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Snow is a critical component in the global energy and hydrologic cycle. Further, it is 

important to know the mass of snow because it serves as the dominant source of 

drinking water for more than one billion people worldwide. Since direct 

quantification of snow water equivalent (SWE) is complicated by spatial and 

temporal variability, space-borne passive microwave SWE retrieval products have 

been utilized over regional and continental-scales to better estimate SWE. Previous 

studies have explored the possibility of employing machine learning, namely an 

artificial neural network (ANN) or a support vector machine (SVM), to replace the 

traditional radiative transfer model (RTM) during brightness temperatures (Tb) 

assimilation. However, we still need to address the following question: What are the 

most significant parameters in the machine-learning model based on either ANN or 

SVM? The goal of this study is to compare and contrast sensitivity analysis of Tb 

with respect to each model input between the ANN- and SVM-based estimates. In 

general, the results suggest the SVM (relative to the ANN) may be more beneficial 

during Tb assimilation studies where enhanced SWE estimation is the main objective.   



  

 

 

 
 
 
 

SENSITIVITY ANALYSIS OF MACHINE LEARNING IN  
BRIGHTNESS TEMPERATURE PREDICTIONS OVER  

SNOW-COVERD REGIONS USING THE  
ADVANCED MICROWAVE SCANNING RADIOMETER 

 
 
 

By 
 
 

Yuan Xue 
 
 
 
 
 

Thesis submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Master of Science 

2014 
 
 
 

 
 
 
 
 
 
 
 
Advisory Committee: 
Assistant Professor      Barton A. Forman, Chair 
Professor                      Richard H. McCuen 
Associate Professor      Kaye L. Brubaker 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Yuan Xue 

2014 
 
 
 
 
 
 
 
 
 
 



 

 ii  

ACKNOWLEDGEMENTS 

I would like to thank my advisor Dr. Forman for his guidance, assistance and 

patience during my two-year-study. I would also like to thank him for providing me 

with the opportunity to come to the U.S., for introducing supercomputer and data 

assimilation techniques to me, and for his generous support, and thoughtful 

consideration. I am grateful that I joined his research group and continue to learn 

more from him as I continue my research.  

I would like to thank Dr. McCuen for the great modeling techniques I have 

learned in his class. I am grateful for his valuable suggestions on how to write a thesis. 

I am also grateful for his patience in answering my questions in and out of the class, 

no matter how weird my questions may seem.  

I would like to thank Dr. Brubaker for organizing the Water Resources tubing trip 

when I first came here. I would like to thank her for lending me an office when my 

office temporarily flooded. I would also like to thank her for teaching me how to use 

ArcGIS®.  

I would like to thank Saad B. Tarik for reviewing my draft of thesis, and for his 

help on my academic study over the last four semesters. I would like to thank Yilu 

Feng and Yan Wang, for sharing their past experiences with me. I would like to thank 

my officemates in the EGL 0147 for cheerful discussions during the lunchtime. I 

would like to thank all my friends in the U.S. for their support. I would like to thank 

my family and friends back in China for their moral support. Special thanks go to 

Feng Shi, who is always supporting and encouraging me to pursue my dream and 

helping me out when I am in trouble.  



 

 iii  

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ....................................................................................... ii 

TABLE OF CONTENTS .......................................................................................... iii 

LIST OF TABLES ..................................................................................................... vi 

LIST OF FIGURES .................................................................................................. vii 

Chapter 1: INTRODUCTION AND MOTIVATION ............................................. 1 

 INTRODUCTION OF SNOW ........................................................................ 1 1.1.

1.1.1. Definition and Formation of Snow ............................................................. 1 

1.1.2. Importance of Snow .................................................................................... 3 

1.1.3. Electromagnetic Attributes of Snow ........................................................... 4 

1.1.4. Physical Properties of Snow ....................................................................... 6 

 BASICS OF REMOTE SENSING ................................................................. 9 1.2.

 GOALS AND OBJECTIVES ....................................................................... 11 1.3.

 IMPLICATIONS ........................................................................................... 12 1.4.

Chapter 2: BACKGROUND AND LITERATURE REVIEW ............................. 13 

2.1. IN-SITU SNOW MEASUREMENTS .......................................................... 13 

2.2. SNOW REMOTE SENSING ........................................................................ 14 

2.3. PROBLEMS WITH EXISTING SNOW PARAMETER ESTIMATION 15 

2.4. INTRODUCTION OF MACHINE LEARNING ........................................ 20 

2.4.1. Artificial Neural Network (ANN) ............................................................. 21 

2.4.2. Support Vector Machine (SVM) ............................................................... 23 

2.5. MACHINE LEARNING IN SNOW RETREIVAL .................................... 30 



 

 iv  

Chapter 3: MODEL FORMULATION .................................................................. 32 

3.1. NETWORK INPUTS .................................................................................... 32 

3.2. STUDY DOMAIN .......................................................................................... 34 

3.3. MACHINE LEARNING IN LARGE-SCALE SWE ESTIMATION ....... 36 

3.3.1. ANN Framework ...................................................................................... 36 

3.3.2. ANN Training ........................................................................................... 38 

3.3.3. SVM Framework ...................................................................................... 43 

3.3.4. SVM Training ........................................................................................... 44 

3.3.5. Similarities and differences between machine learning techniques ......... 49 

Chapter 4: SENSITIVITY ANALYSIS FORMULATION .................................. 51 

4.1. SENSITIVITY ANALYSIS .......................................................................... 51 

4.1.1. Importance of sensitivity analysis ............................................................. 51 

4.1.2. Sensitivity analysis in machine learning ................................................... 52 

4.2. NORMALIZED SENSITIVITY COEFFICIENT ...................................... 54 

4.3. SENSITIVITY ANALYSIS FORMULATION ........................................... 58 

Chapter 5: SENSITIVITY ANALYSIS RESULTS ............................................... 60 

5.1. SPATIAL VARIABILITY OF NSCS OF ANN-BASED MODEL ........... 60 

5.1.1. NSCs in the regions with low forest cover and low SWE ........................ 61 

5.1.2. NSCs in the regions with low forest cover and high SWE ....................... 63 

5.1.3. NSCs in the regions with high forest cover and low SWE ....................... 65 

5.1.4. NSCs in the regions with high forest cover and high SWE ...................... 67 

5.2. TEMPORAL VARIABILITY OF NSCS OF ANN-BASED MODEL ..... 68 

5.2.1. Snow accumulation phase ......................................................................... 69 



 

 v  

5.2.2. Snow ablation phase ................................................................................. 70 

5.3. SPACIAL VARIABILITY OF NSCS OF SVM-BASED MODEL ........... 72 

5.3.1. NSCs in the regions with low forest cover and low SWE ........................ 72 

5.3.2. NSCs in the regions with low forest cover and high SWE ....................... 75 

5.3.3. NSCs in the regions with high forest cover and low SWE ....................... 78 

5.3.4. NSCs in the regions with high forest cover and high SWE ...................... 80 

5.4. TEMPORAL VARIABILITY OF NSCS OF SVM-BASED MODEL ..... 82 

5.4.1. Snow accumulation phase ......................................................................... 82 

5.4.2. Snow ablation phase ................................................................................. 84 

5.5. SENSITIVITY ANALYSIS OF ANN- AND SVM-BASED SPECTRAL 

DIFFERENCE ...................................................................................................... 86 

Chapter 6: COCLUSIONS AND RECOMMENDATIONS ................................. 91 

6.1. SUMMARY AND CONCLUSION .............................................................. 91 

6.2. RECOMMENDATIONS FOR FUTURE RESEARCH ............................ 94 

6.2.1. Physical interpretations of NSCs .............................................................. 94 

6.2.2. NSCs of SWE in forested regions ............................................................. 94 

6.2.3. Investigation of polarization ratio ............................................................. 95 

6.2.4. Machine learning with other passive microwave products ....................... 95 

6.2.5. SWE estimation within data assimilation framework ............................... 96 

REFERENCES .......................................................................................................... 98 

ABBREVIATIONS AND ACRONYMS ............................................................... 115 

 



 

 vi  

LIST OF TABLES 

Table 3.1-1 Model inputs and output for both ANN and SVM. ................................ 33 

Table 5.1-1 Canopy cover [%] and SWE [m] for the selected locations under 

different scenarios of various amounts of SWE (14 Jan 2004) and vegetation. ......... 61 

Table 5.1-2 NSCs computations on 14 Jan 2004 for seven model states in an area 

with low forest cover and low SWE. .......................................................................... 63 

Table 5.1-3 NSCs computations on 14 Jan 2004 for seven model states in an area 

with low forest cover and high SWE. ......................................................................... 65 

Table 5.1-4 NSCs computations on 14 Jan 2004 for seven model states in an area 

with high forest cover and low SWE. ......................................................................... 66 

Table 5.1-5 NSCs computations on 14 Jan 2004 for seven model states in an area 

with high forest cover and high SWE. ........................................................................ 67 

Table 5.3-1 NSCs computations on 11 Jan 2004 for seven model states in an area 

with low forest cover and low SWE. .......................................................................... 74 

Table 5.3-2 NSCs computations on 11 Jan 2004 for seven model states in an area 

with low forest cover and high SWE. ......................................................................... 77 

Table 5.3-3 NSCs computation on 11 Jan 2004 for seven model states in an area with 

high forest cover and low SWE. ................................................................................. 79 

Table 5.3-4 NSCs computations on 11 Jan 2004 for seven model states in an area 

with high forest cover and high SWE. ........................................................................ 81 



 

 vii  

LIST OF FIGURES 

Figure 1.1-1 Six-fold snowflakes [Bentley, 1902]. ...................................................... 2 

Figure 1.1-2 Snow classification in the study domain. ................................................ 3 

Figure 1.1-3 Annual variability of SWE for a location in Canada from 01 Jan 2004 to 

12 Jan 2005. .................................................................................................................. 8 

Figure 1.1-4 Spatial distribution of SWE across North America on 11 Jan 2004. ...... 9 

Figure 1.2-1 Electromagnetic wave emitted by each object on the surface. 

[reproduced from University Corporation for Atmospheric Research, the COMET ® 

Program]. .................................................................................................................... 10 

Figure 2.4-1 Schematic of the ANN-based model used in the study [Forman et al. 

2013]. .......................................................................................................................... 22 

Figure 2.4-2 An example of local minima and global minima in ANN framework in 

terms of model parameter selection. ........................................................................... 23 

Figure 2.4-3 Schematic of the SVM-based model [Forman and Reichle 2014]. ....... 24 

Figure 3.2-1 Forest cover across the North America. ................................................ 35 

Figure 3.3-1 Tangent sigmoid function. ..................................................................... 37 

Figure 3.3-2 Cross-validation with five subsets. ........................................................ 48 

Figure 4.2-1 Perturbation effects in the sensitivity analysis of the ANN model. ...... 56 

Figure 4.2-2 Perturbation effects in the sensitivity analysis of the SVM model. ...... 57 

Figure 5.1-1 Examples of four locations with various amounts of SWE and 

vegetation on the SWE map in the NA domain on 14 Jan 2014. ................................ 61 

Figure 5.3-1 An example of a location with low forest cover and low SWE value on 

the SWE map in the NA domain on 11 Jan 2004. ...................................................... 75 



 

 viii  

Figure 5.3-2 NSCs of seven model states for the location with low forest cover and 

low SWE in the NA domain on 11 Jan 2004 between ANN- and SVM-based 

vertically polarized Tb estimations at both 18 GHz and 36 GHz. .............................. 75 

Figure 5.3-3 An example of a location with low forest cover and high SWE value on 

the SWE map in the NA domain on 11 Jan 2004. ...................................................... 77 

Figure 5.3-4 NSCs of seven model states for the specified location in the NA domain 

on 11 Jan 2004 between ANN- and SVM-based vertically polarized Tb estimations at 

both 18 GHz and 36 GHz. ........................................................................................... 78 

Figure 5.3-5 An example of a location with high forest cover and low SWE value on 

the SWE map in the NA domain on 11 Jan 2004. ...................................................... 79 

Figure 5.3-6 NSCs of seven model states for the specified location in the NA domain 

on 11 Jan 2004 between ANN- and SVM-based vertically polarized Tb estimations at 

both 18 GHz and 36 GHz. ........................................................................................... 80 

Figure 5.3-7 An example of a location with high forest cover and high SWE value on 

the SWE map in the NA domain on 11 Jan 2004. ...................................................... 81 

Figure 5.3-8 NSCs of seven model states for the specified location in the NA domain 

on 11 Jan 2004 between ANN- and SVM-based vertically polarized Tb estimations at 

both 18 GHz and 36 GHz. ........................................................................................... 82 

Figure 5.5-1 Perturbations effects in the sensitivity analysis of the SVM-based Tb 

predictions at the spectral difference between 18.7 GHz and 36.5 GHz with respect to 

SWE. ........................................................................................................................... 87 

Figure 6.2-1 Expected SWE estimation within a DA framework. ............................. 97 



 

 1 
 

CHAPTER 1: INTRODUCTION AND MOTIVATION 

The following section describes the basics of snow (e.g., snow formation and 

snow properties) and the basics of remote sensing. It also explains why it is important 

to estimate snow parameters across large spatial scales and how to achieve such a 

goal.    

 INTRODUCTION OF SNOW 1.1.

1.1.1. Definition and Formation of Snow 

Snow is a permeable aggregate of ice grains with pores filled with air and water 

vapor [Bader, 1962]. It can also be defined as a type of winter solid precipitation 

composed of white or translucent ice crystals, chiefly in complex branch hexagonal 

form and often agglomerated into snowflakes [Glickman, 2000].  

Snow generally originates in low or multi-layer stratiform clouds in cold 

weather when a minute cloud droplet freezes into a tiny particle of ice [Shuttleworth, 

2012]. As water vapor starts condensing on its surface, the ice particle quickly 

develops facets, thus becoming a small hexagonal prism.  As the small crystal 

becomes larger, branches begin to sprout from the six corners of the hexagon 

[Libbrecht, 2005]. Finally, a complex, branched and sometimes six-fold symmetric 

structure is developed (Figure 1.1-1). In addition, individual snowflakes all tend to 

look different since the snow crystal develops from various microscopic supercooled 

cloud droplets and also follows different forming paths. In principle, it can snow at 

any temperature below freezing, however, not every place in the world receives 
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snowfall because snow crystal growth depends on the temperature and pressure 

conditions in the cloud. One of the essential requirements for getting snow is to cool 

the air below freezing; orographic lifting is one of the most effective techniques to 

achieve vertical movement of air and hence rapid cooling below the freezing point of 

the water.   

 

Figure 1.1-1 Six-fold snowflakes [Bentley, 1902]. 

Snow falling onto the ground can be classified using systems presented by 

Sommerfeld [1970], or the International Classification for Snow (Canada, National 

Research Council, 1954). These snow metamorphism classification systems are 

useful in terms of describing snow at scales ranging from millimeters to centimeters, 

or slightly larger [Sturm et al. 1995]. Sturm et al. [1995] proposed a technique for 

global applications based on the unique combinations of textural and stratigraphic 

characteristics (e.g., physical and thermal properties) of different types of snow, such 

as tundra, taiga or maritime. As is indicated by Figure 1.1-2, under different 
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combinations of climates and geography, there can be various types of snowpack: in 

general, tundra snowpack covers the largest portion, followed by the taiga class in the 

northern hemisphere. 

 

Figure 1.1-2 Snow classification in the study domain. 

1.1.2. Importance of Snow 

Snow influences a critical component in the global energy and hydrologic cycle 

by controlling mass and energy exchanges at the land surface [Robinson et al. 1993]. 

In addition, more than one billion people worldwide are dependent on snow as their 

main source of terrestrial freshwater supply [Foster et al. 2011]. Seasonal snow is 

highly variable in space and time and can cover from 7% to 40% of the northern 

hemisphere annually [Hall, 1985]. However, recent analysis of the updated snow 

cover extent (SCE) series indicates the northern hemisphere SCE in spring has 

reduced significantly over the past ~90 years [Brown and Robinson 2011] due to the 

Taiga Alpine

Tundra Prairie

Ephemeral

Maritime
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effect of global warming and unsteady large-scale atmospheric movement. As global 

temperature increases, it is estimated that regions currently receiving snowfall will 

increasingly receive precipitation in the form of rain. For every 1° C increase in 

temperature, the snowline rises by about 150 meters on average [Bogataj, 2007]. In 

other words, our virtual reservoir of freshwater – glaciers and snowcapped mountains 

are disappearing.  

At the same time, an earlier onset of spring will induce earlier snowmelt and 

increases peak stream flow in many mountainous regions, which will increase the 

likelihood of flooding along the basin areas during the snow melting season. In order 

to better understand the hydrologic responses associated with snow melt, we 

must first determine where and how much snow is found in the natural 

environment.   

1.1.3. Electromagnetic Attributes of Snow 

It is known that every object on Earth emits and reflects radiation across a range 

of wavelengths [Campbell, 2002] except for objects at absolute zero. Scientists and 

engineers often compare snow and ice cover to a mirror on the surface of the Earth 

since snow has a relatively high albedo (a.k.a. reflection coefficient). Fresh snow with 

small snow grains and low densities could reflect more than 75% of the incident 

radiation, whereas wet earth may reflect as little as 5% [Lydolph, 1985]. Hence, snow 

cover presents a good contrast with most other natural land-related surfaces in the 

visible spectrum.  
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Snow cover on the ground also emits microwave at relatively low spectral 

frequency. When a sensor detects microwave radiation naturally emitted by the snow, 

that radiation is called passive microwave (PMW). Microwaves radiation possesses 

greater penetration depth through media than does optical (visible) radiation. As a 

result, microwave radiation is able to penetrate clouds and be used to detect snow 

during both day and night under all-weather conditions. Thus, passive microwave 

surveys as measured by space-borne microwave radiometers are particularly effective 

for detecting snow.   

The electromagnetic attributes of snow are constantly changing. For example, the 

dielectric constant, a measure of the amount of polarization of the matter (e.g., 

snowpack) upon interaction with the electromagnetic wave, varies as the snow 

structure and liquid content change [Mulders, 1987; Duguay et al. 2005]. Typically, 

snow has a dielectric constant between 1.2 and 2.0 when the snow densities range 

from 0.1 to 0.5g/cm3 [Hallikainen and Ulaby, 1986]. If the snowpack contains a 

larger amount of liquid water, it tends to have a higher dielectric constant because 

liquid water within the snowpack emits rather than scatters PMW radiation [Hall et al. 

2004].  

The differences in the electromagnetic attributes of snow can be revealed in the 

recorded radiation as measured by a space-borne radiometer. Tb, a measure of the 

radiance of microwave radiation travelling upward, is defined as the equivalent 

temperature of the microwave radiation thermally emitted by an object [Chang et al. 

1976]. In general, the Tb increases as the wetness within the snowpack increases until 
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a saturation threshold of the Tb is reached [Tedesco et al. 2006].  Numerically, Tb is 

calculated as: 

 Tb = ε·Tphysical (1.1-1) 

where Tb [K] is the brightness temperature of the object; ε is a dimensionless quantity 

of the emissivity where ε  𝜖 [0, 1]; and Tphysical [K] is the physical temperature of the 

object (i.e., snow) of interest.  

1.1.4. Physical Properties of Snow 

Three of the most important properties of snow are snow density, snow depth and 

SWE [Pomeroy and Gray, 1995]. Once snow reaches the ground surface, the snow 

density will increase due to gravitational settling, wind compaction, freezing and re-

freezing/re-crystallizing processes.  

The snow density is the ratio between the snow mass and volume of the snow 

sample. A freshly fallen snow typically has a density around 100 kg/m3 [Petrenko and 

Whitworth, 1999]. As snowpack ages, the snow is compacted, and as a result, its 

density often increases to greater than 300 kg/m3 but less than 500 kg/m3. Sometimes 

researchers use an equivalent water content (expressed as a percentage) to describe 

the density of snow as: 

 ρr (%) =
SWE
D

×100% (1.1-2) 

where ρr is the water content within the snow [%]; D is the snow depth; and SWE is 

the snow water equivalent. SWE and D should have the same units such as [m] or 

[cm]. For example, a snowpack with 0.5m of SWE and 2.5m snow depth, is specified 

as 20% of the density of water, or having 20% water content.  
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Based on the definition given by the National Weather Service (NWS), snow 

depth is the average depth of snow (including old snow and ice as well as new snow 

and ice) that remains on the ground at the observation time. It can be measured by a 

snow ruler or a ultrasonic snow depth sensor (see Chapter 2).  

SWE is the amount of water contained within the snowpack, which characterizes 

the amount of water that could potentially melt and eventually enter neighboring 

streams. Hence, accurate estimation of SWE is crucial for flood prediction, power 

generation, and agriculture irrigation. Numerically, the magnitude of SWE is related 

to the product of snow depth and snow density, which can be expressed as:  

 SWE = 
D × ρsnow 

ρwater
 (1.1-3) 

where SWE is the snow water equivalent [m]; D is the snow depth [m]; ρsnow is the 

snow density   kg
m3

; and ρwater  is the water density   kg
m3

. 

The amount of SWE changes with both time and space. The seasonality of SWE 

(Figure 1.1-3) shows that SWE is most likely to achieve its peak in March or April 

(depending on the latitude), which is a useful indicator of the amount of runoff that 

could potentially be available in the spring and summer following the cold season 

[Bohr and Aguado, 2001]. The spatial variability characteristics of SWE can be seen 

in Figure 1.1-4. Areas such as the Cascade Mountains of Washington, Oregon, Central 

Sierra, eastern Rockies and Regina and Winnipeg regions in Canada, contain greater 

magnitudes of SWE compared with other regions. In this example, topography plays 

a critical role in distributing SWE across the North America (NA) domain so that the 

heaviest accumulations are usually at mountain sites [Cayan, 1996].  Other aspects 

such as wind orientation, relative humidity, air temperature and large-scale 



 

 8 
 

atmospheric movement will also exert their effects in determining SWE magnitudes. 

For instance, wind exposure often increases snow density from 10% to 25%, which 

will possibly result in a change in SWE due to Equation 1.1-3.  Due to the highly 

variable nature of SWE distribution and extent and its complex relationship with 

synoptic atmospheric conditions, macro-scale prediction of SWE can be relatively 

inaccurate and contain significant uncertainties [Derksen et al. 2000]. 

 

Figure 1.1-3 Annual variability (on a daily basis) of SWE for a location in Canada from 01 
Jan 2004 to 12 Jan 2005 when the peak SWE occurred on 05 Apr, 2004. 
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Figure 1.1-4 Spatial distribution of SWE across North America on 11 Jan 2004. 

 BASICS OF REMOTE SENSING 1.2.

By recording emitted or reflected radiation as Tb, snow researchers can infer 

features of snow cover and snow mass via remote sensing using satellite-based 

sensors. Remote sensing is the science of acquiring, processing, and interpreting 

images, and related data via detecting the interaction between matter and 

electromagnetic radiation [Sabins, 2007]. There are different types of sensors 

designed to record electromagnetic radiation. For example, a radiometer, which can 

be either an infrared radiometer or a microwave radiometer, is a device for measuring 

the radiant flux of electromagnetic radiation emitted by an object. Alternatively, radar 

is an object detection system using electromagnetic waves to determine range, 

altitude, direction, or speed of moving objects. Similarly, LIDAR, which stands for 

light detection and ranging, utilizes visible light from pulsed lasers rather than lower 

frequency, electromagnetic waves to measure ranges to the Earth. 
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Passive microwave sensors used in this study, to be more specific, are based on 

an antenna system used to record the power of an electromagnetic wave emitted by 

the object and its surrounding environment (Figure 1.2-1) (e.g., overlying vegetation 

or underlying soil) in voltage, which is then converted via a built-in transmitter into 

Tb such that users are able to calculate the strength of reflected radiation.  

 

Figure 1.2-1 Electromagnetic wave emitted by each object (vegetation, snowpack and ground) 
on the surface. The orange arrows indicate the direction of the wave. The width of the arrow 
indicates the strength of measured radiation [reproduced from University Corporation for 
Atmospheric Research, the COMET ® Program]. 

Three main parameters used to design an antenna are: antenna size, frequency 

and polarization. As Fourier’s theorem states, every piece of information in the 

universe can be completely expressed as a sum of sines and cosines of varying 

frequencies. Remote sensing analysts typically refer to an antenna in terms of the 

wavelength or frequency at which it operates. The antenna size should be on the order 

of one-tenth or more of the wavelength of the signal radiated [Lathi, 1990], but it is 

typically much larger on space-based sensors in order to achieve a minimum signal to 
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power ratio. For example, the Advanced Microwave Scanning Radiometer – Earth 

Observing System (AMSR-E) onboard the Aqua satellite has an antenna size of 1.6m. 

Antennas are also classified by their polarization, which is defined as the 

orientation of the electromagnetic wave with respect to the Earth surface [Mott, 

1986]. Two types of linear polarizations are offered on AMSR-E: (1) horizontal 

polarization (H), and (2) vertical polarization (V). Users of AMSR-E measurements 

must first understand the characteristics of the antenna before collecting the 

documented data in order to choose the best combination of antenna frequency and 

polarization from the satellite-based measurements in accordance with the properties 

of their research target (i.e., snow).  

 GOALS AND OBJECTIVES 1.3.

Since our knowledge of exactly how much SWE is present across the globe is 

complicated by the difficulty of collecting representative ground-based observations 

of SWE coupled with complex spatiotemporal uncertainty in snow processes [Dong 

et al. 2007], the goal of this research is to explore alternative methods to establish the 

connection between the physical property (e.g., SWE) and the electromagnetic 

characteristics of snow (in the form of Tb).  

 This goal was achieved through the following objectives: 

1) Understand the basic principles of machine learning techniques for use as a 

measurement model operator in the prediction of PWM Tb, as originally 

presented in Forman et al. [2013] and Forman and Reichle [2014]; 
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2) Optimize key parameters within the network set-ups for both artificial neural 

network (ANN) and support vector machine (SVM) based frameworks; 

3) Conduct a sensitivity analysis to compare and contrast the performance of ANN- 

and SVM-based models; 

4) Explain the differences between these two models, and relate the sensitivity 

results with the physical meaning of each technique; 

5) Understand and characterize the limitations of the proposed model based on 

machine learning. 

 IMPLICATIONS 1.4.

The research proposed here opens up a new avenue for PMW Tb estimation 

within an advanced land surface model via machine-learning techniques, including an 

ANN or a SVM. The sensitivity analysis conducted in this study is anticipated to 

further evaluate and verify the applicability and rationality of the technique. 

Conclusions drawn from this study will provide future SWE investigation with great 

research opportunities in terms of utilizing a better measurement model operator, such 

as SVM (or other machine learning techniques), rather than a traditional radiative 

transfer model (RTM) that has numerous (and significant) limitations. Therefore, the 

eventual goal of large-scale estimation of SWE can be achieved within a data 

assimilation network to be pursued in the future, but only after careful consideration 

of ANN and SVM sensitivities as conducted in this study.  
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CHAPTER 2: BACKGROUND AND LITERATURE 

REVIEW 

The following chapter describes various types of snow measurements and related 

snow parameter estimation products. It also discusses the similarities and differences 

between the ANN and SVM techniques.  

2.1. IN-SITU SNOW MEASUREMENTS 

In-situ techniques obtained from manual survey or ground-based stations provide 

reasonably accurate measurements of snow states and are not affected by forest cover 

[Armstrong et al. 2008; Moradkhani, 2008]. Snow measurement techniques at the 

point-scale include, but are not limited to, the following: (1) a snow ruler used to 

measure the snowfall, which is the maximum accumulation (or depth) of the freshly-

fallen snow prior to settling or melting since the last observation [Ryan et al. 2008]; 

(2) graduated snow stakes used to measure snow interception, primarily in regions of 

deep snow; (3) an ultrasonic snow depth sensor to measure total snow depth based on 

the distance travelled by the emitted ultrasonic impulse [Lea and Lea 1998]; (4) a 

snow core to sample the snow at the observation time and location and provides 

information about the snow depth and SWE; and (5) a snow pillow/snow scale to 

measure the deflection of a pressure transducer and therefore is typically installed to 

determine the water-content of the overlying snowpack. In terms of large-scale (i.e., 

on the order of kilometers or more) snow measurements, one of the traditional 

methods is to estimate SWE/snow depth using an interpolation algorithm (e.g., 
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kriging) across a large area based on the ground-based observations only [Dyer and 

Mote, 2006]. However, direct quantification of snow mass (or snow water equivalent) 

using interpolation is complicated by significant spatial and temporal variability. 

Further, the spatial resolution of in-situ measurements is limited by sparsely located 

stations and their proximity [Bechle et al. 2013] and hence, high quality ground-based 

measurements are not available everywhere such as mountainous areas or avalanche-

prone terrain. Because of these limitations in the point-scale measurements, remote 

sensing is an attractive alternative for snow measurement across regional- and 

continental-scales [Foster et al. 1987]. 

2.2. SNOW REMOTE SENSING 

Remote sensing of continental-scale seasonal snow cover has been widely used 

since the 1980s in obtaining real-time updates and coverage of measurements where 

ground-based sources of information are not available [Chang et al. 1987; Kelly et al. 

2003; Derksen et al. 2010]. Sensors aboard Earth observation satellites are capable of 

acquiring the strength of reflection and radiation at multiple wavelengths. In terms of 

snow remote sensing measurements, the sensor type is typically divided into: (1) an 

optical sensor or (2) a microwave sensor. The former type onboard the satellite is 

often used to map areal distribution of snow (i.e., snow cover extent), whereas the 

latter is often used to map snow depth (or SWE).  

Since microwaves possess the capability to penetrate deep (the depth of 

penetration depends on the frequency of microwaves) into the snowpack and to be 

less affected by vegetation compared with that of shorter wavelengths (e.g., visible 
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radiation), PMW radiometers are capable of quantifying volumetric storage of snow 

water (snow depth or SWE) retrieved from Tb [Ulaby and Stiles, 1980]. In other 

words, the measured Tb contains important information about snow states. Hence, the 

development of the remote sensing technique is intended to extract useful 

information, such as snowpack-related properties, from the electromagnetic signal 

recorded by the space-borne antenna [Foster et al. 1987]. In other words, the PMW 

remote sensing technique is introduced to establish a relationship between the 

electromagnetic feature and the physical feature of the target (i.e., snow). SWE 

retrieval products based on PMW Tb measurements from space-based microwave 

radiometers such as the Special Sensor Microwave/Imager (SSM/I) [Chang et al. 

1982], the Scanning Multichannel Microwave Radiometer (SMMR) [Chang et al. 

1987], and AMSR-E [Kelly et al. 2004] have played significant roles in estimating 

SWE at basin scales. The following study focuses on the utilization of AMSR-E 

measurements. However, it is hypothesized that the machine learning techniques 

explored here are equally applicable to both SMM/I and SMMR Tb measurements.  

2.3. PROBLEMS WITH EXISTING SNOW PARAMETER ESTIMATION 

There are typically three ways to estimate important snow-related properties 

from space-borne sensors. One of the methods is to merge relatively coarser space-

borne observations with in-situ measurements of finer resolutions by spatial 

interpolation [Cao et al. 2008]. However, this is significantly impacted by sparse 

spatial coverage of observations particularly in northern regions [Takala et al. 2011] 

and strong sub-grid scale snow variability in complex terrain (e.g., mountains) [Foppa 
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et al. 2007]. The second technique is to invert (or retrieve) model states variables 

from measured Tb at certain frequencies by calibrating regression coefficients in the 

algorithm. These selected calibrated snow retrieval products are further discussed 

below. 

Chang et al. [1986] presented the first snow depth-Tb relationship for a uniform 

snowfield with a fixed snow density of 300 kg/m3 and a mean radius of 0.3mm, 

which was expressed as: 

 D = 1.59×(T18,H-T37,H) (2.3-1) 

where D is the snow depth [cm]; T18,H denotes the Tb [K] at 18 GHz horizontal 

polarization; and T37,H  is the Tb [K] at 37 GHz horizontal polarization.  

Goodingson and Walker [1994] derived another commonly used form of the 

relationship between SWE and Tb for dry snow as: 

 SWE =  a+b(T37,V-T19,V) (2.3-2) 

where SWE is the snow water equivalent [mm]; a and b are fixed parameters; 

a = -20.7 m , b=-2.74 [K-1]; T37,V is the Tb [K] at 37 GHz vertical polarization; and 

T19,V is the Tb [K] at 19 GHz vertical polarization.  

Kelly et al. [2003] coupled the snow grain radius and volumetric fraction data 

with a radiative transfer model to estimate snow depth based on SMM/I data at a 

constant snow temperature of 260 [K] using the following expression: 

 D = b(T19,V-T37,V)
2+c(T19,V-T37,V) (2.3-3) 

where D is the snow depth [cm]; b and c are coefficients related to the ratio of snow 

grain size and the volume fraction; T19,V  is the Tb [K] at 19 GHz vertical polarization; 

and  T37,V is the Tb [K] at 37 GHz vertical polarization.  
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Besides snow grain size, forest cover is another important factor to take into 

consideration in every snow retrieval algorithm [Tedesco and Narvekar 2010]. 

Overlying vegetation will attenuate the PMW radiation emitted from the underlying 

snowpack and at the same time, it will add on its own contribution to the signal as 

measured by the radiometer [Derksen et al. 2005].  Chang et al. [1996] tried to 

improve the SWE estimation in the forested regions and then came up with another 

revised form of the algorithm: 

 SWE =
a(T19,V-T37,V)

(1-ff)
 (2.3-4) 

where SWE  is the snow water equivalent [mm]; a is a calibration coefficient 

[dimensionless]; ff is the forest fraction [dimensionless] ranging from 0 to 0.75 

[Kelly, 2009]; T19,V  is the Tb [K] at 19 GHz vertical polarization; and  T37,V is the Tb 

[K] at 37 GHz vertical polarization. 

For the current AMSR-E algorithm, the following expression for calculating 

snow depth for both forested and non-forested regions [Kelly, 2009] is: 

D = ff × p1× T18,V-T36,V
(1-b×fd)

1-ff ×[p1 T10,V-T36,V +p2 T10,V-T18,V ] (2.3-5) 

where D is the snow depth [cm]; ff  is the vegetation fraction [dimensionless]; fd  is the 

forest density; p1 and p2 are two dynamic coefficients ranging from 1 to 2; b is a 

regression coefficient; T10,V is the Tb [K] at 10 GHz vertical polarization;  T36,V is the 

Tb [K] at 36 GHz vertical polarization; and T18,V is the Tb [K] at 18 GHz vertical 

polarization. 

Certain assumptions, such as uniform snow grain size and constant snow density, 

have to be made in order to use these empirical equations, many of which are not 
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reasonable in the real system. Additionally, significant uncertainties are commonly 

found in space-borne PMW SWE retrievals that impact their estimation accuracy. For 

example, snow stratigraphy can result in highly nonlinear scattering processes that 

complicate snow depth estimation [Durand et al. 2011]. Snow grain size is another 

important (and difficult to characterize) parameter in snow retrieval products that 

impacts snow albedo [Armstrong et al. 1993]. It is also well known that the increase 

in depth hoar layer (large loose and cup-like snow grains [Brucker et al. 2011]) 

thickness will decrease microwave emission [Hall 1987], which will cause measured 

Tb to decrease. Ice crusts on the surface and within the snowpack also alter the 

absorption and emission of microwave radiation from the surface by increasing the 

emissivity at high frequencies relative to low frequencies [Derksen et al. 2010]. 

However, snow morphology [Kelly et al. 2003] and depth-hoar/ice layer studies [Hall 

et al. 1986; Foster et al. 2005] have not matured enough for operational use by water 

resources managers.  

Further, wet snow behaves like a blackbody (perfect absorber for all incident 

radiation [Siegel and Howell, 1992]) at the physical temperature of the snow layer, 

which makes it hard to distinguish from snow-free soil [Scherer et al. 2005]. Signal 

saturation for very deep snow (greater than 150mm SWE) can lead to large biases in 

SWE estimation [Clifford 2010]. In addition, model inputs on snow-related state 

estimates obtained from land surface hydrologic models (e.g., Variable Infiltration 

Capacity Model) may contain errors associated with model structure and model 

parameterization [Andreadis and Lettenmaier, 2006]. Meteorological fields used to 

force the physical- or empirical-based land surface models may have some 
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uncertainties such as scaling effects arising from dataset aggregation, disaggregation, 

extrapolation and interpolation [Blöschl and Sivapalan, 1999]. 

In an effort to overcome the limitations of the existing satellite-based snow 

retrieval algorithms, the third alternative of merging measurements of remote sensing 

observations with estimates from land surface or physical snow models [Reichle 2008] 

is proposed in SWE/snow depth estimation. Namely, a data assimilation (DA) 

technique is often implemented to merge measurements with model estimates by 

weighing their uncertainties, which is anticipated to yield a merged estimate of snow 

characteristics that is superior to either the measurement or the model alone 

[Mclaughlin 2002].  

Radiative transfer models (RTMs) are widely used [Liang et al. 2008] by 

researchers to invert PMW Tb measurements into model state variables coupled with 

a physical snow model in the DA framework [Durand and Margulis, 2007]. The 

practical utilization of these algorithms is plagued by the complex spatiotemporal 

uncertainty [Pullianinen et al. 1999] coupled with wet, moderately deep snowpacks 

(greater than the 100mm) located closer than 200 km to open water [Dong et al. 2007] 

and the effects of mixed land cover within remotely sensed pixels [Andreadis et al. 

2008]. In addition, the complicated inversion of PMW Tb measurements is 

computationally expensive at regional or continental scales [Durand and Margulis, 

2006]. These are the factors that limit the existing PMW SWE retrievals within the 

DA framework to point-scale or basin-scale applications [Durand et al. 2008].  

Therefore, the uncertainties and limitations mentioned above in the existing 

snow properties characterization motivates the study proposed here to further 
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investigate another alternative approach of estimating SWE/snow depth at a large-

scale (discussed in more detail in Section 2.5).  

2.4. INTRODUCTION OF MACHINE LEARNING 

Arthur Samuel [1959] first defined machine learning (a.k.a. data mining or 

supervised learning) as a field of study that gives computers the ability to learn 

without being explicitly programmed. Another more specific definition is the process 

of identifying a set of categories (sub-populations) where a new observation belongs 

on the basis of a training set of data containing observations whose category 

membership is known [Hastie et al. 2005].  

Machine learning, which indicates that the procedure requires analyst-labeled 

training, develops characteristic class signatures that are then used to assign labels to 

all other unassigned areas (“unseen” model inputs areas) in the model framework 

[Campbell, 2002]. It is different from unsupervised algorithms that are self-

organizing, iterative models capable of finding “natural” data clusters [Campbell, 

2002]. It commonly refers to a field of study about how to automatically learn, 

acquire and generalize information based on these known examples so as to make 

accurate predictions in the future.  

Machine learning aims to generate classifying/regression expressions and 

functions simple enough to be understood by a human [Michie et al. 1994]. Unlike 

traditional statistical approaches, which are characterized by having an explicit 

underlying probability model, machine learning is an attractive tool in the fields of 

Web search, spam filters, stock trading and drug design [Domingos, 2012]. 
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There is a plethora of machine learning algorithms to choose from depending on 

what type of question needed to be addressed. Sections 2.4.1 and 2.4.2 discuss the 

basics of the ANN and SVM. Reasons for selecting these two techniques will be 

discussed in Chapter 3.  

2.4.1. Artificial Neural Network (ANN) 

An artificial neural network (ANN) is a mathematical model inspired by 

biological neural networks (i.e., human brains). An ANN consists of a series of 

layers: (1) an input layer of neurons used for receiving information outside the 

network, (2) one or more hidden layer(s) acting as a bridge to connect the input layer 

with the output layer with input and output signals remaining within the network, and 

(3) an output layer to send the data out of the network. The ANN proposed for this 

study is a feed-forward perceptron network. Without any feedback connections, the 

signal could only flow in one direction: from the defined input layer to the hidden 

layer and subsequently propagate into the output layer [Atkinson and Tatnall, 1997]. 

In a constructed ANN, each layer contains multiple processing units (i.e., 

neurons) connecting with those in the adjacent (previous and subsequent) layers. An 

independent weight is attached to each link as indicated by the arrows in between the 

layers as illustrated in Figure 2.4-1. The input to each neuron in the next layer is the 

sum of all its incoming connection weights multiplied by their connecting input 

neural activation value [Rojas, 1996; Tedesco et al. 2004]. In general, it is assumed 

that each processing unit provides an additive contribution to the connected output 

neuron, which may take on the form as: 
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 xj= wjiIi

Ni

i=1

 (2.4-1) 

where xj is a single value (a.k.a. “net input” [Bishop, 1995]), calculated via 

combining all the connected input units for the jth propagated (output) unit; Ni is the 

total number of inputs; wjiis the interconnection weight between the ith input neuron 

and the jth propagated neuron; and 𝐼! is the ith model input. 

 

Figure 2.4-1 Schematic of the ANN-based model used in the study [Forman et al. 2013] with 
11 model inputs in the ANN input layer, ten (10) hidden neurons, and six(6) model outputs of 
Tb measurement (see Chapter 3). 

The power of an ANN lies in its ability to perform intelligent tasks via 

applications of different types of neural network algorithms for both unsupervised 

and supervised learning. It is also one of the highly recommended tools for non-linear 

statistical data modeling since it has the ability to detect complex non-linear 

interactions between the input and output neurons [Svozil et al. 1997]. However, an 

ANN is often referred to as a “black box” algorithm, which indicates it is difficult to 

gain a thorough understanding and explicitly explain the physical basis behind its 

performance. In addition, sometimes parameters derived based on ANN learning 

regularities may not be physically meaningful. Further, an ANN typically requires a 
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large number of parameters to be tested and established before successful application 

of the model. Perhaps the greatest shortcoming of the ANN is that it may converge to 

a local minimum point instead of a global minimum. As illustrated in Figure 2.4-2, if 

the initial estimate happens to fall into the region between a local maximum and a 

local minimum, then it is likely that the back propagation will stop at the local 

minimum without searching for other regions possibly with a lower objective 

function of the mean squared error (MSE) (see Chapter 3). Finally, it is also worth 

noting that this type of robust machine learning technique is computationally 

expensive and requires high processing time and numerous iteration steps for solving 

a complex non-linear model for a large study domain. 

 

Figure 2.4-2 An example of local minima and global minima in ANN framework in terms of 
model parameter selection. The red dot is the local minima and it falls into the valley 
consisting of a local maxima and a global maxima (green dots). The blue dot represents the 
global minima, which is the optimal target for the minimization procedure.  

2.4.2. Support Vector Machine (SVM) 

Since the 1980’s, machine-learning techniques including decision trees and neural 

networks have begun to allow for efficient learning of non-linear decision surfaces 

while achieving reasonable predictive performance. However, as discussed above, it 
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is difficult for the ANN-based model to explicitly explain (in a physically-based 

manner) how best to connect the input layer, hidden layer, and output layer with each 

other using the specified weights. Therefore, Vapnik et al. [1998] proposed another 

efficient learning algorithm for non-linear functions based on the 

statistical/computational learning theory called Support Vector Machine (SVM). 

Consider an input matrix, x, and a vector of training targets, z, such that {(x1, 

z1),…, (xp, zp)} where xi ∈   ℝ! and zi ∈   ℝ!. A schematic of the SVM framework 

can be seen in Figure 2.4-3. It is assumed that ϕ (x) is a nonlinear function that maps 

the model input space into a feature space. 𝑓 is a function that is a linear combination 

of the components of the input ϕ (x)  such that: 

 f ϕ(x)  = wT 𝜙 (x)  +  b with b  ∈ ℝ (2.4-2) 

where w is a vector of weights and 𝑏 is an offset (a.k.a., bias) term. Both  w and b are 

determined by the SVM during training.  

 

Figure 2.4-3 Schematic of the SVM-based model [Forman and Reichle 2014]. 

Input
Vectors

Mapped
Vectors

Dot
Products

Output
Vector

w1 wv

Map

Weights

x 1 x 2 x 3 x n

Φ

Φ1 Φ2 Φ3 Φv

( ·)1 ( ·)2 ( ·)3 ( ·) v

Ω



 

 25 
 

2.4.2.1. Support Vectors 

Based on the structural risk minimization concept, the SVM for a given location 

requires the solution of the following convex optimization problem [Smola and Ikopf, 

2004]: 

 

Minimize
w,b,ξ          1

2
wTw+C ξi

p
i=1  with  C > 0 

subject to  wTϕ xi +b-zi≤ ξi, 

          ξi ≥0, i=1,2, …, p. 

(2.4-3) 

where w is a vector of weights for a given location in space; p is the total number of 

measurements in time;  𝐳𝒊 is the set of training targets at time i; ξ is defined as a slack 

variable, which is intended to relax the constraints to allow outliers to exist or to be 

misclassified; and C is a trade-off constant (a.k.a., penalty parameter) of the error 

term.  

The weighting vector is defined as [Burges, 1998]: 

 
w = aiziϕ xi  

where, ai > 0 
(2.4-4) 

Therefore, training points with  ai>0 are defined as the “support vectors” [Chang et al. 

2010]. These support vectors define the decision space to determine the model 

function.  

Parameter C determines how much penalty is to be given for those allowed 

misclassified points. If C is set to infinity (or a very large number), the number of 

permitted outliers approaches zero. This “free-of-error” requirement is difficult to 

achieve since measurement products are not error-free. Hence, a large value of C 
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would often “overfit” the model with a large number of support vectors, which is not 

desirable in terms of the computational efficiency as well as the physical expression 

of the model form. Meanwhile, a small value of C will “underfit” the model with an 

overly simple model function. Therefore, it is critical to choose a reasonable value of 

C, to be neither too big nor small, such that there can be enough flexibility for the 

optimization equation to find its best solution. To find the optimal C, SVM-users are 

required to vary its value across a wide range and search for the best C  by cross-

validation. 

The objective function (see Equation 2.4-3) is known as a quadratic program 

(QP) with linear constraints [Potschka et al. 2010]. Time complexity of the original 

QP often depends on the dimensionality of the target z [Fletcher, 1998]. However, 

such QP problems can be solved more easily in its dual formulation utilizing 

Lagrange multipliers [Chang and Lin, 2011] where the temporal complexity will be 

decreased to the number of training examples, which is the key for extending the 

SVM to better handle nonlinear models. The solution can be written as [Weston 

1998]: 

 
Minimize

w, b
 
1
2
|| aiϕ xi  ||
p

i=1

2

maximize margin

+C [zi(f ϕ xi ]
i

minimize training error

 (2.4-5) 

where ||·|| is the Euclidean norm operator. Alternatively, it can also be written as 

[Smola and Ikopf, 2004]: 

Maximize
ai,  ai*

 {-
1
2

(
p

i,j=1

ai-  ai*)(aj-  aj*)<ϕ xi ∙ϕ xj > - zi(ai-  ai*)}
p

i=1

 (2.4-6) 
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subject to ai- ai*
p
i=1 =0, 

     ai,ai* ∈ 0,C , i=1,2,…,p 

As the expression above indicates, the slack variable vanishes from the dual form 

with only a constant C coefficient modifying the error term where ai,ai* are Lagrange 

multipliers; <ϕ xi ·ϕ xj > is the inner (dot) product of  ϕ xi  and ϕ xj ; xi and  xj are 

two sets of training points; and C is the penalty parameter discussed above. 

2.4.2.2. Kernel Functions 

Recall that the dual formation of the optimization problem depends on the 

computation of the form <ϕ xi ·ϕ xj > where xi and  xj are two sets of training points. 

The inner (dot) products could be computed in feature space only when the SVM has 

simpler forms of the mapping function ϕ. Therefore, another technique called “kernel 

function” (a function of two variables) was used in this study [Chang and Lin, 2011].  

In this study, the kernel function is defined as: 

 k xi,  xj  = <ϕ xi ·ϕ xj > (2.4-7) 

Hence, the computation was conducted in feature space using the kernel function 

without explicitly computing ϕ x  or the weighting vector w. Otherwise, the 

dimensionality of ϕ x   can be very large thereby making w difficult to represent 

explicitly in memory and even more difficult for the QP to solve [Weston, 1998].  

There are four types of commonly used kernels in both linear and non-linear 

classification and regression models: (1) linear kernel, the simplest kernel function, 

which is given by the dot product of the form Φ xi ·Φ xj  with an optional constant 

c, where the linear kernel usually has the form of k xi, xj = Φ xi ·Φ xj  + c, (2) 

polynomial kernel that has three parameters - slope parameter p, polynomial degree 
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of q   q ∈   ℕ , and a constant c where c ≥ 0  such that the polynomial kernel has a 

functional form of k xi, xj ={p[Φ xi ·Φ xj ] + c }q, (3) hyperbolic tangent (sigmoid) 

kernel (a.k.a. multiplayer perceptron kernel), which can be expressed as: 

 k xi, xj = tanh pΦ xi ·Φ xj + c  (2.4-8) 

with two adjustable parameters in the sigmoid kernel, the slope p and the intercept 

constant c, and (4) gaussian radial basis function (RBF) kernel.  

In this study, an RBF was employed, which is one of the most commonly-used 

kernel functions. The Gaussian kernel is an example of a radial basis function kernel 

written as: 

 k xi, xj =exp ⁡(-γ||Φ xi ·Φ xj ||
2
) (2.4-9) 

where  ||Φ xi ·Φ xj || represents the Euclidean norm between Φ xi  and Φ xj ; and 

γ > 0 is an adjustable parameter crucial in the performance of the kernel. It controls 

the width of the Gaussian distribution and plays a similar role as the degree of the 

polynomial kernel [Ben-Hur and Weston, 2010]. If γ is overestimated, the exponential 

function will behave almost linearly and the high-dimensional projection will lose its 

non-linear power. On the other hand, if γ is underestimated, the function will lack 

regularization and the decision boundary will be highly sensitive to noise in the 

training data [Souza, 2010]. 

Based on a properly constructed SVM with optimized parameters (see Chapter 3), 

the SVM has been widely used in different types of classification, regression and 

pattern distribution estimation. Reasons are as follows: (1) SVMs are able to perform 

well at regression analysis under either nonlinearity or high dimensionality conditions 

since the SVM maps the non-linearly separable data into a feature space of higher 



 

 29 
 

dimension where it is linearly separable, (2) SVMs provide a good out-of-sample 

generalization if the key parameters (e.g., penalty parameter C and adjustable 

parameter 𝛾 in the RBF) are selected properly [Hsu et al. 2003]. Hence, the SVM is a 

robust algorithm, which is anticipated to work well even when the training examples 

contain errors, (3) unlike an ANN framework, formulations of SVMs are convex 

optimization problems and thereby unique global optima will be found and the 

algorithm will not be affected by the local minima issue, and (4) generally, SVMs can 

avoid the overfitting issue effectively by implementing the cross-validation method 

[Hsu et al. 2003] or through Bayesian regulation of the hyper-plane parameters 

proposed by Cawley and Talbot [2007]. In addition, a form of “early-stopping” 

[Sarle,1995] can be implemented to prevent overfitting resulting from the direct 

optimization of the marginal likelihood until convergence [Cawley and Talbot, 2007]. 

Further SVMs are expected to work well even in cases where limited training data is 

available since the decision surface of a SVM is comprised of support vectors, which 

is far less than the number of training data.  

However, every machine learning technique has its limitations. Limitations in the 

SVM approach include: (1) SVMs are sensitive to significant outliers, especially for 

those playing maximal roles in determining the decision hyper-plane [Xu et al. 2006]; 

(2) SVMs can be expensive to apply in terms of both computational time and 

memory. Procedures such as the “grid-search” method used in the LIBSVM (see 

Chapter 3) can be employed to locate parameters to use during the inner dot product 

computations.  
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In summary, based on properly-constructed systems, machine learning 

algorithms are capable of learning about the regularities present in the training data 

such that constructing and generalizing rules can be extended to the unknown data 

[Mathur et al. 2004] during the training phase (see Chapter 3). 

2.5. MACHINE LEARNING IN SNOW RETREIVAL 

Initial attempts of investigating the possibility of employing a machine learning 

technique, instead of a RTM, in estimating snow properties were conducted by few 

studies [Chang and Tsang, 1992; Tsang et al. 1992; Davis et al. 1993; Tedesco et al. 

2004; Cao et al. 2008]. They focused on utilizing an ANN to “learn” the pattern of the 

SWE estimation from a physical snow model or in-situ snow measurements and then 

try to use this “prior” information to predict SWE in other areas for comparison 

against observations. Good agreement was obtained from these test areas, such as the 

Antarctic region [Tsang et al. 1992]; however, these applications are limited to 

relatively small areas. Additional studies made use of ANN to acquire information 

from the ground-based measurements [Tedesco et al. 2004]. However, this is not 

preferred either, since the ANN could not acquire enough information to establish 

connections between sparsely located stations.   

With the eventual goal of SWE or other snow-related properties retrieval, recent 

research conducted by Forman et al. [2013]; and Forman and Reichle [2014] 

investigated the possibility of directly estimating Tb’s by utilizing machine learning 

methods of either ANN or SVM. It was concluded that both the ANN and SVM could 

be used as measurement operators to estimate Tb’s for eventual use within the data 
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assimilation framework for the purpose of SWE estimation at regional and 

continental scales.  

However, we still need to answer some fundamental questions: Do the ANN 

and SVM reproduce Tb for the right (physically-based) reasons? Further, what 

are the most significant parameter(s) in the model using either ANN or SVM? In 

response to these questions, the goal of this study is to compare and contrast 

sensitivity analysis results between ANN- and SVM-based estimates.  
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CHAPTER 3: MODEL FORMULATION 

The following chapter describes the model inputs and outputs required for use in 

the ANN and SVM framework. It also discusses how to choose model parameters, 

how to train the ANN or SVM, and how to conduct cross-validation. 

3.1. NETWORK INPUTS  

The NASA Catchment land surface model (Catchment) is the land surface 

component of the NASA Global Modeling and Assimilation Office Land Data 

Assimilation System (GMAO-LDAS) whose basic computational unit is the 

hydrological catchment (or watershed) [Koster et al., 2000]. The model encompasses 

an explicit treatment of spatial variation of snow by dividing the snowpack into three 

layers including estimation of snow density, snow temperature, SWE, and snow 

liquid water content (SLWC).  

All model inputs to both the ANN and SVM are provided by the land surface state 

estimates derived from the Catchment model and are listed in Table 3.1-1 except for 

the model parameter temperature gradient index (TGI) [Josberger and Mognard, 

2002]. TGI is generally defined as the difference between the near-surface soil 

temperature and the near-surface air temperature divided by the snow depth as: 

 TGI l = 
1
C

Tp1(t)-Tair(t)
D(t)

l

0
dt (3.1-1) 

where t is time at a daily scale; l is the span of time of interest; C is a scaling constant 

of 20 K m-1day-1[Armstrong, 1985; Colbeck, 1987]; Tp1 is the near-surface soil 
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temperature [K]; Tair is the near-surface air temperature [K]; and D is the snow depth 

[m]. Armstrong [1985] and Colbeck [1987] showed that thermal gradient 

metamorphism plays a dominant role within the snowpack in producing different 

sizes of snow grains. In response, TGI could serve as a proxy for snow grain size in 

both the ANN- and SVM-model input system as computed from the Catchment 

output.  

Table 3.1-1 Model inputs and output for both ANN and SVM. 

 

* denotes column-integrated quantities 

Meteorological fields (e.g., precipitation, humidity and wind speed/direction) used 

to force the Catchment model are derived from the Modern-Era Retrospective 

Analysis for Research and Applications (MERRA) product [Rienecker et al. 2011]. 
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The MERRA data record spans 1979 through the present. MERRA outputs are 

produced at 1-hour intervals with a 1/2  degrees latitude × 2/3 degrees longitude × 72 

vertical levels model configuration extending through the stratosphere [Rienecker et 

al. 2011].  

In this study, the daily-averaged Catchment outputs were remapped on the Equal 

Area Scalable Earth Grid (EASE-Grid). These grids have a nominal cell size of 25km 

× 25km and are provided by the National Snow and Ice Data Center (NSIDC). The 

EASE-Grid features an equal-area projection, and thus there is no shape distortion at 

the poles while the greatest shape distortion occurs at the equator.  

3.2. STUDY DOMAIN 

The study domain used here includes all of North America poleward of 32°N, 

which allows for both regional and continental scale investigations. It includes the 

period 1 September 2002 through 1 September 2011, which is the coincident time 

period for all of the data sources to be used in this study. For simplicity, since glaciers 

are not the focus of this paper, locations such as south-central Alaska, which extends 

from the Alaska Peninsula to the border of the Yukon Territory in Canada, are of 

secondary interest for the SWE estimation in this study. 

The continent is surrounded by the Arctic Ocean to the north, the Atlantic Ocean 

to the east, the Pacific Ocean to the west and south, and the Caribbean Sea to the 

southeast, which made it possible for the domain to embrace all types of climatic 

zones and vegetation cover. Because of the highly dynamic variation of spatial 
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climatology, the domain embraces all types of major snow classes --- tundra, taiga, 

maritime, prairie, alpine, and ephemeral shown in Figure 1.1-2.  

The study utilizes a percent tree cover product by Hansen et al. [2011] based on 

the dataset from Moderate Resolution Imaging Spectroradiometer (MODIS). The tree 

cover product has a resolution of 500m × 500m. It is generated using a supervised 

regression tree algorithm (Figure 3.2-1). For purposes of this study, the original 

product was re-mapped as forest cover fraction onto the 25km EASE-Grid. About one 

third of North America is forested [Aaron et al. 2013], which will greatly impact 

SWE estimation via PMW emission [Langlois et al. 2011]. Without considering the 

effects of changes in biotic disturbances and other climatic aspects, this study 

assumes that the forest cover percentage is relatively constant across the time period 

of investigation. 

 

Figure 3.2-1 Forest cover across the North America. 
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3.3. MACHINE LEARNING IN LARGE-SCALE SWE ESTIMATION 

In this study, relevant snow, land surface, and atmospheric states derived from the 

Catchment model are used as inputs to both the ANN and SVM frameworks. The 

goal of using machine learning is to model the complex relationships between these 

model inputs (including snow-related state variables) and the measured Tb outputs.  

3.3.1. ANN Framework 

Model input space may have different units as well as a wide range of 

magnitudes. For example, in this study, Tb’s are in a reasonable range of [150K, 

300K], whereas the SWE input is varying between 0m and 2m. Hence, except for 

each neuron Ω!(mth output neuron) in the output layer, most neurons in the ANN are 

required to transform their net inputs using a scalar-to-scalar function, which is called 

the activation function [Bishop, 1995].  

Activation functions are bounded and can take on various forms, such as a binary 

step function, sigmoid function, threshold function, and hyperbolic function.  The 

selection of the activation function form is dependent on the problem itself. In this 

study, activation functions for the hidden units are utilized to introduce more non-

linearity into the network associated with nonlinear hydrologic and electromagnetic 

processes related to SWE estimation. The activation function f(x) employed in this 

study is the tangent (non-linear) sigmoid function, which can be expressed as: 

 f(x) = 2
1+e-2x

-1. (3.3-1) 
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Figure 3.3-1 Tangent sigmoid function. 

The activation function used at the output of each neuron (except for the ones in 

the output layer) has a range of [-1,+1], which are dimensionless. The output units of 

the mapping network are supposed to have appropriate (e.g., Tb ∈ [150K, 300K]) 

target values instead of arbitrary values between -1 and 1. Hence, the activation 

function g(x) for estimating the state of output neurons has to be a positive, linear 

transfer function. The mapped space of Tb will be produced after being rescaled to 

the proper target Tb with units of K.   

The selection of the number of hidden layers and the number of neurons in each 

hidden layer is critical in constructing an ANN. The number of neurons in the hidden 

layer must be large enough to form a decision region that is as complex as required by 

the problem, but not so large that the weights cannot be reliably estimated from the 

training data [Lippmann. 1987]. For the one hidden-layer-based ANN used in this 
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study, the number of hidden neurons is determined by the following equation [Cao et 

al. 2008; Forman et al. 2013]: 

 Nh= Ni+No+5  (3.3-2) 

where Ni is the number of inputs; No is the number of model outputs; Nh is the 

unknown number of hidden neurons; and ·  is the integer ceiling of the expression. 

This study has 11 model inputs derived from the Catchment model output, and 

thus Ni is 11. The generated network output from a trained-ANN (see Section 3.3.2.1) 

based on AMSR-E measurements includes Tb at 10.65 GHz, 18.7 GHz, and 36.5 

GHz at both horizontal and vertical polarizations, as shown in Table 3.1-1 (additional 

details provided Section 3.3.2.1.). Accordingly, there are six (6) model outputs of 

multi-frequency and multi-polarized Tb (i.e., No= 6). Therefore, the number of 

hidden neurons is Nh=10. 

3.3.2. ANN Training 

3.3.2.1. ANN Training Targets 

The AMSR-E instrument on the NASA’s Earth Observing System (EOS) Aqua 

satellite provides global PMW measurements of the Earth from 19 June 2002 to 27 

September 2011 with a swath width of 1445 km. Tb’s (in tenths of kelvins) at 6.9 

GHz, 10.65 GHz, 18.7 GHz, 23.9 GHz 36.5 GHz, and 89.0 GHz at both horizontal 

and vertical polarization are measured. The spatial resolution of the raw data varies 

with frequency since the sensors requires a minimum number of photons in order to 

record a single signal at a single frequency. Hence, measuring Tb at 6.9 GHz (lowest 
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energy photons) has the coarsest resolution at 56 km and the 89 GHz (highest energy 

photons) possesses the finest resolution at 5.4 km.  

In this paper, Tb measurements from the gridded Level-3 land surface product 

(AE_Land3) were utilized as the training targets. The data were available twice a day 

from descending (night) and ascending (day) overpasses and are made available by 

the NSIDC [Knowles et al. 2006]. However, only measurements from nighttime 

(approximately 01:00 to 01:30 hours local time) AMSR-E overpasses were employed 

to minimize the effects of liquid water present in the snow [Forman et al. 2013]. Data 

are stored in the Hierarchical Data Format - Earth Observing System (HDF-EOS 

format) and resampled into global cylindrical EASE-Grid cell spacing at a 25km × 

25km horizontal resolution [Knowles et al. 2006], the same grid used for the 

Catchment output.  

Not all of the channels (frequencies) are used in this study. The 6.9 GHz channel 

was not used in the study because it has a spatial resolution of 75km × 43km at 3-dB 

footprint size, which is much coarser than the remapped EASE-Grid. However, 

higher frequency channels with finer spatial resolution, such as the 89 GHz, is often 

designed for atmospheric observation [Chang and Tsang, 1992] and largely affected 

by water vapor and clouds [Mätzler, 1994]. In addition, it is more sensitive to surface 

properties of snow (e.g., surface grain size) than to the snow depth [Durand et al., 

2008; Durand and Margulis, 2007]. Thus, the 89 GHz channel is not optimal for SWE 

estimation. The 23.9 GHz channel is also avoided being used in this study since it is 

strongly impacted by atmospheric water vapor [Pampaloni, 2000].   
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As suggested by Kelly [2009], moderate depth snow can be derived from the 

spectral difference between 10.65 GHz and 36.5 GHz and the calculation of deeper 

snow depth/SWE is based on vertically polarized Tb at 10.65 GHz and 18.7 GHz. 

Therefore, the ANN is trained with satellite observations from AMSR-E in the study 

domain from 1 September 2002 to 1 September 2011 (total time period of nine years) 

for both vertically polarized and horizontally polarized Tb at 10.65 GHz, 18.7 GHz 

and 36.5 GHz. 

3.3.2.2. ANN Training Approach 

This study utilizes the Neural Network Toolbox provided by Matlab© to 

independently generate a neural network system for each location in space. Due to its 

high efficiency in performing matrix calculations, Matlab© is an ideal tool for 

working with ANNs. Details about the working principle of the Toolbox are 

discussed below.  

First of all, it is necessary to sort out what are the appropriate locations with 

enough valid and relatively accurate information related to network input (e.g., snow-

related information) for the ANN to “learn”. In order to minimize erroneous inputs to 

the ANN framework, the model utilizes the National Oceanic and Atmospheric 

Administration (NOAA) Interactive Multisensor Snow and Ice Mapping System 

(IMS) product [Helfrich et al. 2007] to verify the model inputs derived from the 

Catchment model [Forman et al. 2013]. As a result, the ANN-based framework is 

able to ensure the presence of snow as simulated by Catchment for each cell/grid in 

the study domain. Snow cover as predicted by the Catchment model for a given pixel 

is deemed reasonable if the IMS product at the same time indicates the existence of 
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snow. After remapping the IMS product from its native 24 km resolution onto the 

EASE-Grid (25km ×  25km), this study utilizes the post-processing IMS map to act as 

the “truth” in snow cover detections and to compare with the occurrence of snow as 

modeled by Catchment. In response, Forman et al. [2013] pointed out that the 

agreement between the Catchment model output and IMS snow cover extent is good 

with the hit ratio of 0.88 across the NA for the nine (9) years investigated.   

The ANN training was conducted based on the back-propagation learning cycle to 

minimize the MSE (see Section 2.4.1) between the ANN-estimated Tb and the 

AMSR-E Tb training target value. For example, in terms of a single location for a 

given time period, we are given a training set {(I1, 𝛀1),…(Ip, 𝛀p)} consisting of p 

pairs of input space I and output training space 𝛀 using the same time period from all 

of the available years except for the pre-defined validation year. During training, the 

MSE for a single output neuron can be computed using the following equation: 

 MSE = 1
2

||Λi-
p
i=1 Ωi||

2
 (3.3-3) 

where Λ! is the ith ANN-estimated value of Tb [K]; Ω! is the ith value of the AMSR-E 

training target Tb [K]; p is the total number of evaluated time steps; and ||·|| represents 

the Euclidean norm operator between the estimated (ANN-derived) Tb and the 

measured (AMSR-E collected) Tb.  

Since the output of a neuron depends on the weighted sum of all its inputs, the 

back propagation method is employed and aims to find a set of weights that could 

minimize the errors [Rojas, 1996]. To start the minimization algorithm, the initial 

weights applied in between the input and output neurons are randomly selected. After 

that, the Levenberg-Marquardt optimization algorithm [Levenberg, 1944; Marquardt, 
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1963] is applied iteratively to update the weights until the MSE achieves its minimum 

for each output neuron. In other words, the back propagation method aims to 

calculate the gradient of the error of the network with respect to the network’s 

modifiable weights to quickly converge on its satisfactory local minima [Baboo and 

Shereef, 2010].  

Based on a suitable training algorithm and a well-constructed neural network, the 

accuracy of the training result will be improved as more training dataset are made 

available. However, due to the enormous computational expenses, we divide these 9-

year-span AMSR-E measurements into several parts with sufficient model inputs 

information for faster processing speed, as well as for the purpose of capturing the 

seasonality of the snow properties.  

The ANN is trained separately for each fortnight (two-week period) of each year. 

Further, each location (cell) in the NA domain has its own unique ANN for a 

particular fortnight. Reasons for selecting a fortnight, rather than a week or a month 

as the basic training period, are discussed in Forman et al. [2013]. It was shown that a 

one-month training period cannot adequately capture the temporal variability of 

AMSR-E targets whereas a one-week-period size of AMSR-E measurements did not 

provide a sufficiently large enough training dataset. Therefore, a fortnightly training 

period was eventually selected to address the strong seasonality in the snow process 

while also providing a sufficient training data size for use during training activities.  

In order to assess the accuracy of the trained-ANN outputs, a validation approach 

called “Jackknifing” [McCuen, 2005] (a.k.a. leave-one-out) was used in the study of 

Forman et al. [2013].  Each time the study withholds one-year of Tb from AMSR-E 
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to be used later as the independent validation dataset, with the remaining eight-year 

dataset of Tb measurements is used as training data. The validation results based on 

different model accuracy assessment statistics (e.g., bias, root mean squared error and 

anomaly correlation coefficient), can be seen in Forman et al. [2013], which 

demonstrated that the Tb estimations based on the ANN agree well with the AMSR-E 

measurements in the NA domain across the nine-year time period.  

3.3.3. SVM Framework 

In the context of this study, the input space of x incorporates 11 variables that 

characterize the snow properties and near-surface conditions governing the energy 

exchange in between the atmosphere and the snow pack. The inputs used in the SVM 

are identical to those used by the ANN. The training targets of z are the multi-

polarized Tb at 10.65 GHz, 18.7 GHz and 36.5 GHz based on the satellite 

measurements.  

It is assumed that ϕ(x) is a nonlinear function that maps the geophysical inputs 

from the land surface model, x, into Tb space [Forman and Reichle, 2014]. This study 

defines the C, the penalty parameter (see Chapter 1) as the range of the training 

targets, which can be written as [Mattera and Haykin, 1999]: 

 C = max{z} – min{z} (3.3-4) 

An alternate formulation was tested in Forman and Reichle [2014] using C = 6 σz, 

where  σz is the standard deviation of the training targets. It was suggested that there 

are not significant differences between using different C parameter ranges.  
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Hsu et al. [2003] found that employing exponentially growing sequences of γ, the 

adjustable parameter (see Chapter 1), is a practical method for identifying reasonable 

values for the parameter. Initially, this study defines 𝛾 as:  

 γ=2-7, 2-6, 2-5, …, 25, 26, 27 (3.3-5) 

Parameter selection is an important technique in training SVM problems since 

model users are supposed to construct the SVM framework by first defining a set of 

parameters. The SVM utilized in this study adopts a “grid-search” technique in order 

to locate the “best” penalty parameter C and RBF parameter 𝛾. In the context of this 

study, a 6×15 grid was pre-defined to test various pairs of (C, γ) values. The one with 

the best cross-validation accuracy (see Section 3.3.4.2.) was selected. This type of 

exhaustive parameter search can be parallelized since each (C, γ) is independent from 

one another, and therefore computational time can be reduced [Hsu et al. 2003]. 

3.3.4. SVM Training 

3.3.4.1. SVM Training Targets 

The SVM is trained with the satellite-based observations obtained from AMSR-E 

for both horizontally and vertically polarized Tb measurements at 10.65GHz, 

18.7GHz and 36.5GHz assessed from 1 September 2002 to 1 September 2011, which 

are exactly the same training targets as the ANN used.  

3.3.4.2. SVM Training Approach 

The LIBSVM library, a library for Support Vector Machines (SVMs), provided 

by the National Taiwan University, was employed for SVM training in this study. 

LIBSVM is currently one of the most widely used software in classification, 
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regression, and learning tasks [Chang and Lin, 2011]. The LIBSVM provides users 

with various types of SVM formulations, QP solutions with different constraints, 

performance measurement metrics, and possible solutions to unbalanced data 

classification and regression.   

Before further discussion on SVM training, it is worthwhile to first highlight 

several steps that are essential to efficiently improving the SVM-based model 

performance: 

• Step I: Quality Control 

Similar to the ANN-based model, the SVM-based framework used the 

same IMS product to validate the accuracy of model inputs in both space and 

time before allowing the SVM to “learn” from the information collected in the 

model inputs. 

• Step II: Input Scaling (a.k.a. normalization or standardization) 

Scaling before applying the SVM learning algorithm is important [Ben-

Hur and Weston, 2010] since large margin regression algorithms are sensitive 

to the way features are scaled. In this study, there are a total of 11 geophysical 

variables and each of them is measured in a different scale with a different 

unit and has a different range of possible values. It is often beneficial to scale 

all features to a common range [Ben-Hur and Weston, 2010] such that 

attributes in greater numeric ranges will not dominate those in smaller ranges 

[Hsu et al. 2003]. Another advantage of scaling is to avoid numerical 

difficulties in calculating inner products of feature vectors [Hsu et al. 2003].  
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The scaling method used in this study can be described by illustrating the 

following example in terms of scaling SWE data for a location within a 

fortnight training period time, and the standardization algorithm used in this 

study can be written as: 

 xi=
xi- min (x)

max x -min ⁡(x)× b-a +a (3.3-6) 

where  xi is nominal SWE [dimensionless] after scaling; xi is the original input 

value of SWE [m] at time i; min (x) is the minimum SWE [m] input value 

across this fortnight training period; max (x) is the maximum SWE [m] 

derived from the Catchment model for the specified fortnight; 𝑎 is the 

specified lower bound of the scaling range; and 𝑏 is the upper bound of the 

defined range of scaling. Alternatively, the scaling can be performed onto the 

model input space as the example shown above, and also the projected higher 

dimensional feature space (or at the level of the kernel function itself).  

In defining the scaling intervals, Sarle [1997] concluded the two most 

useful ways to standardize inputs. One of them is to scale the data with the 

mean of zero and the standard deviation of one, and the other method is to 

have a scaled dataset with the midrange of 0 and the range of 2 (i.e., [-1,1]). 

However, Hsu et al. [2003] recommended SVM users to linearly scale each 

attribute of the model input to the range of [-1, +1] or [0, 1].   

This study randomly selected five (5) places spread out across the study 

domain and then trained the SVM by using the scaling intervals of [-1, 1], [0, 

1], [0.1, 1.1], [0, 2], [0.5, 1], [1,2], [1, 3], and [0.5, 1.5], respectively. The 
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results demonstrate that there are no significant differences between the SVM-

based models and these scaling intervals in terms of Tb predictions.  

However, there are significant differences in terms of the computation of 

the Normalized Sensitivity Coefficients (NSCs) of different model states (See 

Chapter 5). SVM models using scaling intervals of [0.5, 1], [1,2], [1,3] and 

[0.5, 1.5] produce almost the same numeric value of NSCs. Since NSCs are 

computed in the post-scaled space, the Tb nominal value, which should also 

be in the range of the defined interval [𝑎, 𝑏] (3.3-), functions as the 

denominator based on the NSC calculation (Equation (4.2-1). When the Tb 

nominal value approaches zero, the NSC is close to infinity (or a very large 

number), which is not desirable. This explains why the tested scaling intervals 

with either midrange of zero or including zero (e.g., [-1, 1], [0, 1], [0.1, 1.1], 

[0, 2]) are not able to produce similar results of NSCs. Therefore, the SVM 

utilized in this paper defines the scaling interval with a lower bound of 1 and a 

higher bound of 2.  

• Step III: Cross-validation 

As a standard technique for adjusting hyper-parameters (the parameters 

can not be automatically tuned by the learning algorithm and thus have to be 

tuned manually) of predictive models [Chan et al. 2013], v-fold cross-

validation (Figure 3.3-) method is made available in LIBSVM. The 𝑣-fold 

cross-validation divides the training set into v subsets of equal size. 

Sequentially one subset is tested using the SVM model trained on the 

remaining (v-1) subsets [Hsu et al. 2003]. Afterwards, the cross-validation 
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accuracy is computed as the percentage of data that is correctly classified. In 

the context of SVM regression, the parameters with the minimum cross 

validation error are selected.  

The study also compares the performance between different SVM models 

with various numbers of partitions, and the results suggest that there are 

negligible differences when the number of subsets (v) varies between 2 to 10. 

Hastie et al. [2009] suggested using five (5) or ten (10) as the number of 

partitions. In this study, v is set to 5 for cross-validation during the selection 

of model parameters C and γ.  

 

Figure 3.3-2 Cross-validation with five subsets. 

Finally, the study trained the SVM model using all data points from the 

Catchment model output for each fortnight for each year (as discussed in Section 

3.3.2.2.), and defined the optimal parameters pair (C, γ). It is also worth noting that a 
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rescaling metric is also needed before conducting Tb predictions in order to transform 

the normalized value of SVM output into the measurement space of Tb.  

Goodness-of-fit statistics for assessing SVM-based model performance are 

provided in Forman and Reichle [2014].  It is concluded that the SVM possesses the 

capability to serve as a model operator within a DA framework for Tb predictions 

across large spatial scales. However, it is still unknown which parameter(s) in the 

model inputs is (are) relatively important compared to the others. The sensitivity 

analysis of the SVM-based model outputs with respect to different model inputs will 

be introduced in Chapter 4 for this purpose. 

3.3.5. Similarities and differences between machine learning techniques 

In summary, there are some similarities between SVMs and ANNs in that (1) 

they are data-driven models used when the underlying physical relationships are not 

fully understood [He et al. 2014], (2) they can be used to reproduce nonlinear 

processes [Baughman and Liu 1995; Suykens et al., 2001] as well as to solve noisy, 

black-box problems [Sjoberg et al. 1995] via iterations without prior knowledge about 

the relationships between the parameters [Živkovć et al. 2008], and (3) a SVM-based 

model using a sigmoid kernel function is equivalent to a two-layer, perceptron neural 

network [Souza, 2010], and thereby have similar performance in solving certain types 

of regression problems.  

However, there are still some differences between these two types of machine 

learning. The existence of local minima [Smola and Schölkopf, 2004] would prevent 

an ANN from finding the unique global minimum solution to a constrained 

optimization problem, which is not the case for a SVM that possesses a more simple 
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geometric interpretation that ultimately yields a sparse solution [Burges 1998]. 

Further, the efficiency of a neural network largely lies in the hidden layer of nodes 

[Tu 1996].  The selection of the number of neurons in the hidden layer and the 

number of hidden layers is a significant issue related to ANN performance. That is, a 

neural network with too many nodes will “overfit” data while too few hidden neurons 

will “underfit” the data [Fletcher et al. 1998]. For SVMs, support vectors serve as the 

function centers, which are calculated as the result of a QP procedure based on a RBF 

kernel [Valyon and Horváth, 2003]. Furthermore, when the model is associated with a 

large number of model states, the SVM would outperform the ANN [Byvatov et al. 

2003] since the SVM approach does not attempt to control model complexity by 

keeping the number of features small [Rychetsky 2001]. Finally, if the size of the 

training examples are not large enough, the SVM is still expected to perform well 

based on a properly-selected mechanism of model parameters because the number of 

support vectors in the decision space is far less than the number of training points 

[Tsang et al. 2005] whereas ANN are always in need of a relatively large amount of 

training points.  
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CHAPTER 4: SENSITIVITY ANALYSIS FORMULATION 

The following chapter discusses the importance of sensitivity analysis used in 

machine learning. It also analyzes the effects of different perturbation sizes to both 

models (either ANN- or SVM-based) based on their sensitivity results to model 

inputs. Further, an important metric - Normalized Sensitivity Coefficients (NSCs) is 

introduced to quantify the relative importance of model inputs.  

4.1. SENSITIVITY ANALYSIS 

Modeling is the process of simulating the real world. A typical modeling process 

consists of four elements, including: (1) model conceptualization, (2) model 

formulation, (3) model calibration, and (4) model verification [McCuen, 2002]. 

Sensitivity analysis, defined as the rate of change of one factor with respect to change 

in another factor [McCuen, 2002], is important in each of the modeling steps.  

4.1.1. Importance of sensitivity analysis 

Sensitivity analysis is important in model formulation. It is used to understand the 

behavior of the model, to validate the reasonable performance of the model with the 

physical response of the real system, to evaluate the applicability of the model, and to 

determine the stability and rationality of the model [Yao, 2003]. 

Sensitivity analysis is important in model calibration. A complex model system is 

always dependent upon numerous model parameters. To look into the objective 

function (e.g., minimization of the root mean squared error) of the model with respect 
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to each calibrated coefficient in the response surface is important in order to validate 

which parameter(s) has/have converged to the optimum. Hence, insensitive 

parameters can be removed to simplify the model and save computational expenses. 

Insensitive parameters have large standard errors, so their lack of accuracy can 

contribute to the overall error of the model. In addition, obtaining an understanding of 

the sensitivity of the model output to the calibrated coefficients is essential to model 

optimization. 

The sensitivity of model outputs is important in model verification. It can be used 

to determine which model component causes greater change in the model output. It 

can also show the effects of uncertainties in the fitted model output with respect to 

model input errors.  

4.1.2. Sensitivity analysis in machine learning 

Sensitivity analysis is an important tool in machine learning in terms of 

assessing the relative importance of causative factors in the model. This is especially 

significant in the ANN-based model, which is often referred to as a “black box” 

[Tzeng and Ma, 2005]. ANN is a powerful learning tool; however, most of the time, 

users are not able to tell how the ANN “learns” from the input data and how the 

hidden layer establishes connections in between the input neurons and output neurons. 

Hence, the performance of the ANN cannot be consistently ensured [Tzeng and Ma, 

2005]. Similarly, the SVM is constructed on the basis of the statistical learning 

theories and often performs well in solving various regression problems. However, it 
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is still unknown if the performance of the SVM-based model can be explained by the 

physical response of the real system.  

Previous studies conducted by Forman et al. [2013] and Forman and Reichle 

[2014] concluded that both ANN and SVM could serve as computationally efficient 

measurement operators for data assimilation at the continental scale. As a follow-up 

to these previous studies, this study conducts the sensitivity analysis in the model 

verification phase to validate the response of either an ANN- or a SVM-based model 

with respect to small perturbations in model inputs and whether or not such small 

perturbations result in a physically-consistent response. The sensitivity analysis is 

conducted here to address the following questions: What is the physical rationale for 

the relatively accurate predictions based on machine learning techniques [Forman et 

al. 2013; Forman and Reichle, 2014]? What is/are the most significant parameter(s) 

among all of the 11 geophysical variables in the model inputs derived from the 

Catchment model using either SVM or ANN? Is it SWE? Or is it due to non-snow-

related quantities? 

Recall that ANN and SVM have the same model inputs of 11 snow related and 

near-surface-related conditions and six multi-frequency, multi-polarized Tb’s as 

model outputs; hence, the study conducted here is able to compare and contrast the 

sensitivity of Tb to each model input, respectively, between these two different 

machine learning techniques.  
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4.2. NORMALIZED SENSITIVITY COEFFICIENT 

In accordance with different goals that a sensitivity analysis will achieve in each 

modeling phase, Isukapalli [1999] generally categorized sensitivity analysis methods 

into three categories: (1) variation of parameters, (2) domain-wide sensitivity 

analysis, and (3) local sensitivity analysis. The local sensitivity analysis method, 

whose focus is on estimates of model sensitivity to input variation in the vicinity of a 

sample point [Isukapalli, 1999], is utilized in this study. It is often dependent on the 

computation of gradient or partial derivatives at the nominal value [Yao, 2003].  

There are three types of local sensitivity indicators: (1) absolute sensitivity, (2) 

deviation sensitivity, and (3) relative sensitivity [McCuen, 2002]. In this study, 

relative sensitivity is mainly used to quantify the relative importance of each model 

input parameter. The main advantage of the relative sensitivity analysis is its 

dimensionlessness, which makes it available to compare the response within a model 

between different model inputs as well as between different models.  

The Normalized Sensitivity Coefficients (NSCs) [Willis and Yeh, 1987], of each 

model input (state) parameter is calculated as:  

 NSCi, j=(
∂Mj

∂pi
)·(
pi
0

Mj
0 )≈(

Mj
i-Mj

0

Δpi
)·(
pi
0

Mj
0 ) (4.2-1) 

where, pi
0 is the initial parameter value; Mj

0 is the initial metric value; Mj
i is the 

perturbed metric value; Δpi is the amount of perturbation; i = 1, 2, …, n (n is the 

number of parameters); and j = 1, 2, …, m (m is the number of metrics). In this study, 

the NSC is computed with respect to each individual Tb frequency. For instance, if p1
0 

is the input top layer snow density derived from Catchment at a given location on 01 
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Jan 2004, M2
0 is the ANN- or SVM-based model output of the vertically-polarized Tb 

at 10.65 GHz given the same location and time, Δp1 is defined by the model user, 

which is the perturbed amount of snow density (e.g., 5% or 10% of the nominal snow 

density), and M2
1 is the re-computed model output of the Tb at 10.65 GHz with the 

perturbed snow density (while the other ten model inputs remain unchanged) as the 

model input, then NSC1, 2 is interpreted as the expected relative change in the 

estimated vertically-polarized Tb at 10.65GHz based on that model (either ANN- or 

SVM-based) given a 5% change in snow density.  

 The study perturbs only one input parameter at a time in order to calculate NSC 

for each model state parameter. As discussed above, the level of perturbation is pre-

defined based on the feature of each model. The perturbation cannot be too small; 

otherwise, the model noise will be amplified, which leads to an overestimation of the 

NSC. In addition, the perturbation cannot be too large, otherwise, the model will fall 

into the nonlinear region where the marginal function (i.e., slope of a line tangent to 

the curve) evaluated at the given point is no longer the representation of the rate of 

change in the model output with respect to the change in the input. The too-large-

perturbation effects will be even worse when it falls into a strongly non-linear region 

where the difference between the marginal function and the “truth” on the curve is 

relatively large. Therefore, the model requires a linear response in the metric over a 

“small perturbation range”. A perturbation size of +/-5% has been shown to be 

appropriate to obtain the linear response.  
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Figure 4.2-1 Perturbation effects in the sensitivity analysis of the ANN model. 

 Figure 4.2-1 demonstrates that when the relative change in daily SWE varies from 

-20% to +20%, the relative change in the ANN-based model output of the vertically 

polarized Tb at 18.7 GHz will be in a range from 0 to 15%. If the perturbation size of 

the model state (e.g., SWE) is too small, varying from -4% to 5%, the relative change 

in Tb is very large, which amplifies the noise instead of representing the real system 

response. It is also worth noting that, in the linear region, when the relative SWE 

value changes from -20% to -5%, there is almost no response in the relative Tb at 18 

GHz for the ANN-based model at this given location. A preliminary assumption can 

be made that SWE might not be a sensitive parameter in the ANN-based model. Or 

perhaps the SWE has not shown its sensitivity at this selected location for assessing 

perturbation effects on this particular day. Hence, more details are still needed to be 

investigated about SWE in Chapter 5.  
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Figure 4.2-2 Perturbation effects in the sensitivity analysis of the SVM model. 

Figure 4.2-2 demonstrates that when the relative change in daily SWE varies from 

-30% to +30%, the relative change in the SVM-based model output of the vertically 

polarized Tb at 18.7 GHz will be in a range from -10% to 8%. If the perturbation size 

of SWE is approximately in between -7% and 10%, the model falls into the linear 

region. Any perturbation size falling beyond the linear region would be invalid to 

reflect the real system response. There is almost no model amplification region in the 

SVM-based model of SWE state, with only a point “falling off” the NSC slope line. 

In the linear region, the ratio between the relative change in the Tb estimation at 18 

GHz and the corresponding relative change in the metric (e.g., SWE), as interpreted 

as the gradient at the nominal metric value, is the physical interpretation of a NSC. 

In this study, a perturbation size of +/-5% of the nominal model state variable is 

selected for all model state variables one-at-a-time in the NSC computation for both 

ANN- and SVM-based models. The model outputs for both ANN- and SVM-based 

models are the Tb predictions at both horizontal and vertical polarization at 10.65 

GHz, 18.7 GHz and 36.5 GHz. The study mainly investigates the response of the 
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model outputs of vertically-polarized Tb estimations at 18.7 GHz and 36.5 GHz since 

these two combinations of frequencies are commonly used in SWE retrieval 

algorithms [Chang et al. 1986; Goodingson and Walker 1994; Kelly et al. 2003; 

Chang et al. 1996]. Additional details on the sensitivity analysis results regarding 

other model states are provided in Chapter 5. 

4.3. SENSITIVITY ANALYSIS FORMULATION 

Seven of 11 model input parameters were selected as the most sensitive model 

states (except for TGI, which is only for the comparison purpose with the SVM 

model) based on numerous NSCs calculations from 2002 to 2008 for both ANN- and 

SVM-based models. These seven selected model states are: (1) top-layer snow 

density, (2) SWE, (3) near-surface air temperature, (4) near-surface soil temperature, 

(5) skin temperature, (6) top layer snow temperature, and (7) TGI.  

Since vegetation is one of the biggest challenges in accurate measurement of 

SWE-related Tb. As discussed in Chapter 2, in the areas covered with vegetation, the 

Tb measured by the satellite is a mixed signal from both snow cover and vegetation. 

At the same time, the overlying vegetation will tend to mask the signal coming from 

the underlying snow cover. In Chapter 5 of sensitivity analysis results, four scenarios 

are categorized for both ANN- and SVM-based models with various amounts of 

forest cover and SWE for a given day of interest.  

The forest cover [%] values are obtained via the Hansen et al. [2011] forest 

product, which was derived from MODIS. The SWE [m] values are obtained from the 

land surface model. In general, these representative locations are selected for this 
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study because: (1) there is no sea ice found in this pixel, and (2) there is no significant 

lake fraction within the region (25 km ×  25 km) even though the area may still be 

surrounded by some open water. In such cases, locations with percentages of vegetal 

cover greater than 50% are defined as “High Veg” areas, and those with vegetal cover 

less than 10% are defined as “Low Veg” class. For the specified day of interest, 

locations with SWE magnitudes greater than 0.15 m (~0.45 m snow depth) are 

categorized into “High SWE” class, while those with SWE values less than 0.04 m 

(~0.12 m snow depth) are defined as “Low SWE” areas. 
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CHAPTER 5: SENSITIVITY ANALYSIS RESULTS  

In this chapter, the sensitivity results of both ANN- and SVM-based Tb 

estimations in terms of its spatiotemporal variability in forested and non-forested 

regions are presented. The following section will discuss the NSC computations of Tb 

of vertically polarized Tb at 18.7 GHz and 36.5 GHz under these four scenarios, 

respectively. Further, this chapter explains the reason for their differences in 

sensitivity to different model states. Year 2004 will be used as an example for 

demonstrating the sensitivity analysis since the 2004-2005-snow season is a fairly 

representative set of conditions during the 9-year study period.  

5.1. SPATIAL VARIABILITY OF NSCS OF ANN-BASED MODEL 

The study categorizes the NA domain under four scenarios with various amounts 

of forest cover and SWE for a given day of interest. The study selected one location 

in the study domain for each scenario as an example shown in the Figure 5.1-1. 
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Figure 5.1-1 Examples of four locations (shown by markers with four different colors) with 
various amounts of SWE and vegetation on the SWE map in the NA domain on 14 Jan 2014.  

Table 5.1-1 Canopy cover [%] and SWE [m] for the selected locations under different 
scenarios of various amounts of SWE (14 Jan 2004) and vegetation. 

Scenarios Canopy Cover [%] SWE [m] 

Low Veg + Low SWE 1.04 0.0323 

Low Veg + High SWE 5.08 0.1625 

High Veg + Low SWE 79.54 0.0152 

High Veg + High SWE 67.74 0.1726 

5.1.1. NSCs in the regions with low forest cover and low SWE 

The representative location (latitude 50.4446° and longitude -100.7220°) of “Low 

SWE” and “Low Veg” class is in the southwestern corner of Manitoba, Canada, as 

indicated by the green marker in Figure 5.1-1. The NSCs of the top layer snow 

density, SWE, skin temperature, top layer snow temperature, and TGI are all zeros for 

both 18V and 36V because the snowpack is so shallow that most of the recorded 

signals are from the deep-layer snow or underlying soil. As indicated by Table 5.1-2, 

in such a case, the sensitivity of the near-surface air temperature and the skin 
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temperature are not exactly the same, the former one is zero and the latter one is 

0.0085. This may arise from the effects of 5.04% forest cover in the 25 km ×  25 km 

area.  

Additionally, the signs of both NSCs at 18V and 36V are positive, which means 

that given an increase in the near-surface air temperature or soil temperature, there 

will be increase in Tb estimation at both microwave frequencies. This agrees well 

with the physical interpretation that Tb will increase as the physical temperature 

increases under the assumption that the emissivity remains the same for the object.  

In terms of the magnitude (absolute value) of NSCs, the change in the near-

surface soil temperature will result in a greater rate of change in Tb at 36V compared 

to that of 18V. More variation occurs in the temperature of the surface of the soil due 

to its frequent interactions with the overlying atmosphere, vegetation and snow, rather 

than with deeper layer of the soil. Hence, compared to the Tb at 18 GHz, the 36 GHz 

with a shorter wavelength can not penetrate as deeply into the snowpack, which will 

be more capable of capturing the variability of the near-surface soil temperature (or 

other soil-related properties, rather than snow). Therefore, the variation in the near-

surface soil temperature will have more effects on vertically polarized Tb predictions 

at 36 GHz. 
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Table 5.1-2 NSCs computations on 14 Jan 2004 for seven model states in an area with low 
forest cover and low SWE. 

 

Model states 
NSCs of single Tb frequency 

ANN (18V)* ANN (36V)** 

Top layer snow density 0 0 

SWE 0 0 

Near-surface air temperature 0.0823 0.2557 

Near-surface soil temperature 0.0085 0.2107 

Skin temperature 0 0 

Top layer snow temperature 0 0 

TGI 0 0 
*:   ANN (18V) denotes the vertically polarized ANN-based Tb at 18.7 GHz  
**: ANN (36V) denotes the vertically polarized ANN-based Tb at 36.5 GHz  

(same for other tables in this chapter) 

5.1.2. NSCs in the regions with low forest cover and high SWE 

The representative location (latitude 56.7349° and longitude -70.3197°) of “High 

SWE” and “Low Veg” class is in the northern part of Quebec, Canada, as indicated 

by the magenta marker in Figure 5.1-1. Except for TGI, the change in the other six 

model states exerts effects on the Tb estimation at both 18V and 36V as shown in 

Table 5.1-3.  

In such cases, the SWE state plays a role in determining Tb. Based on the snow 

retrieval algorithm derived by Chang et al. [1996], if the vertically polarized Tb at 

18V increases or the Tb at 36V decreases, the SWE will increase when the snow 

density is fixed.  This could potentially explain the sign change between the NSC at 

18V and 36V. However, it is still difficult to relate this sign-change issue of NSCs 

between different Tb frequencies with physical interpretations of snow. More 
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investigations are still needed in terms of fully understanding physical mechanism of 

radiation (i.e., microwave) interactions between snow, soil, air and vegetation.  

Top layer snow density is as equally sensitive as the SWE state, which may be 

due to the physical relation between the snow density and the SWE. This is 

reasonable since Equation 1.1-2 demonstrates that snow density and SWE are 

connected via snow depth. According to Equation 4.2-1, since 

 NSC(SWE, Tb)=
∆Tb
∆SWE

·
SWE0

Tb0
 (5.1-1) 

also,  

 SWE = 
D × ρsnow 

ρwater
 (5.1-2) 

thus, 

 

NSC SWE, Tb =
∆Tb

D × ∆ρsnow 
ρwater

·

D × ρsnow
0  

ρwater
Tb0

   

                         =
∆Tb
∆ρsnow

·
ρsnow
0  
Tb0

=NSC ρsnow, Tb  

 

(5.1-3) 

where NSC(SWE, Tb) is the rate of change in Tb with respect to changes in SWE; ∆Tb 

[K] is the increase or decrease in Tb estimation; ∆SWE [m] is the change in SWE 

magnitude, which is related to the defined perturbation size; SWE0 [m] is the nominal 

value of SWE before exerting any perturbations; Tb0 [K] is the nominal value of Tb; 

𝐷 is the snow depth [m], which remains the same during the calculation of NSCs (this 

is different in the SVM-based model, which will be discussed in the Section 

5.2);  ρwater is the density of water [kg
m3

], which is a constant; ρsnow
0    is the nominal value 
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of top-layer snow density [kg
m3

]; and NSC ρsnow, Tb  is the relative change of Tb with 

respect to the perturbation in snow density. Hence, it seems that the top layer snow 

density should have the same performance with the SWE state, with the same ANN-

based NSCs at both 18V and 36V. However, the Equation (5.1-3 can only be valid 

under the condition that the top-layer snow density has the same quantity as the 

column-integrated (three-layer-integrated) snow density. Hence, if the measured snow 

pack is uniform, the equivalent sensitivity derived from the ANN-based model 

between SWE and snow density is valid.  

Table 5.1-3 NSCs computations on 14 Jan 2004 for seven model states in an area with low 
forest cover and high SWE. 

Model states 
NSCs of single Tb frequency 

ANN (18V) ANN (36V) 

Top layer snow density 0.0491 -0.0069 

SWE 0.0491 -0.0069 

Near-surface air temperature -0.0722 -0.0627 

Near-surface soil temperature 0.4649 0.8492 

Skin temperature -0.0722 -0.0627 

Top layer snow temperature -0.0224 -0.0698 

TGI 0 0 

 

5.1.3. NSCs in the regions with high forest cover and low SWE 

The representative location (latitude 55.0024° and longitude -112.7064°) of “High 

SWE” and “High Veg” class is in the middle of Alberta, Canada, as indicated by the 

red marker in Figure 5.1-1. The snow-related model states, such as top layer snow 

density, SWE and snow morphology proxy, TGI, are insensitive states in the ANN-

based model under the scenario of high forest cover and low SWE. It is largely due to 
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the thick forest cover on the top of the shallow snow pack such that microwaves 

emitted from the underlying snow pack are significantly attenuated.  

However, it is difficult to explain why the near-surface air temperature, skin 

temperature and the top-layer snow temperature have equal sensitivity in predicting 

Tb at both 18V and 36V. In the absence of vegetation, the skin temperature is 

expected to possess the same sensitivity as the top-layer snow temperature, whereas 

this location is covered with 79.54% forest. The disagreement with the physical 

fundamentals may come from: (1) model forcing error (e.g., precipitation and air 

temperature etc.), (2) measurement error associated with MODIS forest cover 

product, or (3) learning inability of the ANN in regions with high forest cover and 

relatively little snow. This learning inability may arise from ANN’s learning 

algorithm in terms of converging to a local minima instead of the global minimum 

value of its objective function of mean squared errors.   

Table 5.1-4 NSCs computations on 14 Jan 2004 for seven model states in an area with high 
forest cover and low SWE. 

Model states 
NSCs of single Tb frequency 

ANN (18V) ANN (36V) 

Top layer snow density 0 0 

SWE 0 0 

Near-surface air temperature 0.1190 0.0702 

Near-surface soil temperature 0.1444 0.2497 

Skin temperature 0.1190 0.0702 

Top layer snow temperature 0.1190 0.0702 

TGI 0 0 
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5.1.4. NSCs in the regions with high forest cover and high SWE 

The representative location (latitude 64.2750° and longitude -146.1695°) of “High 

SWE” and “High Veg” class is in the middle of Alaska, U.S. The model states of 

SWE, top layer snow density, and TGI do not exert their effects on Tb predictions. It 

might arise from the fact that high forest cover attenuates the emission of radiation 

from the snowpack prior to reaching the PMW sensor.  

The positive signs of NSCs seem more reasonable under such a scenario that as 

the temperature of the near-surface air, or the soil, or the top-layer snow increases, the 

vertically-polarized Tb’s at both 18 GHz and 36 GHz also increase.  

Further, the sensitivity of the near-surface air temperature and the skin 

temperature are not exactly the same, which is largely due to the dense vegetation 

cover (67.74%) in this area.  

Table 5.1-5 NSCs computations on 14 Jan 2004 for seven model states in an area with high 
forest cover and high SWE. 

Model states 
NSCs of single Tb frequency 

ANN (18V) SVM (36V) 

Top layer snow density 0 0 

SWE 0 0 

Near-surface air temperature 0.4374 0.5200 

Near-surface soil temperature 0.2277 0.2334 

Skin temperature 0.3407 0.4099 

Top layer snow temperature 0.1437 0.3853 

TGI 0 0 
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5.2. TEMPORAL VARIABILITY OF NSCS OF ANN-BASED MODEL 

A representative location (latitude 64.2750° and -146.1695°) in the middle of the 

Newfoundland and Labrador, Canada, was selected in the investigation of temporal 

variability of NSCs. It location is selected due to the sensitivity analysis results 

showed the NSC of SWE is non-zero when the investigated location is with relatively 

little vegetation cover and a relatively thick snowpack. It is also noticeable that the 

snowpack cannot be too thick (greater than 0.40m of SWE) - the deeper the snow 

depth is, the more scattering and attenuation will take place inside of the snowpack. 

Hence, the amount of energy emitted by a super thick (greater than 1.45m of snow 

depth) snowpack is still largely attenuated before reaching the sensor. Therefore, 

given that this location is covered by 6.06% forest with a maximum SWE of 0.22m 

during the snow accumulation phase and 0.24m during the snow ablation phase, it is 

suitable for a time series investigation of NSCs.  

Model states of the SWE and the near-surface soil temperature are investigated in 

the temporal sensitivity analysis during both snow accumulation and ablation phases. 

The SWE state is selected for investigation since enhancing SWE estimation is the 

main objective in a future Tb assimilation. The examination of the NSCs time series 

is critical since the calculation of NSCs in Section 5.1 has suggested that: (1) SWE is 

not a relatively sensitive model parameter when using the ANN, and (2) ANN-based 

Tb prediction are most sensitive to soil temperature. In order to further verify this 

premise, a time series was needed to investigate whether the SWE is insensitive 

during either the snow accumulation or ablation phases for the ANN model.  
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Figure 5.2-1 A selected location for the time series investigation of NSCs of different model 
states on the forest cover map in the NA domain. 

5.2.1. Snow accumulation phase 

    During the snow accumulation phase (from 01 Jan 2004 to 10 Mar 2004), SWE 

increases from 0.12m to 0.22m and the near-surface soil temperature varies from 268.4K to 

272.2K. As indicated by Figure 5.2-2, the soil temperature is not always decreasing or 

increasing. One the one hand, the overlying snowpack is behaving as a blanket 

covering on the top of the soil to keep the soil warm; on the other hand, the air 

temperature keeps decreasing and tends to cool the ground. Hence, the variation of 

the soil temperature contains the effects arising from both of the cooling and warming 

mechanisms.  

    The temporal NSCs results in the SWE and near-surface soil temperature states 

during the snow accumulation phase are also shown in Figure 5.2-2. The ANN-based 

Tb estimations at both 18 GHz and 36 GHz are sensitive to SWE on some days (five 

out of 72 days) during the snow accumulation phase in 2004.  On the contrary, the 

near-surface soil temperature is a more sensitive parameter during this period. 
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Further, there are five days when the NSCs of the near-surface soil temperature are 

greater than one at 36 GHz, which means if there is a small change in the soil 

temperature, the Tb predictions will be altered significantly. These greater-than-one 

absolute values of NSCs might be explained by the physics that the near-surface soil 

temperature, whose depth is roughly equivalent to the penetration depth of 36 GHz 

microwave at 0.2 cm of the soil to the surface/ground. Hence, the ANN-based 

estimation of Tb contains more information about soil, rather than snow.  

            

            

Figure 5.2-2 Time series investigation of ANN-based NSCs at both 18 GHz and 36 GHz Tb 
predictions of SWE and near-surface soil temperature from 01 Jan 2004 to 10 Mar 2004. 

5.2.2. Snow ablation phase 

 
    During the snow ablation phase (from 25 Mar 2004 to 02 Jun 2004), SWE is still not 

sensitive for most of the time during the ANN-based predictions. Only two out of 72 

days result in Tb estimations that are affected by a change in SWE. It is worth noting 

that on those two days, the NSC of SWE during the snow ablation state is roughly 
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eight times greater than that during the accumulation phase. This is possibly due to 

the presence of the liquid water within the snowpack, which significantly increases 

the absorption and emission of the microwave energy that results from the increase in 

the dielectric constant of the snow (see Chapter 1). However, melting snow may also 

increase the size of the snow grains relative to the microwave wavelengths used by 

the passive sensors due to a larger vapor pressure gradient during the ablation phase. 

More energy emitted by the snow may be scattered prior to reaching the sensor. 

Therefore, the greater sensitivity of SWE during snow melt is more likely to be a 

trade-off between an increase in the snow pack radiation absorptivity and a 

simultaneous increase in the snow grain size. In such a case, the effects induced by 

the presence of moisture within the snow pack likely takes a more dominant role than 

those from the snow grain size.  

       

        

Figure 5.2-3 Time series investigation of ANN-based NSCs at both 18 GHz and 36 GHz Tb 
predictions of SWE and near-surface soil temperature from 25 Mar 2004 to 02 Jun 2004. 
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5.3. SPACIAL VARIABILITY OF NSCS OF SVM-BASED MODEL 

The sensitivity analysis results of the ANN-based model are presented in Sections 

5.1 and 5.2, where the preliminary finding is that SWE might not be the reason for 

accurate Tb predictions based on the ANN model, which is discouraging to some 

extent given the original intent of using ANN-derived Tb to update modeled SWE. 

This section will continue to explore the reason for the relatively accurate prediction 

of Tb based on the SVM model.  

This section presents the differences between the ANN- and the SVM-based 

models for a given day on 11 Jan 2004 across the seven most sensitive states of the 11 

model states. As discussed in Section 4.3, the study also divides the whole NA 

domain into four categories: (1) low vegetation with low SWE; (2) low vegetation 

with high SWE; (3) high vegetation with low SWE; and (4) high vegetation with high 

SWE. These specific locations within these four categories in the following section 

are selected differently from those in Section 5.1 of the ANN-based model analysis 

since the study is going to further verify if the insensitivity of SWE is highly 

dependent on location.   

5.3.1. NSCs in the regions with low forest cover and low SWE 

 
The first test location (latitude 50.4885° and longitude -100.3943°) of “Low 

SWE” and “Low Veg” class is in the southwest corner of Manitoba, Canada (see 

Figure 5.3-1). The forest cover percentage at that location is 5.04%, and the SWE 

value on 11 Jan 2004 was 0.03m, and therefore relatively little snow existed on that 

day.  
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Some similarities in the model performance were evident. For example, for both 

ANN- and SVM-based model, the NSCs of the skin temperature and the top layer 

snow temperature are the same since the area is only covered with 5.04% vegetation 

and 0.03m of SWE, hence the skin temperature is most representative of the top layer 

snow temperature. In addition, the near-surface soil temperature plays a role in both 

of the models based on the absolute value of the NSCs, whereas soil temperature is 

more sensitive in the ANN-based Tb predictions at 36 GHz, compared to that at 18 

GHz. This is because a higher passive microwave frequency possesses a smaller 

emission depth, hence it captures more of the surface variability of the model state 

variables.  

Some differences are still evident in the model behavior. The ANN-based model 

is not as sensitive to several snow-related states, such as SWE, top layer snow 

density, and top layer snow temperature in the presence of a shallow snowpack. 

However, Tb predictions at both 18 GHz and 36 GHz based on the SVM model are 

still sensitive to small perturbations in the snow states in the model inputs. 

TGI, the snow grain size proxy, is the most sensitive state with the NSC value of 

0.0781 in the SVM-based Tb estimation at 18 GHz. This is likely because there are 

some relatively large-size snow grains within the snowpack (or the presence of 

internal ice layers and/or ice crust), which behave as effective radiation scatters. Most 

of the scattered signals from the snowpack can still be recorded by the passive sensors 

due to less attenuation in the presence of low vegetation cover.  

In Section 5.1, the study derived the Equation 5.1-3 of the NSC relationship 

between the top layer snow density and SWE, which does not hold true in the SVM-
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based model. One of the interpretations might be that the change in SWE will 

possibly induce the change in snow depth as well (snow depth is not a constant after 

the perturbation of SWE) such that there is no guarantee that the sensitivity of the 

snow density and the SWE will always be the same. The other explanation is that the 

snow density in the Equation 5.1-2 is the column-integrated density, which is not 

necessarily the same as the top layer snow density in the model input when the 

uniform snowfield assumption is violated. In such case, the SVM-based NSC of the 

top layer snow density is more reasonable than that derived from the ANN-based 

model. 

Table 5.3-1 NSCs computations on 11 Jan 2004 for seven model states in an area with low 
forest cover and low SWE. 

Model states 

NSCs of single Tb frequency 

ANN 

(18V)* 

ANN 

(36V)* 

SVM 

(18V)** 

SVM 

(36V)** 

Top layer snow density 0 0 0.0377 0.1017 

SWE 0 0 -0.0076 -0.0069 

Near-surface  

air temperature 
0.0662 0.2652 0.0036 0.006 

Near-surface 

 soil temperature 
-0.0349 -0.5668 -0.0256 -0.1459 

Skin temperature 0 0 0.0375 0.0939 

Top layer snow 

temperature 
0 0 0.0375 0.0940 

TGI 0 0 0.0781 -0.0275 
**:  SVM (18V) denotes the vertically polarized Tb at 18.7 GHz based on the SVM model 
**:  SVM (36V) denotes the vertically polarized Tb at 36.5 GHz based on the SVM model 

(same for other tables in this chapter) 
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Figure 5.3-1 An example of a location (shown by the red circle) with low forest cover and 
low SWE value on the SWE map in the NA domain on 11 Jan 2004. 

  
 
Figure 5.3-2 NSCs of seven model states for the location with low forest cover and low SWE 
in the NA domain on 11 Jan 2004 between ANN- and SVM-based vertically polarized Tb 
estimations at both 18 GHz and 36 GHz. 

5.3.2. NSCs in the regions with low forest cover and high SWE 

 
The representative location (latitude 54.6459° and longitude -61.7747°) of “High 

SWE” and “Low Veg” class is in the middle of Newfoundland and Labrador, Canada 

(see Figure 5.3-3). The forest cover percentage within that region is 6.02% and the 

SWE value on 11 Jan 2004 is 0.14m, and therefore there is a moderate amount of 

snow on that day. Since this area is covered by relatively little vegetation, both the 

0

0.2

0.4

0.6

0.8

1

Model States

N.
S.

C.

 

 

Air T
em

p.

Skin
 Tem

p. TGI
SWE

Snow
 Tem

p.

Snow
 Dens

ity

Soil 
Tem

p.

ANN(18V)
SVM(18V)

−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

Model States

N.
S.

C.

 

 

Air T
em

p.

Skin
 Tem

p. TGI
SWE

Snow
 Tem

p.

Snow
 Dens

ity

Soil 
Tem

p.

ANN(36V)
SVM(36V)

 



 

 76 
 

ANN and SVM have the same performance in terms of the sensitivity of skin 

temperature and top layer snow temperature.  

The scenario with low forest cover and high SWE possesses the highest NSC of 

SWE with the value of 0.3225 by comparing all the NSCs computations of both 

models. In such a case, forest effects are not significant because the emitted radiation 

from the underlying snowpack will not be strongly diminished by the forest cover. 

The SVM-based model captures the greatest amount of SWE information at 36 GHz 

among other model inputs related to the ANN-based model.  

TGI also plays a role in the SVM-based Tb estimation model with the NSC value 

of 0.1342 for estimated Tb at 36 GHz. It is known that the snow temperature profile is 

not uniform due to heat flux exchanges between the snow, air, and underlying soil. 

The temperature of the snow surface responds to all types of weather conditions as 

well as daytime heating and nighttime cooling mechanism. Meanwhile, there is likely 

to be heat exchange in between the basal-layer snow and top-layer soil. In such case, 

the temperature gradient on the surface might be greater than that in the deeper layer. 

Hence, the sensitivity of TGI at 36 GHz is higher than that at 18 GHz for the SVM 

model.  
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Table 5.3-2 NSCs computations on 11 Jan 2004 for seven model states in an area with low 
forest cover and high SWE. 

Model states 

NSCs of single Tb frequency 

ANN 

(18V) 

ANN 

(36V) 

SVM 

(18V) 

SVM 

(36V) 

Top layer snow density 0 0 -0.0272 0.119 

SWE 0 0 0.0946 0.3225 

Near-surface  

air temperature 
0.0423 0.3035 -0.1347 0.0364 

Near-surface 

 soil temperature 
0.4432 0.9189 -0.0385 0.0427 

Skin temperature 0.0423 0.3035 0.1385 0.1542 

Top layer snow 

temperature 
0.0423 0.3035 0.1386 0.1542 

TGI 0 0 0.0339 0.1342 

 

 
Figure 5.3-3 An example of a location (shown by the red circle) with low forest cover and 
high SWE value on the SWE map in the NA domain on 11 Jan 2004. 
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Figure 5.3-4 NSCs of seven model states for the specified location in the NA domain on 11 
Jan 2004 between ANN- and SVM-based vertically polarized Tb estimations at both 18 GHz 
and 36 GHz. 

5.3.3. NSCs in the regions with high forest cover and low SWE 

 
This study location (latitude 60.7030° and longitude -113.3742°) of “Low SWE” 

and “High Veg” class is in the southeast part of Northwest Territories, Canada (see 

Figure 5.3-5). 88.02% of the area is covered with forest and with 0.03 m of SWE on 

11 Jan 2004 and therefore there is relatively little snow on that day.  

 The ANN-based Tb predictions are still not sensitive to the snow-related states, 

except for the top layer snow temperature with the NSC value of 0.0899 for estimated 

Tb at 18 GHz. It is more likely that the accurate prediction of the ANN-based model 

does not depend on the model input of SWE. On the contrary, even during conditions 

with high forest cover and limited snow, the SVM-based model is still sensitive to all 

seven model states. Further, model states of SWE, skin temperature, and top layer 

snow temperature are the three most sensitive model inputs. It is encouraging to see 

that the SVM-based model is able to capture the variability of SWE in estimating Tb 

at both 18 GHz and 36 GHz, which suggests a larger sensitivity to SWE during the 

prediction of Tb by the SVM model.  
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Table 5.3-3 NSCs computation on 11 Jan 2004 for seven model states in an area with high 
forest cover and low SWE. 

Model states 

NSCs of single Tb frequency 

ANN 

(18V) 

ANN 

(36V) 

SVM 

(18V) 

SVM 

(36V) 

Top layer snow density 0 0 -0.0061 -0.0272 

SWE 0 0 0.1003 0.0946 

Near-surface  

air temperature 
0.0899 0.0423 0.0334 -0.1347 

Near-surface 

 soil temperature 
0.272 0.4432 0.0593 -0.0385 

Skin temperature 0.0899 0.0423 0.1004 0.1385 

Top layer snow 

temperature 
0.0899 0.0423 0.1005 0.1386 

TGI 0 0 0.0134 0.0339 

 

 
Figure 5.3-5 An example of a location (shown by the red circle) with high forest cover and 
low SWE value on the SWE map in the NA domain on 11 Jan 2004. 
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Figure 5.3-6 NSCs of seven model states for the specified location in the NA domain on 11 
Jan 2004 between ANN- and SVM-based vertically polarized Tb estimations at both 18 GHz 
and 36 GHz. 

5.3.4. NSCs in the regions with high forest cover and high SWE 

 
The representative location (latitude 52.7082° and longitude –75.0232°) of “High 

SWE” and “High Veg” class is in the middle of Quebec, Canada (see Figure 5.3-7). 

The area is covered with 56.92% of forests with 0.13 m of SWE on 11 Jan 2004. 

Similar to other scenarios from Table 5.3-1 to Table 5.3-4, the ANN-based model is 

most sensitive to the model input change in the soil temperature and has no response 

with respect to the relative change in SWE. It is also worth noting that the ANN-

based NSC of SWE is also highly dependent on the location since only one (Table 

5.3-3) out of nine selected regions in Chapter 5 contains SWE information that can 

partially influence Tb estimation.   

       Unlike the ANN-based model, the SVM-based model is sensitive to all seven 

model states in the area with high SWE coupled with high forest cover. SWE is still 

the most important model parameter in the model with the NSC value of 0.1553 for 

estimated Tb at 36 GHz, which will provide future study with more opportunity of 
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exploring the possibility of enhancing SWE estimation in the densely forested regions 

via Tb assimilation.  

Table 5.3-4 NSCs computations on 11 Jan 2004 for seven model states in an area with high 

forest cover and high SWE. 

Model states 

NSCs single Tb frequency 

ANN 

(18V) 

ANN 

(36V) 

SVM 

(18V) 

SVM 

(36V) 

Top layer snow density 0 0 -0.012 -0.0136 

SWE 0 0 0.0939 0.1543 

Near-surface  

air temperature 
0 0 -0.012 -0.0136 

Near-surface 

 soil temperature 
-0.093 -0.1864 -0.1053 -0.0609 

Skin temperature 0 0 -0.0354 -0.0494 

Top layer snow 

temperature 
0 0 -0.0354 -0.0494 

TGI 0 0 0.0014 0.0566 

 

 

Figure 5.3-7 An example of a location (shown by the red circle) with high forest cover and 
high SWE value on the SWE map in the NA domain on 11 Jan 2004. 
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Figure 5.3-8 NSCs of seven model states for the specified location in the NA domain on 11 
Jan 2004 between ANN- and SVM-based vertically polarized Tb estimations at both 18 GHz 
and 36 GHz. 

5.4. TEMPORAL VARIABILITY OF NSCS OF SVM-BASED MODEL 

    In order to better compare the model behavior, the NSC analysis of the SVM-based 

model in the following section selects the same location and the same model states as 

stated in Section 5.2 for the ANN-based time series investigation. The temporal 

variability of the NSC is investigated under the snow accumulation phase and the 

ablation phase, respectively.  

5.4.1. Snow accumulation phase 

 
     During the snow accumulation phase, compared with the ANN-based model, the 

SVM-based Tb estimation is more sensitive to the change in SWE, as the spatially- 

variable sensitivity analysis results suggested in Section 5.3. When the daily SWE 

values change abruptly (indicated by the slope of the green line in Figure 5.4-1), 

which may result from a snowstorm that occurred on that day, the NSC for the SVM 

model has a strong response with respect to the daily-change in SWE. However, 

when there is no change in the SWE for a period of time, such as the time period from 
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06 Feb 2004 to 16 Feb 2004, both ANN- and SVM-based Tb estimations remain 

unchanged. This agrees well with the snow retrieval algorithm (Equation 2.3-4) 

derived by Chang et al. [1996]. If there is no change in the measured spectral 

difference (e.g., Tb at 37 GHz and Tb at 19 GHz), the SWE value is not expected to 

change. Therefore, the SVM-based model seems to be more reasonable with a more 

solid physical foundation.   

In addition, Tb estimations from both models are highly sensitive to the near-

surface soil temperature during the accumulation phase. This is because all points 

within the soil layer emit thermal radiation, and in the microwave region the intensity 

of the radiation is proportional to the thermal dynamic temperature [Choudhury et al. 

1982] based on the Rayleigh-Jeans approximation (see Chapter 1). The equivalent 

temperature of the soil mainly depends on the soil moisture conditions and the inner 

soil temperature profile. Hence, it is reasonable that soil temperature is another 

important model parameter in the Tb prediction via machine learning.  
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Figure 5.4-1 Time series investigation of NSCs at both 18 GHz and 36 GHz Tb predictions 
of SWE and near-surface soil temperature from 01 Jan 2004 to 10 Mar 2004. 

5.4.2. Snow ablation phase 

 
    During the snow ablation phase, when the amount of snow drops dramatically from 

01 May 2004 to the end of the May in 2004, the NSC of SWE for both models is 

zero. It may suggest that both machine-learning techniques can only be used during 

the onset of snow melting period in extracting SWE based on measured Tb.  

    The ANN-based model is highly sensitive to the soil temperature state. One of the 

hypotheses is that during the snow ablation season, melting snow will penetrate into 

the soil. Hence, the presence of more soil moisture will take the dominant role in 

significantly increasing the radiation emission ability of the soil, which will result in a 

higher estimation of Tb. The other preliminary conclusion is SWE is not a sensitive 

model parameter in the ANN-based Tb prediction. In other words, the good 

performance of the ANN model operator in “learning” measured Tb across the NA 
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domain does not have direct linkage with SWE information. In addition, Forman and 

Reichle [2014] pointed out that the ANN is less capable of capturing much of the 

temporal variability found in the original AMSR-E Tb measurements.  Compared 

with soil temperature, snow states (e.g., SWE, snow grain size and snow temperature) 

are more variable due to more interactions with the overlying air and canopy cover. 

The relatively high sensitivity of SWE in the SVM-based model possibly depends on 

its capability of capturing more of interannual variability of the Tb estimates across 

the entire NA domain. Therefore, the attempt to improve Tb prediction within a DA 

framework will not necessarily improve SWE estimation since there might not exist a 

large error covariance between these two variables.  

           
 
 

 

 

 

 

 

 

 
 

 

Figure 5.4-2 Time series investigation of NSCs at both 18 GHz and 36 GHz Tb predictions 
of SWE and near-surface soil temperature from 25 Mar 2004 to 02 Jun 2004.  
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5.5. SENSITIVITY ANALYSIS OF ANN- AND SVM-BASED SPECTRAL 

DIFFERENCE 

All of the discussions above regard the relative change in the estimation of a 

single vertically polarized Tb frequency, either at 18.7 GHz or at 36.5 GHz, with 

respect to the relative change in SWE (or other model states). It can be concluded that 

shorter wavelengths (i.e., 36 GHz) do not have the capacity to penetrate as deeply 

into the snowpack, hence, some of the snow-related information or signal may be lost. 

However, less radiation is scattered at lower frequencies, which has the potential to 

provide more information about snow conditions, such as SWE. There is a trade-off 

between these two Tb frequencies in SWE estimation.  

    Based on the snow retrieval algorithm derived by Chang et al. [1996], SWE is 

proportional to the vertical spectral difference between 18.7 GHz and 36 GHz. Hence, 

the NSC of SWE to vertically-polarized spectral difference will be investigated in this 

section, and can be expressed as: 

 NSC(SWE, ∆Tb)=
∆ Tb18V-Tb36V

∆SWE
·

SWE0

∆ Tb18V
0 -Tb36V

0  (5.5-1) 

where NSC(SWE, ∆Tb) [dimensionless] is the rate of change in vertical spectral 

difference (∆Tb) with respect to changes in SWE; ∆ Tb18V-Tb36V  [K] is the 

difference between Tb estimation at 18.7 GHz and 36.5 GHz; ∆SWE [m] is the 

change in SWE magnitude; SWE0 [m] is the nominal value of SWE before exerting 

any perturbations; and ∆ Tb18V
0 -Tb36V

0  [K] is the difference between the nominal 

value (before perturbation) of Tb estimations at 18.7 GHz and 36.5 GHz.  
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Figure 5.5-1 Perturbations effects in the sensitivity analysis of the SVM-based Tb predictions 
at the spectral difference between 18.7 GHz and 36.5 GHz with respect to SWE. 

Figure 5.5-1 is an example of the NSC of SWE for a given location (latitude 

54.8172° and longitude –66.6055°) at the Tb spectral difference between 18.7 GHz 

and 36.5 GHz based on different perturbation sizes. Only the SVM model is 

presented here since the NSC for spectral difference is zero for the ANN-based model 

for this given location. When the perturbation size of SWE varies from -2% to +2%, 

the model response falls into the model noise amplification region. During the linear 

region, the relative change in the spectral difference is proportional to the SWE 

magnitude variation with a high correlation coefficient, which can be indicated by the 

positive slope of the line.  

The comparison results between the NSC of SWE for individual frequencies as 

well as the spectral difference between two frequencies on 11 Jan 2004 over the entire 

NA domain is shown in the Figure 5.5-2.  
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 Figure 5.5-2 The NSC of SWE at single spectral frequency and the NSC of SWE at vertical 

spectral difference on 11 Jan 2004 in the NA domain. 

*: NSC of SWE (18V): rate of change in vertically polarized Tb at 18 GHz with respect to SWE 
*: NSC of SWE (36V): rate of change in vertically polarized Tb at 36 GHz with respect to SWE  
*: NSC of SWE (18V-36V): rate of change in the difference of the vertically polarized Tb at 18 GHz 
and 36 GHz with respect to SWE  
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From Figure 5.5-2, it can be seen that both ANN- and SVM-based models are 

sensitive to the SWE state to some extent at some locations on 11 Jan 2004 during the 

snow accumulation phase. However, as discussed in Section 5.3, SWE plays a more 

dominant role in most of the regions in the NA domain for the SVM-based estimation 

of Tb compared to that of the ANN-based model. The NSC of SWE for the ANN-

based Tb estimation is more dependent on a specific location. For instance, based on 

the NSCs computation of SWE at single Tb frequency for both 18 GHz and 36 GHz 

across the NA domain, only 11.48% of the snow-covered regions have non-zero 

values of NSC of SWE on 11 Jan 2004.   

In terms of the SVM model, the NSC at a single Tb frequency suggests that 

regions such as the middle of the Canadian Shield (Laurentian Plateau) possess the 

largest sensitivity to SWE. The reason for the strong sensitivity is still unknown since 

it is affected by forest cover, snow formation, climate conditions, and topography. 

However, the NSC map of SWE at single Tb frequency provides the future study with 

great opportunity in terms of Tb estimation applied in forested areas, which to some 

extent solve the restriction posed by the traditional radiative transfer model as a 

model operator to invert Tb into model state variables.  

In addition, as indicated by the NSC map of SWE at the vertical spectral 

difference between 18 GHz and 36 GHz in the NA domain, the relative change in 

SWE plays a more dominant role in determining the spectral difference for both 

models instead of a single Tb frequency. This phenomenon agrees well with the 

empirical snow retrieval equation [Change et al. 1996]. The original equation can be 

written as: 
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 SWE = a (T18,V-T37,V)
1-ff

 (5.5-2) 

where a (a > 0)  is a constant determined by regression analysis, and ff (0  ≤  ff  ≤  1) is 

the forest cover percentage. Further, a can also be written as: 

 a = 
∆SWE(1-ff)
∆(T18,V-T37,V)

 (5.5-3) 

After replacing the right hand side of the equation with the NSC, it can now be 

expressed as: 

 a = 
SWE0(1-ff)
NSC×Tb0

 (5.5-4) 

Hence, 

 NSC=
SWE0(1-ff)
a×Tb0

>  0 (5.5-5) 

where the NSC is the relative change in Tb with respect to small perturbations in 

SWE; SWE0[m] is the nominal SWE value before perturbation; ff [%] is the forest 

cover percentage; Tb0 [K] is the nominal Tb prediction; and 𝑎 is a constant that 

empirically should be greater than zero. Hence, the NSC of SWE should be greater 

than zero based on the theory.  

     As the NSC map of SWE at vertical spectral difference has demonstrated, most of 

the NSCs are indeed positive when using the SVM-based model. In such a case, the 

SVM may be a superior model measurement operator to the ANN in terms of 

enhancing SWE estimation at regional- or continental-scale.  
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CHAPTER 6: COCLUSIONS AND 

RECOMMENDATIONS 

     Based on the previous sensitivity analysis (NSCs computations), some key 

findings are concluded in this chapter. Additionally, possible explanations of the 

insensitivity of the ANN-based model to the snow-related states will be briefly 

discussed. In order to further verify the applicability of the SVM-based model, this 

chapter also briefly describes several research objectives that need to be addressed in 

the future.  

6.1. SUMMARY AND CONCLUSION 

The sensitivity analysis of Tb estimations for both ANN and SVM models are 

performed with respect to different models states. Based on the NSCs computation in 

Chapter 5, the key findings are summarized as follows:  

• Compared to the vertically polarized Tb at 18 GHz for both ANN- and SVM-

based estimations, the Tb at 36 GHz tends to have a higher sensitivity with 

respect to small perturbations in the model inputs. This is partially explained by 

the fact that higher PMW frequencies possess a smaller emission depth. Hence, 

the 36 GHz channel can capture more variability on the surface of the snowpack, 

which has more interactions with the atmosphere, and overlying vegetation.  

• Sensitivities are greatest for non-forested or sparsely-forested regions with 

relatively high amounts of snow for both of the machine learning techniques 

during the snow ablation phase, where the NSC of SWE for both models for Tb at 
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36 GHz can be closer to -1 (see Figure 5.4-2). Melting snow introduces the 

presence of liquid water into the snowpack, which behaves like a blackbody at the 

physical temperature of the snow layer. It significantly increases the emission of 

microwave energy. Additionally, in the absence of forest cover, Tb measurements 

are more directly related to PMW emission from the snowpack.  

• The SVM-based model is more sensitive to snow-related variables, for example, 

SWE, TGI, and upper-layer snow temperature. However, in the ANN-based 

model, Tb predictions are relatively insensitive to TGI and snow density, whose 

NSCs are often zeros. Further, the ANN’s sensitivity to SWE is more dependent 

on a specific location or a specific period of time. Alternatively, the ANN is more 

sensitive to the near-surface soil temperature across a range of locations and time 

periods, and sometimes the magnitude of NSCs can be greater than one. Hence, 

the SWE information cannot always be leveraged during the ANN-based Tb 

estimation. 

• In highly-vegetated areas, the sensitivity of the system is more dominated by 

vegetative canopy and surface temperature and less so with snow-related 

variables. Forest cover can attenuate the emission of radiation from the snowpack 

prior to reaching the PMW sensor while simultaneously adding its own 

contribution to the measured radiation.  

• Even in areas of dense vegetation and relatively low SWE, the SVM-based model 

still shows the highest sensitivity to snow-related model states (e.g., NSC of SWE 

is ~0.1 for both 18 GHz and 36 GHz vertically-polarized Tb), compared with 

those of the ANN-based model.  
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• The output of the model, either SVM- or ANN-based, of the spectral difference in 

Tb (Tb,18V-Tb,36V), is more sensitive to small perturbations in the model inputs, 

which agrees well with the empirical relationship established by previous studies 

[Chang et al. 1996]. However, the SVM-based model possesses a more significant 

performance in predicting the spectral difference in Tb than the ANN across the 

NA domain as indicated by the areal distribution of positive values of NSCs in 

Figure 5.3-2. This may suggest that relative to the ANN, the SVM can better 

retrieve SWE from Tb measurements.  

Previous studies conducted by Forman and Reichle [2014] has demonstrated the 

inability of the ANN-based model to capture the inter-annual variability of the 

measured Tb across a time period in the NA domain. Some weird step functions are 

found in the ANN-based Tb predictions for both 18 GHz and 36 GHz. However, the 

snow-related properties (e.g., SWE and snow temperature) will fluctuate more 

vibrantly than other soil-related properties, since the overlying snow has more 

opportunities to interact with air, vegetation and ground/soil. Hence, it is postulated 

that the ANN-based model may have difficulty in capturing the fluctuations of highly 

variable model inputs, such as SWE. One of the possible explanations for the 

insensitivity of the ANN-based model with respect to snow-related states may be 

resulting from its learning algorithm. The ultimate goal of the ANN is to minimize 

the objective function of the mean squared error (Chapter 2), however, sometimes it 

may converge to a local minimum point instead of a global minimum. On the 

contrary, formulations of SVM-based models are convex optimization problems and 
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thereby unique global optima will be found and the algorithm will not be affected by 

the local minima problem.  

In summary, compared with the ANN, the SVM could potentially serve as a more 

efficient measurement model operator at the regional- and continental-scale for 

forested and non-forested regions as part of a data assimilation framework in 

enhancing SWE estimation. 

6.2. RECOMMENDATIONS FOR FUTURE RESEARCH 

6.2.1. Physical interpretations of NSCs 

 
     As indicated by the computed NSCs in Chapter 5, there are often different signs 

associated with the NSC of various model states for both ANN- and SVM-based 

models. This behavior may be explained by the deficiency of both models in 

“learning” regularities or on the dependency of the specificity of the location of 

interest. It may also result from sub-grid scale lakes and depth hoar effects. Hence, in 

order to further validate the SVM-based model, the physical interpretations of NSCs, 

especially for those changing in signs, need to be better understood.  

6.2.2. NSCs of SWE in forested regions 

 
Even if the SVM-based model shows great potential in being implemented in the 

densely-vegetated areas (Table 5.3-3), it is still difficult to draw a sound conclusion 

that the SVM can be successfully applied anywhere with dense vegetation. One 

possible solution, such as introducing the Normalized Difference Vegetation Index 
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(NDVI) into the model inputs, could be an effective method to better illustrate the 

role of vegetation in Tb predictions. A sensitivity analysis is still needed to examine 

the Tb response with respect to small perturbations in the vegetation index state.  

6.2.3. Investigation of polarization ratio 

 
The polarization ratio, 𝑃!, can serve as an indicator for the presence of ice layers 

or ice crusts across the study domain, which can be defined as [Cavalieri et al. 1984]: 

 Pr(f
*) = 

Tbf*V-Tbf*H
Tbf*V+Tbf*H

 (6.2-1) 

where Pr(f
*) is the polarization ratio at frequency f*; Tbf*V [K] represents the 

vertically polarized Tb at frequency f* (e.g., 10.65 GHz, 18.7 GHz, and 36.5 GHz); 

Tbf*H [K] is the vertically polarized Tb at frequency f*. The AMSR-E sensor has 

twelve passive sensors consisting of six dual-polarized frequency channels, which 

provides ample opportunity to investigate the existence of ice layers or ice crusts that 

can dramatically reduce the measured Tb via increased scattering effects.  

6.2.4. Machine learning with other passive microwave products 

 
     The hypothesis has been proposed that machine learning can be applied to other 

remote sensing products measuring Tb such as SSM/I and SSMR. Therefore, after 

verifying the rationality of the SVM-based model with AMSR-E observations, it 

would be worthwhile to investigate the robustness of the SVM-based predictive 

capability on other sources of Tb observations.  A sensitivity analysis would also be 
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required to investigate the model sensitivity to SWE and other snow-related input 

states.  

6.2.5. SWE estimation within data assimilation framework 

 
Enhancing SWE estimation at regional and continental scales is the eventual goal 

for this study. SWE can be determined by using a DA framework (Figure 6.2-1) in 

order to yield a merged estimate of SWE that is superior to either the measurement or 

the model estimation from Catchment alone. Unlike previous trials of assimilating 

SWE estimates directly (see Chapter 1), the study proposed here will assimilate Tb by 

combining space-borne measurements with SVM-based Tb predictions. By utilizing a 

DA technique, SWE estimation may be improved based on the physical connections 

between SWE and Tb estimation as suggested by the sensitivity analysis results based 

on SVM in the Chapter 5.  

Several DA techniques are available nowadays in many fields of geosciences, 

among which ensemble-based variants and variants of the Kalman filter (KF) are the 

most promising tools in hydrologic studies [Reichle et al. 2002; Andreadis and 

Lettenmaier, 2006]. The traditional KF is not suitable for solving such a complex, 

highly nonlinear Tb assimilation problem. Hence, the Ensemble Kalman Filter 

(EnKF) and the Ensemble Kalman Smoother (EnKS) are the two main techniques 

recommended for future study.  
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Figure 6.2-1 Expected SWE estimation within a DA framework. SWEposterior is the posterior 
estimate of SWE after implementing DA (i.e., filtering or smoothing); SWEprior is the prior 
estimate of SWE prior to performing measurement assimilation; K is the Kalman gain used to 
weigh the difference sources of uncertainty; Tbpredicted is the SVM-based Tb estimation; 
Tbmeasured is the measured Tb from AMSR-E; v is the AMSR-E measurement error matrix; 
and MODSCAG is short for MODIS Snow Covered Area and Grain Size.  
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ABBREVIATIONS AND ACRONYMS 

AE_Land3  Level-3 land surface product 

AMSR-E  Advanced Microwave Scanning Radiometer 

ANN   Artificial neural network 

Catchment  NASA Catchment land surface model 

DA   Data assimilation 

EASE-Grid  Equal Area Scalable Earth Grid 

EnKF   Ensemble Kalman Filter 

EnKS   Ensemble Kalman Smoother  

EOS   NASA’s Earth Observing System 

GMAO-LDAS NASA Global Modeling and Assimilation Office Land Data 

Assimilation System 

HDF-EOS  Hierarchical Data Format – Earth Observing System 

IMS   Interactive Multisensor Snow and Ice Mapping System 

KF   Kalman Filter 

MERRA  Modern-Era Retrospective analysis for Research and 

Applications 

MODIS  Moderate Resolution Imaging Spectroradiometer 

MODSCAG  MODIS Snow Covered Area and Grain Size 

MSE   Mean squared error 

NSC   Normalized Sensitivity Coefficient 

NA   North America 

NDVI   Normalized Difference Vegetation Index 
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NOAA   National Oceanic and Atmospheric Administration 

NSIDC  National Snow and Ice Data Center 

NWS   National Weather Service 

PMW   Passive microwave 

QP   Quadratic program 

RBF   Radial basis function   

RTM   Radiative transfer model 

SCE   Snow cover extent 

SLWC   Snow liquid water content 

SMMR  Scanning Multichannel Microwave Radiometer 

SSM/I   Special Sensor Microwave/Imager 

SVM   Support vector machine 

SWE   Snow water equivalent 

Tb   Brightness temperature 

TGI   Temperature gradient index 

 

 

 

 

 

 

 

 


