 5756.9 <.0001 .026 

Tot_NI * Per_NI .135 2 .067 13.37 <.0001 .000 

Tot_NI * Sample size .024 4 .006 1.2 .308 .000 

Tot_NI * Loading size .001 2 .001 .13 .875 .000 

Tot_NI * Prior distribution .013 4 .003 .64 .631 .000 

Per_NI * Sample size .010 2 .005 1.01 .363 .000 

Per_NI * Factor loading size .000 1 .000 .01 .926 .000 

Per_NI * Prior distribution .009 2 .005 .93 .396 .000 

Sample size * Loading size 8.245 2 4.123 819.07 <.0001 .004 

Sample size * Prior distribution 12.026 4 3.006 597.31 <.0001 .005 

Loading size * Prior distribution 2.391 2 1.195 237.48 <.0001 .001 

Error 16.901 318069 .005    

Corrected Total 2236.237 318102     

Endogenous factor mean difference ( F  ) 

Total magnitude of noninvariance (Tot_NI) .297 2 .148 23.79 <.0001 .000 

Percentage of noninvariant items (Per_NI) .133 1 .133 21.29 <.0001 .000 

Sample size 586.277 2 293.138 46977.6 <.0001 .214 

Loading size 65.932 1 65.932 10566.1 <.0001 .024 

Prior distribution 66.526 2 33.263 533.64 <.0001 .024 

Tot_NI * Per_NI .193 2 .097 15.48 <.0001 .000 

Tot_NI * Sample size .399 4 .100 15.98 <.0001 .000 

Tot_NI * Loading size .028 2 .014 2.28 .103 .000 

Tot_NI * Prior distribution .006 4 .001 .24 .918 .000 

Per_NI * Sample size .201 2 .100 16.1 <.0001 .000 

Per_NI * Factor loading size .008 1 .008 1.34 .247 .000 

Per_NI * Prior distribution .001 2 .000 .06 .942 .000 

Sample size * Loading size 2.032 2 1.016 1605.11 <.0001 .007 

Sample size * Prior distribution 17.927 4 4.482 718.23 <.0001 .007 

Loading size * Prior distribution 4.019 2 2.010 322.06 <.0001 .001 

Error 1984.738 318069 .006    

Corrected Total 2738.800 318102     
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Chapter 5: Discussion 

 

Most previous studies have consistently shown that group comparisons on latent 

constructs can be valid and meaningfully interpreted when measurement invariance 

assumption holds. Although some researchers have supported the concept of partial 

invariance, there is still no clear-cut partial invariance level which is needed to make 

valid group comparisons. Given this, the current study aimed to examine the extent to 

which measurement noninvariance affects structural parameter comparisons across 

populations. Particularly, this study takes a Bayesian approach to investigate the 

sensitivity of the posterior distribution of structural parameter difference to varying types 

and magnitudes of noninvariance across two populations. For this purpose, a simulation 

study was conducted. Data were generated from two-group two-factor models with mean 

structure with known types and magnitudes of noninvariance in population parameters 

and varied as a function of sample size, factor loading size and structural parameter 

difference. The generated data were analyzed using Bayesian estimation with three 

different prior distributions of reference indicators’ parameters. In order to assess the 

sensitivity of noninvariance conditions, the three outcome variables were evaluated: 

accuracy of statistical conclusion on structural parameter difference, precision of the 

estimated structural parameter difference, and bias in the posterior mean of structural 

parameter difference. This chapter summarizes the main findings of this research, 

followed by implications for practice, limitations and directions for future study. 
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Summary of the Main Findings 

Overall convergence rates across all conditions were found to be very good even 

when the sample size was small and factor loading was low. One exception occurred in 

conditions where there were large sample sizes, high factor loadings, and prior 

distributions with 20% variation. Further examination showed that the convergence was 

achieved at between 6,000 and 8,000 iterations under those problematic conditions while 

convergence was achieved with 4,000 or less under other conditions. One possible 

explanation for the relatively low convergence rates may be due to the low number of 

iterations (10,000) used in this study. To examine this issue, further analyses were 

conducted with three different iteration sizes (10,000, 20,000, and 30,000) under the 

problematic conditions. The results showed that with 20,000 and 30,000 iterations, the 

convergence rates under the problematic conditions were found to be very good, yielding 

convergence rates greater than 99.0%. This result indicates that more than 10,000 

iterations (say 20,000 iterations) are necessary for achieving convergence when there are 

large sample sizes, high factor loadings, and prior distributions with 20% variation. 

Overall, the findings of simulation revealed that the three outcome variables 

examined in this study were not sensitive to varying types and magnitudes of 

noninvariance across all conditions. Specifically, it seemed clear that the accuracy of 

statistical conclusion on the three structural parameter differences evaluated by Type I 

error rates and power rates was not associated with types and magnitudes of invariance. 

The Type I error rates for all conditions were generally close to or lower than the nominal 

5% level across different types and magnitudes of noninvariance. Even in situations 

where a large magnitude of noninvariance exists in measurement models between two 
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populations, the Type I error rates rarely exceeded 6.5%. Additionally, all conditions 

provided consistent power rates across different types and magnitudes of noninvariance 

when the other factors were controlled.  

The results of this study particularly on the Type I error and power were not 

consistent with those of previous studies. For example, previous research has found that 

the increased level of noninvariance between two populations increased type I error rates 

(Beuckelaer & Swinnen, 2011). Also, the increased level of noninvariance decreased 

power of detecting latent mean difference (Beuckelaer & Swinnen, 2011; Kaplan & 

George, 1995). However, the findings of the current study did not support those of 

previous studies. A possible explanation for these inconsistent results may be due to 

different model specifications employed in the current study and previous studies. In 

previous studies, for instance, structural parameter differences between two groups were 

estimated and evaluated under model misspecification. Specifically, structural parameters 

were estimated under the false assumption that measurement invariance holds for all 

parameters across groups. Given the fact that model misspecification can lead to the 

increased model non-convergence, increased Type I error rates in measurement 

invariance testing, and inaccurate measurement and structural parameter estimates (e.g., 

Anderson & Gerbing, 1988; French & Finch, 2011; Jarvis, MacKenzie, & Podsakoff, 

2003), the model misspecification could affect the Type I error rates for structural 

parameter differences across groups in previous studies. In the current study, however, 

the structural parameter difference was estimated and evaluated without model 

misspecification. In other words, for the factor loadings or intercept parameters that are 

noninvariant across populations, equality constraints were not imposed. It should be also 
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noted that equality constraints were not imposed on the factor loadings and intercepts that 

were truly invariant in population models except for reference indicators’ parameters.  

In order to examine the possible effect of the model misspecification on the Type 

I error and power for structural parameter differences, this study performed further 

analyses using a dataset exhibiting large magnitudes of noninvariance (e.g., three types of 

noninvariance conditions with 80% of total magnitudes of noninvariance and 75% of 

noninvariant items). ML estimation was performed under the false assumption that 

measurement invariance holds for all factor loadings and intercepts across groups as did 

in previous studies. Mplus codes for this analysis was given in the Appendix A. Results 

showed that the Type I error rates were greatly inflated under model misspecification 

particularly when sample size was large and factor loading was high while the Type I 

error rates were well controlled under correct model specification (see Appendix B). As 

seen in Appendix C, the power rates unexpectedly fluctuated for detecting structural 

regression coefficient differences under model misspecification. Small sample size 

unexpectedly yielded higher power rates than moderate sample size under some 

conditions and vice versa. Unlike power rates for detecting structural regression 

coefficient differences, the power rates for detecting factor mean differences were close 

to 100% under model misspecification. This might be due to a relatively large factor 

mean difference in population model of this study. This result supports previous studies 

that power of detecting factor mean difference was greatly affected by true factor mean 

difference rather than model misspecification (Beuckelaer & Swinnen, 2011; Kaplan & 

George, 1995). These results indicate that Type I error rate for the three structural 
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parameter differences is not sensitive to the level of measurement noninvariance and 

instead might be greatly sensitive to model misspecification. 

The results of the simulation have also shown that the precision and bias of the 

estimated three structural parameter differences were not sensitive to varying types and 

magnitudes of noninvariance across all conditions, holding the other factors constant. 

Varying types and magnitudes of noninvariance did not cause any significant changes in 

the width of 95% credibility intervals of the three structural parameter difference 

estimates. Similarly, means of posterior distributions for the three structural parameter 

differences had little systematic biases (i.e., average relative and average biases) in all 

conditions and the results on the bias were also highly consistent across different types 

and magnitudes of noninvariance conditions. 

As expected, the three outcome variables were sensitive to sample size and factor 

loading size. The Type I error rates decreased and empirical power rates increased as 

sample size and factor loading size increased. Similarly, the width of 95% credibility 

intervals decreased as sample size and factor loading size increased. However, sample 

size and factor loading size had little effects on average relative bias and average bias in 

the current study. Consistent with the findings of previous studies in Bayesian analyses 

(e.g., Lee & Song, 2004), a Bayesian inference on a basis of posterior distributions was 

sensitive to the choice of prior distribution. Particularly, the results of this study showed 

that the different choices of variance of prior distributions could lead to different 

conclusions or inferences on structural parameter difference across groups. That is, the 

more prior distributions allowed magnitudes of noninvariance of the reference indicators’ 

parameters between two populations, the less Type I error rates were observed. 
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Interestingly, under large variance of prior distribution conditions, the Type I error rates 

were close to zero. Although low Type I error rates under large variance of prior 

distribution conditions seem to sound good, it should be noted that low Type I error is 

always associated with lower power. As expected, this study found that prior distributions 

with large variance conditions provided the lowest power rate. In addition, prior 

distribution with a relatively small variance provided higher precision level than prior 

distribution with a relatively large variance.  

 

Implications for Practice 

There are several implications for practice based on the results of this simulation 

study. First, although previous literature has strongly argued that establishment of 

measurement invariance is necessary for accurate and meaningful comparisons on latent 

constructs across groups, it may not be always true particularly when research questions 

focus on group comparison in structural parameters. The results of this study showed that 

even a large magnitude of measurement noninvariance had little impact on the accuracy 

of statistical conclusion and precision and bias of structural parameter difference 

estimates. Upon the results, it seemed clear that a lack of measurement invariance did not 

reduce validity of group comparison on latent constructs. That is, under the situation 

where measurement noninvariance existed in measurement models across groups, 

accurate conclusion on structural parameter comparison across groups could be obtained. 

Previous studies proposed that at least two indicators of the construct exhibited 

invariance across groups, such group comparison might be appropriate (e.g., Steenkamp 

& Baumgartner, 1998). However, the findings of this study support previous study 
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indicating that if at least one indicator related to a latent construct displays invariance 

across groups, drawing correct conclusion for structural parameter difference between 

populations could be possible (Hancock et al., 2009).  

Second, when measurement invariance does not hold, a correct model 

specification is crucial for accurate statistical conclusion on structural parameter 

difference across groups. A comparison of simulation results obtained from correct model 

specification and model misspecification with ML estimation demonstrated that model 

misspecification could potentially have a strong impact on inference on group difference 

in latent constructs. Based on the results of this study, correct inference on structural 

parameter difference across groups largely depended on model specification (or model 

misspecification) regardless of the level of measurement invariance. Therefore, 

researchers should carefully examine the nature of measurement models so that the 

possible model misspecification can be reduced. Researchers could develop models based 

on existing theory or prior knowledge from experts or analyses of past data. It is also 

recommended that researchers conduct formal tests on measurement invariance to 

develop correctly specified models.  

Third, researchers may take either a frequentist or Bayesian approach for 

measurement invariance tests to examine the equality of measurement model parameters 

across groups. Although measurement invariance tests from the frequentist approach 

have been commonly used in applied studies, it should be noted that the selection of a 

reference indicator is of great importance in the frequentist approach to test measurement 

invariance. Given that researchers never know whether a chosen reference indicator is 

truly invariant across populations and that invariance of a reference indicator’s 
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parameters cannot be tested in the frequentist approach, researchers are more likely to 

select a reference indicator that is not invariant across populations. If a noninvariant 

reference indicator is chosen, it will likely to produce misleading measurement invariance 

results. Using a Bayesian approach has the potential to provide a flexible approach to 

address this limitation in that a reference indicator does not need to be chosen and 

constrained to be equal across groups in measurement invariance testing, and all factor 

loading and intercept parameters can be tested for measurement invariance. This may be 

regarded as a distinct advantage over the frequentist approach for measurement 

invariance testing.  

As described in Muthén and Asparouhov’s (2013) study, this study recommends 

two-step approach to examine structural parameter differences across two populations 

within a Bayeisan MGCFA framework particularly when researchers have no prior 

knowledge on the equality of measurement model parameter. First, a Bayesian approach 

for measurement invariance testing can be conducted to detect possible noninvariant 

measurement model parameters across populations. A Bayesian approach for tests of 

measurement invariance requires researchers to assign prior distributions between 

parameters representing approximate equality of measurement model parameters across 

groups. Although Muthén and Asparouhov have recommended using prior distributions 

for differences between parameters within the Bayesian MGCFA framework, this study 

recommends using prior distributions for ratios between parameters because it provides 

meaningful variability of parameter differences even in the unstandardized solution. By 

manipulating variance of the prior dictions, researchers may examine the extent to which 

measurement invariance is achieved. Based on the results from the first step, the second 
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step then involves specifying models accordingly and testing structural parameter 

differences in the Bayesian MGCFA framework. In a situation where some parameters 

appeared to be noninvariant across groups, those measurement parameters should not be 

constrained to be equal, but should be freely estimated across groups. 

It is worth noting that in the Bayesian approach, the selection of prior distribution 

is important for both measurement invariance testing (Lee, 2007; Muthén & Asparouhov, 

2013; Steinmetz, 2013) and group comparison on structural parameters between groups. 

This is particularly important when researchers do not have a large sample size. In order 

to conduct an approximate measurement invariance tests proposed by Muthén and 

Asparouhov (2013), researchers need to assign prior distributions on the difference 

between each of the measurement parameters which allows these parameters to be 

estimated slightly differently. Depending on the magnitudes of variance in these prior 

distributions, tests of measurement invariance could lead to different results (Cieciuch et 

al., 2014; Muthén & Asparouhov, 2013). The results of this study demonstrated that 

different variances in prior distributions provide different results in terms of the accuracy 

of statistical conclusion and precision and bias of structural parameter difference 

estimates. Given the results of the current study, it is not recommended to use large 

variance in prior distribution for reference indicator parameters, which allows the 

magnitude of noninvariance of reference indicators’ parameters within 20% because it 

turned out to yield relatively low power, low precision, and high bias for structural 

parameter difference estimates. Instead, this study recommends using either prior 

distributions that do not allow the magnitude of noninvariance or do allow the magnitude 

of noninvariance within 10% because these two prior distributions seem to provide better 
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results on group comparison in structural parameters than prior distributions that allow 

the magnitude of noninvariance of reference indicators’ parameters within 20%. 

In addition to benefits of the Bayesian approach to measurement invariance over 

the frequentist approach, one may question whether the Bayesian approach would give 

benefits over the frequentist approach in testing structural parameter differences across 

groups. In order to examine this issue, post hoc analyses were conducted using a dataset 

from large magnitudes of noninvariance conditions simulated in this study. ML 

estimation was performed without the incorrect assumption of measurement invariance. 

In order to make the analyses of two approaches comparable, all measurement parameters 

except for reference indicators were freely estimated regardless of true equal or unequal 

population parameters. Appendices D, E, and F contains the Mplus codes for both ML 

estimation and Bayesian estimation for these analyses. The results of the Type I error rate 

and power from a traditional approach were presented with those from a Bayesian 

approach in Appendices G and H. Generally, the frequentist approach provided similar or 

better results than the Bayesian approach with prior distribution with zero variation. Both 

approach provided the Type I error rates that were close to the nominal 5% error rate in 

most conditions. When sample size was small or sample size was moderate with low 

factor loading, the frequentist approach provided higher power rates for detecting three 

structural parameter differences. When sample size was moderate with high factor 

loading or sample size was large, however, both approach provided similar power rates. 

Bayesian approach provide the results that are similar to those of the frequentist approach 

when noninformative prior distributions are assigned to model parameters (Kaplan & 

Depaoli, 2012). That is, because posterior distributions are constructed largely depending 
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on the likelihood distribution of data when noninformative prior distributions are used, it 

is expected that results are similar in both approaches (Kaplan & Depaoli, 2012). This 

result implies that although researchers do not have available prior knowledge, the 

Bayesian approach can provide at least similar results to the frequentist approach.  

 

Limitations and Directions for Future study 

Although this was a large simulation study, like other simulation studies, this 

study has several limitations in its scope. First of all, this study used only one two-group 

two-factor CFA model to examine the impact of measurement noninvariance in group 

comparison of structural parameters. Although this model has been frequently used in 

previous studies, there are a wide variety of models in practice varying or changing the 

number of latent variables and indicators. Additionally, the CFA model used in this study 

had a simple structure in that each indicator was loaded on only one latent variable and 

there were no correlated errors. In practice, some cross-loadings and correlation of error 

variances are present in measurement models and thus the simple structure CFA can be 

too restrictive in reality. In order to examine whether the results of the current study can 

be generalized to a variety of models, various SEM models could be examined for further 

investigation.   

In the current study, structural parameters were estimated and examined under the 

assumption that the true invariant reference indicators were known. While this is a 

common assumption in many simulation studies, it ignores possible model 

misspecification problems that commonly occurred in reality. Given that a noninvariant 

reference indicator is likely to cause inaccurate measurement and structural parameter 
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estimates, thus, the results of this study may be generalized to situations in which the 

reference indicator is correctly chosen. If the simulation conditions were expanded such 

that the simulation included trivial misspecification of reference indicators’ factor 

loadings and intercepts across groups, the impact of model misspecification related to the 

reference indicator parameters could be examined for further investigation. By doing so, 

the advantages and disadvantages of using prior distributions on the reference indicators 

could also be better examined. 

Moreover, this study included only equal sample size ratio between two groups. 

In reality, there are many unequal sample sizes across groups. A good example of 

unequal sample size situation is a race/ethnicity comparison. In many cases, researchers 

often compare latent constructs across different race/ethnicity groups where the reference 

group has generally more sample size than the focal group in some group comparison 

analyses. Previous research found that unequal sample size yielded low power of 

detecting true factor mean difference than equal sample size conditions particularly when 

true factor mean difference was small (Kaplan & George, 1995). Given that estimates of 

structural parameters in a group with small sample size is more likely to have large 

standard errors of the estimates than those in a group with large sample size, unequal 

sample sizes across groups may also have an impact on statistical conclusions and 

inferences on structural parameter comparisons across groups. Therefore, additional 

factors for different sample size ratios could be investigated for further study. 

There are also important simulation design factors not manipulated in the current 

study which deserve some attention particularly in a Bayesian analysis. This study used 

only noninformative prior distributions for all parameters except the reference indicators. 
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Although it was intended to reflect a situation where prior knowledge on model 

parameters was not available, the choice of prior distributions can have a great impact on 

the results on posterior distribution of parameters (Lee, 2007; Lee et al., 2004). 

Particularly, the impact of prior distributions on the estimations of posterior distributions 

of parameters is more substantial when sample size is small. If the simulation conditions 

are expanded with various levels of accurate and inaccurate prior distributions along with 

varying variance of prior distributions, the Bayesian approach to examine group 

difference in latent constructs could be thoroughly examined.  

Finally, the results of the current study guide the potential study for comparing the 

empirical performance of the frequentist approach and the Bayesian approach for group 

comparison in latent constructs. Although the performance of two approaches was 

compared in post hoc analyses of this study, the comparison between two approaches was 

conducted under very limited simulation conditions (e.g., noninformative prior, large 

magnitude of noninvariance). By comparing the results between the Bayesian and 

frequentist approaches along with expanded simulation conditions, the strengths and 

weakness of the two approaches could be thoroughly examined and provide useful tips 

and insights to applied researchers.   
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Appendices  

Appendix A: Mplus Code for ML Estimation under Model Misspecification 

 

TITLE: ML estimation under model misspecification  

DATA: File=Data_n3f1sd1r1.dat; 

VARIABLE:  

NAMES=X1-X4 Y1-Y4 G; 

USEVARIABLES= X1-X4 Y1-Y4; 

Grouping is G (1=reference 2=focal); 

 

MODEL:  

F1 BY X1@.5; 

F1 BY X2* (efx2); 

F1 BY X3* (efx3); 

F1 BY X4* (efx4); 

F2 BY Y1@.5; 

F2 BY Y2* (efy2); 

F2 BY Y3* (efy3); 

F2 BY Y4* (efy4); 

[X1@.8]; 

[X2*] (eix2); 

[X3*] (eix3); 

[X4*] (eix4); 

[Y1@.8]; 

[Y2*](eiy2); 

[Y3*](eiy3); 

[Y4*](eiy4); 

F2 ON F1*(CG1FC);"); 

X1-X4*; 

Y1-Y4*; 

F1@1; 

F2@.75; 

[F1@0]; 

[F2@0]; 

 

MODEL focal: 

F1 BY X1@.5; 

F1 BY X2* (efx2); 

F1 BY X3* (efx3); 

F1 BY X4* (efx4); 

F2 BY Y1@.5; 

F2 BY Y2* (efy2); 

F2 BY Y3* (efy3); 

F2 BY Y4* (efy4); 

[X1@.8]; 
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[X2*] (eix2); 

[X3*] (eix3); 

[X4*] (eix4); 

[Y1@.8]; 

[Y2*](eiy2); 

[Y3*](eiy3); 

[Y4*](eiy4); 

F2 ON F1*(CG2FC); 

X1-X4*; 

Y1-Y4*; 

F1-F2*; 

[F1-F2*]; 

 

MODEL CONSTRAINT: 

NEW(DIFFCOE); 

DIFFCOE=CG1FC-CG2FC; 

 

OUTPUT: 
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Appendix B: Type I Error Rates (%) - ML Estimation under Model Misspecification 

 

   

Factor loading noninvariance 

only 

Intercept noninvariance  

only 

Both factor loading and 

intercept noninvariance 

N 
 

R - F  F  F  R - F  F  F  R - F  F  F  

100 .5 
 

8.6 7.3 5.9 4.6 32.4 13.4 9.7 41.9 19.5 

100 .9 
 

13.0 8.1 5.9 3.9 14.4 7.6 56.8 61.7 56.0 

400 .5 
 

17.3 6.0 4.8 5.1 83.5 41.5 21.9 94.0 58.8 

400 .9 
 

31.3 6.4 4.9 5.5 4.4 18.3 66.8 79.0 65.0 

1,000 .5 
 

42.6 6.7 7.4 6.3 99.6 79.5 52.3 100 92.9 

1,000 .9 
 

66.2 7.6 6.7 5.5 74.2 37.0 85.6 96.4 78.2 

Note.  

Data from three types of noninvariance conditions with 80% of total magnitudes of noninvariance and 75% 

of noninvariant items were used for these analyses. 
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Appendix C: Power Rates (%) - ML Estimation under Model Misspecification 

 

Power Rates (%) under Model Misspecification When Focal Group Had Higher 

Structural Parameter Values 

 

   

Factor loading noninvariance 

only 

Intercept noninvariance  

only 

Both factor loading and 

intercept noninvariance 

N 
 

R - F  F  F  R - F  F  F  R - F  F  F  

100 .5 
 

26.3 96.6 95.0 41.4 100 89.8 23.5 100 82.8 

100 .9 
 

79.2 100 100 60.6 100 99.6 60.1 100 98.6 

400 .5 
 

99.0 100 100 93.3 100 100 74.3 100 100 

400 .9 
 

36.4 99.4 99.3 99.2 100 100 95.1 100 100 

1,000 .5 
 

91.4 100 100 99.9 100 100 97.5 100 100 

1,000 .9 
 

100 100 100 100 100 100 100 100 100 

Note.  

Data from three types of noninvariance with 80% of total magnitudes of noninvariance and 75% of 

noninvariant items were used for these analyses. 

 

 

Power Rates (%) under Model Misspecification When Focal Group Had Lower 

Structural Parameter Values 

   

Factor loading noninvariance 

only 

Intercept noninvariance  

only 

Both factor loading and 

intercept noninvariance 

N 
 

R - F  F  F  R - F  F  F  R - F  F  F  

100 .5 
 

59.2 97.2 84.3 39.7 70.8 99.5 59.5 56.5 99.3 

100 .9 
 

99.7 100 100 56.0 96.2 99.9 93.0 96.2 99.9 

400 .5 
 

100 100 100 93.7 100 100 99.8 98.5 100 

400 .9 
 

86 99.2 97.4 99.1 100 100 100 100 100 

1,000 .5 
 

100 100 100 100 100 100 100 100 100 

1,000 .9 
 

100 100 100 100 100 100 100 100 100 

Note.  

Data from three types of noninvariance with 80% of total magnitudes of noninvariance and 75% of 

noninvariant items were used for these analyses. 
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Appendix D: Mplus Code for ML Estimation under Correct Model Specification 

 

TITLE: ML estimation under correct model specification  

DATA: File=Data_n3f1sd1r1.dat; 

VARIABLE:  

NAMES=X1-X4 Y1-Y4 G; 

USEVARIABLES= X1-X4 Y1-Y4; 

Grouping is G (1=reference 2=focal); 

 

MODEL:  

F1 BY X1@.5; 

F1 BY X2-X4*; 

F2 BY Y1@.5; 

F2 BY Y2-Y4*; 

[X1@.8]; 

[X2-X4*]; 

[Y1@.8]; 

[Y2-Y4*]; 

F2 ON F1*(CG1FC); 

X1-X4*; 

Y1-Y4*; 

F1@1; 

F2@.75; 

[F1-F2@0]; 

 

MODEL focal:  

F1 BY X1@.5; 

F1 BY X2-X4*; 

F2 BY Y1@.5; 

F2 BY Y2-Y4*; 

[X1@.8]; 

[X2-X4*]; 

[Y1@.8]; 

[Y2-Y4*]; 

F2 ON F1*(CG2FC); 

X1-X4*; 

Y1-Y4*; 

F1-F2*; 

[F1-F2*]; 

 

MODEL CONSTRAINT: 

NEW(DIFFCOE); 

DIFFCOE=CG1FC-CG2FC; 

 

OUTPUT: 
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Appendix E: Mplus Code for Bayesian Estimation with Zero Variation under Correct 

Model Specification 

 

TITLE: Bayesian estimation with zero variation under correct model specification  

DATA: File= Data_n3f1sd1r1.dat; 

VARIABLE:  

NAMES=X1-X4 Y1-Y4 G; 

USEVARIABLES= X1-X4 Y1-Y4; 

CLASSES=CG(2);  

KNOWNCLASS=CG(G=1 G=2); 

 

ANALYSIS:  

TYPE=mixture;  

ESTIMATOR=bayes;  

PROCESSORS=2;  

POINT=mean;  

CHAIN=2;  

FBITERATIONS=10000; 

 

MODEL:  

"%OVERALL%  

F1 BY X1-X4*; 

F2 BY Y1-Y4*; 

[X1-X4*]; 

[Y1-Y4*]; 

X1-X4*; 

Y1-Y4*; 

F1-F2*; 

F2 ON F1*; 

[F1-F2*]; 

 

%CG#1%  

F1 BY X1* (XL1); 

F1 BY X2-X4*; 

F2 BY Y1* (YL1); 

F2 BY Y2-Y4*; 

[X1*](XI1); 

[X2-X4*]; 

[Y1*](YI1); 

[Y2-Y4*]; 

F2 ON F1*(CG1FC); 

X1-X4*; 

Y1-Y4*; 

F1@1; 

F2@.75; 

[F1-F2@0]; 
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%CG#2%  

F1 BY X1* (XL1); 

F1 BY X2-X4*; 

F2 BY Y1* (YL1); 

F2 BY Y2-Y4*; 

[X1*](XI1); 

[X2-X4*]; 

[Y1*](YI1); 

[Y2-Y4*]; 

F2 ON F1*(CG2FC); 

X1-X4*; 

Y1-Y4*; 

F1-F2*; 

[F1-F1*]; 

 

MODEL CONSTRAINT: 

NEW(DIFFCOE); 

DIFFCOE=CG1FC-CG2FC; 

 

OUTPUT:  

tech8;  
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Appendix F: Mplus Code for Bayesian Estimation with 10% Variation under Correct 

Model Specification 

 

TITLE: Bayesian estimation with 10% variation under correct model specification  

DATA: File= Data_n3f1sd1r1.dat; 

VARIABLE:  

NAMES=X1-X4 Y1-Y4 G; 

USEVARIABLES= X1-X4 Y1-Y4; 

CLASSES=CG(2);  

KNOWNCLASS=CG(G=1 G=2); 

 

ANALYSIS:  

TYPE=mixture;  

ESTIMATOR=bayes;  

PROCESSORS=2;  

POINT=mean;  

CHAIN=2;  

FBITERATIONS=10000; 

 

MODEL:  

"%OVERALL%  

F1 BY X1-X4*; 

F2 BY Y1-Y4*; 

[X1-X4*]; 

[Y1-Y4*]; 

X1-X4*; 

Y1-Y4*; 

F1-F2*; 

F2 ON F1*; 

[F1-F2*]; 

 

%CG#1%  

F1 BY X1 @.5; 

F1 BY X2-X4*; 

F2 BY Y1 @.5; 

F2 BY Y2-Y4*; 

[X1 @.8]; 

[X2-X4*]; 

[Y1 @.8]; 

[Y2-Y4*]; 

F2 ON F1*(CG1FC); 

X1-X4*; 

Y1-Y4*; 

F1@1; 

F2@.75; 

[F1-F2@0]; 
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%CG#2%  

F1 BY X1* (G2XL1); 

F1 BY X2-X4*; 

F2 BY Y1* (G2YL1); 

F2 BY Y2-Y4*; 

[X1*](G2XI1); 

[X2-X4*]; 

[Y1*](G2YI1); 

[Y2-Y4*]; 

F2 ON F1*(CG2FC); 

X1-X4*; 

Y1-Y4*; 

F1-F2*; 

[F1-F1*]; 

 

MODEL CONSTRAINT: 

NEW(DIFFCOE); 

DIFFCOE=CG1FC-CG2FC; 

 

MODEL PRIORS: 

G2XL1~N(.5, .001); 

G2YL1~N(.5, .001); 

G2XI1~N(.8, .002); 

G2YI1~N(.8, .002); 

 

OUTPUT:  

tech8;  
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Appendix G: Type I Error Rates (%) from ML Estimation and Bayesian Estimation under 

Correct Model Specification 

 

   
Maximum Likelihood Estimation 

   

Factor loading noninvariance 

only 

Intercept noninvariance  

only 

Both factor loading and 

intercept noninvariance 

N 
 

R - F  F  F  R - F  F  F  R - F  F  F  

100 .5 
 

4.3 6.1 6.7 4.6 5.4 5.4 4.3 6.1 6.7 

100 .9 
 

4.7 6.1 7.5 4.3 5.4 5.6 4.7 6.1 7.5 

400 .5 
 

4.7 5.5 4.5 5.3 5.7 6.3 4.7 5.5 4.5 

400 .9 
 

5.3 5.5 4.9 5.0 5.6 6.0 5.3 5.5 4.9 

1,000 .5 
 

5.6 6.2 6.2 5.5 6.1 4.9 5.6 6.2 6.2 

1,000 .9 
 

4.7 6.2 6.4 5.7 6.1 4.6 4.7 6.2 6.4 

   
Bayesian Estimation with Zero Variation 

   

Factor loading noninvariance 

only 

Intercept noninvariance  

only 

Both factor loading and 

intercept noninvariance 

N 
 

R - F  F  F  R - F  F  F  R - F  F  F  

100 .5 
 

4.0 4.3 3.8 4.0 4.8 3.5 5.0 4.9 3.9 

100 .9 
 

3.7 4.3 3.9 4.0 4.9 4.0 4.4 4.7 3.4 

400 .5 
 

3.8 4.6 5.4 5.6 4.7 5.8 3.4 4.0 4.5 

400 .9 
 

3.7 4.2 5.2 4.8 4.7 5.3 3.9 3.6 4.1 

1,000 .5 
 

3.8 4.0 4.6 4.3 5.2 4.3 5.7 4.4 3.1 

1,000 .9 
 

4.0 4.1 4.4 5.0 5.1 4.7 5.6 4.9 3.3 

   
Bayesian Estimation with 10% Variation 

   

Factor loading noninvariance 

only 

Intercept noninvariance  

only 

Both factor loading and 

intercept noninvariance 

N 
 

R - F  F  F  R - F  F  F  R - F  F  F  

100 .5 
 

3.3 2.6 2.3 3.6 2.6 1.2 4.4 3.0 1.8 

100 .9 
 

3.4 3.8 3.2 4.0 3.7 2.3 4.2 4.3 2.7 

400 .5 
 

2.5 .1 .1 2.9 .3 .2 2.4 .1 < .1 

400 .9 
 

2.3 1.2 .6 2.7 1.3 1.3 2.0 1.1  .8 

1,000 .5 
 

1.7 < .1 < .1 1.7 .1 < .1 2.3 < .1 < .1 

1,000 .9 
 

.9 .1 .1 1.3 .4 < .1 2.0 .1  .1 

   
Bayesian Estimation with 20% Variation 

   

Factor loading noninvariance 

only 

Intercept noninvariance  

only 

Both factor loading and 

intercept noninvariance 

N 
 

R - F  F  F  R - F  F  F  R - F  F  F  

100 .5 
 

2.7 .7 .4 3.0 .5 < .1 3.9 .5 .3 

100 .9 
 

2.0 1.5 1.0 2.4 1.8 .7 2.3 1.7 .8 

400 .5 
 

1.6 < .1 < .1 1.2 < .1 < .1 1.4 < .1 < .1 

400 .9 
 

1.0 < .1 < .1 1.1 < .1 < .1 .6 < .1 < .1 

1,000 .5 
 

.4 < .1 < .1 .4 < .1 < .1 .8 < .1 < .1 

1,000 .9 
 

.1 < .1 < .1 .3 < .1 < .1 .3 < .1 < .1 

Note.  

Data from three types of noninvariance conditions with 80% of total magnitudes of noninvariance and 75% 

of noninvariant items were used for these analyses. 

 



150 

 

Appendix H: Power Rates (%) from ML Estimation and Bayesian Estimation under 

Correct Model Specification 

 

   
Maximum Likelihood Estimation 

   

Factor loading noninvariance 

only 

Intercept noninvariance  

only 

Both factor loading and 

intercept noninvariance 

N 
 

R - F  F  F  R - F  F  F  R - F  F  F  

100 .5 
 

31.4 93.1 82.4 33.1 94.1 83.8 31.4 93.1 82.4 

100 .9 
 

52.5 99.3 97.4 54.4 99.1 98.6 52.5 99.3 97.4 

400 .5 
 

84.6 100 100 86.5 100 100 84.6 100 100 

400 .9 
 

98.1 100 100 98.5 100 100 98.1 100 100 

1,000 .5 
 

99.5 100 100 99.6 100 100 99.5 100 100 

1,000 .9 
 

100 100 100 100 100 100 100 100 100 

   
Bayesian Estimation with zero variation 

   

Factor loading noninvariance 

only 

Intercept noninvariance  

only 

Both factor loading and 

intercept noninvariance 

N 
 

R - F  F  F  R - F  F  F  R - F  F  F  

100 .5 
 

27.3 72.8 52.3 30.1 73.3 55.1 27.4 73.1 49.6 

100 .9 
 

48.3 89.1 83.5 50.1 90.4 84.5 47.7 89.1 83.4 

400 .5 
 

79.5 100 99.0 81.5 99.8 99.0 78.3 100 98.8 

400 .9 
 

97.6 100 100 97.6 100 100 97.5 100 100 

1,000 .5 
 

98.8 100 100 99.0 100 100 98.4 100 100 

1,000 .9 
 

100 100 100 100 100 100 100 100 100 

   
Bayesian Estimation with 10% variation 

   

Factor loading noninvariance 

only 

Intercept noninvariance  

only 

Both factor loading and 

intercept noninvariance 

N 
 

R - F  F  F  R - F  F  F  R - F  F  F  

100 .5 
 

29.3 88.5 63.9 32.1 90.3 68.0 30.3 88.5 63.4 

100 .9 
 

49.7 98.6 94.5 51.5 98.6 96.2 49.2 98.5 94.8 

400 .5 
 

78.2 100 99.5 80.5 100 99.4 77.6 100 99.4 

400 .9 
 

96.4 100 100 97.0 100 100 96.4 100 100 

1,000 .5 
 

98.6 100 100 99.0 100 100 98.2 100 100 

1,000 .9 
 

100 100 100 100 100 100 100 100 100 

   
Bayesian Estimation with 20% variation 

   

Factor loading noninvariance 

only 

Intercept noninvariance  

only 

Both factor loading and 

intercept noninvariance 

N 
 

R - F  F  F  R - F  F  F  R - F  F  F  

100 .5 
 

26.9 73.0 45.4 29.3 75.4 49.6 27.5 74.6 44.1 

100 .9 
 

45.2 96.4 90.0 45.8 97.0 90.8 44.7 96.2 89.5 

400 .5 
 

68.3 99.2 93.0 69.8 99.1 94.0 67.7 99.2 92.9 

400 .9 
 

86.6 100 100 88.1 100 100 86.3 100 100 

1,000 .5 
 

94.7 100 98.6 96.6 100 99.2 95.0 100 99.0 

1,000 .9 
 

99.8 100 100 99.7 100 100 99.8 100 100 

Note.  

Data from three types of noninvariance conditions with 80% of total magnitudes of noninvariance and 75% 

of noninvariant items were used for these analyses. 
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