Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ANALYSIS OF A SEMI-SUPERVISED LEARNING APPROACH TO INTRUSION DETECTION

    Thumbnail
    View/Open
    Klimkowski_umd_0117N_15234.pdf (1.618Mb)
    No. of downloads: 983

    Date
    2014
    Author
    Klimkowski, Benjamin Harold
    Advisor
    Cukier, Michel
    Metadata
    Show full item record
    Abstract
    This thesis addresses the use of a semi-supervised learning (SSL) method in an intrusion detection setting. Specifically, this thesis illustrates the potential benefits and difficulties of using a cluster-then-label (CTL) SSL approach to classify stealth scanning in network flow metadata. A series of controlled tests were performed to show that, in certain situations, a CTL SSL approach could perform comparable to a supervised learner with a fraction of the development effort. This study also balances these findings with pragmatic issues like labeling, noise and feature encoding. While CTL demonstrated accuracy, research is still needed before practical implementations are a reality. The contributions of this work are 1) one of the first studies in the application of SSL in intrusion detection, illustrating the challenges of applying a CTL approach to domain with imbalanced class distributions; 2) the creation of a new intrusion detection dataset; 3) validation of previously established techniques
    URI
    http://hdl.handle.net/1903/15393
    Collections
    • Computer Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility