Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Radio Resource Management in Heterogeneous Cellular Networks

    Thumbnail
    View/Open
    Sung_umd_0117E_15698.pdf (2.057Mb)
    No. of downloads: 303

    Date
    2014
    Author
    Sung, Doohyun
    Advisor
    Baras, John S.
    DRUM DOI
    https://doi.org/10.13016/M2HK6F
    Metadata
    Show full item record
    Abstract
    Heterogeneous cellular networks (HetNets) have been considered as one of enabling technologies not only to increase the cell coverage and capacity, but to improve the user experience. In this dissertation, we address two research challenges in HetNets: one is the cross-tier interference problem where cell range expansion (CRE) is applied for user offloading in cell association so that pico mobile stations located in expanded range (ER-PMSs), which are connected to macrocells unless CRE is enabled, are severely interfered. The other is the load-aware cell association which tries to overcome the drawback of the received signal strength-based cell association including CRE, i.e., the degradation of network performance by user load imbalance. In the first part, we present the frequency-domain transmit power reduction scheme for the cross-tier interference mitigation. Inspired by the fact that a macrocell accommodates more users than its underlaid picocells, we focus on minimizing the macrocell's performance degradation while improving the throughput of ER-PMSs by the transmit power reduction. Due to the discreteness of frequency resource block scheduling, we also propose a greedy-based heuristic algorithm to solve the binary integer programming problem. In the following part, we present a different approach for the cross-tier interference mitigation, which is the time-domain transmit power nulling scheme utilizing the almost blank subframes (ABSs) in 3GPP standards. We turn our attention to a network-wide performance enhancement through configuring a certain number of ABSs while improving the performance of ER-PMSs as in the first part. A new scheduling policy for pico mobile stations is proposed and the optimal ER-PMS scheduling onto ABSs/non-ABSs is solved by decomposing the problem into multiple independent problems for pico base stations. In the last part, we study the load-aware cell association problem. Due to the combinatorial nature of the cell association problem and the cross-tier interference between macrocells and picocells, we propose an online heuristic algorithm where the cell association and the number of ABSs for cross-tier interference mitigation are jointly optimized. Through approximation of the required condition for load balancing and ABS control from the network-wide utility point of view, the proposed online algorithm not only requires simple feedback messages, but also be applicable to any state of cell association/ABSs in HetNets.
    URI
    http://hdl.handle.net/1903/16087
    Collections
    • Electrical & Computer Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility