Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SENSITIVITY ANALYSIS OF MACHINE LEARNING IN BRIGHTNESS TEMPERATURE PREDICTIONS OVER SNOW-COVERD REGIONS USING THE ADVANCED MICROWAVE SCANNING RADIOMETER

    Thumbnail
    View/Open
    Xue_umd_0117N_15231.pdf (12.82Mb)
    No. of downloads: 1506

    Date
    2014
    Author
    Xue, Yuan
    Advisor
    Forman, Barton
    Metadata
    Show full item record
    Abstract
    Snow is a critical component in the global energy and hydrologic cycle. Further, it is important to know the mass of snow because it serves as the dominant source of drinking water for more than one billion people worldwide. Since direct quantification of snow water equivalent (SWE) is complicated by spatial and temporal variability, space-borne passive microwave SWE retrieval products have been utilized over regional and continental-scales to better estimate SWE. Previous studies have explored the possibility of employing machine learning, namely an artificial neural network (ANN) or a support vector machine (SVM), to replace the traditional radiative transfer model (RTM) during brightness temperatures (Tb) assimilation. However, we still need to address the following question: What are the most significant parameters in the machine-learning model based on either ANN or SVM? The goal of this study is to compare and contrast sensitivity analysis of Tb with respect to each model input between the ANN- and SVM-based estimates. In general, the results suggest the SVM (relative to the ANN) may be more beneficial during Tb assimilation studies where enhanced SWE estimation is the main objective.
    URI
    http://hdl.handle.net/1903/15475
    Collections
    • Civil & Environmental Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility