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Heterogeneous cellular networks (HetNets) have been considered as one of

enabling technologies not only to increase the cell coverage and capacity, but to

improve the user experience. In this dissertation, we address two research challenges

in HetNets: one is the cross-tier interference problem where cell range expansion

(CRE) is applied for user offloading in cell association so that pico mobile stations

located in expanded range (ER-PMSs), which are connected to macrocells unless

CRE is enabled, are severely interfered. The other is the load-aware cell association

which tries to overcome the drawback of the received signal strength-based cell

association including CRE, i.e., the degradation of network performance by user

load imbalance.

In the first part, we present the frequency-domain transmit power reduction

scheme for the cross-tier interference mitigation. Inspired by the fact that a macro-

cell accommodates more users than its underlaid picocells, we focus on minimizing

the macrocell’s performance degradation while improving the throughput of ER-

PMSs by the transmit power reduction. Due to the discreteness of frequency re-



source block scheduling, we also propose a greedy-based heuristic algorithm to solve

the binary integer programming problem.

In the following part, we present a different approach for the cross-tier interfer-

ence mitigation, which is the time-domain transmit power nulling scheme utilizing

the almost blank subframes (ABSs) in 3GPP standards. We turn our attention to

a network-wide performance enhancement through configuring a certain number of

ABSs while improving the performance of ER-PMSs as in the first part. A new

scheduling policy for pico mobile stations is proposed and the optimal ER-PMS

scheduling onto ABSs/non-ABSs is solved by decomposing the problem into multi-

ple independent problems for pico base stations.

In the last part, we study the load-aware cell association problem. Due to the

combinatorial nature of the cell association problem and the cross-tier interference

between macrocells and picocells, we propose an online heuristic algorithm where

the cell association and the number of ABSs for cross-tier interference mitigation

are jointly optimized. Through approximation of the required condition for load

balancing and ABS control from the network-wide utility point of view, the proposed

online algorithm not only requires simple feedback messages, but also be applicable

to any state of cell association/ABSs in HetNets.
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Chapter 1: Introduction

1.1 Heterogeneous Cellular Networks

As smartphones and tablet PCs are widely spread throughout the world, mo-

bile data and video traffic demand has been increasing significantly. According to [1],

there are several noticeable trends and forecasts as follows:

• Mobile network trends in 2013

– Mobile video traffic exceeded 50% of the total mobile traffic in 2013.

– Mobile network connection speeds more than doubled in 2013 (average

downstream speed 1,387 Kbps) than that in 2012 (526 Kbps).

– A fourth-generation (4G) connection generated 14.5 times more traffic

on average than a non-4G connection, although 4G connections represent

only 2.9% of mobile connections.

• Mobile network forecasts through 2018

– Over 2
3

of the mobile traffic will be video by 2018.

– The average mobile connection speed will surpass 2 Mbps by 2016.
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– The average smartphone will generate 2.7 GB of traffic per month by

2018.

– 4G traffic will be more than 50% of the total mobile traffic by 2018.

As observed from trends and forecasts above, 4G mobile communication sys-

tems1 such as Mobile WiMAX or LTE have started playing an important role in

delivering traffic generated from mobile devices. Recent mobile communication stan-

dards such as 3GPP LTE-A [2] or IEEE 802.16m [3] have proposed advanced physical

layer (PHY) techniques such as carrier aggregation, coordinated MIMO transmis-

sion, etc. Adopting those link technologies to the existing cell sites can improve

user data rates and system capacity. However, as we are facing situations where

the mobile data traffic demand increases relentlessly and the radio link performance

approaches theoretical limits [4], an evolved network topology plays an important

role for 4G and beyond-4G mobile communication systems.

In traditional cellular networks, macro base stations (MBSs)2 having similar

transmit power levels, antenna patterns, and receiver noise floors are deployed in

a well-planned manner so as to maximize the coverage and control the interference

between MBSs. Therefore, it requires much more cost and effort to install more

1Strictly speaking, 4G communication systems, or IMT-Advanced systems according to ITU-

R’s definition, include Mobile WiMAX Release 2.0 (also known as IEEE 802.16m) and 3GPP

LTE-Advanced. However, we here refer to Mobile WiMAX and LTE as 4G systems since the term

4G has been widely used by carriers such as Verizon and AT&T.

2We will use base stations and cells interchangeably.
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MBSs (MBS densification) in urban areas as the deployment process is complex and

iterative. Moreover, it is more difficult to find an appropriate site for those MBSs

especially in dense urban area [5, 6].

As a consequence, heterogeneous cellular networks have been emerged as an

efficient way to improve spectral efficiency per unit area by utilizing a diverse set

of low-powered BSs such as picos, , femtos, relays, and remote radio heads (RRHs).

This network structure consists of high-powered (5 W ∼ 40 W) macrocells that

are regularly deployed in a planned manner and overlaid small cells of those low-

powered BSs with transmit power (100 mW ∼ 2 W) that are deployed in a relatively

unplanned manner. The example of heterogeneous cellular network deployment is

illustrated in Figure 1.1.

Those low-powered BSs have unique features. Pico BSs typically cover a small

area such as outdoor cafes and indoor offices or shopping malls. They are deployed

Figure 1.1: Heterogeneous cellular network deployment

(source by http://www.profheath.org/wp-content/uploads/2011/02/cellularSystems_hetnet-1024x576.jpg)
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by operators and are connected to the operators’ core network directly so that inter-

active signaling exchange with macro BSs are possible for coordination. Femto BSs

are deployed in a home or small business. They are connected to the core network

via public ISPs such as DSL or cable network. Due to its limited connectivity to the

core network, interactive signaling between macro- and femto BSs is harder than that

between macro- and pico BSs. In addition, femto BSs control their public users’ ac-

cess by managing a user group. When the access is only allowed to legitimate users,

it is called a femtocell is in a closed subscriber group (CSG) mode. An open sub-

scriber group (OSG) mode is the opposite policy in which every user is accessible to

a femtocell. Relay BSs, unlike picos and femtos, are connected to super-ordinating

macro BSs via wireless backhaul. The installation is rather easier due to its wireless

connectivity, however dedicated time- and/or frequency domain resource is neces-

sary for wireless backhaul which could require possible frame structure changes.

Remote radio heads (RRHs)3 are not regular BSs mentioned above, but remote RF

circuitry plus analog-to-digital/digital-to-analog converters and up/down converters

which are connected to the central BS via optical fibers. They are known to enable

distributed antenna systems [7]. Among these low-powered BSs, we are focusing on

a heterogeneous network deployment with macro- and pico BSs as pico BSs have

no restrictions on interactive signaling with macro BSs and their operation can be

totally transparent to macro BSs as well.

3There are high-powered RRHs of which transmit power is as strong as that of MBSs.
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By deploying low-powered small cells, we can eliminate the coverage holes and

further improve the network capacity by spatial cell-splitting within the existing

macrocell sites. Since those small cells have physically small sizes and require much

less cost than macrocells do, it provides more flexible site acquisition in a much

more cost-effective manner.

1.1.1 3GPP Rel-10 LTE-Advanced Systems

In 3GPP LTE-A (Long Term Evolution - Advanced) systems, a method called

cell range expansion (CRE) has been proposed to further enhance the cell-splitting

effect by deploying small cells. Under the CRE-based cell association policy, the

associating BS b∗ is determined as follows:

b∗ = arg max
b∈B

(Qb + ∆b), (1.1)

where B is the set of all BSs in the network, Qb is the received signal strength

of the pilot signal from BS b (Reference Signal Received Power (RSRP) in 3GPP

standards), and ∆b is a bias offset. Both Qb and ∆b are in a dB-scale. If BS b

belongs to overlaid small cells, ∆b has a positive value (> 0), otherwise ∆b becomes

zero for macrocells. By applying the CRE bias offset, more MSs can be associated

with small cells, which results in an improved cell-splitting effect. In Figure 1.2,

two cell association cases are illustrated where the cell association is done by the

received signal strength and the received signal strength plus the CRE bias offset,

respectively.

In addition, a time-domain method for cross-tier interference mitigation from

5



(a) No CRE case

(b) CRE case

Figure 1.2: Cell association w/ and w/o CRE

macrocells to small cells has been proposed, which is called almost blank subframe

(ABS). The use of ABSs is also referred to as enhanced intercell interference coor-

dination (eICIC). During a certain period of time, or configured ABSs, macrocells

don’t transmit any control or data signals except for essential signals for system

maintenance or backward compatibility such as broadcast system information, syn-

chronization signals, common reference signals, or paging signals. By nulling (or

muting) the transmit power by macrocells, the cross-tier interference toward small

cells can be effectively coordinated. In Figure 1.3, the usage of almost blank sub-
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frames is illustrated.

MBS

PMS

PBS

Time

Tx.

Power ABS

non-ABS

PMS

Time

Tx.

Power
no cross-tier interference

Figure 1.3: ABS configuration

1.2 Problem Statement

In this dissertation, we tackle two research problems in heterogeneous cellular

networks, which are the cross-tier interference mitigation and the load-aware cell

association.

1.2.1 Downlink Cross-tier Interference Mitigation

Due to the applied CRE bias offset, MSs located in the expanded range are

associated with picocells even if they observe the stronger received signal from a

macrocell than from associated picocells. Although this CRE operation helps MSs

to be offloaded toward picocells from the network point of view, it leads those
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pico MSs in the expanded range to suffering a strong cross-tier interference from

macrocells because they have originally observed a stronger received signal and the

stronger signal has become an interfering signal for them. In Figure 1.4, the cross-

tier interference toward a pico MS in the expanded range is illustrated.

Interfering

Signal

PMS

Expanded

Range Desired

Signal

MBS

PBS

Cross-tier interference

Figure 1.4: Cross-tier interference toward a pico MS in the expanded range

To mitigate this cross-tier interference, macrocells’ transmit power control

should be necessarily performed. Since the downlink transmit power control at

macrocells would result in macro MSs’ throughput degradation, it should be care-

fully determined.

1.2.2 Load-aware Cell Association

Although the CRE-based cell association could bring the user offloading effect

(macro MSs toward picocells), the received signal strength-based cell association

policy has an absence of MS load balancing throughout BSs. When a large number

of MSs are associated with a single BS based on the received signal strength, their

achievable throughput could be lower as the available resource per MS is inversely

8



proportional to the number of associated MSs. Moreover, in heterogeneous cellular

networks, offloading MMSs toward picocells without cross-tier interference mitiga-

tion becomes limited as offloaded MMSs’ achievable throughput would be severely

degraded by strong interference from macrocells. As a result, the load-aware cell

association should be jointly optimized with cross-tier interference mitigation simul-

taneously in heterogeneous cellular networks.

1.3 Contributions

The research contributions of this dissertation can be listed as follows:

• Firstly, we present two problem formulations for mitigating downlink cross-

tier interference with the CRE-based cell association in heterogeneous cellular

networks.

– In the first problem formulation, the frequency-domain transmit power

reduction is studied where the sum of transmit power reduction is min-

imized in a heterogeneous cellular network with a single macro BS. A

heuristic algorithm with much less computational complexity is proposed

to solve the integer linear programming (ILP) problem.

– In the second problem formulation, the time-domain transmit power

nulling (i.e., ABS optimization) is studied where the sum of utilities

of MSs in the network except for those located in the expanded range

is maximized in a heterogeneous cellular network with multiple macro

BSs. By formulating the optimization problem, we can find the optimal

9



number of ABSs that needs to be configured in heterogeneous cellular

networks.

• Lastly, we discuss a load-aware cell association problem in conjunction with

the use of ABSs for compensating the cross-tier interference in a heteroge-

neous cellular network with multiple macro BSs. Due to the NP-hardness

of the formulated problem, an online heuristic algorithm is proposed where

the load balancing and the ABS control are determined based on the expected

throughput.

1.4 Dissertation Organization

This dissertation is organized as follows:

• Chapter 2 provides brief literature overviews in areas of intercell interference

mitigation and load-aware cell association in multi-cellular networks.

• Chapter 3 and 4 discuss the details of resource allocation problems and solu-

tions in the context of cross-tier interference mitigation in downlink heteroge-

neous cellular networks.

– In Chapter 3, we discuss a frequency-domain transmit power reduction

problem in a heterogeneous cellular network with a single macrocell and

multiple overlaid picocells. An optimization problem is formulated to

minimize the sum of transmit power reduction at the macrocell subject

to the minimum required data rate of pico MSs located in the expanded

10



range. A heuristic algorithm is proposed to solve the formulated integer

linear programming problem. The performance evaluation is performed

via system-level simulations in MATLAB.

– In Chapter 4, we discuss a time-domain transmit power nulling prob-

lem (i.e., ABS configuration) in a heterogeneous cellular network with 7

macrocells with multiple overlaid picocells. An optimization problem is

formulated to maximize the sum of utilities of all MSs except for pico

MSs in the expanded range subject to the minimum required data rate of

those pico MSs located in the expanded range. The performance evalua-

tion is performed via numerical simulations using a system-level simulator

in MATLAB.

• Chapter 5 discusses the details of the cell association problem and the solu-

tion in the context of MS load-balancing in downlink heterogeneous cellular

networks. An optimization problem is formulated to maximize the sum of

utilities of MSs in the network along with respect to MSs’ cell association and

ABS control. An online heuristic algorithm is proposed to solve the formulated

combinatorial problem (NP-hard). The performance evaluation is performed

via numerical simulations using a system-level simulator in MATLAB.

• Chapter 6 concludes the dissertation.
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Chapter 2: Background and Related Work

2.1 Resource Allocation in Downlink OFDMA Networks

2.1.1 Homogeneous Networks

Briefly reviewing the resource allocation problem in a single cell case, the

water-filling [8] algorithm provides a way to optimally allocate the transmit power

over resource blocks to maximize the sum rate of a single user under the constraint of

the total transmit power. As we consider multiple users in the cell, the optimization

problem tends to be combinatorial as binary user scheduling indication onto each

resource block needs to be dealt along with the transmit power level. There have

been different problem formulations and various approaches to solve them in an

efficient way.

Jang et al. [9] formulate a sum rate maximization problem subject to the

constraint of the total transmit power. Due to the computational complexity of

finding an optimal transmit power level by water-filling, authors show that selecting

a user with the best channel condition on each resource block by equally distributing

the total transmit power over resource blocks provides the marginal performance

degradation compared to the jointly optimal transmit power and user scheduling on

12



each resource block.

Wong et al. [10] formulate a total transmit power minimization problem sub-

ject to the constraint of achievable data rates. Lagrangian relaxation (LR) is applied

to the number of bits to be achieved and the scheduling indicator, and a 2-step al-

gorithm is proposed where a resource block allocation is performed, and then an

appropriate number of bits are allocated accordingly.

Kivanc et al. [11] formulate a total power minimization problem subject to the

constraint of users’ minimum required data rate. A greedy algorithm is proposed

where users are scheduled onto resource blocks in an order of channel gain after

calculating the required number of resource blocks based on the minimum data rate

and average SNR.

Rhee et al. [12] formulate a max-min optimization problem where the minimum

of all users’ throughput is maximized for fairness among users. By relaxing the

binary scheduling indicator to real values, the original problem becomes convex,

and a sub-optimal algorithm is proposed where resource blocks are assigned to users

based on the equally distributed transmit power.

Wong et al. [13] formulate a rate maximization problem subject to the con-

straints of total power and proportional fairness among users. Due to non-linearity of

proportionality constraints, authors propose an algorithm where the user scheduling

is performed in a greedy manner to maximize the total rate based on the propor-

tional fairness. Then, the transmit power level is determined based on water-filling.

In a multi-cell case, the presence of inter-cell interference is a critical challenge,

which means allocating more transmit power on a specific resource block from each

13



cell doesn’t guarantee a higher network-wide sum data rate unlike the single cell

case, because the higher transmit power from a cell results in the stronger inter-

cell interference toward neighboring cell. As a result, the resource allocation for

mitigating the inter-cell interference is the key issue in multi-cell networks.

As an extension of a single cell optimization, there have been several work on

joint optimization of transmit power level and user scheduling in a presence of inter-

cell interference. Koutsopoulos et al. [14] formulate a system rate maximization

problem with respect to user scheduling, modulation order, and transmit power

level subject to the constraint of the total transmit power and minimum required

SINR values. To solve the optimization problem, a greedy-based heuristic algorithm

is proposed where a user with the largest data rate increment scaled by the ratio

of desired and interference powers is selected for each resource block, and transmit

power levels of base stations are updated accordingly based on the minimum required

SINR values.

Li et al. [15] formulate a system rate maximization problem with respect to

the user scheduling. Due to the intractable interference by dynamic transmit power

control and the presence of adaptive modulation & coding (AMC) technique, the

total transmit power is assumed to be equally distributed over resource blocks. To

solve the problem, a hierarchical user scheduling algorithm is proposed where the

best user assignment is calculated to maximize the sum data rate by utilizing each

user’s achievable rate with and without a dominant interference in a large scale at

a network controller, and the resource block allocation is performed in a small scale

at each base station based on the traffic diversity and the fading of wireless channel.
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Thanabalasingham et al. [16] formulate a total transmit power minimization

with respect to the user scheduling and the transmit power level subject to the

constraint of minimum required data rates. By relaxing the binary scheduling in-

dicator to be real values and assuming inter-cell interference can be averaged out

by frequency hopping, the original multi-cell optimization problem is transformed

into multiple single-cell problems which can be solved using a standard Lagrangian

technique.

Due to dynamically changing inter-cell interference by transmit power control

with frequency reuse 1 (e.g., all base stations can access resource blocks without

any restriction) in multi-cell networks, a different approach of inter-cell interference

avoidance has been discussed. The main principle is that the scheduling restriction

in a frequency domain is applied to neighboring cells so that inter-cell interference

can be avoided/mitigated, and the transmit power level is upper-limited to a cer-

tain value (normally equally distributed transmit power level). One method is to

divide the total system bandwidth into 3 groups each of which has equally dis-

tributed transmit power and is exclusively allocated to each cell, which is known

as frequency reuse- 3 illustrated in Figure 2.1(a). Since each cell can only utilize

1
3

of the system bandwidth in frequency reuse-3, fractional frequency reuse (FFR)

schemes are proposed which are partial frequency reuse (PFR) and soft frequency

reuse (SFR). The PFR scheme [17] is a blend of frequency reuse-1 and reuse-3 as

illustrated in Figure 2.1(b). For the cell-center area, reuse-1 is applied with a lower

transmit power level, and for the cell-edge area, each cell occupies an orthogonal

frequency resource blocks so that inter-cell interference can be effectively avoided.
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Figure 2.1: Frequency reuse schemes
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The SFR scheme [18] provides more efficient resource utilization than PFR does as

it allows each cell utilizes all frequency resource blocks with different transmit power

level, illustrated in Figure 2.1(c).

In 3GPP Rel-8 LTE systems [19], Inter-Cell Interference Coordination (ICIC)

scheme is proposed to mitigate inter-cell interference through signal exchanges be-

tween eNodeBs. For the downlink transmissions, a bitmap called the Relative Nar-

rowband Transmit Power (RNTP) indicator can be exchanged between eNodeBs

over the X2 interface. Each bit of the RNTP indicator corresponds to one resource

block in the frequency domain and is used to inform the neighboring eNodeBs if the

cell is planning to keep the transmit power for the resource block below a certain

upper limit or not. The value of this upper limit, and the period for which the in-

dicator is valid into the future, are configurable. This enables the neighboring cells

to take into account the expected level of interference in each resource block when

scheduling UEs in their own cells. The reaction of the eNodeB in case of receiving

an indication of high transmit power in a resource block in a neighboring cell is not

standardized (thus allowing some freedom of implementation for the scheduling al-

gorithm); however, a typical response could be to avoid scheduling cell-edge UEs in

such resource blocks. In the definition of the RNTP indicator, the transmit power

per antenna port is normalized by the maximum output power of a base station

or cell. The reason for this is that a cell with a smaller maximum output power,

corresponding to smaller cell size, can create as much interference as a cell with a

larger maximum output power corresponding to a larger cell size.

Elayoubi et al. [20] [21] develop an analytical model for the collisions for an
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arbitrary number of users in the different cells to compare the performance of dif-

ferent frequency reuse schemes: reuse-1, reuse-3, partial frequency reuse, and soft

frequency reuse. They calculate the capacity of the system using a Markov model

and adaptive modulation & coding under inter-cell interference.

Ali et al. [22] propose a two-step hierarchical algorithm to maximize the system

data rate. In the first step, resource blocks are assigned to reuse-1 or reuse-3 region

for base stations by the network controller such that the achievable system data rate

is maximized subject to the constraint of QoS data rates of base stations. Then,

in the second step, in each base station the best user is selected for the allocated

resource blocks to maximize the sum rate subject to the constraint of each user’s

minimum required data rate.

Rahman et al. [23] [24] [25] discuss an inter-cell interference avoidance scheme

with a performance comparison to frequency reuse schemes. A utility maximization

problem is formulated where the utility function is a product of the achievable

date rate and the demand factor of a user. To solve the optimization problem, a

hierarchical algorithm is proposed where in each base station resource restriction

request is generated based on users’ utility and their dominant interfering base

station information, and in the network controller those restriction requests are

resolved in an optimal manner to maximize the total utility.

Chang et al. [26] utilize the graph framework to support dynamic fractional

frequency reuse schemes - partial/soft frequency reuse. As a first step, an interfer-

ence graph is constructed where users and interference between two users represent

vertices and edges, respectively. Then, as a second step, a graph coloring algorithm
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is proposed to efficiently allocate resource blocks to users. Any two neighboring

users (i.e., vertices connected by an edge) in the graph are assigned with different

colors.

2.1.2 Heterogeneous Cellular Networks

Heterogeneous cellular networks can be seen as a subset of multi-cell networks,

even if there is only one macrocell assumed in the network due to the presence of mul-

tiple low-powered small cells. However, the interference scenarios are quite different

from those in homogeneous networks. In femtocell-based heterogeneous cellular net-

works [27], cross-tier interference mitigation from closed access femtocells to macro

users is one of challenges as macro users are unable to hand over those femtocells due

to their closed access policy. The other interference scenario is co-tier interference

mitigation among femtocells, of which challenge comes from the limited connectivity

to the core network. This limitation makes the centralized interference mitigation

method unavailable so that distributed methods are discussed. In picocell-based

heterogeneous cellular networks, cross-tier interference mitigation from macrocells

to pico users (or specifically pico users located in the expanded range). Since these

pico users in the expanded range are associated with picocells by the CRE opera-

tion even if they observe a stronger received signal strength from macrocells, the

interference from macrocells is much stronger than the desired signal from picocells

for those pico users.

Firstly, we briefly review some work on interference mitigation in femtocell-
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based heterogeneous cellular networks. Su et al. [28] discuss a cross-tier interference

mitigation in femtocell networks by formulating a problem of minimizing the sum of

interference observed by macro users subject to the constraints of all users’ minimum

required SINR levels and interference levels. Due to the small coverage of femto-

cells, co-tier interference between femtocells are not considered, and only cross-tier

interference between macros and femtos. In their algorithm, macro users feed back

the interference power from femtocells to their macrocells, and macrocells update &

signal to femtocells the parameters by which femtocells adjust their transmit power

accordingly.

Chandrasekhar et al. [29] discuss an orthogonal resource allocation to macros

and femtos such that the average throughput per frequency and area is maximized.

Assuming that the system frequency bandwidth F is divided into two parts - macro

part Fc and femto part Ff , the spectrum fraction of macro ρ = Fc/F is used as a key

parameter to determine the per-tier area spectral efficiency. Utilizing a stochastic

geometry framework, the optimal ρ∗ for different femtocell deployment scenarios is

calculated.

Ling et al. [30] discuss a co-tier interference mitigation in densely-deployed

femtocell networks, and a self-organizing algorithm for resource block allocation

to users is proposed. In order to minimize its suffered interference, each femtocell

independently measures all resource blocks and select resource blocks with the lowest

interference.

Kamel et al. [31] discuss the optimized ABS operation (offset and ratio) for

interfered macro users by closed femtocells. To maximize the network-wide utility
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as an objective, in the first stage macro users are divided into two groups - normal

macro users and victim macro users, and a bargaining starts between the two groups

to partition the resources. In the second stage, a bargaining starts for only victim

macro users in a given highly interfering femtocells for the reduction of the blanking

rate associated with each highly interfering femtocells.

Lastly, we review work on interference mitigation in picocell-based heteroge-

neous cellular networks, which is of our main interest. Lopez-Perez et al. [32] [33]

discuss a macrocell’s transmit power reduction for mitigating cross-tier interference

toward pico users in the expanded range. Assuming there is a minimum required

SINR level for each pico user in the expanded range, the reduced macrocell’s trans-

mit power level is determined for resource blocks where those pico users are sched-

uled. Given the reduced transmit power level on each resource block, a transmit

power minimization problem is formulated subject to the constraint of macro users’

minimum required QoS data rates, and is solved by utilizing a network simplex

algorithm [34].

Li et al. [35] discuss an FFR scheme in heterogeneous cellular networks. Given

the cell association based on the CRE operation, the transmit power level, FFR band

portion, and user scheduling are jointly optimized to maximize the network-wide

utility. To solve the optimization problem, a two-loop algorithm is proposed where

every combination of FFR band partition and transmit power level is examined

with a certain step size in an outer loop, and user scheduling onto two FFR bands

is solved using a gradient-descent method in an inner loop.

Pang et al. [36] discuss a time-domain macrocells’ transmit power nulling, i.e.,
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the optimal number of almost blank subframes (ABSs). The network-wide utility

(i.e., the sum of users’ utilities) maximization problem is formulated to find the

optimal number of ABSs. The pico user scheduling policy is based on the pico user

categorization into one of two groups - normal and victim. The pico users in the

normal group are only scheduled in non-ABSs, and those in the victim group are

only scheduled in ABSs. For every possible value of ABSs, every base station needs

to calculate the sum of the associated users’ utilities. Unlike macro base stations

of which users are only scheduled to non-ABSs, pico base stations need to find the

best categorization of their users into two groups and calculate the sum of utilities

using a dynamic programming algorithm. Those utility values from base stations

are signaled to a central coordinating entity so that the optimal number of ABSs

that maximizes the network-wide utility is chosen.

Cierny et al. [37] also discuss the optimal number of ABSs in the heterogeneous

cellular networks. The minimization problem of the number of ABSs is formulated

subject to the constraint of minimum required data rate of pico users in the expanded

range. The pico user scheduling policy is that pico users in the expanded range are

scheduled in both ABSs and non-ABSs, and regular pico users are only scheduled in

non-ABSs. In other words, the ABS resource is exclusively available for pico users in

the expanded range and the non-ABS resource is shared by both regular pico users

and pico users in the expanded range. The smallest number of ABSs is selected by

which all pico users in the expanded range can achieve their minimum required data

rate.
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2.2 Load-aware Cell Association in Wireless Networks

The user load balancing in wireless networks has gained attention and interest

from researchers due to the following aspects: (i) when a large number of users are

served by a single cell, each user’s expected throughput is severely degraded by a

small amount of available resource for them, (ii) the conventional user association

policy, where each user is associated with a cell (or BS) from which it observes the

strongest received signal strength, can cause the user load imbalance across cells.

2.2.1 Homogeneous Wireless Networks

One approach for load balancing is to change the cell size depending on the user

load, so called cell breathing technique, which is used in CDMA networks [38] [39] [40]

or wireless LANs [41] [42]. The key principle is that the heavily loaded cells shrink

their cell size by reducing the transmit power so that users are encouraged to be

handed over lightly loaded neighboring cells, or vice versa. Finding the appropriate

transmit power level among neighboring cells is the key challenge for cell breathing,

and heuristic algorithms are proposed to reduce the computational complexity.

The more common approach in OFDMA-based multi-cell networks such as

wireless LANs, LTE networks, or WiMAX networks is to change each individual

user’s association with a cell in a way to maximize/minimize the objective function.

Bu et al.discuss a problem formulation of the network-wide utility maximization.

Based on the observation in [43] that the proportionally fair allocation of network
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resources is equivalent to the optimization of the following objective function:

max
∑
u∈U

∑
a∈Su

log(γua), (2.1)

where U is the set of users, Su is the set of base stations from which the user u can

achieve the average rate rua > 0, and γu is the bandwidth allocation to the user

u by the network. Assuming that all users have Rayleigh fading channels and the

priority, and the feasible rate is linear in SINR, γua under a generalized proportional

fairness scheduling can be defined as

γua = rua
G(ya)

ya
, (2.2)

where ya is the number users associated with the base station a and G(ya) is the

multi-user diversity gain which is a function of ya according to [43] [44]. As a

result, from the objective function in (2.1), the following optimization problem is

formulated:

max
∑
u∈U

∑
a∈Su

xua log

(
rua

G(ya)

ya

)
(2.3a)

s.t. xua = {0, 1} ∀u ∈ U ∀a ∈ Su (2.3b)∑
a∈Su

xua = 1 ∀u ∈ U , (2.3c)

ya =
∑
u∈U

xua ∀a ∈ A, (2.3d)

where A is the set of base stations. Due to the binary nature of the association

indicator xua, it is proved that the optimization problem in (2.3) is NP-hard, and

there is no algorithm that can find the optimal solution in a polynomial time unless

P = NP . To solve the optimization problem, authors propose 1 offline and 2 online
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algorithms. In the offline algorithm, it is shown that the original problem becomes

the maximum weighted matching problem for every fixed value ya. By enumerating

all possible ya configurations, the problem can be solved in a polynomial time.

The first online algorithm is a greedy-based heuristic algorithm where each user is

associated with the base station such that the objective function improves the most.

In the second online algorithm, assuming that the association of at most k users

can be changed, all the possible cases for those k users are evaluated and the best

association is selected.

Son et al.discuss the same objective function (i.e., the network-wide propor-

tional fairness-based utility maximization) as Bu’s [45], and they take the inter-cell

interference mitigation into account by applying a partial frequency reuse. To solve

the optimization problem, they use a notion of expected throughput which is the

average throughput expected by handing over a user from a serving cell to a target

cell. With an assumption of the large number of users associated with each base

station and the Euler’s approximation to harmonic series, it is proved that a user’s

handover to another cell improves the network-wide utility (i.e., the net utility is

greater than 0). Using this observation, an online heuristic algorithm is proposed

where the user with the largest net utility is handed over to the target cell for each

iteration.

Berjerano et al. [46] discuss an objective function of the network-wide max-min

fairness in wireless LANs. In their work, the goal is to maximize the minimal fair

share of each user, of which type of fairness is known as max-min fairness. Informally,

a bandwidth allocation is max-min fair if there is no way to give more bandwidth to
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any user without decreasing the allocation of a user with less or equal bandwidth.

Due to the NP-hardness of the problem, they propose an efficient algorithm where

a fractional association solution is computed first, and then the integral solution is

obtained by a rounding method.

Kim et al. [47] discuss a generalized optimal user association policy, which is

called α optimal. The distributed association decision made at users is proposed

where a user located at x simply selects the base station i(x) using the deterministic

rule as

i(x) = arg max
j∈B

cj(x)
(

1− ρ(k)j
)α
, (2.4)

where cj(x) is the achievable rate of the user at location x with a base station j, B

is the set of base stations, and ρ
(k)
j is the user load information of the base station

j in k-th iteration. The proposed algorithm supports a family of load-balancing

objectives as α ranges from 0 to ∞: rate-optimal (α = 0), throughput-optimal

(α > 1), delay-optimal (α = 2), and equalizing BS loads (α =∞).

2.2.2 Heterogeneous Cellular Networks

Due to the presence of overlaid low-powered cells, the key issue of load balanc-

ing in heterogeneous cellular networks is how to distribute user load toward those

small cells in a macrocell.

As introduced in Section 1.1.1, a modified version of the received signal strength-

based cell association, i.e., cell range expansion in 3GPP LTE-A systems, can achieve

the user distribution from macrocells to small cells. However, the possible user load
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imbalance is still a challenge even if the CRE operation is applied.

Ye et al.formulate a network-wide utility maximization problem with respect

to the user association. Similar to the work in [45] [48], the following optimization

problem is formulated:

max
∑
i∈U

∑
j∈B

xij log

(
cij∑
k xkj

)
(2.5a)

s.t. xij = {0, 1} ∀i ∈ U ∀j ∈ B (2.5b)∑
j∈B

xij = 1 ∀i ∈ U , (2.5c)

where U and B denote the set of users and base stations, respectively. By relaxing

the binary cell association indicator, the optimization problem in (2.5) becomes

convex, and using the Lagrangian dual decomposition method, the dual problem of

the primal formulation becomes

min
µ

fx(µ) + gK(µ) (2.6a)

where f(µ) =


maxx

∑
i

∑
j xij (log(cij)− µj)

s.t. xij = [0, 1]∑
j∈B xij = 1

(2.6b)

g(µ) = max
K≤NU

∑
j

Kj (µj − log(Kj)) , (2.6c)

where µ is a Lagrangian multiplier, Kj is the number of associated users in base

station j, and NU is a constraint for the distributed algorithm. From above dual

problem, a distributed algorithm is proposed where at the user side, user i at time

t determines its associating base station j∗ as

j∗ = arg max
j

log(cij)− µj(t), (2.7)
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where µj is assumed to be broadcast from base station j, and at the base station

side, the new Lagrangian multiplier µj is updated based on the number of associated

users as

µj(t+ 1) = µj(t)− δ(t) ·

(
Kj(t)−

∑
i

xij(t)

)
, (2.8)

where δ(t) > 0 is a dynamic step size.

Madan et al.discuss the network-wide utility maximization with respect to

cell association, user scheduling, and transmit power control. For a fixed transmit

power level, the utility maximization problem can be solved using a convex opti-

mization tool, during each iteration a base station evaluates the total utility by

solving above optimization problem for different combinations of its transmission

power and neighbors’ transmission powers. By exchanging the transmit power level

information with other neighbors through over-the-air signalling via users, the opti-

mal transmission power level is determined. Similarly, during each iteration, a base

station evaluates the total utility in a neighborhood for different associations of a

user with its neighbors so that the association is determined in a way that the total

utility is maximized.

Corroy et al.discuss the network-wide rate maximization with respect to the

cell association. For each macrocell area, authors divide the user association into

three cases: association with macro, association with pico, and partial association

with macro and pico simultaneously. For the partial association case, the optimiza-

tion problem becomes quasi-convex by relaxing the association indicator, and the

bisection method is used to solve the problem. For the reduced computational com-
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plexity, a heuristic algorithm is proposed where for each iteration a user with the

largest difference in the received signal strength between pico and macro is selected

and the best cell association is determined by examining all possible associations.

Yu et al. [49] [50] discuss the composite utility maximization in relay-based

heterogeneous cellular networks. Their objective is to maximize the system capacity

which is expressed as the sum of connected users in the network, and minimize the

resource consumed for supporting the connected users, which is expressed as

max −
N∑
i=1

Mr∑
j=1

Mc∑
k=1

Ωijk + ε
N∑
i=1

Mr∑
j=1

Mc∑
k=1

xijk, (2.9)

where N is the number of users, Mr is the number of relay base stations, Mc is the

number of macro base stations, Ωijk is the weighted resource required to support

user i, xijk is the association indicator, and ε is a factor to adjust the relative

importance between two objectives. For a reduced computational complexity, a

heuristic algorithm is proposed where, for each user entering the network, the base

station from which the user achieves the lowest weighted resource consumption is

chosen. In [51] authors expand above composite utility maximization problem to

full/partial frequency reuse cases. Depending on the frequency reuse schemes, the

resource consumption for supporting users becomes different. To solve the problem,

a gradient descent-based algorithm is proposed.

Li et al. [52] discuss a proportional fairness-based utility maximization prob-

lem with respect to cell association in relay-based heterogeneous cellular networks.

Depending on a user’s association with macro or relay, the portions of direct link

from macro, forward link from relay, and wireless backhaul link to relay are chang-

29



ing accordingly. Using the gradient-based scheduling framework, the cell association

variable is chosen to maximize the drift of the objective function. The multi-carrier

proportional fair scheduling is decomposed into multiple single-carrier scheduling

problems.

The tractable framework to analyze SINR in heterogeneous cellular networks

has been discussed. Using stochastic geometry, SINR distribution in multi-tier het-

erogeneous cellular networks is discussed in [53] [54], and Jo et al.studies long-term

average rate-based flexible cell association with cell range expansion.

Oh et al. [55] discuss the cell selection policy based on the expected user data

rate with respect to an ABS ratio α. For a given ABS ratio α, macro users can

only utilize (1− α) non-ABS resource and pico users can utilize both (1− α) non-

ABS resource and α ABS resource. Based on this observation, users determine their

serving cells from which they can achieve the highest expected data rate.

Hu et al. [56] discuss cell associations in relay-based heterogeneous cellular

networks. Assuming the multiple associations in downlink and uplink for every

user are available, two association policies for downlink and uplink are proposed.

In downlink, users are associated with a base station from which they observe the

strongest received signal strength which provides the higher achievable data rates.

In uplink, on the other hand, users are associated with the closest base station

by which users can minimize the uplink transmit power towards the serving base

station.

There have been some work on performance evaluation of unique features in

heterogeneous cellular networks. Okino et al. [57] evaluate the downlink network
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throughput with the various CRE bias values and ABSs. Saleh et al. [58] discuss the

performance of relay-based heterogeneous cellular networks. By applying different

CRE bias values for initial cell association and handover, both downlink and uplink

throughput gains by cell-splitting and load balancing are studied.
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Chapter 3: Frequency-domain Macrocell Transmit Power Reduction

3.1 Motivation

When the MBS’s transmit power needs to be reduced for mitigating cross-tier

interference toward pico MSs located in the expanded range (ER-PMSs) who receive

a stronger interfering signal than the desired, two issues at the MBS can be raised as

follows: i) how much transmit power should be reduced and ii) how many frequency-

domain resource blocks (RBs) should be configured with the reduced transmit power.

Although the transmit power nulling in a time-domain (3GPP LTE-A’s ABSs)

or a frequency-domain [59] can be the most effective way to mitigate the cross-tier

interference, the challenging issue here would be MMSs’ throughput degradation

by transmit power nulling where the achievable throughput of MMSs is zero dur-

ing those time- and frequency-domain resources. Authors in [60] have introduced a

concept of low power transmissions from MBSs during ABSs so that MMSs’ through-

put can be improved. Due to the coarse granularity of teim-domain subframes, the

frequency-domain transmit power reduction could be better for the MBS to control

the transmit power in a finer manner.

In addition to the transmit power level, it is also important to determine how

many RBs are configured with the reduced transmit power. In [32], a transmit power
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reduction scheme at an MBS is proposed, whereby RBs and their trantmit power

level at the MBS are determined by ER-PMSs’ scheduled RBs and their required

signal-to-interference plus noise ratio (SINR) values. For those RBs, the MBS needs

to reduced the transmit power so that the scheduled ER-PMSs could achieve the

minimum required SINR. Since ER-PMSs’ scheduled RBs are not aligned at all, the

MBS may need to reduce its transmit power over all RBs in the worst case. This

could deteriorate MMSs’ throughput significantly.

In this chapter, we propose a coordinated scheduling and power control algo-

rithm for heterogeneous cellular networks where the sum of MBS’s reduced trans-

mit power is minimized. To maximize the interference mitigation effect by reducing

MBS’s transmit power, it is assumed that all ER-PMSs are scheduled onto the same

RBs. The reduced transmit power level on each RB is determined by MMSs’ min-

imum required SINR as a QoS requirement. Then, a group of RBs for ER-PMSs

is selected to satisfy ER-PMSs’ minimum required data rate by solving a binary

integer programming problem.

3.2 System Model

The network model considered in this paper is a heterogeneous downlink cel-

lular network consisting of 1 MBS and P PBSs deployed inside the MBS’s coverage.

Let Um, Upl and UpER denote the set of MMSs, PMSs in the lth PBS, and all ER-

PMSs in picocells, respectively. The corresponding cardinalities are represented as

following: |Um| = Km, |Upl | = Kp
l , and |UpER| = P . For the simplicity of explana-

33



tion, we consider only 1 MBS and each PBS is assumed to have one ER-PMS, i.e.,

P ER-PMSs in total. The system bandwidth W is divided into N resource blocks

and the co-channel deployment is assumed which means both MBS and PBSs are

sharing the system bandwidth together. The noise power spectral density is N0, and

the averaged channel gain between a BS and an MS over a resource block including

path loss, shadowing, and fast fading is assumed to be acquired a priori via channel

state information feedback.

The received signal-to-interference plus noise ratio (SINR) of MMS i on RB n

can be expressed as

Γmi,n =
Pm,nh

m
i,n∑P

l=1 Pph
pl
i,n + σ2

, (3.1)

where Pm,n is the allocated transmit power at MBS on RB n ranging from 0 to

Pm (0 ≤ Pm,n ≤ Pm) where Pm is the transmit power by equally distributing the

total transmit power P tot
m over N RBs (Pm = P tot

m

N
), Pp is the equally distributed

power over all N RBs at PBSs (Pp =
P tot
p

N
) where P tot

p is the total transmit power

of PBSs, hbi,n is the average channel gain from the BS b (’m’ for MBS, ’pl’ for PBS

l) to MMS i on RB n including path loss, shadowing, and fast fading, and σ2 is

the power of additive white Gaussian noise (σ2 = N0 · WN ). By restricting Pm,n to

be upper-bounded by Pm, we prevent additional interference toward PMSs which

can be caused by allocating extra transmit power onto some RBs when the transmit

power control is applied (i.e., P tot
m −

∑N
n=1 Pm,n > 0). It is additionally assumed that

PBSs do not perform the transmit power control.

For the SINR of PMS j in PBS l on RB n, we define two forms of SINR
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depending on MBS’s transmit power level. If the transmit power control is not

applied by MBS, i.e., Pm,n = Pm, the corresponding SINR can be expressed as

Γplj,n =
Pph

pl
j,n

Pmhmj,n +
∑P

l′=1,l′ 6=l Pph
pl′
j,n + σ2

, (3.2)

and if the transmit power control is applied, i.e., Pm,n < Pm, the corresponding

SINR is expressed as

Γplj,n =
Pph

pl
j,n

Pm,nhmj,n +
∑P

l′=1,l′ 6=l Pph
pl′
j,n + σ2

, (3.3)

where Pm,n is the reduced transmit power at MBS on RB n with which Pm,n is

replaced in order to distinguish the reduced transmit power level.

Using Shannon’s equation, two achievable data rates of MS u in BS b on RB

n, Ru,n and Ru,n, can be calculated based on Γbu,n and Γbu,n as

Ru,n =
W

N
log2(1 + Γbu,n) (3.4)

Ru,n =
W

N
log2(1 + Γbu,n), (3.5)

respectively.

3.3 Problem Formulation

Our main objective is to minimize the impact on MBS by performing transmit

power control. When the transmit power is reduced on RB n, the achievable data

rate of a scheduled MMS on that RB n is obviously decreased. Therefore, the

objective can be expressed as follows:

minimize
∑N

n=1(Pm − Pm,n)

= maximize
∑N

n=1 Pm,n.

(3.6)
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Although it is optimal to allocate the maximum available power on every RB,

i.e., Pm,n = Pm ∀n, from MBS’s perspective, ER-PMSs’ performance would be

severely degraded without MBS’s transmit power control. Therefore, we need to

carefully determine how many RBs should be used for transmit power reduction at

MBS and how much power should be reduced for those RBs.

To further develop the optimization problem, we make the following assump-

tions for the remainder of this chapter:

• Every MMS i has their minimum required SINR level, denoted by γi,req.

• Every ER-PMS j has their minimum required data rate, denoted by Rj,req.

• All ER-PMSs in the network are dedicatedly allocated to the group of RBs

together.

Based on the assumptions above, we further discuss the optimization problem

in (3.6) in the following sections. The proposed radio resource management scheme

can be implemented in three steps:

1) The MBS determines a pair of MMS and the reduced transmit power level on

every RB based on MMSs’ minimum required SINR level and their channel con-

dition.

2) Then, the MBS selectively chooses a group of RBs by which the sum of MBS

transmission power is maximized and all ER-PMSs are guaranteed their mini-

mum required data rates.
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3) After determining the group of RBs with their reduced transmit power for coor-

dination, MBS and PBSs perform the user scheduling for unselected RBs.

3.4 Problem Solving

3.4.1 MMS & Transmit Power Determination

Suppose that every MMS i has a minimum required SINR level as a QoS

requirement, MBS’s transmit power Pm,n on RB n needs to satisfy the following:

Pm,nh
m
i,n∑P

l=1 Pph
pl
i,n + σ2

≥ γi,req, ∀i, ∀n (3.7)

where γi,req denotes the SINR requirement for the MMS i.

From (3.7), we can calculate the minimum required transmit power level P ′i,n

for MMS i on RB n which is the lowest power level that the MBS can reduce the

transmit power down to as

P ′i,n =

∑P
l=1 Pph

pl
i,n + σ2

hmi,n
· γi,req, ∀i, ∀n. (3.8)

For every RB n, totally Km pairs of MMS and its required transmit power, i.e.,

{i, P ′i,n} ∀i, can be generated. In order to provide the least cross-tier interference

toward ER-PMSs, the MBS selects the MMS i∗n for RB n which requires the lowest

transmit power level as

i∗n = arg min
i∈Um

P ′i,n, ∀n

= arg min
i∈Um

(∑P
l=1 Pph

pl
i,n + σ2

hmi,n
· γi,req

)
, ∀n. (3.9)
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In order for MMSs to be selected as the MMS i∗n, they should experience fairly good

channel condition and/or low SINR requirement.

After finding the best MMS i∗n on every RB n, the reduced transmit power

level Pm,n can be obtained as

Pm,n = P ′i∗n,n =

∑P
l=1 Pph

pl
i∗,n + σ2

hmk∗,n
· γi∗,req, ∀n, (3.10)

and the transmit power margin on RB n, denoted by P̃m,n, is defined, which is the

transmit power difference between the equal power Pm and the reduced transmit

power Pm,n as

P̃m,n = Pm − Pm,n ≥ 0, ∀n. (3.11)

3.4.2 Coordinated RB Selection for ER-PMSs

Based on the reduced transmit power Pm,n on every RB n obtained through

(3.9), (3.10), we then determine how many RBs with reduced transmit power need

to be allocated for ER-PMSs.

Let us define the coordinated scheduling indicator xcm,n which represents whether

ER-PMSs are scheduled on RB n with reduced transmit power Pm,n (=1) or not

(=0). Since we assume ER-PMSs are only scheduled on RBs with reduced transmit

power together, their achievable data rate can be expressed as

Rj =
N∑
n=1

xcm,n
W

N
log2(1 + Γ

pl(j)
j,n ), ∀j ∈ KpER, (3.12)

where pl(j) is the PBS index that PMS j is associated with.

Using the reduced transmit power in (3.10) and ER-PMSs’ achievable data
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rate in (3.12), we can develop an optimization problem based on Eq. (3.6) as

min
xc

m

N∑
n=1

(Pm − Pm,n) · xcm,n = min
xc

m

N∑
n=1

P̃m,n · xcm,n (3.13a)

s.t.
N∑
n=1

Rj,n · xcm,n ≥ Rj,req, j ∈ KpER, (3.13b)

xcm,n ∈ {0, 1} ∀n (3.13c)

where xcm,n is a coordinated scheduling indicator vector which is expressed as

xcm = [xcm,1, x
c
m,2, · · · , xcm,N ]>. (3.14)

To find an optimal solution xc∗m to the formulated problem above, exact meth-

ods such as Branch-and-Bound can be considered which utilize linear programming

(LP) relaxation where the problem is transformed into a general linear program-

ming by relaxing the integer variables, and branches are generated by integer ap-

proximation of the real-number solution. Although those methods prevent us from

examining all the possible combinations, they cannot guarantee finding a solution

in a polynomial time.

Therefore, to reduce the computational complexity, we propose a max-min

greedy algorithm which finds a sub-optimal solution to the optimization problem

in (3.6) with a polynomial-time computation. Since every ER-PMS needs to be

provided their minimum required data rate, the number of coordinated RBs is de-

termined by how efficiently the coordinated RBs are selected in a way that some

ER-PMSs in much worse channel condition achieve their minimum required data

rate quickly. Based on this observation, the key idea of the proposed algorithm is

to find the ER-PMS which has achieved the lowest data rate with respect to its
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minimum required data rate, and then select an RB on which that ER-PMS ex-

pects the highest data rate. This procedure enables us to identify those ER-PMSs

in much worse channel condition and efficiently select coordinated RBs by utilizing

the frequency selectivity.

Let φj denote the satisfaction ratio of ER-PMS j defined as
Rj,ach

Rj,req
, where Rj,ach

is the achieved data rate of ER-PMS j for a given coordinated scheduling indicator

vector xcm and is expressed as
∑N

n=1Rj,n · xcm,n. In each iteration, ER-PMS j∗ is

selected of which satisfaction ratio is the lowest among ER-PMSs as

j∗ = arg min
j∈Kp

ER

φj = arg min
j∈Kp

ER

Rj,ach

Rj,req

. (3.15)

For the ER-PMS j∗, the RB n∗j∗ is selected on which the ER-PMS j∗ can achieve

the largest data rate as

n∗j∗ = arg max
n′∈N

Rj∗,n′ , (3.16)

where N is the set of RBs which have not been selected for coordinated scheduling

defined as {n ∈ {1, 2, · · · , N} : xcm,n 6= 1}. The achieved data rate of every ER-PMS

j including j∗ is increased by Rj,n∗
j∗

. This process is iterated until all ER-PMSs

meet their minimum required data rate. The detailed procedure is described in

Algorithm 3.1. For the infeasible case, we define an additional parameter Rmin

which denotes a minimum threshold of ER-PMSs’ data rate for which it is decided

whether RB n is allocated for the coordinated scheduling or not.

Proposition 3.1. The computational complexity of Algorithm 3.1 isO(PN logPN).

Proof: Assuming Rj,n’s of every ER-PMS j are sorted as part of initialization, the

complexity of the sorting process for ER-PMS j is O(N logN). For each iteration,
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Algorithm 3.1 Max-min Greedy RB Allocation

1: Initialization: xcm,n = 0 ∀n, Rj,ach = 0 ∀j, N = {1, 2, · · · , N}.

2: if
∑N

n=1Rj,n ≥ Rj,req ∀j {feasible case} then

3: while minj∈Kp
ER

Rj,ach

Rj,req
< 1 do

4: Find the least satisfied ER-PMS j∗:

j∗ = arg min
j∈Kp

ER

Rj,ach

Rj,req

5: Find the best RB index n∗j∗ for ER-PMS j∗:

n∗j∗ = arg max
n′∈N

Rj∗,n′

6: Update the coordinated scheduling indicator and the RB set:

xcm,n∗
j∗

= 1, N = N \ {n∗j∗}

7: Update the achieved data rate of all ER-PMSs:

Rj,ach = Rj,ach +Rj,n∗
j∗
∀j ∈ KpER

8: end while

9: else {infeasible case}

10: Allocate a set of RBs N ′ to ER-PMSs

N ′ = {n ∈ {1, 2, · · · , N} | Rj,n > Rmin ∀j ∈ KpER}

11: end if

ER-PMSs are sorted in an increasing order of the satisfaction ratio, which requires

the complexity of O(P logP ). Therefore, the total computational complexity of the
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algorithm becomes

O(P ·N logN +N · P logP ) = O(PN logPN), (3.17)

where the worst case searching is assumed, i.e., totally N subframes are examined.

Remark: When the number of PBSs P is much smaller than that of RBs N

(P � N), the computational complexity can be approximated as O(N logN).

3.4.3 Resource Allocation for Unselected RBs

After determining the group of coordinated RBs, for the unselected RBs (i.e.,

xcm,n = 0), the MBS recovers the transmit power to the original equal power Pm.

Therefore, the transmit power on every RB n can be expressed as

Pm,n =


Pm if xcm,n = 0

Pm,n if xcm,n = 1.

(3.18)

For those unselected RBs, the MBS performs any scheduling policy such as MAX

C/I, proportional fairness, or round robin. At PBSs, R-PMSs are scheduled on those

unselected RBs based on any scheduling policy as discussed in the MBS case.

3.5 Performance Evaluation

In this section, the performance of the proposed scheme is evaluated through

system level simulations. The system level simulator has been developed based on

the LTE downlink system level simulator in [61].

For simulations, a heterogeneous network topology is generated with 1 MBS

and 2 or 4 outdoor PBSs which are randomly distributed within MBS’s coverage.
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The MBS and each PBS are equipped with a sector and an omnidirectional antenna,

respectively. As a co-channel deployment, the system bandwidth is fully accessed by

both MBS and PBSs with equally distributed power unless coordinated scheduling

and power control is applied. The detailed simulation parameters are described in

Table 3.1 most of which are adopted from 3GPP standard documents [62–64].

To evaluate the performance, we compare the following schemes:

• No Transmit Power Control (NTPC): No transmit power control is applied

for cross-tier interference coordination, where the transmit power on each RB

at the MBS is Pm.

• Transmit Power Control (TPC-x): Transmit power control is applied for cross-

tier interference coordination, where the transmit power on each RB at the

MBS is reduced by −x dB (i.e., Pm,n = Pm · 10− x/10). We simulate TPC-

3 where the MBS’s transmit power is a half of that in NTPC, i.e., Pm,n =

Pm · 10− 3/10 = 1
2
Pm.

• Coordinated Scheduling & Power Control (CSPC): The proposed scheme is

applied.

Before discussing the performance of above schemes, in Table 3.2 the perfor-

mance of the proposed heuristic algorithm is compared to the branch-and-bound

(B&B) method. The performance metrics are the number of RBs and the sum of

transmit power to be reduced for coordination. The overall performance degrada-

tion of the proposed scheme shows less than 2% in both the number of RBs and

the sum of transmit power to be reduced, except for a few cases such as ”2 picos,
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Table 3.1: System Level Simulation Parameters

Simulation Parameter Value

Simulation time 3000 subframes (3000 ms)

Number of simulations per scenario 300

Carrier frequency 2.0 GHz

System bandwidth 10 MHz

Antenna configuration SISO

Channel model Typical Urban (TU)

Inter-site distance 750 m

Noise power spectral density -174 dBm/Hz

Scheduling algorithm Proportional fairness

Traffic model Full buffer

Number of macrocells 1

Macrocell transmit power 40 W (46 dBm)

Macrocell path loss model 128.1 + 37.6log10R (R in km)

Macrocell shadowing model Log normal fading with std. 10 dB

Macrocell antenna gain 15 dBi

Number of MMSs 30

Min. required SINR of MMSs 5 dB

Picocell transmit power 1 W (30 dBm)

Picocell path loss model 140.7 + 36.7log10R (R in km)

Picocell shadowing model Log normal fading with std. 6 dB

Picocell antenna gain 5 dBi

Number of PMSs per picocell 10 (9 R-PMSs + 1 ER-PMS)

Min. distance between MBS and PBS 75 m

Min. distance between PBS and PBS 50 m

Number of picocells per macrocell 2 / 4

Min. required data rate of ER-PMSs 0.4 / 0.6 Mbps

CRE bias offset 8 / 16 dB

44



Table 3.2: Comparison between optimal and proposed schemes

Case Metric B&B Proposed Difference

2 picos, 8 dB, 0.4 Mbps
No. of RBs 1.163 1.169 0.006 (+0.50%)

Power (W) 0.892 0.905 0.013 (+1.45%)

2 picos, 8 dB, 0.6 Mbps
No. of RBs 1.640 1.673 0.033 (+2.01%)

Power (W) 1.239 1.295 0.056 (+4.51%)

2 picos, 16 dB, 0.4 Mbps
No. of RBs 1.884 1.904 0.020 (+1.07%)

Power (W) 1.453 1.474 0.021 (+1.47%)

2 picos, 16 dB, 0.6 Mbps
No. of RBs 2.756 2.769 0.013 (+0.48%)

Power (W) 2.117 2.143 0.026 (+1.21%)

4 picos, 8 dB, 0.4 Mbps
No. of RBs 1.322 1.348 0.026 (+2.02%)

Power (W) 1.012 1.044 0.032 (+3.18%)

4 picos, 8 dB, 0.6 Mbps
No. of RBs 2.020 2.073 0.053 (+2.62%)

Power (W) 1.535 1.604 0.069 (+4.50%)

4 picos, 16 dB, 0.4 Mbps
No. of RBs 2.232 2.274 0.042 (+1.89%)

Power (W) 1.722 1.760 0.038 (+2.22%)

4 picos, 16 dB, 0.6 Mbps
No. of RBs 3.243 3.261 0.018 (+0.56%)

Power (W) 2.498 2.522 0.024 (+0.99%)

8 dB, 0.6 Mbps”, ”4 picos, 8 dB, 0.4 Mbps”, and ”4 picos, 8 dB, 0.6 Mbps”. From

these three exceptional cases, it is noted that the proposed scheme may require

1 or more RBs than the branch-and-bound method so that the performance gap

can be larger. The proposed scheme, however, shows a good trade-off between the

worst-case computational complexity and the slight performance degradation.

For performance comparison of three schemes (NTPC, TPC-3, and CSPC), we

first discuss ER-PMSs’ data rates. The CDFs of ER-PMSs’ data rates are shown in

Figure 3.1 (2 picocell case) and Figure 3.2 (4 picocell case). Based on these results,

the detailed performance analysis will be performed.
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Table 3.3: Comparison of ER-PMSs’ data rate (bps/Hz)

Case Metric NTPC TPC-3
CSPC CSPC

0.4 Mbps 0.6 Mbps
(0.042 bps/Hz) (0.063 bps/Hz)

2 picos, 8 dB
Average 0.0506 0.0726 0.0608 0.0805

Edge 0.0166 0.0272 0.0351 0.0287

2 picos, 16 dB
Average 0.0295 0.0428 0.0648 0.0940

Edge 0.0044 0.0071 0.0256 0.0285

4 picos, 8 dB
Average 0.0488 0.0717 0.0683 0.0951

Edge 0.0164 0.0303 0.0351 0.0289

4 picos, 16 dB
Average 0.0301 0.0438 0.0812 0.1147

Edge 0.0045 0.0074 0.0256 0.0397

The average and edge (5%-tile) data rates of ER-PMSs are listed in Table 3.3.

As the CRE bias offset increases from 8 dB to 16 dB, for NTPC and TPC-3 schemes,

it is noted that about -40% average data rate degradation and about -70% edge data

rate degradation are observed because ER-PMSs would experience a stronger cross-

tier interference from the macrocell. The proposed CSPC scheme, on the other

hand, shows about -10% or less edge data rate degradation even if CSPC requires

much less transmit power reduction (about 3 W or less) than TPC-3 does (20 W).

In case of average data rates in CSPC, it is noted that the average data rates are

improved as the CRE bias offset increases and/or more picocells are deployed due

to the fact that more RBs are allocated to satisfy all ER-PMSs’ minimum required

data rate which results in higher ER-PMSs’ average data rate. The distribution of

ER-PMSs’ data rate can be found in Figure 3.1 (2 picocell case) and Figure 3.2 (4

picocell case).
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Figure 3.1: CDFs of ER-PMSs’ data rates (2 picocell case)
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Figure 3.2: CDFs of ER-PMSs’ data rates (4 picocell case)

48



It is noted from ER-PMSs’ edge data rate with CSPC in Table 3.3 that the

minimum required data rate cannot be achieved even though CSPC is applied.

This is because for some simulations the optimization problem becomes infeasible

as discussed in Algorithm 3.1 where a set of RBs needs to be allocated to ER-PMSs

based on Rmin because some ER-PMSs cannot achieve their minimum required data

rate due to the bad channel condition. In our simulations, the threshold Rmin for

every RB is set to be zero whereby RB n is used for the coordinated scheduling if

every ER-PMS can achieve a positive data rate on that RB n. The underlying reason

for this is that ER-PMSs in the worse channel condition tend to report channel

quality indicator (CQI) 0 to PBSs which means the channel quality is too bad to

support the lowest modulation and coding scheme. Therefore, we need to choose a

set of RBs on which ER-PMSs can achieve the data rate to prevent the unnecessary

RB allocation to them. In Table 3.4, the percentage of ER-PMSs which are not

provided their minimum required data rate is listed. For NTPC, the percentage of

ER-PMSs whose data rate is below the minimum required value ranges from 35%

to 90%. Even though TPC-3 is applied, about 80% of ER-PMSs cannot reach the

minimum required data rate in the cases of 16 dB and 0.6 Mbps. On the contrary,

CSPC shows only less than 20% of ER-PMSs are not guaranteed their minimum

required data rate.

Secondly, we discuss data rates of PMSs (i.e., all PMSs including ER-PMSs).

The CDFs of PMSs’ data rates are shown in Figure 3.3 (2 picocell case) and Fig-

ure 3.4 (4 picocell case). Based on these results, the detailed performance analysis

will be performed.
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Table 3.4: Percentage of ER-PMSs below the minimum required data rate

Case NTPC TPC-3 CSPC

2 picos, 8 dB, 0.4 Mbps 36.4% 16.6% 7.1%

0.6 Mbps 69.7% 39.4% 14.7%

2 picos, 16 dB, 0.4 Mbps 73.7% 56.2% 15.6%

0.6 Mbps 89.5% 76.1% 19.1%

4 picos, 8 dB, 0.4 Mbps 39.4% 12.7% 7.0%

0.6 Mbps 72.1% 38.7% 13.4%

4 picos, 16 dB, 0.4 Mbps 72.6% 54.8% 11.9%

0.6 Mbps 89.0% 76.8% 18.9%

Table 3.5: Comparison of PMSs’ data rate (bps/Hz)

Case Metric NTPC TPC-3
CSPC CSPC

0.4 Mbps 0.6 Mbps

2 picos, 8 dB
Average 0.1876 0.2198 0.1945 0.1920

Edge 0.0404 0.0585 0.0502 0.0568

2 picos, 16 dB
Average 0.1819 0.2174 0.1814 0.1865

Edge 0.0227 0.0346 0.0447 0.0492

4 picos, 8 dB
Average 0.1813 0.2131 0.1863 0.1837

Edge 0.0405 0.0589 0.0498 0.0542

4 picos, 16 dB
Average 0.1755 0.2138 0.1827 0.1795

Edge 0.0235 0.0361 0.0447 0.0453

The average and edge (5%-tile) data rates of PMSs are listed in Table 3.5.

Compared to NTPC, the proposed CSPC scheme shows about 3%∼ 5% performance

improvement in the average rate, and in the edge rate the CSPC scheme shows about

25% and 80% performance improvements for 8 dB and 16 dB CRE bias offset,

respectively. Compared to TPC-3, the proposed CSPC scheme shows about -15%

degradation in the average rate for all cases due to the fact that TPC-3 reduces
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about 8 times more transmit power than CSPC at the MBS. In the edge rate, TPC-

3 shows about 10% ∼ 20% higher performance for the 8 dB CRE bias offset case,

however it shows about -30% performance degradation compared to CSPC despite

the large amount of reduced transmit power.

Lastly, we discuss data rates of MMSs of which CDFs are shown in Figure 3.5

(2 picocell case) and Figure 3.4 (4 picocell case). Based on these results, the detailed

performance analysis will be performed.

Table 3.6: Comparison of MMSs’ data rate (bps/Hz)

Case Metric NTPC TPC-3
CSPC CSPC

0.4 Mbps 0.6 Mbps

2 picos, 8 dB
Average 0.0943 0.0759 0.0924 0.0912

Edge 0.0410 0.0287 0.0376 0.0381

2 picos, 16 dB
Average 0.0953 0.0770 0.0927 0.0902

Edge 0.0392 0.0297 0.0367 0.0352

4 picos, 8 dB
Average 0.0927 0.0737 0.0885 0.0866

Edge 0.0395 0.0290 0.0364 0.0357

4 picos, 16 dB
Average 0.0939 0.0755 0.0908 0.0875

Edge 0.0393 0.0290 0.0374 0.0352

The average and edge (5%-tile) data rates of MMSs are listed in Table 3.6.

Due to the large amount of transmit power reduction at the MBS (20 W out of 40

W ), TPC-3 shows about -30% performance degradation in both average and edge

rates compared to NTPC. In the CSPC case, about -10% performance degradation

is shown in both average and edge rates compared to NTPC.
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Figure 3.3: CDFs of PMSs’ data rates (2 picocell case)
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Figure 3.4: CDFs of PMSs’ data rates (4 picocell case)
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Figure 3.5: CDFs of MMSs’ data rates (2 picocell case)
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Figure 3.6: CDFs of MMSs’ data rates (4 picocell case)

55



3.6 Summary and Future Work

In this chapter, we have discussed a frequency-domain transmit power reduc-

tion scheme for downlink cross-tier interference mitigation in heterogeneous cellular

networks. By determining MBS’s transmit power based on MMSs’ required SINR

and scheduling ER-PMSs onto the same group of RBs, we can minimize the possible

throughput degradation of MMSs. To solve a binary integer programming problem,

we propose a heuristic algorithm of which the worst case computational complexity

is O(PN logPN) with marginal performance degradation compared to the optimal

solution. Through system-level simulations, we have shown that the proposed coor-

dinated scheduling and power control algorithm can provide the minimum required

data rate to ER-PMSs with much less transmit power reduction than other schemes.

As future work, the following research items can be further studied.

• Algorithm expansion to the multiple ER-PMSs in a picocell

– Based on an algorithm for a single ER-PMS per picocell in Algorithm 3.1,

we can expand it to the case of multiple ER-PMSs per picocell. When one

ER-PMS with the lowest satisfaction ratio is selected per picocell, then

the RB selection can be done via Algorithm 3.1 for the single ER-PMS

case.

• Comparison with the RB-level transmit power nulling

– Due to the nature of discreteness of RBs, the RB-level transmit power

nulling may require less RBs than the proposed algorithm which would
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result in less MMSs’ performance degradation.
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Chapter 4: Time-domain Macrocell Transmit Power Nulling

4.1 Motivation

The time-domain macrocell transmit power nulling, which can be referred to

as almost blank subframes based on 3GPP’s terminology, can provide zero cross-

tier interference from MBSs toward PMSs in a synchronous ABS operation mode

in which all MBSs share the same ABS configuration parameters such as periodic-

ity, start offset, and duration. Since an asynchronous ABS operation which allows

different ABS configurations among MBSs is less effective for cross-tier interference

mitigation as discussed in [36], only synchronous ABS operations are considered in

this work.

The challenging issues arise here are how many ABSs should be configured

for the network and how PMSs are scheduled onto ABS and non-ABS resources.

For MMSs, their achievable throughput decreases as the number of ABSs increases

because they can be only scheduled in non-ABSs.

There have been some work to find the optimal number of ABSs by formulating

an optimization problem along with the PMS scheduling policy. In [36], the network-

wide utility (the sum of MSs’ utilities) maximization problem is formulated to find

the optimal number of ABSs. The PMS scheduling policy is based on the PMS

58



categorization into one of two groups - normal and victim. The PMSs in the normal

group are only scheduled in non-ABSs, and those in the victim group are only

scheduled in ABSs. For every possible value of ABSs, every BS needs to calculate

the sum of the associated MSs’ utilities. Unlike MBSs of which MMSs are only

scheduled to non-ABSs, PBSs need to find the best categorization of their PMSs

into two groups and calculate the sum of utilities using a dynamic programming

algorithm. Those utility values from BSs are signaled to a central coordinating

entity so that the optimal number of ABSs that maximizes the network-wide utility

is chosen. In [37], the minimization problem of the number of ABSs is formulated

subject to ER-PMSs’ minimum required data rate. The PMS scheduling policy is

that ER-PMSs are scheduled in both ABSs and non-ABSs, and R-PMSs are only

scheduled in non-ABSs. In other words, the ABS resource is exclusively available

for ER-PMSs and the non-ABS resource is shared by both R-PMSs and ER-PMSs.

The smallest number of ABSs is selected by which all ER-PMSs can achieve their

minimum required data rate.

From the previous work, we could make two arguments. First, we believe

that the configured ABSs should be allocated with higher priority to ER-PMSs in

order to compensate their achievable rate degradation as in [37], because ER-PMSs

are forced to be associated with PBSs by CRE operation even if they observe the

stronger received signal strength from MBSs, and suffer from more severe cross-

tier interference than R-PMSs do. Second, the optimal number of ABSs needs to

be determined from a network point of view because the decision impacts multiple

BSs in the network. As discussed in [36], the network-wide utility could be a good
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objective function.

As a result, in this chapter, we formulate a utility maximization problem

wherein the sum of the utilities of MMSs and R-PMSs is maximized with respect

to the number of ABSs and PMS scheduling in ABSs and non-ABSs under the

constraint of ER-PMSs’ minimum required data rate. Unlike the MMS case where

MMSs can be only scheduled in non-ABSs, the PMS scheduling is more complicated

as there are four possible ways of scheduling R-PMSs and ER-PMSs onto ABSs and

non-ABSs. Therefore, we first present a flexible PMS scheduling policy in which all

four possible cases are incorporated, and the data rates of R-PMSs and ER-PMSs

are derived based on the scheduling policy. To solve the optimization problem, we

first propose an algorithm by which for a given number of ABSs each PBS maximizes

the sum of utilities of their R-PMSs, and then the optimal number of ABSs can be

found for which the total utility (MMSs and R-PMSs) is maximized.

4.2 System Model

The network model considered in this chapter is a heterogeneous downlink

cellular network consisting of mutlipel MBSs and overlaid PBSs within those MBSs’

coverage. Let us denote by B the set of BSs in the network, which is further classified

into two disjoint subsets - MBS subset Bm and PBS subset Bp. We denote by Ub

the MS set of BS b, and if the BS is pico (b ∈ Bp), the MS set is further divided into

two subsets based on CRE bias as the R-PMS subset URb and the ER-PMS subset

UERb .
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The average received signal-to-interference plus noise ratio (SINR) Γbu on non-

ABSs and Γbu in ABSs at MS u from associated BS b are expressed respectively as

Γub =
Pbhub∑

b′∈B,b′ 6=b Pb′hub′ + σ2

Γub =
Pbhub∑

b′∈Bp,b′ 6=b Pb′hub′ + σ2

∀b ∈ B ∀u ∈ Ub, (4.1)

where Pb is the transmit power of BS b, hub is the average channel gain of a link

between MS u and BS b, and σ2 is the power of additive white Gaussian noise. As

mentioned earlier, we assume the synchronized ABS configuration among MBSs,

therefore, there is no interference term from MBSs in ABSs. From the SINR expres-

sions, we can derive the achievable link rates over the system bandwidth W using

Shannon’s equation as

cub = W log2(1 + Γub)

cub = W log2(1 + Γub)

∀b ∈ B, ∀u ∈ Ub. (4.2)

Due to the transmit power nulling in MBSs, Γub is zero for any MMS u ∈ Ub

(b ∈ Bm), therefore, cub becomes also zero:

Pb = 0 → Γub = 0 & cub = 0 ∀b ∈ Bm ∀u ∈ Ub. (4.3)

For the sake of flexible ABS resource management, the following MS scheduling

policy will be assumed for our work.

• MMSs are only scheduled in non-ABSs.

• R-PMSs are scheduled in non-ABSs as a baseline. Exceptionally R-PMSs can

be scheduled in ABSs only when the configured ABSs are large enough to

support ER-PMSs so that the extra ABS resource is available for R-PMSs.
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• ER-PMSs are scheduled in ABSs until their minimum required data rate is

achieved. If the configured ABSs are not enough, then additional non-ABS

resource is reserved for them.

4.3 Problem Formulation

With the MS scheduling policy introduced in the previous section, our objec-

tive is to maximize the aggregated utility of MMSs and R-PMSs while the minimum

required data rate of ER-PMSs is satisfied. In this work, ER-PMSs are not included

in the objective function to exclude any possible case where prioritized ER-PMSs

could dominate the aggregated utility of all MSs. As a result, we can formulate an

optimization problem as follows:

max
α,β,γ

U(α, β, γ) = max
α,β,γ

Um(α) + UR
p (α, β, γ) (4.4a)

s.t. α ∈
{

0,
1

T
, · · · , T − 2

T
,
T − 1

T

}
(4.4b)

rnj(α, βnj, γnj) ≥ Rnj ∀j ∈ Bp, ∀n ∈ UERj (4.4c)

0 ≤ βnj ≤ 1, 0 ≤ γnj ≤ 1 ∀j ∈ Bp, ∀n ∈ UERj (4.4d)∑
n∈UER

j

βnj ≤ 1,
∑

n∈UER
j

γnj ≤ 1 ∀j ∈ Bp (4.4e)(
1−

∑
n′∈UER

j

βn′j

)
γnj = 0 ∀j ∈ Bp, ∀n ∈ UERj (4.4f)

where α is the normalized ABS ratio, Rnj is the minimum required data rate of ER-

PMS n in PBS j, βnj and γnj denote the normalized portion of resource allocated

to ER-PMS n in PBS j in ABSs and on non-ABSs, respectively. β
j
, γ

j
, β and γ are
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vectors of βnj’s and γnj’s represented as follows:

β
j

=
[
β1j, β2j, · · · , β|UER

j |j

]>
∀j ∈ Bp (4.5)

γ
j

=
[
γ1j, γ2j, · · · , γ|UER

j |j

]>
∀j ∈ Bp (4.6)

β =
[
β>
1
, β>

2
, · · · , β>|Bp|−1, β

>
|Bp|

]>
(4.7)

γ =
[
γ>
1
, γ>

2
, · · · , γ>|Bp|−1, γ

>
|Bp|

]>
. (4.8)

The constraint in (4.4f) indicates that the non-ABS resource can be allocated to

ER-PMSs only if the ABS resource is used up.

Um(α) represents the aggregated utility of MMSs with ABS ratio α, which is

derived as

Um(α) =
∑
i∈Bm

Ui(α) =
∑
i∈Bm

∑
k∈Ui

log ((1− α)rki) , (4.9)

where the logarithmic utility function log(r) is used which is one of increasing,

strictly concave, and continuously differential utility functions. rki is the average

rate on non-ABSs that MMS k in MBS i could achieve under round-robin scheduling,

which is expressed as rki = cki/Ki, where Ki is the number of MMSs in MBS i. The

utility Um(α) is a strictly decreasing function of α in which the portion of non-ABS

resource (1− α) for MMSs decreases as α increases.

UR
p (α, β

j
, γ

j
) represents the aggregated utility of R-PMSs with ABS ratio α

and normalized ER-PMS resource allocation β
j

in ABSs and γ
j

in non-ABSs, which

is derived as

UR
p (α, β, γ) =

∑
j∈Bp

UR
j (α, β

j
, γ

j
)

=
∑
j∈Bp

∑
l∈UR

j

log (α(1− βj)rlj + (1− α)(1− γj)rlj) (4.10)
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where βj and γj denote the sum of βnj’s (=
∑

n∈UER
j
βnj) and γnj’s (=

∑
n∈UER

j
γnj),

respectively, and rlj is the average rate in ABSs that R-PMS l in PBS j could achieve

under round-robin scheduling, which is expressed as rlj = clj/Kj, where Kj is the

number of R-PMSs in PBS j. Depending on ER-PMS allocation (βj and γj), the

available resource for R-PMSs in PBS j is determined accordingly.

rnj(α, βnj, γnj) represents the data rate of ER-PMS n in PBS j with ABS ratio

α, and allocated resource portion βnj in ABSs and γnj in non-ABSs. rnj(α, βnj, γnj)

can be derived as

rnj(α, βnj, γnj) = αβnjcnj + (1− α)γnjcnj. (4.11)

4.4 Problem Solving

From the formulated optimization problem in (4.4), we can observe that, for

a fixed ABS ratio α′ ∈
{

0, 1
T
, · · · , T−1

T

}
, the optimization problem in (4.4) can be

transformed into multiple independent optimization problems for PBSs where each

PBS tries to maximize the available resource for R-PMSs by configuring ER-PMSs’

resource allocation β and γ in (4.10) with constraints of (4.4c), (4.4d), (4.4e), and

(4.4f). Since ER-PMSs are scheduled in ABSs with a higher priority than R-PMSs

until they achieve their minimum required rates, we can categorize the PBS set Bp

into two disjoint subsets B+
p (α′) and B−p (α′) depending on whether the given ABS

ratio α′ is enough to support ER-PMSs or not.

In order to discuss the above two subsets in detail, let us first define δnj which

is the amount of ABS resource for ER-PMS n in PBS j to achieve its minimum
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required data rate Rnj, and is expressed as

δnj =
Rnj

cnj
∀j ∈ Bp ∀n ∈ UERj . (4.12)

Then PBS j would need the ABS resource δj in total as

δj =
∑

n∈UER
j

δnj ∀j ∈ Bp. (4.13)

With δj’s and α′, we can define B+
p (α′) and B−p (α′) as

B+
p (α′) = {j ∈ Bp : α′ − δj ≥ 0}

B−p (α′) = {j ∈ Bp : α′ − δj < 0} .
(4.14)

For PBS j ∈ B+
p (α′), α′ is large enough to satisfy ER-PMSs’ minimum required

data rate, so that we can derive the optimal β∗
j
(α′) and γ∗

j
(α′) as

β∗
j
(α′) =

[
δ1j
α′
,
δ2j
α′
, · · · ,

δ|UER
j |j

α′

]

γ∗
j
(α′) = [0, 0, · · · , 0, 0] ,

(4.15)

respectively. Therefore, UR
j (α′, β∗

j
, γ∗

j
) can be represented as

UR
j (α′, β∗

j
(α′), γ∗

j
(α′)) =

∑
l∈UR

j

log ((α′ − δj)rlj + (1− α′)rlj) ∀j ∈ B+
p (α′), (4.16)

where it is observed that the additional ABS resource (α′ − δj) is allocated to R-

PMSs, which will improve the utility as α′ increases since rlj > rlj for all l.

For PBS j ∈ B−p (α′), α′ is not enough so that one or more ER-PMSs cannot

reach their minimum required data rate even if the entire α′ is allocated to ER-

PMSs, i.e.,
∑

n∈UER
j
βnj = 1. Let δnj denote the amount of additional non-ABS

resource needed for ER-PMS n in PBS j to achieve its minimum required data
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rate. From (4.4c) and (4.11), we can derive the condition for ER-PMSs’ minimum

required data rate as

δnj = (1− α′)γnj ≥
Rnj − α′βnjcnj

cnj
∀n ∈ UERj , (4.17)

and the corresponding UR
j (α′, β

j
, γ

j
) becomes

UR
j (α′, β

j
, γ

j
) =

∑
l∈UR

j

log
((

1− α′ − δj
)
rlj
)

∀j ∈ B−p (α′), (4.18)

where δj is the sum of additional non-ABS resource for ER-PMSs in PBS j (=∑
n∈UER

j
δnj). Therefore, the maximization of UR

j (α′, β
j
, γ

j
) for PBS j ∈ B−p (α′)

can be transformed into the minimization of δj with respect to β
j

with the equality

condition in (4.17) as

max
β
j
,γ

j

UR
j (α′, β

j
, γ

j
) = min

β
j

δj = min
β
j

∑
n∈UER

j

δnj

= min
β
j

∑
n∈UER

j

Rnj − α′βnjcnj
cnj

= max
β
j

∑
n∈UER

j

anjβnj (4.19a)

s.t.
∑

n∈UER
j

βnj = 1, 0 ≤ βnj ≤ 1 ∀n ∈ UERj (4.19b)

∑
n∈UER

j

Rnj − α′βnjcnj
cnj

≤ (1− α′) (4.19c)

where anj is the ratio between cnj and cnj (= cnj/cnj). This problem can be seen

as a weighted-sum maximization where ER-PMSs are listed in the decreasing order

of anj’s, and the ABS resource α′ is allocated to ER-PMSs from the top of the

list to the bottom until ER-PMSs reach their minimum required data rate or the

ABS resource is used up. Algorithm 4.1 shows how this operation is performed. By

Algorithm 4.1, ER-PMSs in PBS j are categorized into one of three disjoint subsets,
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UER,fj (α′), UER,pj (α′), and UER,nj (α′), and have the corresponding β∗nj(α
′)’s as

β∗nj(α
′) =



Rnj

α′cnj
if n ∈ UER,fj (α′)

1− 1

α′
∑

n′∈UER,f
j

Rn′j

cn′j
if n ∈ UER,pj (α′)

0 if n ∈ UER,nj (α′),

(4.20)

respectively, where the superscripts f , p, and n indicate whether the ABS resource

α′ is allocated to ER-PMSs in those subsets with respect to the minimum required

data rate fully, partially, and not at all, respectively. Since the algorithm allocates

the ABS resource to a single ER-PMS in each iteration, the number of ER-PMSs in

UER,pj (α′) is always either 0 or 1. After finding an optimal β∗nj(α
′), the corresponding

γ∗nj(α
′) and δ∗nj(α

′) can be obtained as

γ∗nj(α
′) =

Rnj − α′β∗nj(α′)cnj
(1− α′)cnj

δ∗nj(α
′) =

Rnj − α′β∗nj(α′)cnj
cnj

∀n ∈ UERj , (4.21)

respectively. For any ABS ratio α′ ∈
{

0, 1
T
, · · · , T−2

T
, T−1

T

}
, therefore, the maximum

utility UR
j (α′, β∗

j
(α′), γ∗

j
(α)) of PBS j is derived as

UR
j (α′, β∗

j
(α′), γ∗

j
(α′)) =


∑

l∈UR
j

log ((α′ − δj)rlj + (1− α′)rlj) if α′ ≥ δj∑
l∈UR

j
log
((

1− α′ − δ∗j(α′)
)
rlj
)

if α′ < δj,

(4.22)

where δ∗j(α
′) is calculated as

∑
n∈UER

j
δ∗nj(α

′). It is noted that the utility in (4.22) is

a monotonically increasing function with respect to α′.

Based on Eq. (4.9) and (4.22), each BS can calculate the maximum utility

for every α ∈
{

0, 1
T
, · · · , T−2

T
, T−1

T

}
. Suppose there exists a central coordinating
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Algorithm 4.1 Optimal allocation β∗
j
(α′) for PBS j ∈ B−p (α′)

Initialization p = α′; P = UERj ; βnj = 0 ∀n ∈ UERj

while p > 0 do

Find an ER-PMS n∗ with the largest anj

n∗ = arg max
n∈P

anj = arg max
n∈P

cnj
cnj

if p is sufficient for ER-PMS n∗
(
p ≥ Rnj∗

cnj∗

)
then

Update β∗nj∗(α
′), p, and P

β∗n∗j(α
′) =

Rn∗j

α′cn∗j
, p = p− Rn∗j

cn∗j
, P = P − {n∗}

else

Update β∗n∗j(α
′) and p

β∗n∗j(α
′) =

p

α′
, p = 0

end if

end while

entity which could be an MBS or other network controller. The BSs need to report

their utility values to the entity so that the optimal ABS ratio α∗ can be obtained

which maximizes the aggregated utility of MMSs and R-PMSs. According to 3GPP

specifications, the periodicity T of ABS operation is set to be 40 subframes, therefore

each report message from BSs would contain 40 utility values, which could incur

signaling overhead depending on the ABS coordination frequency or the backhaul

condition. To further reduce the report size, the central coordinating entity could

specify the range of α values. As shown in Figure 4.1 and Figure 4.1, the proposed
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scheme provides a relatively small difference (10 ∼ 15 subframes, or 1
4
∼ 1

3
in ABS

ratio) between the maximum and minimum of α∗, so the report message size can be

reduced by about 30%.

4.5 Performance Evaluation

In this section, we demonstrate the performance of the proposed scheme through

simulations. The heterogeneous network deployment is constructed as follows. The

macro-tier consists of 7 MBSs each of which is three-sectorized (i.e., 21 macrocells),

and outdoor omni-directional picocells are uniformly distributed in each macrocell’s

coverage. To obtain two achievable link rates cub and cub, instead of using Shannon’s

formula, we calculate the bit rates based on channel quality indicators (CQIs) fed

back from MSs in the system level simulator developed based on the LTE down-

link system level simulator in [61]. The detailed parameters are described in Ta-

ble 4.1, most of which are adopted from 3GPP’s system level simulation parameters

in [62], [63], [64].

For the performance evaluation, the following schemes are compared through

numerical simulations.

• Proposed scheme: ER-PMSs in a PBS are prioritized for ABS resource until

they are provided their minimum required data rate. If ABS resource is not

sufficient, non-ABS resource is reserved. If ABS resource is sufficient, the extra

ABS resource is allocated to R-PMSs.

• ER-PMSs to ABSs only (EtA): ER-PMSs and R-PMSs are exclusively sched-
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Table 4.1: Simulation Parameters

Simulation Parameter Value

Number of simulations per scenario 400

Carrier frequency 2.0 GHz

System bandwidth 10 MHz

Antenna configuration SISO

Channel model Typical Urban (TU)

Inter-site distance 750 m

Noise power spectral density -174 dBm/Hz

ABS periodicity (T ) 40 subframes

Number of macrocells 21 (7 three-sectorized MBSs)

Macrocell transmit power 40 W (46 dBm)

Macrocell path loss model 128.1 + 37.6log10R (R in km)

Macrocell shadowing model Log normal fading with std. 10 dB

Macrocell antenna gain 15 dBi

Number of MMSs per sector 30

Picocell transmit power 1 W (30 dBm)

Picocell path loss model 140.7 + 36.7log10R (R in km)

Picocell shadowing model Log normal fading with std. 6 dB

Picocell antenna gain 5 dBi

Number of PMSs per picocell 10 (7 R-PMSs and 3 ER-PMSs)

Min. distance MBS-PBS 75 m

Min. distance PBS-PBS 50 m

Number of picocells per macrocell 2 / 4

CRE bias offset 8 / 16 dB

Minimum required data rate
0.2 / 0.4 Mbps

for ER-PMSs

uled in ABSs and non-ABSs, respectively, in a round-robin manner.

• ER-PMSs to ABSs & non-ABSs (EtA nA): ABSs are exclusively scheduled to

70



ER-PMSs, and non-ABSs are scheduled to both ER-PMSs and R-PMSs, in a

round-robin manner for both cases.

In case of EtA and EtA nA schemes, the optimal α∗ is determined as the minimum

value of α ∈
{

0, 1
T
, · · · , T−2

T
, T−1

T

}
for which all ER-PMSs achieve their minimum

required data rate. We compare the performance of the above three schemes for two

ER-PMSs’ minimum required data rates, 0.2 Mbps and 0.4 Mbps.

Table 4.2: Average ABS Ratio α∗

Case Prop. EtA EtA nA

2 picos, 8 dB, 0.2 Mbps 0.12 0.13 0.05

2 picos, 16 dB, 0.2 Mbps 0.13 0.17 0.08

4 picos, 8 dB, 0.2 Mbps 0.27 0.18 0.08

4 picos, 16 dB, 0.2 Mbps 0.28 0.22 0.11

2 picos, 8 dB, 0.4 Mbps 0.15 0.25 0.18

2 picos, 16 dB, 0.4 Mbps 0.16 0.32 0.25

4 picos, 8 dB, 0.4 Mbps 0.31 0.37 0.28

4 picos, 16 dB, 0.4 Mbps 0.32 0.43 0.36

Firstly, we discuss the network-wide performance with respect to the ABS

ratio α. In Table 4.2, the average ABS ratio α∗ is listed. When the CRE bias

increases from 8 dB to 16 dB, the proposed scheme requires only about 5% more ABS

resource, whereas EtA and EtA nA require about 50% more ABS resource which

results in the performance degradation of both MMSs and R-PMSs. Similarly, when

the minimum required data rate increases from 0.2 Mbps to 0.4 Mbps, the proposed

scheme requires only about 20% more ABS resource, whereas EtA and EtA nA

require about 70% ∼ 80% more. This is caused by the round-robin scheduling
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among ER-PMSs which would require much more ABS resource to satisfy the ER-

PMS in the worst channel condition. When the number of picocells increases from

2 to 4, the ABS ratio of the proposed scheme requires about 100% more ABS

resource, whereas than EtA and EtA nA require about 50% more. Even though the

proposed scheme uses more ABS resource, it should be noted that for each picocell

the extra ABS resource (α∗ − δj) is distributed to R-PMSs so that the total utility

of MMSs+R-PMSs would be improved due to doubled R-PMSs in the network.

In Figure 4.1 and Figure 4.2, the CDFs of optimal ABS ratio α∗ are shown.

Noticeably, it is observed that EtA and EtA nA require about two times more ABS

resource than the proposed scheme does in 90%-ile or above. About 50% or more

ABS resource should be allocated to ER-PMSs for EtA and EtA nA, and it causes a

significant performance degradation for MMSs and R-PMSs which can be allocated

only to non-ABSs.

In Table 4.3, the mean of the average utility per MS is listed. For the

MMSs+R-PMSs case, the proposed scheme shows about 2% and 5% performance

gain over EtA and EtA nA for 0.2 Mbps and 0.4 Mbps cases, respectively. For the

all MSs case (MMSs+R-PMSs+ER-PMSs), the proposed scheme shows about -1%

lower utility value as the average utility of ER-PMSs is lower than that of MMSs+R-

PMSs, i.e., 9.95 for 0.2 Mbps and 10.64 for 0.4 Mbps. However, EtA and EtA nA

show about 3% higher utility value which indicates ER-PMSs achieve much higher

data rate than MMSs and R-PMSs. Noticeably, for the 0.4 Mbps case, the proposed

scheme shows about 2% higher utility than EtA and EtA nA.

In Figure 4.3 and Figure 4.4, the CDFs of the average utility per MS (MMSs+R-
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Figure 4.1: CDFs of optimal ABS ratio α∗ (2 picocells)

73



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ABS Ratio

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

 

 

Proposed (0.2 Mbps)
Proposed (0.4 Mbps)
EtA         (0.2 Mbps)
EtA         (0.4 Mbps)
EtA_nA   (0.2 Mbps)
EtA_nA   (0.4 Mbps)

(a) 8 dB CRE bias

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ABS Ratio

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

 

 

Proposed (0.2 Mbps)
Proposed (0.4 Mbps)
EtA         (0.2 Mbps)
EtA         (0.4 Mbps)
EtA_nA   (0.2 Mbps)
EtA_nA   (0.4 Mbps)

(b) 16 dB CRE bias

Figure 4.2: CDFs of optimal ABS ratio α∗ (4 picocells)
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Table 4.3: Mean of Average Utility Per MS

MS Type Case Prop. EtA EtA nA

MMSs+R-PMSs

2 picos, 8 dB, 0.2 Mbps 13.43 13.28 13.25

2 picos, 16 dB, 0.2 Mbps 13.42 13.24 13.23

4 picos, 8 dB, 0.2 Mbps 13.66 13.38 13.33

4 picos, 16 dB, 0.2 Mbps 13.65 13.35 13.31

2 picos, 8 dB, 0.4 Mbps 13.38 13.10 13.08

2 picos, 16 dB, 0.4 Mbps 13.37 13.01 13.00

4 picos, 8 dB, 0.4 Mbps 13.60 13.06 13.02

4 picos, 16 dB, 0.4 Mbps 13.58 12.95 12.92

All MSs

2 picos, 8 dB, 0.2 Mbps 13.28 13.35 13.28

2 picos, 16 dB, 0.2 Mbps 13.28 13.32 13.26

4 picos, 8 dB, 0.2 Mbps 13.42 13.49 13.38

4 picos, 16 dB, 0.2 Mbps 13.42 13.46 13.36

2 picos, 8 dB, 0.4 Mbps 13.33 13.28 13.24

2 picos, 16 dB, 0.4 Mbps 13.33 13.20 13.17

4 picos, 8 dB, 0.4 Mbps 13.49 13.34 13.28

4 picos, 16 dB, 0.4 Mbps 13.48 13.25 13.20

PMSs) are shown. Comparing the 5%-ile average utility values, we can observe about

-3% ∼ -2% degradation for the 0.2 Mbps case and about -10% ∼ -7% degradation

for the 0.4 Mbps case, which is much larger gap than the mean value in Table 4.3.

Lastly, we discuss the performance from the MS point of view through Ta-

ble 4.4 and Figure 4.5 through Figure 4.8. In Table 4.4, the mean and edge (5%-ile)

data rates of MSs are compared.

Focusing first on data rates of MMSs+R-PMSs, the mean rate of the pro-

posed scheme shows about 20% ∼ 120% performance gain over EtA and EtA nA.

As the minimum required data rate and/or the number of picocells increases, the
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Figure 4.3: CDFs of average utility per MS (MMSs+R-PMSs, 2 picocells)
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Figure 4.4: CDFs of average utility per MS (MMSs+R-PMSs, 4 picocells)
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Table 4.4: MS Data Rate (bps/Hz)

MS Type
Case

Mean Edge

(pico/CRE/target) Prop. EtA EtA nA Prop. EtA EtA nA

2 / 8 / 0.2 0.1061 0.0888 0.0783 0.0147 0.0143 0.0148

2 / 16 / 0.2 0.1050 0.0842 0.0757 0.0150 0.0139 0.0147

4 / 8 / 0.2 0.1482 0.1012 0.0875 0.0134 0.0141 0.0146

MMSs 4 / 16 / 0.2 0.1468 0.0967 0.0851 0.0140 0.0139 0.0146

+R-PMSs 2 / 8 / 0.4 0.1016 0.0755 0.0673 0.0141 0.0110 0.0117

2 / 16 / 0.4 0.1007 0.0699 0.0625 0.0142 0.0093 0.0101

4 / 8 / 0.4 0.1421 0.0784 0.0685 0.0124 0.0084 0.0091

4 / 16 / 0.4 0.1415 0.0725 0.0633 0.0133 0.0065 0.0073

2 / 8 / 0.2 0.0959 0.0939 0.0794 0.0156 0.0151 0.0157

2 / 16 / 0.2 0.0950 0.0916 0.0777 0.0159 0.0147 0.0155

4 / 8 / 0.2 0.1264 0.1104 0.0895 0.0147 0.0153 0.0158

All 4 / 16 / 0.2 0.1252 0.1069 0.0873 0.0153 0.0151 0.0159

MSs 2 / 8 / 0.4 0.0944 0.0969 0.0843 0.0149 0.0118 0.0125

2 / 16 / 0.4 0.0937 0.0937 0.0823 0.0151 0.0101 0.0109

4 / 8 / 0.4 0.1249 0.1183 0.1015 0.0136 0.0095 0.0101

4 / 16 / 0.4 0.1244 0.1130 0.0986 0.0146 0.0075 0.0083

performance gap becomes larger. It is noted that the mean rate of EtA is about

10% higher than that of EtA nA due to the fact that ER-PMSs in EtA nA are

also scheduled in non-ABSs in a round-robin manner along with R-PMSs. Even if

EtA nA requires a less number of ABSs by allowing ER-PMSs to be scheduled in

non-ABSs, this scheduling policy eventually degrades R-PMSs’ data rate so that

the mean rate of EtA nA is worse than that of EtA. Since the number of MMSs is

about three times of that of R-PMSs in a picocell, the impact of MMSs’ throughput

gain by having a less number of ABSs is small from the perspective of the mean
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rate. However, in the edge rate, EtA nA shows the higher rate than EtA due to the

smaller number of ABSs.

Then, focusing on data rates of all MSs (MMSs+R-PMSs+ER-PMSs), the

proposed scheme shows about 2% ∼ 40% performance gain over EtA and EtA nA.

Compared to the mean rate, the performance gap reduces due to the fact that

ER-PMSs in EtA and EtA nA achieve much higher data rates than those in the

proposed scheme as shown in Figure 4.7 and Figure 4.8. As a result, the mean data

rates of all MSs in EtA and EtA nA are higher than those of MMSs+R-PMSs.

In Figure 4.5 and Figure 4.6, the CDFs of data rates of MMSs+R-PMSs are

shown. At a first glance, the performance gap of the proposed scheme by increasing

the minimum required data rate from 0.2 Mbps to 0.4 Mbps is marginal, whereas

EtA and EtA nA show -20% ∼ -10% degradation. For the 4 picocell case, the

proposed scheme provides the large performance gain in the range between 55%-ile

and 90%-ile due to higher data rate achieved at R-PMSs in 4 picocells.

4.6 Summary and Future Work

In this chapter, we have discussed a time-domain macrocell transmit power

nulling for cross-tier interference mitigation. First, we present a new flexible PMS

scheduling policy where ER-PMSs and R-PMSs are basically scheduled to ABSs

and non-ABSs, respectively, but they can be also scheduled to non-ABSs and ABSs,

respectively, depending on the configured number of ABSs. Then, based on the

PMS scheduling policy, the optimization problem is formulated to find the optimal
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Figure 4.5: CDFs of MMSs+R-PMSs’ data rate (2 picocells)
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Figure 4.6: CDFs of MMSs+R-PMSs’ data rate (4 picocells)
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Figure 4.7: CDFs of ER-PMSs’ data rate (2 picocells)
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Figure 4.8: CDFs of ER-PMSs’ data rate (4 picocells)
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number of ABSs by which the sum of utilities of MMSs and R-PMSs is maximized

subject to ER-PMSs’ minimum required data rate.

As future work, the following research item can be further studied.

• Asynchronous ABS configuration

– We can expand the current work based on the synchronous ABS operation

to the asynchronous ABS operation case where each macrocell can have

a different ABS configuration.

• Weighted utilities for MMSs and R-PMSs

– Due to the relatively small number of PMSs per picocell compared to

that of MMSs per maccocell and multiple picocells deployed in a macro-

cell’s coverage, the sum of utilities of R-PMSs could become a dominant

factor when the number of ABSs is determined. In other words, a large

number of ABSs can be configured for R-PMSs’ utility sum which would

result in lower data rates of MMSs. To resolve this imbalance, we can

apply different weights to MMSs and R-PMSs so that MMSs’ possible

throughput degradation can be compensated.
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Chapter 5: Dynamic Load-aware Cell Association

5.1 Motivation

Although the CRE-based cell association can achieve MMS offloading toward

PBSs, MS load balancing is still a challenge in heterogeneous cellular networks as

the received signal strength-based cell association basically cannot cope with MS

load imbalance in the network. When a cell is heavily loaded, associated MSs’

throughput would be degraded due to the small portion of resource allocated to

each of MSs even if all MSs observe the strongest received signal strength from the

cell (CRE is not assumed).

There have been several research work on MS load balancing for general multi-

cell wireless networks [45, 48] and heterogeneous cellular networks [65, 66]. The

objective is to find the optimal cell association between MSs and BSs so as to

maximize the network-wide utility (i.e. the sum of utilities of MSs).

In heterogeneous cellular networks, when MMSs need to be offloaded to PBSs

the challenging issue here is that those offloaded PMSs from macrocells would ex-

perience strong cross-tier interference so that the offloading could be limited unless

cross-tier interference mitigation is jointly considered.

However, there have been a few studies on a joint optimization of cell associa-
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tion and cross-tier interference mitigation. In [67], authors discuss the network-wide

utility maximization problem with respect to the cell association and the number

of ABSs, and propose an algorithm where the optimal solution with relaxation of

integer variables is obtained by non-linear programming and the integer rounding

is applied to the relaxed optimal solution. In this work, the MS data rate is not

properly modeled as the number of MSs associated with each BS is not taken into

account. In [68], authors discuss the network-wide utility maximization problem

with respect to the cell association and the number of ABSs, and solve the opti-

mization problem by transforming the combinatorial problem into a convex form

by relaxing the binary cell association and the number of ABSs. In this work, the

optimal solution requires MSs to be associated with multiple BSs simultaneously,

which is not viable in the practical network.

In this chapter, we discuss the network-wide utility maximization problem

with respect to the cell association and the number of ABSs. We propose an online

algorithm to solve the optimization problem where the cell association and the

number of ABSs are jointly optimized. Our proposed algorithm consists of two

stages - load balancing and ABS control. In the load balancing stage, each MS’s

expected data rate by handover given the number of ABSs t is used to determine

the best MS’s handover to a target BS in a way that the net change of network-wide

utility is maximized. In the ABS control stage, MSs to be offloaded are estimated

based on MSs’ expected data rate with both tier change (macro ↔ pico) and ABS

change (t→ t± 1).
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Table 5.1: List of parameters and variables

Notation Description

U Set of MSs

Ub Set of MSs associated with BS b

B Set of BSs (= Bm ∪ Bp)

Bm Set of MBSs

Bp Set of PBSs

xub Association indicator of MS u with BS b

ru Expected average throughput of MS u

rub(t) Long-term average rate of MS u from BS b with ABS t

cub Achievable link rate of MS u from BS b in non-ABSs

cub Achievable link rate of MS u from BS b in ABSs

W System bandwidth

T ABS periodicity in subframes

5.2 System Model

The network model considered in this paper is a heterogeneous downlink cel-

lular network consisting of two tiers - MBSs and pico BSs overlaid within the MBSs’

coverage. Based on Table 5.1, we derive two expressions of average received signal-

to-interference plus noise ratio (SINR) in non-ABSs and ABSs as follows. The
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average SINR in non-ABSs at MS u from BS b, denoted by Γub, is expressed as

Γub =
Pbhub∑

b′∈B,b′ 6=b Pb′hub′ + σ2
, (5.1)

where Pb, hub, and σ2 denote the transmit power of the BS b, the average channel

gain of a link between MS u and BS b including path loss, shadowing, and fast

fading, and the power of additive white Gaussian noise, respectively. In ABSs, all

MBSs’ transmit power is set to be zero. Hence, the average SINR in ABSs at MS u

from BS b, denoted by Γub, is expressed as

Γub =


Pbhub∑

b′∈Bp,b′ 6=b Pb′hub′ + σ2
if b ∈ Bp

0 if b ∈ Bm.

(5.2)

Given Γub and Γub, two types of achievable link rates, cub in non-ABSs and cub

in ABSs, are derived using Shannon’s formula as

cub = W log2 (1 + Γub)

cub = W log2

(
1 + Γub

) ∀u ∈ U ∀b ∈ B, (5.3)

respectively, where W is the system bandwidth. For any MBS b ∈ Bm, the average

link rate cub in ABSs becomes zero as Γub becomes zero.

Pb = 0 → Γub = 0 & cub = 0 ∀b ∈ Bm ∀u ∈ Ub. (5.4)

5.3 Problem Formulation

In this section, we formulate an optimization problem in which the objective is

to maximize the network-wide utility by configuring both the user association with
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cells in a load-distributed manner and the number of ABSs to improve this load

distribution between MBSs and PBSs as follows:

max
x,t

∑
u∈U

U(ru) = max
x,t

∑
u∈U

U

(∑
b∈B

xubrub(t)

)

= max
x,t

∑
u∈U

∑
b∈B

xub U (rub(t)) (5.5)

where U(·) is an increasing, strictly concave, and continuously differentiable util-

ity function, x is an association indicator vector {xub : u ∈ U , b ∈ B} representing

whether MS u is associated with BS b (= 1) or not (= 0), and t is the number of

ABSs configured at MBSs. We assume synchronous ABS operation where all MBSs

follow the same ABS configuration such as the periodicity, the start offset, and the

duration.

For the utility function U(·), we utilize the log utility function U(r) = log(r)

as previous work [43] has shown that proportional fairness among users could be

achieved when the sum of logarithmic utilities is maximized.

To derive the long-term average rate rub(t), we assume that the proportional

fairness scheduler is used. Following the long-term behavior of the proportional

fairness scheduler in [69], rub(t) can be expressed as

rub(t) =
G(Kb)

(
(1− t

T
)cub + t

T
cub
)

Kb

, (5.6)

where Kb is the number of MSs associated with BS b which is derived as Kb =∑
u∈U xub and G(·) denotes a multi-user diversity gain which can be calculated as

G(k) =
∑k

i=1
1
i
. Following the configured ABS duration t, (T − t) non-ABSs and t

ABSs are basically available for each MS.
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By applying the logarithmic utility function and plugging (5.6) to (5.5), we

have the formulated optimization problem as follows:

max
x,t

∑
u∈U

∑
b∈B

xub log

(
G(Kb)

(
(1− t

T
)cub + t

T
cub
)

Kb

)
(5.7a)

s.t. xub = {0, 1} ∀u ∈ U ∀b ∈ B (5.7b)

t = {0, 1, · · · , T − 1}, (5.7c)∑
b∈B

xub = 1 ∀u ∈ U , (5.7d)

Kb =
∑
u∈U

xub ∀b ∈ B. (5.7e)

As discussed in previous work [45, 48], the cell association problem, i.e., the

optimization problem (5.7) with a fixed ABS duration t, is a 0-1 knapsack problem,

therefore it is NP-hard. The authors in [45] present an offline algorithm which can

obtain the optimal cell association in a polynomial time by fixing the number of as-

sociated MSs with each BS. For every Kb configuration, the cell association problem

is equivalent to the maximum weighted matching problem. This offline algorithm,

however, has computational complexity of O
(
|U||B|+3/2

)
which could be too complex

in heterogeneous cellular networks as the number of BSs in heterogeneous cellular

networks is much larger than that in traditional cellular networks. Moreover, in

our problem formulation, the ABS duration t also needs to be jointly optimized

along with the cell association. Therefore, we develop an online heuristic algorithm

inspired by [48] in the next section.
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5.4 Proposed Algorithm

The main motivation of load-aware cell association in general is that selecting

the serving BS with the strongest received signal strength doesn’t necessarily mean

that MSs can achieve the highest average rate because the average rate depends on

both the received signal strength and the user load shown in (5.6). In the CRE-

enabled scenario, the interference would be larger than the desired signal for PMSs

which severely degrades their average rate. Thus, the use of ABSs plays an important

role as it can change MSs’ average rate changes depending on their associated tiers.

This could be used to trigger MSs’ tier selection between macros and picos. Based

on these observations, we develop the following properties which are crucial for our

algorithm design.

Proposition 5.1. (Condition for MS handover under ABS t) Assume MS

u is associated with BS b with ABS duration t and the number of users in BS b

and BS b
′

are large. Then transferring the MS u from BS b to BS b
′

improves the

network-wide utility if

log
G(Kb′ + 1)eub′ (t)

Kb′ + 1
− log

G(Kb)eub(t)

Kb

> δHO
bb′

(5.8)

where eub(t) = (1− t
T

)cub + t
T
cub. δ

HO
bb′

represents the net utility change between BS

b and b
′

which is expressed as

δHO
bb′

=
1− 1

Kb

γ + logKb

− 1

γ + logKb′
(5.9)

where γ is the Euler-Mascheroni constant (= 0.5772 · · · ).

Proof: Refer to Section 5.7.1.
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Proposition 5.2. (Condition for ABS increment from t to t+1) Suppose

MBS i ∈ Bm selects a subset of its associated MMSs to be offloaded to PBSs, denoted

by UOLi
(
|UOLi | = ni, ni � Ki

)
and PBS j ∈ Bp accommodates mj MMSs out of

overall MMSs to be offloaded (mj � Kj), i.e.,
∑

i∈Bm ni =
∑

j∈Bp mj. Then ABS

increment from t to t + 1 with offloading MMSs improves the network-wide utility

(i.e., the net utility change ∆UABS
+ (t+ 1) > 0) if the following condition is met:

∑
i∈Bm

∑
u∈UOL

i

[
log

G(Kbpu +mbpu)eubpu(t+ 1)

Kbpu +mbpu

− log
G(Ki)eui(t)

Ki

]

−
∑
i∈Bm

[
ni

(
1− ni

Ki

γ + logKi

− 1

T − t

)
+

Ki

T − t

]

+
∑
j∈Bp

 mj

γ + logKj

+
∑
u∈Uj

auj − 1

T + t(auj − 1)

 > 0, (5.10)

where bpu is the target PBS to which the MMS u is handed over, mbpu is the total

number of MMSs that the target PBS bpu would accommodate, and auj is the ratio

of the achievable link rate at PMS u with PBS j in ABSs to that in non-ABSs

(= cuj/cuj).

Proof: Refer to Section 5.7.2.

Remark: Three terms in (5.10) can be represented respectively as follows:

∆UOL
m (t+ 1) + ∆Um(t+ 1) + ∆Up(t+ 1) > 0, (5.11)

where ∆UOL
m (t + 1), ∆Um(t + 1), and ∆Up(t + 1) denote the expected net utility

change of MMSs to be offloaded to PBSs, MMSs remaining in MBSs, and PMSs by

increasing the ABS duration from t to t+ 1, respectively.

Proposition 5.3. (Condition for ABS decrement from t to t-1) Suppose PBS

j ∈ Bp selects a subset of its associated PMSs to be offloaded to MBSs, denoted
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by UOLj
(
|UOLj | = mj, mj � Kj

)
and MBS i ∈ Bm accommodates ni MMSs out of

overall PMSs to be offloaded (ni � Ki), i.e.,
∑

j∈Bp mj =
∑

i∈Bm ni. Then ABS

decrement from t to t − 1 with offloading PMSs improves the network-wide utility

(i.e., the net utility change ∆UABS
− (t− 1) > 0) if the following condition is met:

∑
j∈Bp

∑
u∈UOL

j

[
log

G(Kbmu + nbmu )eubmu (t− 1)

Kbmu + nbmu
− log

G(Kj)euj(t)

Kj

]

−
∑
j∈Bp

mj

(
1− mj

Kj

)
γ + logKj

+
∑

u∈Uj\UOL
j

auj − 1

T + t(auj − 1)


+
∑
i∈Bm

[
ni

γ + logKi

+
Ki

T − t

]
> 0, (5.12)

where bmu is the target MBS to which the PMS u is handed over, nbmu is the total

number of PMSs that the target MBS bmu would accommodate.

Proof: Refer to Section 5.7.2.

Remark: Three terms in (5.12) can be represented respectively as follows:

∆UOL
p (t− 1) + ∆Up(t− 1) + ∆Um(t− 1) > 0, (5.13)

where ∆UOL
p (t − 1), ∆Up(t − 1), and ∆Um(t − 1) denote the expected net utility

change of PMSs to be offloaded to MBSs, PMSs remaining in PBSs, and MMSs by

decreasing the ABS duration from t to t− 1, respectively.

From Eq. (5.10), (5.12), we observe that the net utility change of MBSs and

PBSs by ABS control, apart from that of MSs to be offloaded, can be represented

in a simple form.

Based on the observations discussed above, we describe how the proposed algo-

rithm optimizes the cell association and the ABS duration. Considering the required
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procedure and signaling for measurement and reporting, the joint optimization is

divided into two stages - the MS load-balancing and the ABS control. In the MS

load-balancing stage, MS handovers are performed among BSs in a way that the

network-wide utility is increased in a gradient-descent manner under the current

ABS duration t. In the ABS control stage, the ABS increment (+1) or decrement

(-1) is examined by estimating the possible MSs that can be offloaded based on

MSs’ measurement reports and corresponding net utility changes UABS
+ (t + 1) and

UABS
− (t− 1).

5.4.1 Stage 1: MS Load-balancing under ABS Duration t

By neighbor cell measurement and user load information, every MS u calcu-

lates the expected data rates of its neighboring cells by handover, and reports to the

serving BS bu the best target BS b
′
u from which it can achieve the largest logarithmic

ratio φu(t) by handover as

φu(t) = log
G(Kb′u

+ 1)eub′u(t)

Kb′u
+ 1

Kbu

G(Kbu)eubu(t)
∀u ∈ U . (5.14)

Suppose each BS reports their best candidate MS to the central coordinating

entity, the central entity chooses the best MS u∗ that achieves the largest utility

increment by this handover,

u∗ = arg max
u∈UHO

(
φu(t)− δHObub′u

)
, (5.15)

where UHO is the set of candidate MSs selected by each BS and δHO
bub
′
u

can be cal-

culated based on (5.9). As discussed in (5.8), the handover can be done only if the
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selected MS u∗ satisfies the following condition with a hysteresis margin δHOh > 0 to

prevent possible ping-pong effects:

φu∗(t)− δHObu∗b′u∗ > δHOh . (5.16)

For a given ABS duration t, the load-balancing operation is performed until

there is no MS that satisfies the condition in (5.16) to improve the network-wide

utility by handover.

5.4.2 Stage 2: ABS Control from t by +1 or -1

By neighbor cell measurement and user load information, every MS u calcu-

lates expected data rates with its neighboring BSs by handover along with ABS

change (ABS increment by +1 and ABS decrement by -1). Then, the MS reports

the best target BS b
′
u and the best ABS value tu (either +1 or -1) to the serving BS

bu for which it can achieve the highest ratio φu(t+ tu) by handover along with ABS

change as

φu(t+ tu) = log
G(Kb′u

+ 1)eub′u(t+ tu)

Kb
′
u

+ 1

Kbu

G(Kbu)eubu(t)
∀u ∈ U , (5.17)

where φu(t + tu) > 0 means that the MS can be considered as a candidate MS for

offloading with ABS change tu.

Unlike load-balancing in stage 1 where a single MS is handed over to a target

BS regardless of the BS type, ABS control only considers multiple MSs offloading

from MBSs to PBSs, or vice versa. For instance, when the ABS duration increases

this leads to MMSs’ data rate degradation as the number of non-ABSs decreases.
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Hence, a certain number of MMSs should be offloaded to PBSs to compensate the

possible MMSs’ throughput degradation. When the ABS duration decreases, on

the other hand, this leads to PMSs’ data rate degradation as the number of ABSs

decreases. Therefore, a certain number of PMSs needs to be offloaded to MBSs. As

a result, we focus on two cases - ABS increment by +1 with offloading MMSs to

PBSs and ABS decrement by -1 with offloading PMSs to MBSs.

After receiving MSs’ measurement report messages, every MBS reports to the

central coordinating entity the number of currently associated MMSs and infor-

mation of candidate MMSs for offloading to PBSs such as the target PBS id and

φu(t + 1). In case of PBSs, each PBS reports the number of currently associated

PMSs, the net utility change of them by ABS increment calculated as

∑
u∈Uj

auj − 1

T + t(auj − 1)
∀j ∈ Bp, (5.18)

and information of candidate PMSs for offloading to MBSs such as the target MBS

id, φu(t − 1), and
auj−1

T+t(auj−1) . As observed in (5.10), (5.12), the net utility change

by ABS decrement can be obtained by changing the sign of that of ABS increment

and subtracting that of PMSs to be offloaded.

The central coordinating entity examines if the current ABS duration t needs

to be changed by +1 or −1 via the backhaul messages from BSs. To check if

the condition in (5.10), (5.12) is satisfied, the central coordinating entity needs to

determine the number of offloading MMSs for ABS increment and offloading PMSs

for ABS decrement.

Since MSs’ reported ratio φu(t + tu) in (5.17) is calculated based on a single
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MS handover, candidate MSs for offloading should be filtered out by adjusting their

ratio values. Suppose a candidate MS u has the target BS b
′
u with ABS change tu,

and there are k candidate MSs in total which can be offloaded to that target BS.

Then, the adjusted ratio φu(t+ tu) can be approximated as

φu(t+ tu) = log
G(Kb′u

+ k)eub′u(t+ tu)

Kb′u
+ k

Kbu

G(Kbu)eubu(t)

= log
G(Kb′u

+ 1)eub′u(t+ tu)

Kb′u
+ 1

Kbu

G(Kbu)eubu(t)
+ log

Kb′u
+ 1

G(Kb′u
+ 1)

G(Kb′u
+ k)

Kb′u
+ k

' φu(t+ tu)−
k − 1

Kb′u
+ 1

(
1− 1

γ + log(Kb′u
+ 1)

)
, (5.19)

where bu is the serving BS of MS u. For proof, please refer to Proposition 5.1 and

5.2. When there is only one candidate MS for a target BS (i.e., k = 1), φu(t + tu)

is equivalent to φu(t + tu). As k increases, φu(t + tu) decreases accordingly. To

maximize the MS offloading gain, we only consider MSs satisfying φu(t+ tu) > 0 to

determine ni’s and mj’s in (5.10), (5.12).

ni’s and mj’s can be obtained as follows. In the ABS increment case, for a

given target PBS b
′

and ABS change +1, MMSs are sorted in a decreasing order of

φu(t+ 1). From the first row of the list (i.e., k = 1) to the bottom, k is increased by

1 for each row and it is checked if the following condition for the MMS in kth row

is met:

φu(t+ 1) >
k − 1

Kb′ + 1

(
1− 1

γ + log(Kb′ + 1)

)
. (5.20)

Suppose the MMS in the k
′
th row doesn’t satisfy the condition in (5.20), then the

number of MMSs offloaded to PBS b
′
, mb′ , becomes k

′ − 1. After determining mj’s

for all PBSs using this process, ni’s can be determined by checking the serving MBSs
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of those MMSs. In the ABS decrement case, the target BS type for offloading is

macro, therefore we find ni’s first and then mj’s can be determined accordingly.

Upon determining ni’s and mj’s, using the conditions in (5.10), (5.12), the

number of ABSs can be changed if the following conditions are met:

• ABS increment by +1: ∆UABS
+ (t+1) > ∆UABS

− (t−1) and ∆UABS
+ (t+1) >

δABSh

• ABS decrement by -1: ∆UABS
− (t−1) > ∆UABS

+ (t+1) and ∆UABS
− (t−1) >

δABSh ,

where δABSh is a hysteresis margin to prevent possible ping-pong effects in ABS

control.

It should be noted that the proposed method of determining ni’s and mj’s is

not optimal for estimating the actual number of MSs that can be offloaded with

ABS change. However, from the view point of required report messages from MSs

and computations at BSs, the proposed method provides a simple and dynamic way

to control the number of ABSs.

5.5 Performance Evaluation

In this section, we demonstrate the performance of the proposed scheme through

simulations. The heterogeneous network deployment is constructed as follows. The

macro-tier consists of 7 MBSs each of which is three-sectorized (i.e., 21 macrocells),

and in each macrocell’s coverage outdoor omni-directional picocells and MSs are

uniformly distributed. To obtain two achievable link rates cub and cub, instead of
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using Shannon’s formula, we calculate the bit rates based on channel quality indi-

cators (CQIs) fed back from MSs in the system level simulator developed based on

the LTE downlink system level simulator in [61]. The detailed parameters are de-

scribed in Table 5.2, most of which are adopted from 3GPP’s system level simulation

parameters in [62], [63], [64].

For the performance evaluation, the following schemes are compared through

numerical simulations:

• Proposed scheme: Load-aware cell association and ABS control are jointly

optimized.

• Received signal strength-based cell association (RSS): The cell association is

done by choosing the cell with the strongest received signal strength.

• Cell range expansion-based cell association (CRE): The cell association is done

by choosing the cell with the strongest received signal strength plus the CRE

bias.

For the proposed scheme, the initial cell association and ABS duration are given as

the received signal strength-based BS selection and zero ABSs, respectively. The

hysteresis margins for the load-balancing (stage 1) and the ABS control (stage 2)

are set to be log 1.1 and log(p∗1.3) where p is the number of picocells per macrocell,

respectively. For RSS and CRE, the optimal number of ABSs is found through

exhaustive search that maximizes the network-wide utility.

Table 5.3, Figure 5.1, and Figure 5.2 show how many ABSs are configured in

three schemes to maximize the network-wide utility. For the CRE (8 dB) and RSS
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Table 5.2: Simulation Parameters

Simulation Parameter Value

Number of simulations per scenario 500

Max. iterations per simulation 1500

Carrier frequency 2.0 GHz

System bandwidth 10 MHz

Antenna configuration SISO

Channel model Typical Urban (TU)

Inter-site distance 750 m

Noise power spectral density -174 dBm/Hz

ABS periodicity (T ) 40 subframes

Macrocell transmit power 40 W (46 dBm)

Macrocell path loss model 128.1 + 37.6log10R (R in km)

Macrocell shadowing model Log normal fading with std. 10 dB

Macrocell antenna gain 15 dBi

Picocell transmit power 1 W (30 dBm)

Picocell path loss model 140.7 + 36.7log10R (R in km)

Picocell shadowing model Log normal fading with std. 6 dB

Picocell antenna gain 5 dBi

Min. distance MBS-PBS 75 m

Min. distance PBS-PBS 50 m

Number of macrocells 21 (7 three-sectorized MBSs)

Number of picocells per macrocell 2 / 4

Number of MSs per macrocell 50 (minimum 2 PMSs in picocell without CRE)

CRE bias offset 8 / 16 dB

Table 5.3: Average of Optimal ABSs

Case Proposed CRE (16 dB) CRE (8 dB) RSS

2 picos 20.1 2.27 0.00 0.00

4 picos 32.9 5.82 0.06 0.00
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Figure 5.1: CDFs of optimal ABSs (2 picocells)
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Figure 5.2: CDFs of optimal ABSs (4 picocells)

schemes, the number of configured ABSs is almost zero for both 2 picocell and 4

picocell cases, due to the fact that much more MSs are associated to macrocells even
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if the 8 dB of CRE bias offset is applied. Therefore, it is more beneficial to allocate

almost zero ABSs for the sake of maximizing the network-wide utility. For the CRE

(16 dB) scheme, about 1 ∼ 8 ABSs can be configured to maximize the network-wide

utility as shown in Figure 5.1 and Figure 5.2. For the proposed scheme, the number

of ABSs configured is about 6 times of that of CRE (16 dB) for both 2 picocell and

4 picocell cases by the joint operation of MS offloading. It is noted that the number

of configured ABSs increases about 50% as the number of picocells per macrocell

becomes 4 from 2. In Figure 5.1 and Figure 5.2, the CDFs of the number of optimal

ABSs are shown. Noticeably, for the 4 picocell case, the maximum number of ABSs

(i.e., 39) is configured for about 30% of simulations. This means that almost all

MMSs can be offloaded to picocells when picocells are evenly distributed over the

macrocells’ coverage.
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Figure 5.3: CDFs of the number of MSs per macrocell coverage (2 picocells)

In Figure 5.3 and Figure 5.4, the CDFs of the number of MSs per macrocell
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Figure 5.4: CDFs of the number of MSs per macrocell coverage (4 picocells)

coverage are shown. The number of PMSs represents the sum of PMSs in all picocells

(2 or 4) located in a macrocell coverage. Therefore, the number of PMSs needs to

be divided by the number of picocells in order to check the number of PMSs per

picocell. For the 2 picocell case, each marocell accommodates about 30% ∼ 50%

more MSs than a picocell in their coverage. However, for the 4 picocell case, each

picocell accommodates about 30% ∼ 50% more MSs than the macrocell which means

the better MS load-balancing. Moreover, it is noted that about 25% of macrocells

have no MSs associated due to the maximum number of ABSs configured (i.e., 39

ABSs).

Table 5.4: Average Utility per MS

Case Proposed CRE (16 dB) CRE (8 dB) RSS

2 picos 14.39 14.23 14.18 14.15

4 picos 14.82 14.48 14.39 14.35
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In Table 5.4, the means of average utility per MS are compared, which is cal-

culated by dividing the sum of utilities by the total number of MSs in the network.

Compared to other schemes, the proposed scheme shows about 1% and 3% perfor-

mance improvement of average utility per MS. As the number of picocells increases,

the higher performance improvement is observed as more MSs can be offloaded along

with the ABS control. It is also noted that the CRE-based cell association shows

the marginal performance improvement (less than 1%) compared to the RSS-based

association, i.e., 0 dB of CRE bias offset.
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Figure 5.5: CDFs of average utility per MS (2 picocells)

In Figure 5.5 and Figure 5.6, the CDFs of average utility per MS is shown. It

is confirmed that the proposed scheme provides much larger performance improve-

ment as the number of picocells increases which results in higher possibility of MS

offloading in conjunction with ABS control
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Figure 5.6: CDFs of average utility per MS (4 picocells)

Table 5.5: MS Data Rate (bps/Hz)

Case Metric Proposed CRE (16 dB) CRE (8 dB) RSS

2 picos
Mean 0.226 0.207 0.214 0.216

Edge 0.060 0.049 0.045 0.043

4 picos
Mean 0.381 0.299 0.290 0.293

Edge 0.077 0.054 0.050 0.046

In Table 5.5, MS data rates are compared in three schemes. For the 2 picocell

case, the proposed scheme shows 5% ∼ 10% performance improvement over CRE

(8 dB and 16 dB) and RSS schemes in the mean MS data rate. In the edge (5%-ile)

data rate, the performance gap becomes about 20% ∼ 40%. Although the RSS

scheme shows about 3% higher mean data rate than both CRE cases (8 dB and
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16 dB) due to the smaller number of PMSs which achieve much higher data rates,

the edge data rate is degraded about -7 % by the large number of MMSs. For the

4 picocell case, the performance gap between the proposed scheme and the others

becomes much larger than the 2 picocell case. The proposed scheme shows about

30% gain in the mean data rate and about 50% gain in the edge rate. The CRE (16

dB) scheme shows about 2% higher mean data rate than the RSS scheme, which

means the cell-splitting gain is enhanced by MS offloading and ABS configuration.

In Figure 5.7 and Figure 5.8, the CDFs of MS data rate are shown. The

proposed scheme shows the better fairness among MSs by MS offloading and ABS

control. About 90%-ile or above, the CRE and RSS schemes show the higher data

rate than the proposed scheme due to the smaller number of PMSs. Since about 5

or less PMSs are accommodated by each picocell, their achievable data rate is much

higher than MMSs’ in the CRE and RSS schemes as identified in Figure 5.9 and

Figure 5.10.

5.6 Summary and Future Work

In this work, we have discussed a joint optimization problem of cell associa-

tion and cross-tier interference mitigation. The network-wide utility maximization

problem is formulated with respect to the cell association and the number of ABSs.

In the first stage, MS load balancing is done based on their expected data rate by

handover under the current number of ABSs t. When there are no MSs available for

handover, the possibility of ABS control is examined for further MS load balancing.
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Figure 5.7: CDFs of MSs’ data rate (2 picocells)
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Figure 5.8: CDFs of MSs’ data rate (4 picocells)
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Figure 5.9: CDFs of MMSs’ data rate
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Figure 5.10: CDFs of PMSs’ data rate
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In the second stage, the network-wide net utility by increasing (or decreasing) the

number of ABSs is estimated from MSs’ expected data rate by handover along with

the ABS change.

As future work, the following research issues can be further studied.

• Asynchronous ABS configuration

– We can expand the current work based on the synchronous ABS operation

to the asynchronous ABS operation case where each macrocell can have

a different ABS configuration.

• Adaptive hysteresis margin for ABS control

– Due to the possible inaccuracy in estimating the number of MSs to be

offloaded, we can develop an adaptive hysteresis margin to compensate

the inaccurate estimation instead of having a fixed hysteresis margin as

we have done.

5.7 Appendix

5.7.1 Proof of Proposition 5.1

The net increment of network-wide utility by handing over MS u from BS b

to b′ can be expressed as

∆UHO =

[
log

G(Kb′ + 1)eub′(t)

Kb′ + 1
− log

G(Kb)eub(t)

Kb

]
+

∑
v∈Ub\{u}

[
log

G(Kb − 1)ebv(t)

Kb − 1
− log

G(Kb)ebv(t)

Kb

]
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+
∑
v∈Ub′

[
log

G(Kb′ + 1)evb′(t)

Kb′ + 1
− log

G(Kb′)evb′(t)

Kb′

]
, (5.21)

where the first, second and last term denote the net utility increment of the MS u,

the BS b, and b′, respectively. Eq. (5.21) can be further simplified as

∆UHO = log
G(Kb′ + 1)eub′(t)

Kb′ + 1

Kb

G(Kb)eub(t)
+ (Kb − 1) log

G(Kb − 1)

G(Kb)

Kb

Kb − 1

+Kb′ log
G(Kb′ + 1)

G(Kb′)

Kb′

Kb′ + 1
. (5.22)

Using the log function approximation log(1 ± x) ' ±x (if |x| � 1) and the

Euler’s approximation of the multi-user diversity gain G(k) =
∑k

i=1
1
i
' γ + log k,

where γ (= 0.5572 · · · ) is the Euler-Mascheroni constant, we can obtain the following

four equations:

· (Kb − 1) log
Kb

Kb − 1
= (Kb − 1) log

(
1 +

1

Kb − 1

)
' 1 (5.23)

· Kb′ log
Kb′

Kb′ + 1
= −Kb′ log

(
1 +

1

Kb′

)
' −1 (5.24)

· (Kb − 1) log
G(Kb − 1)

G(Kb)
' (Kb − 1) log

γ + log(Kb − 1)

γ + logKb

' (Kb − 1) log

(
1 +

log(Kb − 1)− log(Kb)

γ + logKb

)

' (Kb − 1) log

1 +
log
(

1− 1
Kb

)
γ + logKb


' (Kb − 1) log

(
1−

1
Kb

γ + logKb

)

' −Kb − 1

Kb

1

γ + log(Kb)

'
−
(

1− 1
Kb

)
γ + logKb

(5.25)
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·Kb′ log
G(Kb′ + 1)

G(Kb′)
' Kb′ log

γ + log(Kb′ + 1)

γ + logKb′

' Kb′ log

(
1 +

log(Kb′ + 1)− logKb′

γ + logKb′

)

' Kb′ log

1 +
log
(

1 + 1
Kb′

)
γ + logKb′


' Kb′ log

(
1 +

1
Kb′

γ + logKb′

)

' Kb′

Kb′

1

γ + logKb′

' 1

γ + logKb′
. (5.26)

By plugging equations in (5.23)-(5.26) into (5.22), Eq. (5.22) becomes

∆UHO = log
G(Kb′ + 1)eub′(t)

Kb′ + 1

Kb

G(Kb)eub(t)
+

1

γ + logKb′
−

(
1− 1

Kb

)
γ + logKb

. (5.27)

In order for the user’s handover to improve the network-wide utility, ∆UHO > 0

needs to be satisfied, therefore we can derive the condition in (5.8).

5.7.2 Proof of Proposition 5.2 & 5.3

For the ABS increment case, ∆Um(t+ 1) and ∆Up(t+ 1) can be derived as

∆Um(t+ 1)

=
∑
i∈Bm

∑
u∈Ui\UOL

i

[
log

G(Ki − ni)eui(t+ 1)

Ki − ni
− log

G(Ki)eui(t)

Ki

]

=
∑
i∈Bm

∑
u∈Ui\UOL

i

log
G(Ki − ni)
G(Ki)

Ki

Ki − ni
eui(t+ 1)

eui(t)

=
∑
i∈Bm

log

(
G(Ki − ni)
G(Ki)

Ki

Ki − ni

(
1− t+1

T

)
cui(

1− t
T

)
cui

)Ki−ni
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=
∑
i∈Bm

[
(Ki − ni) log

G(Ki − ni)
G(Ki)

+ (Ki − ni) log
Ki

Ki − ni
+ (Ki − ni) log

T − t− 1

T − t

]

=
∑
i∈Bm

[
(Ki − ni) log

G(Ki − ni)
G(Ki)

+ (Ki − ni) log
Ki

Ki − ni
+ (Ki − ni) log

(
1− 1

T − t

)]

'
∑
i∈Bm

−ni
(

1− ni

Ki

)
γ + log(Ki)

+ ni −
Ki − ni
T − t

 , (5.28)

∆Up(t+ 1)

=
∑
j∈Bp

∑
u∈Uj

[
log

G(Kj +mj)euj(t+ 1)

Kj +mj

− log
G(Kj)euj(t)

Kj

]

=
∑
j∈Bp

∑
u∈Uj

[
log

G(Kj +mj)

G(Kj)

Kj

Kj +mj

euj(t+ 1)

euj(t)

]

=
∑
j∈Bp

∑
u∈Uj

[
log

G(Kj +mj)

G(Kj)

Kj

Kj +mj

(T − t− 1)cuj + (t+ 1)cuj
(T − t)cuj + tcuj

]

=
∑
j∈Bp

Kj log
G(Kj +mj)

G(Kj)
+Kj log

Kj

Kj +mj

+
∑
u∈Uj

log

(
1 +

auj − 1

T + t(auj − 1)

)
'
∑
j∈Bp

 mj

γ + logKj

−mj +
∑
u∈Uj

auj − 1

T + t(auj − 1)

 , (5.29)

respectively, using the approximations in (5.23)-(5.26). Since
∑

i∈Bm ni−
∑

j∈Bp mj =

0, the requirement ∆UABS
+ (t+ 1) > 0 for ABS increment leads us to the condition

in (5.10).

Similarly, ∆Um(t − 1) and ∆Up(t − 1) for the ABS decrement case can be

derived as

∆Um(t− 1)

=
∑
i∈Bm

∑
u∈Ui

[
log

G(Ki + ni)eui(t− 1)

Ki + ni
− log

G(Ki)eui(t)

Ki

]
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=
∑
i∈Bm

∑
u∈Ui

log
G(Ki + ni)

G(Ki)

Ki

Ki + ni

eui(t− 1)

eui(t)

=
∑
i∈Bm

log

(
G(Ki + ni)

G(Ki)

Ki

Ki + ni

(
1− t−1

T

)
cui(

1− t
T

)
cui

)Ki

=
∑
i∈Bm

[
Ki log

G(Ki + ni)

G(Ki)
+Ki log

Ki

Ki + ni
+Ki log

T − t+ 1

T − t

]

=
∑
i∈Bm

[
Ki log

G(Ki + ni)

G(Ki)
+Ki log

Ki

Ki + ni
+Ki log

(
1 +

1

T − t

)]

'
∑
i∈Bm

[
ni

γ + log(Ki)
− ni +

Ki

T − t

]
, (5.30)

∆Up(t− 1)

=
∑
j∈Bp

∑
u∈Uj\UOL

j

[
log

G(Kj −mj)euj(t− 1)

Kj −mj

− log
G(Kj)euj(t)

Kj

]

=
∑
j∈Bp

∑
u∈Uj\UOL

j

[
log

G(Kj −mj)

G(Kj)

Kj

Kj −mj

euj(t− 1)

euj(t)

]

=
∑
j∈Bp

∑
u∈Uj\UOL

j

[
log

G(Kj −mj)

G(Kj)

Kj

Kj −mj

(1− t−1
T

)cuj + t−1
T
cuj

(1− t
T

)cuj + t
T
cuj

]

=
∑
j∈Bp

[
(Kj −mj) log

G(Kj −mj)

G(Kj)
+ (Kj −mj) log

Kj

Kj −mj

+
∑

u∈Uj\UOL
j

log

(
1 +

auj − 1

T + t(auj − 1)

)
'
∑
j∈Bp

−mj

(
1− mj

Kj

)
γ + logKj

+mj −
∑

u∈Uj\UOL
j

auj − 1

T + t(auj − 1)

 , (5.31)

respectively. Since
∑

j∈Bp mj −
∑

i∈Bm ni = 0, the requirement ∆UABS
− (t − 1) > 0

leads us to the condition in (5.12).
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Chapter 6: Conclusions

In this dissertation, we have investigated two challenges of radio resource man-

agement in heterogeneous cellular networks, which are the cross-tier interference

mitigation and the load-aware cell association. For the cross-tier interference mit-

igation, we have focused on a group of pico users located in the expanded range

(ER-PMSs) which are associated with picocells by the CRE operation for the pur-

pose of additional user offloading effect even if they observe the stronger received

signal strength from macrocells. We present two problems of macrocell transmit

power control in frequency- and time-domain such that those ER-PMSs are pro-

vided their minimum QoS requirement. For the load-aware cell association, we have

focused on a flexible cell association of users in a load-balanced manner, which is

different from the traditional policy - the received signal strength-based cell selec-

tion. We present a problem of the joint optimization of cell association and cross-tier

interference mitigation.

In the first problem, the frequency-domain macrocell transmit power reduc-

tion is presented for the cross-tier interference mitigation. From the macrocell’s

perspective, our interest is to minimize the performance degradation of MMSs by

performing macrocell’s transmit power reduction for ER-PMSs. A two-step cross-
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tier interference mitigation scheme is proposed where the reduced transmit power

level is determined in the first stop, and then a group of resource blocks is selected

by solving a resource block scheduling problem. Due to the binary nature of resource

block scheduling, a greedy-based heuristic algorithm is proposed. Through simula-

tions, we have shown that the heuristic algorithm provides a good trade-off between

the complexity and the performance, and the proposed cross-tier interference mit-

igation efficiently provides minimum required data rates scheme to ER-PMSs with

much less transmit power reduction than the compared scheme.

In the second problem, the time-domain macrocell transmit power nulling is

presented for the cross-tier interference mitigation. From the view point of the

network, our interest turns into maximizing the network-wide utility subject to

ER-PMSs’ minimum required data rates by controlling the number of ABSs. We

first present a new PMS scheduling policy where regular PMSs (R-PMSs) and ER-

PMSs can be scheduled onto ABSs and non-ABSs interchangeably. Based on the

scheduling policy, we formulate an optimization problem where the sum utility of

MMSs & R-PMSs is maximized subject to ER-PMSs’ minimum required data rates.

For a given number of ABSs, the multi-cell optimization problem can be divided into

multiple single cell optimization problems, and then the optimal number of ABSs

can be obtained at the central coordinating entity. Through simulations, we have

shown that the proposed scheme outperforms other comparing schemes in terms of

the sum utility of MMSs & R-PMSs and all MSs.

In the third problem, the dynamic cell association is presented in conjunc-

tion with the time-domain macrocell transmit power nulling. From the perspective
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of user load balancing in the network, our objective is to achieve better user re-

distribution to picocells in conjunction with the ABS control in a load-balanced

manner than the CRE operation does. To this end, we formulate a network-wide

utility maximization problem with respect to the cell association and the number of

ABSs. Due to the NP-hardness of the optimization problem, we propose an online

heuristic algorithm where a single user handover and an ABS change (+1 or -1) are

determined by the expected throughput. In the first stage, for a given number of

ABSs the user load balancing is performed by handing over a user in each iteration

in a way to improve the network-wide utility. In the second stage, the ABS change

by +1 or -1 is examined by estimating the expected number of users offloaded from

macros to picos (or vice versa) and the corresponding network-wide utility change.
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