Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Moisture Flux Estimates Derived from EOS Aqua Data in the Arctic

    Thumbnail
    View/Open
    Boisvert_umd_0117E_14655.pdf (21.72Mb)
    No. of downloads: 511

    Date
    2013
    Author
    Boisvert, Linette
    Advisor
    Carton, James
    Markus, Thorsten
    Metadata
    Show full item record
    Abstract
    The Arctic sea ice acts as a barrier between the ocean and atmosphere inhibiting the exchange of heat, momentum, and moisture. Recently, the ice pack has been decreasing in area and concentration. This diminished sea ice coverage could potentially allow for larger moisture fluxes that affect surface energy budgets, the occurrence of clouds, and the near-surface humidity and temperature. Currently, reanalyses are known to produce large errors and biases in the Arctic, warranting improved moisture flux algorithms and input data. Using the Monin-Obukhov similarity theory, with adjustments made to better suit the conditions of the Arctic, and observations from NASA's EOS Aqua satellite, specifically the AIRS and AMSR-E instruments, the daily moisture flux is calculated from 2003-2011. The moisture flux is studied for a series of North Water polynya events between 2003-2009 to test the accuracy of the Aqua products and our algorithm. Using in situ data we validated moisture flux results, finding an error of 20.3%, improving the moisture flux accuracy compared to other climate models. The moisture flux for the entire Arctic was studied to look for inter-annual variations and was compared to changes in the sea ice. Instead of an expected increase in the moisture flux due to a declining sea ice pack, there has been a 15% decrease. On a regional scale and based on their average moisture flux, the Chukchi/Beaufort Seas, Laptev/E. Siberian Seas, Canadian Archipelago and Central Arctic are increasing, between 2.1 and 4.8 %/yr. Increases are due to the changes in the ice concentration, which allows for the surface temperatures to increase substantially in the fall and winter months when the amount of moisture exchanged is highest. The Kara/Barents Seas, E. Greenland Sea and Baffin Bay are decreasing, between 0.53 and 9.2 %/yr. These regions have areas of open water year round, and their exchanges of moisture are due mostly to smaller differences in surface and 2 m specific humidities. The contribution of the sea ice zone to the total moisture flux (from the open ocean and sea ice zone) has increased by 3.6% because the amount of open water within the sea ice zone has increased by 4.3%.
    URI
    http://hdl.handle.net/1903/14867
    Collections
    • Atmospheric & Oceanic Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility