

ABSTRACT

Title of Document: ANALYSIS OF A SEMI-SUPERVISED

LEARNING APPROACH TO INTRUSION

DETECTION.

 Benjamin H. Klimkowski, Master of Science

2014

Directed By: Associate Professor Michel Cukier,

Department of Mechanical Engineering

This thesis addresses the use of a semi-supervised learning (SSL) method in an

intrusion detection setting. Specifically, this thesis illustrates the potential benefits

and difficulties of using a cluster-then-label (CTL) SSL approach to classify stealth

scanning in network flow metadata. A series of controlled tests were performed to

show that, in certain situations, a CTL SSL approach could perform comparable to a

supervised learner with a fraction of the development effort. This study also balances

these findings with pragmatic issues like labeling, noise and feature encoding. While

CTL demonstrated accuracy, research is still needed before practical implementations

are a reality. The contributions of this work are 1) one of the first studies in the

application of SSL in intrusion detection, illustrating the challenges of applying a

CTL approach to domain with imbalanced class distributions; 2) the creation of a new

intrusion detection dataset; 3) validation of previously established techniques.

ANALYSIS OF A SEMI-SUPERVISED LEARNING APPROACH TO

INTRUSION DETECTION

By

Benjamin H. Klimkowski

Thesis submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Master of Science

2014

Advisory Committee:

Associate Professor Michel Cukier, Chair

Professor Dana Nau

Associate Professor Emeritus William Arbaugh

© Copyright by

Benjamin H. Klimkowski

2014

 ii

Dedication

To my baby daughter, Penny, whose smile and laughter are priceless.

 iii

Acknowledgements

Thank to my advisor, Prof Cukier, for your guidance. One of the hardest

things for a mentor to do is to know when not to give directed guidance to a

subordinate. Yet Prof Cukier excels in this role. Prof Cukier always allowed me to

make my own epiphanies. Even though it felt at times he was giving me enough rope

to hang myself, he was always there to prevent me from drowning.

Thank you to my committee members for you time and patience. To Prof

Lise Getoor and Prof Dana Nau, I started graduate school primarily interested in

systems and security, but after your classes I have gravitated toward more artificial

intelligence fields.

Thank you to the working group from the UMD Cybersecurity club, who

helped give me different perspectives on how hackers may behave in different

contexts. Our dialogue provided valuable insight into this work.

Thank you to all the Soldiers and officers with whom I have served. The list

is too long to write.

Thank you to my family. None of this is possible without you. My father,

hardest working person I know, my mother the most patient woman I know, and my

wife the strongest woman I have ever met.

 iv

Table of Contents

Dedication ... ii

Acknowledgements .. iii

Table of Contents ... iv

List of Tables ... vi

List of Figures ... vii

Chapter 1: Introduction ... 1

Overview ... 1

The Threat ... 2

Motivation for Researching Stealth Scanning .. 3

Motivation for Studying Network Flow Metadata.. 4

Objectives ... 4

Experimental Overview .. 5

Contributions... 6

Organization .. 7

Chapter 2: Background and Related Works.. 8

Network FlowData .. 8

Scanning .. 11

Challenges with Machine Learning in Intrusion Detection 12

Challenges with Intrusion Detection Datasets .. 15

Previous Semi-Supervised Learning Work ... 19

Previous Scan Detection Work ... 20

Chapter 3: Method .. 22

 v

Supervised Classifier .. 22

Unsupervised Clustering ... 24

Semi-Supervised Method .. 25

Cluster-then-label Analysis ... 28

Error Performance ... 28

Practical Issues .. 31

Chapter 4: Dataset ... 34

Introduction ... 34

Paradigm Development ... 34

Network Configuration ... 37

Data Preprocessing.. 39

Feature Set .. 39

Data Auditing .. 41

Chapter 5: Experiment ... 44

Experimental Parameters .. 44

Experimental Evaluation ... 47

CTL Implementation ... 49

Chapter 6: Results and Discussion ... 50

Chapter 7: Conclusions ... 63

References ... 65

 vi

List of Tables

Table 1: Basic Network Flow Record Information... 9

Table 2: Conditions for Network Flow Expiration ... 10

Table 3: Percentage of Services Discovered ... 36

Table 4: Typical Port Scan Settings .. 36

Table 5: November Dataset Characteristics .. 38

Table 6: December Dataset Characteristics .. 38

Table 7: January Dataset Characteristics .. 39

Table 8: Record Key ... 39

Table 9: Features of Basic Flow Characteristics ... 40

Table 10: Features over All Destination Ports .. 40

Table 11: Feature on Individual Destination Ports ... 40

Table 12: Experimental Parameters over Supervised Trial Cases 45

Table 13: Experimental Parameters over CTL Trial Cases .. 46

Table 14: Experimental Parameters over CTL Control Cases 47

Table 15: Classification Matrix .. 49

Table 16: Supervised Trials .. 50

Table 17: Number of Scans Per Cluster in Test and Training Sets 57

 vii

List of Figures

Figure 1: Targeting Cycle ... 3

Figure 2: Experimental Phases.. 6

Figure 3: Example Nfdump Output .. 10

Figure 4: RIPPER Pseudocode ... 24

Figure 5: RIPPER Metrics and Heuristics .. 24

Figure 6: Cluster-Then-Label Algorithm .. 26

Figure 7: a) Omniscient view of two classes, b) the whole set of labeled instances, c)

the set of labeled and unlabeled instances .. 29

Figure 8: Margin-cluster Density Relationship... 29

Figure 9: An Example Population Consisting of Four Clusters 32

Figure 10: Hierarchical Clustering in Example Population 32

Figure 11: Network Setup ... 38

Figure 12 Embedded Scan (source and target IP obscurred and masked) 43

Figure 13: Performance Measures .. 48

Figure 14: Performance of CTL Classifiers with Different Amounts of Labeled Data

... 51

Figure 15: Improvement from December Trial H (1 % Labeled) 52

Figure 16: Improvement from December Trial C(75% Labeled) 52

Figure 17: Improvement from December Trial I (Top 30 Non-scanner, Top 5

Scanners Labeled) ... 53

Figure 18: Improvement from December Trial J (1 % random with injected attack

traffic labeled) ... 53

 viii

Figure 19: Proportions of Training and Test Set Traffic per Cluster 54

Figure 20: Proportions of Training and Test Set Scan Traffic per cluster 55

Figure 21: Proportions of Training and Test Set Scan Traffic per Cluster (Scaled

Between 0 To 2500) .. 55

Figure 22: Performance of a Two-stage Classifier ... 62

 1

Chapter 1: Introduction

Overview

Computer and network security is at the forefront in the minds of corporate

and government leaders. Information technology permeates seemingly every aspect

of our lives. Consequently, both public and private sector leaders have invested

tremendous amounts of money into developing better protection. Numerous studies

have created classification techniques that have asserted promising results.

Theoretically, these techniques could be used in an intrusion detection system to

identify malicious traffic. Yet, despite considerable investment into research for

protection of our computer and network assets, there has been a lack of significant

artificial intelligence and machine learning application into real-world intrusion

detection. Due to the lack of pragmatic machine learning approaches in intrusion

detection, security administrators are limited to signature-based methods and manual

processes, which are both error prone and easy to evade. While attackers are growing

in sophistication, the security community is struggling to keep pace.

This thesis explores semi-supervised machine learning (SSL) and data mining

techniques in the context of network intrusion detection in an effort to address these

domain specific challenges. Through a series of controlled and focused experiments,

this research attempts to understand how to improve network intrusion detection.

Specifically, this thesis focuses on stealth network reconnaissance, a particular subset

of malicious activity. By focusing on this specific attack paradigm, we create a

cleaner dataset and avoid some of the pitfalls of previous research. Additionally, this

 2

research analyzes lightweight network flow data, a form of metadata. Based on the

results of this work, we demonstrate that, although there are still some significant

challenges, cluster-then-label (CTL) semi-supervised machine learning can be

employed with performance comparable to supervised learning in certain settings.

That being stated, practical considerations may limit how effective a CTL approach

can be in a real world setting.

One of the background motivations for this study was Symons's and Beaver's

idea of penetration testing your own network to train a tailor-made SSL classifier [1].

A cost-effective method for developing a tailor-made classifier addresses two specific

problems in intrusion detection: the enormous variability among different networks

and the rapidly changing nature of attack paradigms. In a practical security setting, a

semi-supervised learner would train on a small set of labeled network logs, which a

network administrator would audit, as well as the complete set of unlabeled network

logs. This training would produce a network specific classifier, which would be

sensitive to the particular characteristics and protocols of that network. Furthermore,

if this method is proven feasible, then new attack paradigms, for instance a new

paradigm that is reported on a hacker convention, could be injected into regular

traffic, thus building a classifier that can keep pace with the latest attack trends.

The Threat

Network scanning is an integral part of the attack paradigm; it enables

attackers to perform the reconnaissance necessary to identify potential targets and

courses of actions to achieve their ultimate objectives. Scanning is typically the first

part of the targeting cycle; thus, if a security administrator has warning of scanning,

 3

then that administrator should be more focused on the targeted assets (see Figure 1).

Furthermore, if there is an indication of scanning that demonstrates a high level of

skill on the part of an attacker, then the security administrator should be even more

alarmed. Sophisticated and well-funded attackers have the resources to conduct

stealthy reconnaissance over the period of days, and often send network probes at

such a low rate that it is infeasible for an intrusion detection system (IDS) to detect

probing activity within a reasonable time window.

Figure 1: Targeting Cycle

Motivation for Researching Stealth Scanning

 While scanning does not directly harm the availability or integrity of a

computer system, there are several properties that make it significant. First, detecting

scans that last over a long time period is laborious. It is typically a manual process

assisted by some signature-based querying. As a result, the process is error prone.

Security administrators often ignore scanning due to these challenges. Automated

methods that perform better than signatures or other ad hoc techniques can help

 4

alleviate this burden. Second, scanning is usually the first part of the targeting cycle.

Therefore, if a network defender had knowledge of scanning, the defender would be

better able to prioritize and sort subsequent alarms that correspond to activities related

to other parts of the targeting cycle. Third, since stealth scanning does not trigger

conventional automated methods, such as an IDS, stealth scanning is largely

undocumented in existing labeled datasets. In addition, there is a general lack of

documentation on how to exactly perform stealth scanning. Finally, scanning is a

good starting point to conduct realistic experiments on a live network. Since

scanning does not directly harm network resources, experiments can be implemented

without extensive investment. Once a technique has been validated for scanning, it

can then be applied to more intrusive portions of the targeting cycle.

Motivation for Studying Network Flow Metadata

 Network flow metadata is important for several reasons. First, network flow

data is ubiquitous. Almost all routers produce network flow records. In certain

situations, a security administrator performing network forensics may only have

network flow data available to analyze. Second, network flow data requires order of

magnitudes less storage than other network log data such as packet capture (PCAP).

This smaller footprint means logs can be stored for a longer period. Finally, the more

network protocols use encryption, the more network defenders will need techniques

that can infer attacks without relying on deep packet inspection of packet’s payload.

Objectives

This thesis aims to address the following questions:

 5

1. Does previously established scan detection techniques perform well on a

specific set of malicious data (stealth scanning) produced on a real production

network? This question aims to determine the strengths and weaknesses of

previous approaches, and to gauge how the network environment affects the

techniques. If a previous approach works well, it can be used as a basis of

comparison for new techniques.

2. Do semi-supervised methods perform comparably to supervised methods?

The objective of this question is to show whether semi-supervised methods

can perform as well or potentially better than supervised methods, while using

a fraction of the required effort.

3. Do any of these techniques show promise in a practical network intrusion

detection setting? As this thesis will show, network intrusion detection has

some unique challenges that require specific attention in order for an

implementation to be successful.

Experimental Overview

Figure 2 illustrates the main phases of the study. Before any analysis of a

classifier could be performed, this study had to develop and catalog attack paradigms,

build a dataset, and audit that dataset for errors. After the data was properly audited

and organized, the scan detection methods were evaluated.

 6

Figure 2: Experimental Phases

Contributions

 There are three main contributions to this research. First, it validates previous

work. Too often intrusion detection studies are neither validated nor replicated and

this lack of scientific rigor results in limited real world applicability. This lack of

validation is further exacerbated by the changing nature of network technology.

What may work today, may be ineffective or impractical tomorrow. Second, this

work has produced a clean, labeled dataset that was built in a transparent and

controlled manner. There is a critical lack of labeled datasets in intrusion detection.

Furthermore, this thesis clearly lays out how the experiment was conducted so that

other researchers can perform similar studies in an effort to replicate and reproduce

results. In addition, steps have been taken to make this dataset publically available.

Finally, to our knowledge, this thesis is the first dedicated study on using CTL SSL

techniques to detect a specific subset of malicious activity, and one of the few studies

on SSL in intrusion detection. The results of this study document potential issues

 7

with a SSL implementation in intrusion detection and other application domains

where there is an imbalance in class distributions.

Organization

The remainder of this thesis is organized as follows. In Chapter 2, relevant

background concepts and previous works are explained. Chapter 3 describes the

methods employed in this experiment. Chapter 4 provides an overview of the dataset.

Chapter 5 describes the experimental parameters for the trials. Chapter 6 analyzes the

trial results with insight to practical application issues. Chapter 7 summarizes this

thesis and provides recommendations for future work.

 8

Chapter 2: Background and Related Works

Network FlowData

Network flow data is metadata about network based transactions between

pairs of endpoints in a network. The heart of network flow data is the concept of an

IP flow, which is a set of similar packets observed on a certain point and time in a

network, going from one source host to one destination host. A flow record

summarizes the pertinent characteristics from the IP flow (see Table 1). Typically, a

router will record IP flow records and then export them to a server for storage. For

most network transactions between two endpoints, the transaction is bidirectional, so

the router or observation point will record two flows. For instance, when a client

browses to a web server, a router collecting network flows will record two flow

records: one that describes the set of packets from the client to the server and one in

the reverse direction. A network flow log is a flat collection of network flow records.

Administrators use network flow data for a variety of purposes including billing,

network monitoring, capacity planning, security analysis, and data mining [2].

 9

Table 1: Basic Network Flow Record Information

Field Remarks

Time Timestamp of when flow began

Duration The length of the flow in milliseconds

Source IP address The TCP/UDP port number of the source socket

Source port

Destination IP

address

Destination port The TCP/UDP port number of the destination socket

OSI Layer 3/4

Protocol

Layer 3 Protocol used. For IPv4, typically the layer 4 protocol

is specified (TCP/UDP)

Router interface The interface on which the packet entered

TCP Flags If TCP, this field is the union of all the TCP flags seen

Number of packets

Number of bytes

Some aspects of network flow data are important to understand in order to

analyze network communications. A flow record is created whenever the observing

device sees a unique IP address port combination. Thus, a single communication

graph between two endpoints could have multiple flow records if the network

communication involves multiple layer 7 protocols (i.e. spans multiple ports). The

observing device records what it sees from the packet’s header and typically does not

have any enhanced security features to detect spoofing. Therefore, security analysts

need to be cognizant that attackers may have the ability to obfuscate themselves in

certain attacks. In addition, a router may produce a flow record if any of the

conditions in Table 2 are met. As a result, proper analysis must account for

premature segmentation of flows.

 10

Table 2: Conditions for Network Flow Expiration

Condition Remarks

TCP flag

received

If a host sends a FIN or RST flag on a TCP connection, the flow will

be terminated [2].

Inactivity If the flow is inactive for some predefined threshold, the flow is

terminated [2]. Default for NetFlow is 15 seconds [3].

Long flows If the flow continues to be active longer than a prefunded threshold,

the flow is terminated [2]. Default for NetFlow is 30 minutes [3].

Memory

exhaustion

Depending on the implementation, a router may prematurely close a

flow record, if it is low on memory. By default NetFlow will expire

30 flow records prior to its cache hitting maximum capacity [3].

It is worth noting that the term “network flow” refers to a family of similar

protocols. Cisco pioneered the field with their priority format NetFlow. NetFlow

version 9 is the basis for the open IETF standard IP Flow Information Export (IPFIX)

protocol. Despite the existence of a multitude of priority formats, each format is

similar enough that a technique developed on one will tend to work with other vendor

formats. In other words, the network flow techniques will work on all formats as

long as the technique is limited to the information in Table 1 and it does not rely on

any user-defined fields. This thesis used NetFlow version 5 through the nfdump

toolset. An example output from nfdump is show in Figure 3.

Figure 3: Example Nfdump Output

 11

Scanning

This research focuses on port scanning, a specific subset of network

reconnaissance. Scanning covers a range of activities by which attackers attempt to

gain information about a target network and its hosts. Attackers typically perform

initial discovery of hosts through ping scans (“ping sweeps”), reverse-DNS

resolution, and ports scans. Port scans attempt to reach open TCP and UDP services

on hosts. In the case of TCP scans, various header flags may be set to gauge how the

network and hosts are configured to respond. After initial scans, an attacker may

employ more interactive scripts to ascertain specific vulnerabilities in protocols or

how the server is implemented. This activity, known as vulnerability scanning, varies

in level of how invasive it is to the host machine and has a different traffic profile

from port scanning. In addition to information about services hosted, attackers can

use ping scans, port scans, and vulnerability scans to infer OS version, network

configuration and other information [4].

While scanning can take many forms, most researchers categorize port scans

into two basic categories based on the scan’s intended target footprint: horizontal

scans and vertical scans [5]. Horizontal scans refer to scans where an attacker seeks

to gain information on a range of hosts on a network: which ones are accessible, what

services they hosts, what version of a protocol, etc. Vertical scans refer to scans

where an attacker seeks to gain information about a specific host. These scans

typically include a greater range of ports and protocols targeted, and they may include

other reconnaissance techniques to infer OS build, poor protocol configurations, etc.

 12

An understanding of each scan type and their purpose provides insight on how

available network record sources can be processed and minded to detect this activity.

Challenges with Machine Learning in Intrusion Detection

Machine learning, despite successful application in other areas, has had

difficulty in being adopted in practical network intrusion detection (NID) settings.

Many studies fail to recognize fundamentally how machine learning algorithms work

and their underlying assumptions. Furthermore, some unique aspects of classifying

network traffic make it a dramatically different task than other applications such as

classifying spam or optical character recognition (OCR). In addition, intrusion

detection has the added problem of an adversary community that constantly seeks

ways to tune attacks and evade detection [6]. Understanding these idiosyncrasies is

critical to understanding how to apply machine learning techniques more effectively.

One of the most frequent flaws in machine learning applied to NID is

assuming that novel attacks will be detected given a large dataset of known activity

[6]. On the surface, machine learning algorithms can classify instances as “abnormal”

vs. “normal” or “malicious” vs. “benign”; however, the algorithms require

“abnormal” or “malicious” training experience to develop a classifier that generalizes

well. If the datasets on which the algorithm is trained does not contain representative

samples of attacks, then the resultant classifier may be inadequate. As Sommer and

Paxson assert, studies often wind up “training an anomaly detection system with the

opposite of what it is supposed to find…it requires having a perfect model of

normality for any reliable decision” [6]. This idea is referred to as the “closed world

assumption”; the idea of specifying only positive examples and adopting a standing

 13

assumption that the rest are negative [6]. As a consequence of this misunderstanding,

the trained classifiers often do not generalize adequately in future settings.

There are some particular aspects of NID that can make a naive

implementation of a machine-learned classifier ill-posed. NID is an area of study that

is plagued by the base-rate fallacy [7]. Since the proportion of benign traffic is order

of magnitudes larger than the proportion of malicious traffic, many studies fail to

highlight that while the accuracy of a detection scheme is ostensibly high, for instance

95%, its performance will be poor in practice. This apparent incongruent is due to the

detection scheme generating orders of magnitude more false positive alarms than true

positive alarms. Consequently, in order for a detection scheme to be of practical use,

it must detect at an extremely high accuracy, which for a learning algorithm may

require an infeasible amount of training data and may not generalize outside of the

network on which the learning algorithm trained.

The costs of classification errors in NID are much higher than in other

domains. Other areas where applications have been successful demonstrate error

tolerance (like recommending products for e-commerce). In these domains, making a

classification error has a negligible impact. In NID, the impacts of errors are

extreme; false positives can result in a significant waste of time, false negatives in

compromised computer systems [6]. Alerts for scanning in particular are full of false

positive alarms. The base-rate fallacy further exacerbates the situation, because users

of a system will quickly lose faith if they waste all of their time chasing large

numbers of false alarms without ever finding a true positive.

 14

 In other machine learning applications, like spam, it is easy to correct/validate

false positives or false negatives. Other successful applications have been able to

improve their performance over time because the user base can easily provide

feedback. Subsequently, this feedback can tune classifiers and correct datasets.

Intrusion detection alerts are inherently difficult to evaluate [6]. Even when

classification errors are discovered, it is not in a volume that is large enough to

significantly improve a classifier performance or build a cleaner dataset.

Spam classification also demonstrates that certain machine learning

applications can benefit from an unbalanced cost mode. In some cases, designers can

gear an algorithm to err towards false negatives to avoid the more adverse cost of a

false positive. This skewing allows a machine-learned classifier to be employed in a

real-world setting without burdening the user. NID does not offer the opportunity for

such a tradeoff. Both false positives and false negatives are extremely undesirable [6].

Network traffic demonstrates an enormous variability of benign traffic. As

Sommer and Paxson assert, it is “difficult to find stable notions of normality.” Many

of the traffic profiles are heavy-tailed distributions, where there are events that are

significantly far away from the mean but only occur at infrequent times. This means

studies seeking to develop an accurate probability distribution would require an

enormous amount of time and effort. The rapidly changing nature of network

configurations would further impede a meaningful study. What the network looks like

now, may not be what the network looks like after the installation of a new service,

device, or a major connectivity change. Furthermore, what is normal at one site, may

not be normal at another site. A study that does not consider how the experimental

 15

network impacts the classifier will be doomed to low adoption. Without a meaningful

discussion on the nature of the network traffic, a scheme could fail to demonstrate the

same classification accuracy or may not even be able to be implemented [6].

Many machine learning studies fail to account for how attackers operate.

Sophisticated attackers study security research and develop ways to tune their tactics

to evade detection. This antagonistic relationship makes naive studies irrelevant

when attackers can arbitrarily adjust their traffic characteristics that will be present in

log data. For instance, an attacker may pad their packet payloads so that the packet

size appears less suspicious. The padding does not interfere with the attack, but if a

classifier has been trained to look for instances of small packet sizes, the modified

packet may evade detection. Therefore, any study needs to develop a classification

scheme from the motivation and perspective of an attacker. Ideally, the classification

scheme needs to choose features that are invariant for a type of attack, so the attacker

cannot easily adjust his/her technique. Consideration should also be given on how a

scheme could be defeated. Even if an attacker can evade one security measure, it

may present an opportunity for alternate security measures or methods to be used to

detect the attack.

Challenges with Intrusion Detection Datasets

Arguably, the most significant challenge to intrusion detection research is the

lack of sound publically available labeled datasets. One reason for the absence is the

difficulty in classifying and verifying network traffic to build the dataset in a clean

manner. As Sommon and Paxson assert the investment of building an experimental

set-up is often more difficult than developing the detection scheme itself [6]. For

 16

studies that built their own sets, privacy and security concerns typically prevent

researchers from sharing their information with the community [8]. Currently, there

are three publically available labeled datasets: the 1998/1999 DARPA Lincoln Lab

Intrusion Detection Evaluation dataset (DARPA-98/99), the Knowledge Discovery

and Data Mining Cup 1999 dataset (KDD-99), and the Kyoto University 2006-2009

Honeypot dataset (Kyoto2006+). Many critical studies have shown these datasets

have considerable issues, to include out-of-date attack paradigms, unrealistic traffic

modelling, ambiguous labeling schemes, erroneously labeled data, and a significant

lack of validation [1, 9, 10, 11, 12, 13].

The DARPA-98/99 and the KDD-99 are the two most commonly used

datasets, and they both have significant issues. Both datasets are over ten years old;

network bandwidth, applications and attacks have all changed significantly since the

original studies. Both the DARPA-98/99 and KDD-99 used simulated traffic that is

supposed to be representative of a typical Air Force base. Critical studies of these

datasets have demonstrated, however, that the traffic is not representative of even the

installation that it is supposed to model [9, 10]. Despite the obvious deleterious

effects unrealistic simulations could have, the original DARPA study did not perform

analysis on how the artificial nature of the simulated traffic affected their evaluation

of various IDSs. Many studies perpetuate this mistake and report findings without

consideration of this glaring issue. As McHugh asserts, “the burden is on the

experimenter to show that the artificial environment did not affect the outcome of the

experiment.” Furthermore, the categories of malicious data used in the datasets are

often ambiguous. The broad, attack-centric taxonomy does fail to describe clearly

 17

from the IDS’s perspective what is alarming. Tavallaee et al. demonstrated a serious

lack of validation in both datasets that has led to errors, such as redundant records,

dropped traffic records, etc. While these two datasets are the most widely used and

therefore the most criticized, it is worth noting that many of the homegrown datasets

in intrusion detection studies repeat many of the same errors with respect to

modelling, analysis, and validation [9].

Kyoto2006+ is a relatively new dataset that took an innovative approach in an

effort to capture more realistic attack traffic. In contrast with the scripted nature of

the traffic in DARPA-98/99 and KDD-99, Kyoto2006+ used honeypots to collect real

attack information and it injected traffic from real servers (a mail and DNS server) to

create the non-attack traffic. In order to label the traffic, the creators of the data used

a combination of a network IDS, host anti-virus and a shellcode detection tool known

as Ashula [10]. The use of the Ashula tool offers an interesting aspect in the

Kyoto2006+ labeled set: it allowed the researchers to demonstrate how effective their

detection scheme is at detecting malicious traffic for which traditional IDS and host

anti-viruses did not have a signature. This concept supports the underlying hope

behind many machine learning studies that the classifier can generalize to detect new

and previously unseen forms of malicious data.

There are significant issues with the Kyoto2006+ dataset. First, the manner in

which the creators injected normal traffic is problematic. They assumed that all

injected traffic can be classified normal because they “observed that there is few [sic]

attack data even if the server has received cyber attacks” [10]. As we will

demonstrate later in this paper, this assumption can have disastrous effects depending

 18

the researcher’ activity of interest and the learning technique which they apply to the

dataset. Furthermore, the proportions of injected traffic and type of inject traffic is

completely unrealistic. The authors of the dataset report 50,033,015 normal network

transactions and 42,617,536 malicious ones. As previously discussed, in reality the

actual amount of normal traffic is orders of magnitude more than the malicious

traffic. The “normal traffic” is limited to two hosted services and the management

traffic to the servers. It lacks any client behavior such as peer-to-peer that could have

serious effects on a classification scheme. These issues mean that any parametric

learning approach will fail to generalize to any real-world network. In addition to

labeling issues, there is no consideration on how sophisticated attackers act on

honeypots. There is research among the attack community on how to detect

honeypots and ways to exploit them in a stealth manner [12, 11]. This lack of

consideration means that the automated architecture may fail to detect certain

hackers, and would incorrectly label certain network transactions as benign. It also

undermines the previous assumption that the captured traffic is representative of all of

the possible attacks that the network will see in the “wild.” Another issue is that the

Ashula tool is no longer available for download, and its parent website, www.secure-

ware.com, is down. Their 2009 paper does not discuss Ashula’ inner workings.

Without any conversation on how Ashula works, situations in which it may not detect

a type of exploit, or how it can be defeated, researchers cannot accurately claim that it

detects all instances. Finally, other papers that used the Kyoto2006+ dataset have

demonstrated that it may contain errors [1]. Without an enduring effort at curating

 19

the dataset, when a researcher finds a labeling error, there is no mechanism to

disabuse the dataset for future studies.

Previous Semi-Supervised Learning Work

Semi-supervised learning techniques are an emerging area of research in

intrusion detection. In one of the earliest works, intrusion detection is modelled as a

partially observable Markov decision-making process (POMDP) and uses a semi-

supervised approach (Expectation Maximization to the learn conditional probability

distributions) in order to classify legitimate and misuse user behavior in a UNIX

terminal [12]. In [13], a co-training method for intrusion detection is applied to the

KDD-99 dataset. In [1], the authors explored the use of non-parametric graph-based

methods (Laplacian Eigenmaps and Laplacian Regularized Least Squares) on the

Kyoto2006+ dataset. One of the promising aspects of their approach is that the

authors do not have to make any assumptions about the probability distributions of

the traffic. The paper also made an assertion that semi-supervised techniques could be

used in practical real world settings, where a system administrator could build his/her

own mixed labeled dataset by auditing a portion of existing normal traffic and

performing some penetration testing. This comment is one of the motivations for this

study.

Cluster-then-label (CTL) SSL techniques have been applied to other domains

with success. The authors in [14] used CTL techniques successfully in three-

dimensional character recognition, and [15] demonstrated success in classifying eight

datasets from the UC-Irvine Machine Learning Repository. [16] provided a

theoretical analysis on situations where a CTL approach provides a better error bound

 20

than a pure supervised classifier, and situations where CTL techniques cannot

perform any better. At the time of this thesis, there appears to be no application of a

CTL approach to intrusion detection.

Previous Scan Detection Work

Numerous supervised learning and data mining studies have been applied to

scanning. [17] developed the Stealth Probing and Intrusion Correlation Engine

(SPICE), which uses a Bayes network approach to compute the probability that a

network flow record is a scan. [18] developed a method based on sequential

hypothesis testing (SHT). Their scheme, Threshold Random Walk, evaluates a

probability ratio for each connection
 rscanner

 rnon scanner
 per remote host, and performs SHT

until it has seen enough connections to classify the host as a scanner or non-scanner

based on two predefined thresholds. [19] proposed innovative clustering and mining

technique to visualize scans and attack data.

Simon et al., from UMN MINDS, presented an innovative data-mining

approach to scan detection [20]. Their approach performs heavy preprocessing of

network flow records, transforming them in to a dataset that consists of rich features

before using a supervised learner. These features, such as the number of distinct

internal IP addresses touched by a single external IP, intuitively correspond to

characteristics of scans that are useful in distinguishing them from non-scan traffic.

After preprocessing, the authors train a rule-learning algorithm known as Repeated

Incremental Pruning to Produce Error Reduction (RIPPER). This thesis replicates

their working using the same feature set and classifier in order to gauge the

 21

effectiveness of their method and use it as a benchmark to evaluate the semi-

supervised technique.

 22

Chapter 3: Method

Supervised Classifier

Rule-based algorithms, which follow an algorithmic paradigm similar to

decision trees, are an easy to use family of algorithms for inductive inference. In

essence, these rule-based algorithms create a sequence of rules, where each rule

attempts to cover and separate out as many instances of one class of data as possible.

Different versions of algorithms vary in the heuristics that they use to select rules and

the logic to prune rules to avoid overfitting. The most significant drawback of rule-

based algorithms is their tendency to overfit to the dataset on which they were trained

[21].

RIPPER is one of the most popular rule-based classifiers, due to optimizations

for fast runtime and pruning logic that minimizes overfitting effects [22]. It runs in

 ((time, opposed to the popular decision tree algorithm C4.5, which runs

in (time [21]. The resultant classifier RIPPER produces is intuitive to the

human reader; it essentially is a series of “if-then” statements, which could be used in

existing signature-based IDS. RIPPER can handle datasets that are not linearly

separable. It does not require a priori knowledge of the underlying statistical

distribution of the dataset. This fact allows research to avoid making erroneous

assumptions. In addition, it is robust to noise, both errors in classifications of the

training instances and errors in the feature values that describe these instances [21].

This property offers the user some latitude since building a flawless training set in

NID is near impossible. The pseudocode in Figure 4 explains RIPPER operations.

Figure 5 explains the metrics and heuristics, which RIPPER uses.

 23

 24

Figure 4: RIPPER Pseudocode (adapted from [21] [22], [23])

Figure 5: RIPPER Metrics and Heuristics (Adapted from [22], [21])

Unsupervised Clustering

 The unsupervised clustering method used in this thesis was k-means++. K-

means++ is an optimized version of k-means. It uses randomized seeding to increase

 25

runtime performance (empirical studies have shown a performance speedup by factor

2 to 10). While finding the optimal clustering is NP-hard, k-means++ is guaranteed

to be O(log(k)) competitive to the optimal solution [24].

Semi-Supervised Method

The experiments conducted in this thesis depart from the mainstream SSL

approaches, which are either graph-based or based on a parametric mixture model,

and explores “cluster-then-label” (CTL) SSL methods. The overall intuition and

assumption is that in a given domain similar instances tend to group together. In this

paradigm, first an unsupervised algorithm groups data points into clusters known as

decision sets. Next, a supervised learning algorithm per cluster is trained on the

labeled instances. This supervised classifier is then transductively applied to the

unlabeled instances within the decision set. There are two ways to classify future

instances. First, a CTL algorithm can map an instance to a decision set, then apply

that set's supervised classifier. Alternatively, the CTL algorithm can use a global

classifier. This global classifier is built after performing an additional iteration of

supervised learning during the build portion of the algorithm (see Figure 6). This

thesis evaluated both variants, primarily focusing on the former.

 26

Figure 6: Cluster-Then-Label Algorithm

CTL offers several advantages over the other approaches. First, although CTL

is similar to mixture-models, it is fundamentally more general. It makes no

assumption what the underlying distribution is for the populations of benign and

malicious. As Zhu and Goldberg assert, if a poor model is assumed it could have

 27

deleterious impact on classification [25]. Hu et al. demonstrated that network traffic

and in particular malicious traffic can be heavy-tailed, which may exacerbate poor

choices in models [26]. In addition, since this experiment injects malicious traffic,

any supposition on a distribution would be fundamentally flawed and skewed from

the true distribution.

While there may be some similarities in mathematical reasoning between CTL

decision sets and the manifold regularization of graph-based methods, the clustering

methods employed in the CTL approach are mathematically simpler and

computationally less expensive than the graph-based methods. As Goldberg et al.

suggest, it follows a “wrapper” design paradigm, where multiple and previously

established techniques can be used for the unsupervised and supervised steps of the

algorithm without having to develop newer or more confusing techniques [14]. Since

many of the machine learning and SSL algorithms are computationally expensive, a

wrapper design paradigm allows the choice of optimized supervised and unsupervised

implementations. This flexibility enables CTL to process large datasets faster than

other algorithms that have a greater runtime complexity.

The need for an easy to interpret classifier goes beyond mere convenience.

Some techniques like artificial neural networks (ANN) or support vector machines

(SVM) may not offer much insight into what causes a particular instance to be

detected. It would be fallacious to subscribe to a “black box” mentality that assumes

that once a classifier is in place it will continue to exhibit the same success rate.

 28

Without insight into how something works, attackers could potentially run many

variations of an attack against the same “black box” until they discover an undetected

permutation. Choosing a classifier that supports anti-forensic analysis is paramount.

Cluster-then-label Analysis

The purpose of this section is to provide theoretical background on situations

where the CTL approach has a provably better error bound than a pure supervised

approach. In particular, this section will summarize Singh, Nowak and Zhu’s

analysis of CTL error convergence rates. This section will also highlight some of the

implicit assumptions of the model that are subtle but have tremendous impact if not

properly followed.

Error Performance

Singh et al.’s analysis provides the mathematical justification to why empirical

evidence demonstrates that CTL appears to improve error performance in some cases

but not in others. Their core idea is based on a geometric understanding of how the

labeled and unlabeled data are distributed. In essence, if the individual clusters,

which make a CTL decision set, are more discernable than the whole set of labeled

data, then CTL SSL can yield higher accuracy rates than a pure supervised classifier.

Figure 7 illustrates this concept; in portion in Figure 7a presents an omniscient view

of two classes that exist in discernable dense clusters. Unfortunately, the amount and

distribution of the available labeled data in Figure 7b is not enough to accurately

distinguish the boundary between the two classes. Figure 7c shows that when

unlabeled data is combined with labeled data, the boundary becomes distinct.

 29

Figure 7: a) Omniscient view of two classes, b) the whole set of labeled instances,

c) the set of labeled and unlabeled instances (Adapted from [16])

Singh et al.’s proof consists of two major parts. In the first part, Singh et al.

establish a lower bound on the separation distance between clusters in order for data

points to be sufficiently distinguishable; i.e. margin necessary to cluster instances

with high probability ((

) into the correct decision set without any additional

knowledge. Figure 8 shows this bound, which relates the margin between clusters, γ,

to the average density within a cluster.

Figure 8: Margin-cluster Density Relationship

Using this density relationship, Singh et al. prove the error performance by comparing

the CTL algorithm to a “clairvoyant supervised learner.” The clairvoyant supervised

learner assumes there exists a pure supervised learning algorithm that has the best

 30

possible knowledge of the data. This clairvoyant learner is bounded by the

underlying unavoidable error in the dataset, i.e. it cannot be improved.

The authors then argue if a clairvoyant learner exists, then there is also a clairvoyant

CTL SSL classifier for each set. This clairvoyant CTL SSL classifier uses the same

algorithm as the pure supervisory classifier, but instead of classifying instances for

the entire dataset, the clairvoyant CTL SSL classifier only maps instances for its own

cluster. The error bound for the clairvoyant CTL SSL classifier is therefore the same

as the pure supervisory classifier within that decision set.

Singh et al. complete the proof by placing an upper bound on the accuracy of any

CTL SSL classifier by showing how it is equivalent to the error of the clairvoyant

CTL SSL classifier plus the potential error due to clustering mistake.

 31

The immediate conclusion is that as more unlabeled data, m, becomes available, the

probability of clustering errors decreases, hence the error due to cluster mistakes

decreases. For problem domains with discernable boundaries, this means that the

CTL SSL classifier can approach theoretical limits of accuracy with more unlabeled

instances. Finally, Singh et al, also demonstrated that while certain cases a CTL

approach cannot improve performance, using a CTL does not provable degrade

performance either [16].

Practical Issues

 Despite this optimistic implication, there are a number of practical issues

arriving from the fundamental assumptions of the CTL model. First, this CTL

approach assumes “good” clustering behavior, where the unsupervised method used

conforms to the discernable decision set margin assumption. Unfortunately, it is far

from obvious whether the unsupervised method will conform to this assumption. As

[27] demonstrated, a poor choice of clustering can result in the following

degenerative situation. In Figure 9, there are four clusters that naturally exist in a

population. As Figure 10 demonstrates, the choice of clustering method uses the CTL

algorithm to mistake the true decision sets and then trains on the incorrect set of

labeled instances. Here complete linkage clustering erroneously links two disjoined

sets. The resultant decision set will then train on inaccurate data.

 32

Figure 9: An Example Population Consisting of Four Clusters (Adapted from

[25])

Figure 10: Hierarchical Clustering in Example Population (Adapted from [27])

The second issue is that the CTL algorithm assumes a “good” labeling

distribution. Typically, any supervised learning algorithm will require that the

training dataset is independent and identically distributed (i.i.d.) from the underlying

 33

population. While random sampling can ensure that samples are drawn i.i.d. from a

population, there is no guarantee that the CTL algorithm will have enough labeled

instances per cluster to accurately train each decision set classifier. In a population

with features that follow heavy tailed distributions, there may exist clusters with little

or no labeled data. Furthermore, certain classes in a population exist at any extreme

disproportion to the majority class. Thus, any sampling method, if not

comprehensive enough, may not fully capture the minority class of interest. As

Chapter 6 will demonstrate, this issue was encountered during the evaluation. One of

the promises of SSL is that less labeled information needs to be collected, but it is

unclear exactly how much less is needed. With these issues in mind, a researcher

may not be able to tell a prior if a dataset has enough labeled data, thus practical

implementation may be forced to overestimate the volume of labeled traffic. This

sobering reality limits how much effort an SSL approach saves over a pure

supervisory approach in a real world setting.

 34

Chapter 4: Dataset

Introduction

 This chapter describes the intent and methodology used to create a labeled

intrusion detection dataset. First, the “ aradigm Development” section describes how

this study created representative samples of stealth scans and the procedure by which

those samples were vetted. This chapter also explains the network set-up,

implementation choices, and auditing procedures in an effort to be as transparent as

possible. This transparency is necessary, because the way the dataset was built could

potentially influence the results of any study that uses it.

Paradigm Development

While it is common knowledge that advanced attackers will perform “slow-

and-low” stealthy scans, there is no authoritative source that exactly prescribes the

perimeters by which attackers scan. To develop a set of stealth scan profiles, I

worked with a small group of four students who are members of the University of

Maryland Cyber Security Club. All have experience in ethical hacking and

penetration testing; two of the students have professional experience. Over a period

of five weeks, we trained on the open-source scanning tool, nmap, and dissected how

to best scan a network without being detected by traditional means. Nmap is the most

popular scanning tool in the security community, and it allows an unparalleled

amount of control in setting parameters for scans.

The profiles were developed with intent to determine how a well-resourced

attacker would scan a network given a specific objective, a set of exploits to common

 35

services and an operational window of no longer than month. The one-month

window was chosen because it corresponds to the time between major patch releases.

Thus, an attacker could have an entire month to scan a target before it changes. Using

nmap, these profiles were tested against an open-source instance of an IDS, Snort.

Snort was set with the most stringent port scanning thresholds in order to ensure that

the attack would be representative of a stealth scan. In addition, small sets of the

profiles were tested against the University's commercial intrusion prevention system

(IPS).

Not surprisingly, the scan profiles did not have to deviate significantly from

default nmap settings to evade the IDS/IPS. We investigated the two broad

categorizes of port scanning based on the scan's intended target footprint: horizontal

scans and vertical scans. The main parameters of interest were the target ports and

inter-packet timing. We determined that it is possible to infer with good confidence

detailed host information while sending a minimal amount of port probes over a long

time interval. Table 3 shows the tradeoff between scanning only the most common

ports and the percentage of open services discovered. Although the expected

percentage of discovered open services may not equal 100%, the scans we developed

have enough information to start planning how to exploit the services that are

available. Table 4 shows typical settings that were used to evade IDS detection.

Additionally, data padding was used in some cases to further obscure detection.

 36

Table 3: Percentage of Services Discovered (adapted from [4])

Expected discovery of open

services

k most popular TCP

Ports

k most popular UDP

Ports

10% 1 5

20% 2 12

30% 4 27

40% 6 135

50% 10 1075

60% 18 2618

70% 44 5157

80% 122 7981

85% 236 9623

90% 576 11307

95% 1558 13035

99% 3328 15094

100% 65536 65536

Table 4: Typical Port Scan Settings

 Typical Port Settings Typical Timing Settings

Vertical

Scans

Top port (80), top 10 ports, top

20 ports, top 100 ports, all

well-known ports

Min delay between packet {300s,

350s, 400s}, max delay between

packet {400s, 500s, 600s}

Horizontal

Scans

Top port (80), top 3 ports, top

10 ports, top 20 ports, top 100

ports

Min delay between packet {300s,

350s, 400s}, max delay between

packet {400s, 500s, 600s}

In addition to vertical and horizontal scans, we investigated more advanced

forms of scanning. We included some instances of coordinated scans, where multiple

scanners scan a set of targets. In this paradigm, each scanner IP had a portion of the

overall target network's IP addresses and ports. This diffusion makes it harder for a

human analyst to see the typical attack scheme in network logs. We also investigated

idle or “zombie” scans, where attackers use internal hosts to the target network. In

this case, we had trouble reliably scanning the target networks. The limited literature

on idle scanning suggests that this experience is not uncommon. The idle scan model

 37

requires zombie hosts to have a quiet traffic profile, an obsolete TCP/IP stack

implementation, and reliable uptime [28]. Consequently, we did not include idle

scanning in this study.

Network Configuration

With profiles developed, we scripted a network of 32 virtual machines (VMs)

to scan two Class C subnets of a real production network and instrumented it to

collect network flow records, pcap and Snort alerts (see Figure 11 below). Although

the experiment focused on network flow records, the other sources of information

provided additional insight in case some inconsistency was found. These VMs

created two datasets from November through December 2013.

Figure 11: Network Setup

Table 5 5, 6, and 7 summarize the characteristics of this dataset database.

 38

Figure 11: Network Setup

Table 5: November Dataset Characteristics

Duration 30

Total Number of Raw Flows 12,986,232 97.367%

Total Number of Injected Vertical Scan

Flows

4,868 0.036%

Total Number of Injected Horizontal Scan

Flows

346,331 2.597%

Total Number of Flows 13,337,431 100.000%

Total Number of Raw Records 2,340,394 98.782%

Total Number of Injected Vertical Records 4,308 0.182%

Total Number of Injected Horizontal

Records

24,559 1.037%

Total Number of "Noise records" 29,323 1.238%

Total Number of Adjusted Attack Records 58,190 2.456%

Total Number of Adjusted Raw Records 2,311,073 97.544%

Total Number of Records 2,369,263 100.000%

Table 6: December Dataset Characteristics

Duration 9 Days

Total Number of Raw Flows 5,025,058 93.143%

Total Number of Injected Vertical Scan

Flows

35,349 0.655%

Total Number of Injected Horizontal Scan

Flows

334,581 6.202%

Total Number of Flows 5,394,988 100.000%

Total Number of Raw Records 1,004,382 95.600%

Total Number of Injected Vertical Records 24,093 2.293%

Total Number of Injected Horizontal

Records

22,134 2.107%

Total Number of "Noise records" 17,792 1.693%

Total Number of Adjusted Attack Records 64,019 6.094%

Total Number of Adjusted Raw Records 986,590 93.906%

Total Number of Records 1,050,609 100.000%

 39

Table 7: January Dataset Characteristics

Duration 28 Days

Total Number of Raw Flows 24,839,005 98.410%

Total Number of Injected Vertical Scan

Flows

19,085 0.076%

Total Number of Injected Horizontal Scan

Flows

382,349 1.515%

Total Number of Flows 25,240,439 100.000%

Total Number of Raw Records 1,672,186 98.362%

Total Number of Injected Vertical Records 14,384 0.846%

Total Number of Injected Horizontal

Records

13,471 0.792%

Total Number of "Noise records" 35,732 2.102%

Total Number of Adjusted Attack Records 63,587 3.740%

Total Number of Adjusted Raw Records 1,636,454 96.260%

Total Number of Records 1,700,041 100.000%

Data Preprocessing

Feature Set

The University of Minnesota (UMN) Minnesota Intrusion Detection System

(MINDS) method incorporates considerable expert knowledge as well as domain-

specific knowledge in producing the processed dataset. Tables 8, 9, 10 and 11

enumerate the features that were calculated for this experiment, which was adapted

from the UMN MINDS method. The evaluation used these records, which consisted

of a key (tuple of source ip, source port and destination port), plus the encoded

feature set.

Table 8: Record Key

srcip External IP, part of key

srcport Source port of external host, 0 for multiple source ports, part of key

dstport Destination port port of the internal host, part of key

 40

Table 9: Features of Basic Flow Characteristics

Feature Description

ndstip Number of distinct internal IPs touched by the srcip

ndstports Number of distinct interal ports touched by the srcip

avgdstips Number of distinct internal IPs averaged over all destination ports

touched by the srcip.

maxdstips Maximum number of distinct internal IPs over all destination ports that

the srcip touched

Table 10: Features over All Destination Ports

Feature Description

server ratio Ratio of distinct internal IPs that provided the service that the

srcip requested to ndstip.

client ratio The ratio of distinct internal IPs that requested service from the

external IP to ndstip.

nosrv ratio The ratio of distinct internal IPs touched by the srcip that offered

no service on dstport to any source during the observation period

to ndstip.

dark ratio The ratio of distinct internal IPs that has been inactive during the

experiment window to ndstip.

blk ratio The ratio of distinct internal IPs that were attempted connections

to by the scrcip on a blocked port during the experiment to

ndstip.

p2p ratio The ratio of distinct internal IPs that have actively participated

in P2P traffic during the experiment window.

Table 11: Feature on Individual Destination Ports

Feature Description

i_ndstips Number of distinct internal IPs touched by the srcip and specific

dstport

i_none ratio Ratio of distinct internal IPs touched by the srcip and specific

dstport that did not offer the service requested to i_ndstips

i_dark ratio Ratio of distinct internal IPs touched by the srcip and specific

dstport that did not were not active to i_ndstips

i_blk ratio Ratio of distinct IPs touched by the srcip to a specific specific

blocked dstport to i_ndstips

 Two implementation choices in the encoding of the feature set above could

have had potential impact on this study. First, the UMN method has an implicit

 41

encoding of time. The choice is up to the implementer when to calculate the statistics

and how far back to calculate the statistics, based on the availability of storage and

computation resources. Their implementation calculates the record every 20 minutes

for up to a period of 3 days. The size of their defended network limited how many

days the UMN researchers could reasonable process in a given time. As Simon et al.

suggest, the more days evaluated, the more accurate the method will be [20]. This

thesis evaluates the performance of the detection scheme using an evaluation window

of 30 days, given the nature of the types of scans evaluated. This choice seems

reasonable given the advances in storage and processing big datasets; however, a

practical implementation may need a significant amount of optimizations if the

network is large.

Second, since every record key consists of a source IP address, there was a

potential for the VMs, which were constantly scanning, to have exaggerated statistics.

As a result, each complete scan set from the 32 VMs was relabeled with a unique

source IP, so that every scan attack seemed to come from a new IP. This choice may

be slightly artificial, since in the real world, there is potential for IPs to repeat scans

on the same subnet. However, this choice does represent an attack that is harder to

distinguish than a scan attack that repeatedly targets the same network and has large

statistics on the feature set above.

Data Auditing

All network flow records and processed records were entered into a

PostgreSQL database, which enabled manual verification. Network flow records and

processed records were stored in separate tables based on whether they were from the

 42

network of honeypots or the production network. All records from the network of

honeypots were labeled “scanner;” all records from the production network were

initially labeled “non-scanner” and then scrutinized for error. In particular, several

different queries were used to better check for labeling errors. These queries included

manually verifying the most frequent external IP addresses, checking external hosts

that initiated flows with a ndstip feature greater than the number of active internal

hosts during evaluation period, and checking external hosts that communicated to

many well-known ports on the same internal host. By combining the processed

record with a filtered network flow table, many scans that were previously unlabeled

became evident in the production set. In Table 5, 6 and 7, the noise records are those

records that were relabeled. Notice that in November, the amount of noise records

actually exceeds the injected traffic.

Figure 12 shows an example of a scan that the queries above catch. By some

reorganization of the flow records, it is clear there is horizontal scan from one source

IP to an entire subnet looking for hosts that have Remote Desktop Protocol (RDP)

services running. RDP is an important Microsoft protocol that allows users to

remotely access and control their PCs, and it is a popular target for malicious

attackers that are seeking to gain quick control of a poorly administered computer.

Records for the scanner IP address (before it was encrypted) reveal that it belongs to

one of the major ISPs on the East Coast and is most likely a home user. Based off

this information, there is no logical explanation why one home user would be seeking

that many RDP connections other than having malicious intent.

 43

Figure 12 Embedded Scan (source and target IP obscurred and masked)

 44

Chapter 5: Experiment

Experimental Parameters

This thesis used a series of trials to evaluate the performance of the UMN

MINDS algorithm as well as the CTL algorithm. The evaluated implementation of

CTL used k-means++ with simple Euclidian distance and RIPPER for the supervised

classifier with two rounds of optimization. Two trials were executed using only the

control algorithm: one with the network of honeypots traffic naively injected and one

with records adjusted. These trials demonstrate the effect that noise may have when

building a classifier with injected attack data. Next, the datasets were broken into sets

of randomly selected labeled instances mixed with unlabeled instances. The

motivation behind creating these sets is to compare the CTL algorithm performance

against a pure supervisor and to illustrate how much labeled data would be needed to

achieve acceptable levels of accuracy. Trial I attempts to show how a practical

approach a security administrator might take to labeling a dataset, for instance from a

company network. In this setting, the administrator combines penetration testing data

with the existing logs. The administrator would have audited only the most frequent

hosts, which he/she would label as scanner or non-scanner as appropriate. In addition

to varying the proportions of labeled traffic, we varied the number of clusters across

all CTL implementations

Tables 12, 13 and 14 capture the the experimental parameters that were used

in each trial for the test and control cases.

 45

Table 12: Experimental Parameters over Supervised Trial Cases

Trial Training set Test set Number of

labeled

Instances

Number of

labeled attack

Instances

Number of

distinct Ips

Total Size

of Training

set

A NOV; fully

labeled

10-CV; Adjusted

NOV full

2,369,263 28,867 287,974 2,369,263

B Adjusted NOV;

fully labeled

10-CV 2,369,263 58,190 287,974 2,369,263

 46

Table 13: Experimental Parameters over CTL Trial Cases

Trial Training set Test set Number of

clusters

evaluated

Number of

labeled

Instances

Number of

labeled

attack

Instances

Number

of

distinct

Ips

Total Size

of

Training

set

C 75% randomly

selected labeled

instances, mixed

from NOV

 DEC, fully

labeled; JAN,

fully labeled

{2-90} 1,781,360 43,700 234,221 2,369,263

D 50% randomly

selected labeled

instances, mixed

from NOV

DEC, fully

labeled; JAN,

fully labeled

{2-90} 1,194,064 29,479 175,645 2,369,263

E 25% randomly

selected labeled

instances, mixed

from NOV

DEC, fully

labeled; JAN,

fully labeled

{2-90} 607,608 15,160 108,284 2,369,263

F 10% randomly

selected labeled

instances, mixed

from NOV

DEC, fully

labeled; JAN,

fully labeled

{2-90} 254,952 6,352 57,895 2,369,263

G 5% randomly

selected labeled

instances, mixed

from NOV

DEC, fully

labeled; JAN,

fully labeled

 137,755 3,515 36,693 2,369,263

H 1% randomly

selected labeled

instances, mixed

from NOV

DEC, fully

labeled; JAN,

fully labeled

{2-90} 43,183 1,228 15,333 2,369,263

I top 30 benign, top 5

scanners, mixed

from NOV

DEC, fully

labeled; JAN,

fully labeled

{2-100} 302,300 32,303 35 2,369,263

J 1% randomly

selected labeled

instances plus

injected labeled scan

traffic, mixed from

NOV

DEC, fully

labeled; JAN,

fully labeled

{2-90} 82,718 40,764 15,356 2,369,263

 47

Table 14: Experimental Parameters over CTL Control Cases

Trial Training set Test set Number

of

clusters

evaluated

Number

of labeled

Instances

Number

of

labeled

attack

Instances

Number

of

distinct

Ips

Total Size of

Training set

C_control 75% randomly

selected only

labeled instances

from NOV

 DEC, fully

labeled; JAN,

fully labeled

N/A 1,781,360 43,700 234,221 1,781,360

D_control 50% randomly

selected only

labeled instances

from NOV

DEC, fully

labeled; JAN,

fully labeled

N/A 1,194,064 29,479 175,645 1,194,064

E_control 25% randomly

selected only

labeled instances

from NOV

DEC, fully

labeled; JAN,

fully labeled

N/A 607,608 15,160 108,284 607,608

F_control 10% randomly

selected labeled

instances,

mixed from

NOV

DEC, fully

labeled; JAN,

fully labeled

N/A 254,952 6,352 57,895 254,952

G_control 5% randomly

selected only

labeled instances

from NOV

DEC, fully

labeled; JAN,

fully labeled

N/A 137,755 3,515 36,693 137,755

H_control 1% randomly

selected only

labeled instances

from NOV

DEC, fully

labeled; JAN,

fully labeled

N/A 43,183 1,228 15,333 43,183

I_control top 30 benign,

top 5 scanners,

mixed from

NOV

DEC, fully

labeled; JAN,

fully labeled

N/A 302,300 32,303 302,300 302,300

J_control 1% randomly

selected labeled

instances plus

injected labeled

scan traffic,

mixed from

NOV

DEC, fully

labeled; JAN,

fully labeled

N/A 82,718 40,764 15,356 82,718

Experimental Evaluation

 48

Each trial was evaluated with the following measures:

Figure 13: Performance Measures

 The true positive (TP), true negative (TN), false positive (FP), and false

negative (FN) are given by Table 15. Recall, also known as sensitivity, corresponds

to the relative frequency of correctly classified scanner instances. Precision captures

the proportion of correctly classified scanner instances. The F-measure captures the

balance between recall and precision, so that an ideal classifier that has a low rate of

false positives and false negatives will achieve a F-measure close to one. It is worth

noting that the ROC score (sensitivity versus false positive rate), which is popular

measure, was not calculated. We did not use the ROC score because the balance

between the true positive rate and false positive rate was not a monotonic function of

some threshold in this experiment. Thus, ROC curves did not add any meaningful

insight into a classifier’s performance beyond what was already captured by the

metrics above [29].

 49

Table 15: Classification Matrix (Adapted from [20])

 Classified As Scanner Classified as Not Scanner

Actual Scanner TP FN

Actual Non-scanner FP TN

McNemar's test was used for testing statistical significance [30]. Unless

explicitly stated below, all trials in this test showed statistical distinction from their

control, with the probability of Type I error < 0.5% .

CTL Implementation

There is no off-the-shelf program with CTL already implemented. I

implemented the main portions of CTL in Java, which enabled the use of the Weka

machine learning library. Weka has implementations of RIPPER and k-means++,

and a well-documented API.

Tests were executed on a 64-bit virtual machine with 16 GB of RAM, 8 x

2643 MHz CPUs.

 50

Chapter 6: Results and Discussion

The first two trials demonstrate that naively injected traffic into a dataset

without verification can have disastrous results. In Table 16, the first iteration of Trial

A using the unrectified NOV dataset showed high accuracy in a 10 fold cross-

validation test. Using Trial A's classifier, it was then evaluated against the adjusted

NOV dataset, where it produced 29,317 more false negatives. RIPPER is theoretically

tolerant of noise, but this property has limits. If the amount of training data that is

mislabeled as “normal” is on the order of the injected attack traffic, then the

algorithm will overfit to the injected traffic.

Table 16: Supervised Trials

 Spec Acc Precision Recall/sens Fm

Trial A, 10-CV 0.999998 0.999990 0.999861 0.999307 0.999584

Trial A, Adjusted

NOV full

0.999998 0.987616 0.999861 0.495807 0.662898

Trial B 1.000000 0.999992 1.000000 0.999656 0.999828

The general trend in the results from trials C-J is that the CTL algorithm is

more sensitive to the choice in number of clusters than the theoretical background

would suggest (see Figure 14). Trials C-H and J in particular exhibited this behavior

(Figures 14, 15, 16, and 18). The CTL implementation consistently failed to

outperform the control when the number of clusters was not ideal, and in some cases

the CTL performance was marginally poorer. For most trials, the ideal number of

clusters is around 50. In this range (30 to 70), the CTL method will typically

outperform the pure supervisory algorithm in all measures. For trials C-H and J this

performance increase was marginal compared to the control; for trial I (Figure 17) the

 51

performance increase was significant.

Figure 14: Performance of CTL Classifiers with Different Amounts of Labeled

Data

 52

Figure 15: Improvement from December Trial H (1 % Labeled)

Figure 16: Improvement from December Trial C(75% labeled)

 53

Figure 17: Improvement from December Trial I (top 30 non-scanner, top 5

scanners labeled)

Figure 18: Improvement from December Trial J (1 % random with injected

attack traffic labeled)

 54

When the cluster assignment is not ideal, the CTL algorithm typically has

poor sensitivity, therefore a high false negative rate, compared to the control. The

high false negative rate is primarily due to inherent disproportion between scan and

non-scan classes. Even though the sampling method conformed to the i.i.d.

imperative, because such a small percentage of scan traffic is present in the dataset,

the sampling procedure did not capture enough instances to accurately train each

decision set classifier. To illustrate this phenomenon, Figure 19, 20, and 21 show the

number of instances of each class label from a 1% randomly selected training set and

from a full month test set.

Figure 19: Proportions of Training and Test Set Traffic per Cluster

 55

Figure 20: Proportions of Training and Test Set Scan Traffic per cluster

Figure 21: Proportions of Training and Test Set Scan Traffic per Cluster (Scaled

Between 0 To 2500)

It becomes clear in Figure 21 that there are certain clusters in the training set

that never received a sufficient amount of labeled scan traffic for RIPPER to work

properly. Table 17 shows that there are a few clusters that experience little to no

scans in the training set but experience a high number of scans in the test set. Since

RIPPER is seeking to separate out the minority (scan) class on its distinguishing

features, if RIPPER does not train on enough representative minority class samples,

 56

the algorithm will produce a large amount of false negatives. While it is obvious that

any supervised algorithm performs better with more training data, since the

proportion of normal traffic is much greater than the proportion of attack traffic,

simple sampling is not enough. In situations where the number of clusters is small, it

may actually be better to inject more attack traffic than what occurs at natural

proportions. This skewing of the data set helps to induce the proper bias for the

classifier. Finally, if there are too many clusters, the false negative rate also becomes

high. This problem is caused by the CTL algorithm subdividing an ideal decision

cluster into multiple subpar clusters. Since the subpar clusters have little labeled

instances, their internal cluster classifier may default to majority voting. Any future

instance will be labeled with the majority class label (i.e. non-scanner); therefore,

subdividing an ideal decision cluster may result in unlabeled scanner instances being

improperly classified as non-scanner.

 57

Table 17: Number of Scans Per Cluster in Test and Training Sets

Cluster Number of labeled Scan instances in the

training set

Number of Scan instances in the

test set

1 14 668

2 0 0

3 0 0

4 0 0

5 0 20

6 1 106

7 0 0

8 442 8310

9 0 0

10 0 0

11 0 0

12 37 3046

13 0 0

14 0 0

15 0 0

16 0 0

17 0 0

18 0 0

19 75 3623

20 0 0

21 0 0

22 0 0

23 0 0

24 0 0

25 0 0

26 291 22634

27 361 19248

28 0 0

29 7 535

30 0 0

As confirmation of the effects of injecting more scan traffic, trial J (Figure 18)

consists of a mixed data set comprised of a random selection of 1% of the labeled

NOV traffic and all the labeled traffic from 23 dedicated scanners (both the injected

scan records and records that were discovered in the dataset during auditing). While

 58

trial J ran with a lower false negative rate, it is still sensitive to the choice of cluster

numbers.

Despite only showing marginal performance gains in trial C-H and J, trial I

showed more promising results for a real world implementation. Here the

performance gains were significant. Before the trial, I conjectured that this choice of

the top 30 I addresses for the “normal” labeled portion may skew the classifier.

Most of the IP addresses on the targeted subnet are servers, but in the network flows

associated with the top 30 IP addresses, the UMD internal hosts are primarily acting

as clients. Surprisingly, the choice of top 30 benign IP addresses does not skew the

data much in the CTL approach. While there was no significant impact in this study,

this choice may affect another set of malicious activity in an unintended way.

However, this technique does offer hope that in a practical implementation a security

administrator would only have to audit a small amount of the most frequently seen IP

addresses in order to build an adequate classifier.

Interestingly, the supervised classifier in each cluster has fewer rules when the

number of clusters increases. For implementations with the largest number of

clusters, the decision set supervised classifier is just majority voting, i.e. traffic gets

labeled with the label of the class that makes up the majority of that cluster. This

behavior reinforces the idea the data for this attack type behaves “nicely” and

naturally occurs in close-nit clusters, for the optimal k. A practical real world

implementation could exploit the natural clustering by calculating a large number of k

clusters, and then labeling each centroid with the majority class label. Future

 59

instances could then be classified using a nearest neighbor search on the cluster

centroids.

Some analysis was conducted to assess the impact that domain-specific

knowledge has on classification accuracy. Some of the features require extensive

encoding of a priori knowledge such as the set of block ports per host. Ideally, smart

feature selection could still have good performance without extensive amounts of

overhead. While some initial research showed potential, the analysis was halted

because of some inherent limitations. First, in the January dataset, there is a spike in

the prevalence of cloud services that use protocols communicating on multiple

registered ports (1024 < registered ports < 30k). This spike makes it difficult to

determine if vertical scans are being performed on certain hosts without logic that

checks if that port on a host is open, closed or filtered. Furthermore, it started to

become apparent that rules the RIPPER was learning rules that were specific to the

evaluation network. For instance, one of the rules RIPPER developed accurately

capture the number of distinct IP addresses that were active on the subnet during the

evaluation window, but this number may not generalize to another subnet with a

different distinct number of IP addresses. While the domain-specific knowledge

requires some overhead, the way the statistics are calculated do allow it to generalize

better to other subnets.

There are some minor issues that are network specific. On our test network,

the network logs time stamps did not always provide the necessary accuracy to state

which external IP was a server or a client. The router appears to arbitrarily order

complimentary network flows with identical timestamps; therefore, our

 60

implementation defaulted to labeling external IP addresses as clients when the time

stamps were equal and the external port was outside the well-known and registered

range. This way of handling identical time stamps could introduce noise, and the

approach described in this thesis could exhibit better performance on more accurate

logs. Also, this lack of fidelity weakens distance measures. In every situation, where

an external host cannot be deterministically declared as a client or server, the

implementation defaults to client. As a result, certain statistics like client ratio, have

few nonzero entries. A high occurrence of a default value will make the Euclidean

distance between two disparate instances seem smaller than if the distance was

calculated with the feature was omitted.

The performance of trial A and B exhibited better performance than what was

originally reported in the UMN MINDS study. This difference is most likely due to

our study using a 30-day evaluation window. Also, this study used two focused

subnets with minimal peer-to-peer traffic as opposed to the UMN study which used

records from the entire campus.

Unfortunately, the base-rate fallacy still limits an adoption of this approach.

While some iterations did achieve an accuracy that may be acceptable (> 99.5%),

most iterations did not and a user of this approach would have to perform extensive

evaluation to find the optimal number of clusters. In addition, auditing the existing

traffic for the presence of noise to a specific attack type requires sizable analysis. For

scanning, it is verbose enough to identify after some initial processing. Other attack

paradigms may not be so accommodating. Without this extensive auditing, the

accuracy may fall to a level where the base-rate fallacy prevents its use.

 61

Finally, a pleasant surprise came from a mistake in the way one of the datasets

was created. When creating the mixed label set for Trial J, the original test did not

use the correct file with both labeled and unlabeled instances. The CTL

implementation was executed on a dataset set that on only contained labeled data

(Figure 22). In this context, this classifier is not acting in as a semi-supervised

learner but as a two-stage supervised classifier: clustering on the labeled instances in

the first stage and pure supervised learning within the clusters in the second. This

two-stage classifier exhibited high performance across all numbers of clusters.

While a full analysis of this approach is beyond this thesis, one potential explanation

that RIPPER is experiencing a performance gain in choosing how to divide the

instances based on the feature values. One way to interpreted RI ER’s output is as

a function that maps an instance based on a series of conditional probabilities.

RIPPER uses a greedy algorithm to select dividing points in the values of a feature’s

domain. In most implementations there appears to be no advanced statistics on

continuous values, just sorting and selection. When restricted to subsets of the

instances, RIPPER may be better able to learn dividing points since there is less likely

to be variance and skewness in the range of a feature’s values within a cluster. A

two-stage classifier offers hope that rule-based and decision tree algorithms can be

used in domains like intrusion detection where perfect knowledge of underlying

distributions is often infeasible.

 62

Figure 22: Performance of a Two-stage Classifier

 63

Chapter 7: Conclusions

This thesis illustrated how CTL SSL algorithms can build classifiers with

comparable accuracy with a fraction of the labeling effort as traditional supervised

learning, provided the number of clusters is ideal. Performance gains vary, but in

general the trend is that at the ideal cluster value they will do better than the

supervised counterpart. While lending promise to security researchers, enthusiasm

for SSL needs to be tempered with consideration for practical issues such as noise in

the normal traffic. Poor clustering can actually slightly degrade performance.

Careful consideration should also be given for the choice unsupervised and

supervised learners and their parameters.

There are numerous avenues for future work. First, a comprehensive

evaluation of CTL using other supervised and unsupervised learning methods with

different heuristics and distances measures should be performed. The choice of

RIPPER was driven by the need for interpretable results, speed, and comparison to

existing measures. The performance gain for RIPPER may not be as pronounced as it

is for other algorithms. The theoretical analysis suggests that the CTL algorithm

should have a markedly better performance than a pure supervised algorithm given

enough unlabeled data. That being stated, RIPPER is not as constrained as other

approaches, such as SVM. It may stand to reason that an application that lends itself

to SVM or other linear discriminative methods may have better performance using a

CTL approach.

For unsupervised clustering, the Euclidean distance was the only distance

measure evaluated here. The Euclidean distance does not always perform the best.

 64

Certain low variance features, like client ratio, weaken un-weighted measures of

distance. Thus, there is potential when using Euclidean distance measures in a set

with a large number of features or many similar valued features that all instances may

appear close. In this situation, other weighted distances and compensated distance

measures can account for features where the domain lacks variance or have missing

values. These techniques might be more appropriate here.

While initially a mistake and outside the scope of this thesis, a two-stage

approach shows promise. In particular, it may be better able to handle imbalanced

datasets or datasets with proportions of classes that deviate from the natural

population. A two-stage approach warrants further investigation.

Finally, this approach should be evaluated on other attack paradigms and

datasets to see how the traffic characteristics of different attacks affect detection in

network flow data. Scanning produces many network flow records; so even before

preprocessing, there are many instances within a dataset to train a machine learning

algorithm. Other sets of activity may prove too difficult to detect accurately without

additional information sources. Related to this study, more research should focus on

how evidence of scanning can be used in conjunction with other evidence to detect

other sets of activities. While Lane’s work in modelling OMD in order to detect

UNIX terminal misuse is a start, a multi-disciplinary approach should cover detection

for all know threat frameworks [12]. An advanced hacker conducts scanning in a

radically different manner than the way a worm conducts its automated scans, so

belief networks should be built according to the know behavior of threats.

 65

References

[1] C. T. Symons and J. M. Beaver, "Nonparametric Semi-Supervised Learning for

Network Intrusion Detection: Combining Performance Improvements with

Realistic In-Situ Training," AISec '12 Proceedings of the 5th ACM Workshop on

Security and Artificial Intelligence, pp. 49-58, 2012.

[2] B. Claise, "Cisco Systems NetFlow Services Export Version 9," IETF, RFC

3954, October 2004.

[3] Cisco, "Introduction to Cisco IOS NetFlow," May 2012. [Online]. Available:

www.cisco.com.

[4] G. Lyon, Nmap Network Scanning: Offical Nmap Project Guide to Network

Discovery and Security Scanning, Sunnyvale: Insecure, 2008.

[5] S. Dau and X. Du, Data Mining and Machine Learning in Cybersecurity, Boca

Raton: Auerbach, 2011.

[6] R. Sommer and V. Paxson, "Outside the Closed World: On Using Machine

Learning For Network Intrusion Detection," in IEEE Symposium on Security and

Privacy, Oakland, 2010.

[7] S. Axelsson, "The Base-Rate Fallacy and the Difficulty of Intrusion Detection,"

in ACM Transactions on Information and System Security (TISSEC), 2008.

[8] A. Sperotto, R. Sadre, F. Van Vliet and A. Pras, "A Labeled Data Set For Flow-

based Intrusion Detection," in IP Operations and Management, Berlin, Springer,

2009, pp. 33-50.

 66

[9] M. Tavallaee, E. Bagheri, W. Lu and A.-A. Ghorbani, "A Detailed Analysis of

the KDD CUP 99 Data Set," in Proceedings of the Second IEEE Symposium on

Computational Intelligence for Security and Defence Applications, 2009.

[10] H. Takakura, Y. Okabe, M. Eto, D. Inoue, K.. Nakao, & J Song, "Statistical

analysis of honeypot data and building of Kyoto 2006+ dataset for NIDS

evaluation," in Proceedings of the First Workshop on Building Analysis Datasets

and Gathering Experience Returns for Security, Salzburg, 29-36.

[11] M. Dornseif, T. Holz and C. N. Klein, "NoSEBrEaK--Attacking Honeynets," in

Workshop on Information Assurance and Security, West Point, 2005.

[12] T. Lane, "A Decision-Theoretic, Semi-Supervised Model for Intrusion

Detection," in Machine Learning and Data Mining for Computer Security,

London, Springer, 2006, pp. 157-177.

[13] C.-H. Mao, H.-M. Lee, D. Parikh, T. Chen and S.-Y. Huang, "Semi-upervised

Co-training and Active Learning Based Approach for Multi-View Intrusion

Detection," in Proceedings of the 2009 ACM symposium on Applied Computing,

2009.

[14] A. B. Goldberg, X. Zhu, A. Singh, Z. Xu, and R.D. Nowak, "Multi-Manifold

Semi-Supervised Learning," International Conference on Artificial Intelligence

and Statistics, pp. 169-176, 2009.

[15] A. Demiriz, K. P. Bennett and M. J. Embrechts, "Semi-supervised clustering

using genetic algorithms," in Artificial Neural Networks in Engineering , 1999.

[16] A. Singh, R.D. Nowak, and X. Zhu, "Unlabeled data: Now it helps, now it

 67

doesn't," NIPS, pp. 1513-1520, 2008.

[17] S. Staniford, J. A. Hoagland and J. M. McAlerney, "Practical Automated

Detection of Stealthy Portscans," Journal of Computer Security, pp. 105-136,

2002.

[18] J. Jung, V. Paxson, A. W. Berger and H. Balakrishnan, "Fast Portscan Detection

using Sequential Hypothesis Testing.," in Security and Privacy, 2004.

Proceedings. 2004 IEEE Symposium on, 2004.

[19] C. Muelder, K.-L. Ma and T. Bartoletti, "A Visualization Methodology for

Characterization of Network Scans," in IEEE Workshop on Visualization for

Computer Security, 2005.

[20] G. J. Simon, H. Xiong, E. Eilertson and V. Kumar, "Scan Detection: A Data

Mining Approach," in Proceedings of the Sixth SIAM International Conference

on Data Mining, SIAM, 2006.

[21] W. W. Cohen, "Fast Effective Rule Induction," Machine Learning Proceedings

of the Twelfth International Conference, 1995.

[22] I. Witten, and E. Frank, Data Mining: Practical Machine Learning Tools and

Techniques, 2nd ed., New York: Elsevier, 2005.

[23] T. Menzies, "Data Mining: Fall '06," 2006. [Online]. Available:

http://www.csee.wvu.edu/~timm/cs591o/old/Rules.html. [Accessed January

2014].

[24] D. Arthur and S. Vassilvitskii, "K-means++: The Advantages of Careful

Seeding," in Proceedings of the eighteenth annual ACM-SIAM symposium on

 68

Discrete algorithms, 2007.

[25] X. Zhu and A. B. Goldberg, Introduction to Semi-Supervised Learning,

Madison: Morgan and Claypool, 2009.

[26] X. Hu, M. Knysz, and K. Shin, "RB-Seeker: Auto-detection of Redirection

Botnets," NDSS, 2009.

[27] X. Zhu, ""Tutorial on Semi-Supervised Learning"," in Theory and Practice of

Computational Learning, Chicago, 2009.

[28] M. Morbitzer, "TCP Idle Scanning Using Network Printers".

[29] I. Kononenko and M. Kukar, Machine Learning and Data Mining: Introduction

to Principles and Algorithms, West Sussex: Horwood, 2007.

[30] T. G. Dietterich, "Approximate Statistical Tests for Comparing Supervised

Classification Learning Algorithms," Neural Computation, vol. 10, no. 7, pp.

1895-1923, 1998.

[31] C. T. Symons, Interviewee, Questions on Nonparametric Semi-Supervised

Learning for Network Intrusion Detection. [Interview]. 17 September 2013.

[32] C. Thomas, Application of Machine Learning for Intrusion Detection:

Challenges and Solutions, IEEE Transactions. Manuscript submitted for

publishing., 2013.

[33] J. McHugh, "Testing Intrusion Detection Systems: A Critique of the 1998 and

1999 DARPA Intrusion Detection System Evaluation as Performed by Lincoln

Laboratory," ACM Tranactions on Information System Security, vol. 3, no. 4, pp.

262-294, 2000.

 69

[34] T. Holz and F. Raynal, "Detecting Honeypots and Other Suspicious

Environments," in Workshop on Information Assurance and Security, West

Point, 2005.

[35] J. Quittek, S. Bryant, B. Claise, P. Aitken and J. Meyer, "Information Model for

IP Flow Information Export," IETF, RFC 5102, January 2008.

[36] B. Claise, "Specification of the IP Flow Information Export (IPFIX) Protocol,"

IEFT, RFC 5101, January 2008.

[37] T. Mitchell, Machine Learning, Boston: McGraw-Hill, 1997.

