University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Group-Based Ring Oscillator Physical Unclonable Function

    Thumbnail
    View/Open
    Yin_umd_0117E_13140.pdf (1.657Mb)
    No. of downloads: 692

    Date
    2012
    Author
    Yin, Chi-En
    Advisor
    Qu, Gang
    Metadata
    Show full item record
    Abstract
    Silicon Physical Unclonable Function (PUF) is a physical structure of the chip which has functional characteristics that are hard to predict before fabrication but are expected to be unique after fabrication. This is caused by the random fabrication variations. The secret characteristics can only be extracted through physical measurement and will vanish immediately when the chip is powered down. PUF promises a securer means for cryptographic key generation and storage among many other security applications. However, there are still many practical challenges to cost effectively build secure and reliable PUF secrecy. This dissertation proposes new architectures for ring oscillator (RO) PUFs to answer these challenges. First, our temperature-aware cooperative (TAC) RO PUF can utilize certain ROs that were otherwise discarded due to their instability. Second, our novel group-based algorithm can generate secrecy higher than the theoretical upper bound of the conventional pairwise comparisons approach. Third, we build the first regression-based entropy distiller that can turn the PUF secrecy statistically random and robust, meeting the NIST standards. Fourth, we develop a unique Kendall syndrome coding (KSC) that makes the PUF secrecy error resilient against potential environmental fluctuations. Each of these methods can improve the hardware efficiency of the RO PUF implementation by 1.5X to 8X while improving the security and reliability of the PUF secrecy.
    URI
    http://hdl.handle.net/1903/12734
    Collections
    • Electrical & Computer Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility