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Silicon Physical Unclonable Function (PUF) is a physical structure of the chip

which has functional characteristics that are hard to predict before fabrication but

are expected to be unique after fabrication. This is caused by the random fabrica-

tion variations. The secret characteristics can only be extracted through physical

measurement and will vanish immediately when the chip is powered down. PUF

promises a securer means for cryptographic key generation and storage among many

other security applications. However, there are still many practical challenges to cost

effectively build secure and reliable PUF secrecy. This dissertation proposes new

architectures for ring oscillator (RO) PUFs to answer these challenges. First, our

temperature-aware cooperative (TAC) RO PUF can utilize certain ROs that were

otherwise discarded due to their instability. Second, our novel group-based algorithm

can generate secrecy higher than the theoretical upper bound of the conventional

pairwise comparisons approach. Third, we build the first regression-based entropy

distiller that can turn the PUF secrecy statistically random and robust, meeting



the NIST standards. Fourth, we develop a unique Kendall syndrome coding (KSC)

that makes the PUF secrecy error resilient against potential environmental fluctua-

tions. Each of these methods can improve the hardware efficiency of the RO PUF

implementation by 1.5X to 8X while improving the security and reliability of the

PUF secrecy.
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Chapter 1

Introduction

“He [the beast] also forced everyone, small and great, rich and poor, free and

slave, to receive a mark on his right hand or on his forehead, so that no one can buy

or sell unless he had the mark. (Revelation 13:16)”

In the era of cloud computing, numerous apps are at fingertips anytime anywhere.

But to have the peace of mind of using mission critical apps like online banking,

sensitive data such as credit card and bank account information, billing address,

and social security number must be in good hands. Before granting access to such

information, the cloud server has to know which client device, like the iPhone, it

talks to; likewise, the client device has to ensure from which source the information

comes from before it displays to the end user. Modern cryptography allows us to

do this by, for instance, signing and encrypting the information with a shared key

or a public-private key pair. Due to the importance and security concerns of these

cryptographic keys, they are often made very long, too long for a human being to

remember. An alternative is to store these keys in integrated circuits (ICs). When

the user wants to engage in a security-sensitive transaction like paying a bill, she

can prove her identity by entering her password to the device; once authorized,

the ICs inside the device will perform the requested functionality on her behalf.
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The importance of keeping the keys safe and security has long been recognized and

summarized in the Kerckhoffs’ principle: “The security of a cryptosystem must not

depend on keeping secret the crypto algorithms. The security depends only on

keeping secret the key (translated from La cryptographie militaire (1883)).”1

In the past decade, Silicon Physical Unclonable Function (PUF), which is a

physical structure of the chip which has functional characteristics that are hard to

predict before fabrication but are expected to be unique after fabrication, has been

developed as a securer means for cryptographic key generation and storage among

many other security applications. This dissertation proposes new architectures and

practical techniques to cost effectively build secure and reliable “PUF secret.”

1.1 Physical Attacks

One may think that the keys stored in the physical devices are safe. However,

it is still possible for an attacker to crack crypto keys out of physical devices. In

fact, not all hardware devices are designed to serve as a security safe for crypto

keys. Attackers may manipulate the supply voltage while repeatedly writing to the

security bit. Chances are that over-voltage may clear the check bit but keep rest

of the memory intact. Or with under-voltage, they can trigger irregular output

like all 0’s out of a random number generator. Attackers can also manipulate the

clock signal to skip certain instructions for security checks or inject faults to RAM

cells by exposing them to a magnified flashlight. Ultimately, the adversary can de-

1another translation: “A cryptosystem should be secure even if everything about the system,

except the key, is public knowledge. (1883)”
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package the IC, remove the passivation layer, drill into the inner layers of the circuit

if necessary, so as to probe directly on signal lines with the help from advanced

semiconductor mechineries such as Scanning Electron Microscope (SEM) and/or

Focused Ion Beam (FIB).

To sustain physical attacks, modern crypto modules are often equipped with

intricate security measures such as metallic mesh shields to detect physical drilling,

capacitive sensors to ensure the passivation layer is intact, optical sensors to detect

the existence of persistent opaque coating and other sensors to guarantee the regu-

larity of power supply, clock frequency and ambient temperature, etc. Devices can

self-destruct the key whenever it is assumed to be in danger. These hardened devices

are called tamper-resistant devices, examples of which are ubiquitous, such as chip

cards for banking, metro, cellphone, building access, just to name a few. More so-

phisticated examples include the Trusted Platform Modules (TPM) for modern PCs

and servers, and Hardware Security Modules (HSM) at the backend datacenter to

handle billions of transactions. Nevertheless, in the tussle on physical security, there

is no definitive winner between the attacker and defender [3, 2, 34, 4, 45, 46, 28].

Next we will introduce Physical Unclonable Function (PUF) as a novel security

primitive for safekeeping of our crypto keys.

1.2 Physical Unclonable Functions

Even though the notion of tamper-proof appears theoretically unattainable,

one may not be too concerned about storing her key in a tamper-resistant device
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as long as the expected cost to crack a key out of the device is exorbitantly high

enough. This is how we have intricate security devices and expensive certification

processes such as FIPS, VISA and Common Criteria to establish the trust from the

society. For security researchers, however, the war never stops and we have to keep

looking out for new security measures before successful attacks ever come close. As

we see, it requires system power to enforce all sorts of security measures and to erase

the key immediately whenever necessary. But for devices without persistent power

like smartcards, they store keys in non-volatile memory when the power goes away.

Since most security measures are inactive when the power is off, tamper-resistant

devices without persistent power are generally considered less secure than those

with persistent power. This motivated the study of Physical Unclonable Function

(PUF) as a new security primitive, which, as opposed to storing keys in non-volatile

memory, stores keys in intrinsic electrical disorder such as asymmetry of two wires

of identical design or mismatch in the threshold voltages of two identical transistors

caused by uncontrollable fabrication variations like the focus shift of photolithogra-

phy, the gradient of thermal annealing, random dopant profiles, and so on [21, 6, 12].

To state it formally, PUF is a function that is embodied in a physical structure and

is easy to evaluate but hard to predict and can be regarded as the fingerprint or DNA

of the IC. The underlying security assumption is that it is practically infeasible to

physically tamper a PUF without damaging its nano-scale disorders, i.e., the keys.

As such, PUF promises a higher level of security especially when keys cannot be

protected with persistent power.
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Figure 1.1: The physical structure of a Arbiter PUF [47]

1.2.1 Physical Structures

Since its inception in 2001 [36], PUF has been a very active research topic and

various physical structures have been discovered over the past decade, including

Optical PUFs [36, 38], Arbiter PUFs [8, 22, 19, 23, 40, 32, 31], Ring Oscillator (RO)

PUFs [8, 47, 32, 56, 31], Coating PUFs [9, 37, 10], SRAM PUFs [24, 25, 17, 39],

Butterfly PUFs [41], RST PUFs [1], and so on. For silicon PUFs, the most notable

are Arbiter PUFs, RO PUFs and SRAM PUFs and we will introduce how each

operates.

1.2.1.1 Arbiter PUFs

Arbiter PUF is the first silicon PUF realized in electrical circuitry. Figure

1.1 shows its physical architecture with 128 stages of multiplexers and one D flip-

flop at the end. The 128-bit challenges X [0 . . . 127] configures the 128 pairs of

multiplexers that sets up two signal lines of the same length from the same source,

one reaching the D input of the flip-flop in the end and the other reaching the CLK
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Figure 1.2: The physical structure of a RO PUF [47]

input. Due to uncontrollable fabrication variations, when logic one is asserted at the

very beginning of the signal lines, one of the flip-flop input will be asserted faster

than the other, yielding the output Q ‘1’ if the D is asserted faster than the CLK,

otherwise ‘0’ if the other way around. To generate a reliable output, the timing

difference between the two assertions has to satisfy the setup time and hold time

of the flip flip. Arbiter PUF requires symmetric routing and therefore suitable for

ASIC design; due to its small hardware footprint and its large number of challenge

and response pairs (CRPs), Arbiter PUF has found a great application in low-cost

authentication for RFIDs [40]. However, without due protection [7], it has to shown

that Arbiter PUF is susceptible to modelling attacks [49].

1.2.1.2 Ring Oscillator PUFs

Another physical structure to realize the notion of PUF is through comparing

the frequency readings of a pair of ring oscillators, see Figure 1.2. Similar to Arbiter

PUFs, it is a race between two signals but the competition magnifies the speed/delay
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difference by feedback loops. The winner goes to the one recording more circles in

the counter as the referee stops the watch. The binary output encodes the result

of the match, say, ‘1’ when the top RO wins, else ‘0’. For a N -stage RO loop,

the total propagation delay dT can be modelled as the sum of the delays of each

stage (an inverter or a buffer); it is typically assumed that each stage has the same

nominal delay A and the stochastic fabrication variation for each stage is normally

distributed with zero mean and variance σ2. Thus, in [44], the total delay and the

relative standard deviation of the stochastic variation are expressed as

dT = NA+Nσ2 (1.1)

√
Nσ

NA
=

1√
N

σ

A
(1.2)

From Eqn. 1.2, we see it is more desirable for RO PUFs to have a smaller

number of oscillator stages. Compared with Arbiter PUF, RO PUF is easier to

implement on FPGAs and more reliable but slower, larger and consume more power

[47]. Recently, researchers also proposed a hybrid architecture to incorporate the

merits of both [56].

1.2.1.3 SRAM PUFs

SRAM PUFs emerged later than the previous two. They harvest the initial

start-up values of SRAM cells to form their intrinsic secrecy. As shown in Figure

1.3, each SRAM cell consists of 6 transistors, where (M1, M2) and (M3, M4) are two
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Figure 1.3: The physical structure of a SRAM PUF

coupled inverters to reinforce the value in storage. To access (read and write) the

value, WL shorts Q and BL as well as Q and BL through M5 and M6. For SRAM

PUFs, only the read operation is involved. Compared with RO PUFs, SRAM PUFs

are faster, consume less power yet require a stronger error correcting scheme to

produce reliable secrecy. Related works can be found in [18, 25, 24, 17, 39].

1.2.2 The Typical Workflow of a Weak RO PUF

Some researchers further classify PUFs as ‘Strong’ and ‘Weak’, though the

words Strong and Weak are irrelevant to the security strength [49] but only refer to

the difference in the number of challenge-response pairs (CRPs) a PUF can gener-

ate. In fact, the distinction can be insignificant since a large number of CRPs can
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Figure 1.4: The typical workflow of a Weak PUF

be generated by a crypto function keyed with a ‘Weak’ PUF. For simplicity and

clarity, however, we use ‘Weak’ PUFs as the context of our discussion, though our

methodologies are expected to work for ‘Strong’ PUFs as well with certain modifi-

cations, e.g., an Arbiter and RO hybrid. Next, as outlined in Figure 1.4, we walk

through the steps typically involved in a ‘Weak’ RO PUF.

1.2.2.1 Fabrication Variation Extraction

The first task is to measure the unique characteristic determined by the un-

controllable fabrication process. For a typical RO PUF, this step corresponds to the

frequency characterization of a 2-dimension RO array as illustrated in Figure 4.1,

where 512 ROs are placed as a 16 columns by 32 rows grid. One of the dataset we

use derives such characterizations from 125 FPGA devices [31].

1.2.2.2 Secrecy Selection

The goal of the step is to select secure and reliable information out of the

frequency profile measured in the previous step. While the maximal extractable
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Figure 1.5: 512 ROs placed in 16 columns by 32 rows, where zx,y denotes the running

frequency of the RO at site ROx,y

entropy out of n ROs is log2 n! when pairwise comparisons are assumed [47], the

usable entropy is less than the bound when we have stringent constraints on output

randomness and resilience against ambient variations. For instance, the most promi-

nent reliability issue of RO PUFs is that the running frequency of ROs decreases

as the ambient temperature increases but the decreasing rate varies from RO cell

to RO cell. As Figure 1.6 (a) illustrates, the RO marked blue runs faster than the

RO marked green at low temperature but the relation flips at high temperature.

To avoid such a cross-over, we may select those pairs with a significant frequency

gap like the case of Figure 1.6 (b). The most notable secrecy selection schemes are

the classic 1-out-of-8 coding [47], which selects the most reliable pair out of 8 pairs,

its successor index-based syndrome (IBS) coding [56] and the chain-like neighbor

coding [32, 31, 20].

10



Figure 1.6: The typical frequency-temperature relation of two ROs: (a) the result

of the frequency comparison of two ROs may flip; (b) shows the case where a secret

bit can be extracted reliably when the frequency gap is substantial [47].

1.2.2.3 Error Correction

In real-life deployment, environmental conditions can vary as large as 25%

[56], whereas the runtime error rate target is as low as 10−6. To attain such a low

error rate, solely relying on error reduction schemes in the previous step may not be

efficient. Alternatively, one may also apply error correcting codes (ECC) to contain

random errors. The first ECC considered in PUF literature is 2D Hamming code [8]

but later on researchers acknowledged the the noisy nature of PUFs and considered

stronger ECCs such as BCH codes [47, 24]. The basic operation is the following: To

enroll the output from the previous step as a secret, it is fed to an ECC encoder as

information bits to generate parity bits as public helper data, which is then stored

publicly in non-volatile memory and will be used to facilitate secrecy regeneration, or

called secrecy recovery or secrecy reconciliation. To regenerate the secrecy enrolled

in the first place, we perform ECC decoding with the stored public helper data and
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new fuzzy input from the previous secrecy selection step. As long as the new fuzzy

input is close enough to the secrecy (input) enrolled in the first place, the enrolled

secrecy can be recovered correctly. While SRAM PUFs made most of their advance

in finding the most efficient ECC implementation, RO PUFs had their breakthrough

in devising their syndrome coding schemes, a technique to represent the secrecy in

a more error-resilient form. It has been reported that the error rate of a RO PUF

can be lower than 1 ppm (part per million) using IBS syndrome coding followed by

a 3× repetition code and a BCH(63) code even under severe environmental changes

(-55◦C, 1.1V to 125◦C, 0.9V) [56].

1.2.2.4 Secrecy Amplification

Since real world entropy sources always demonstrate some ‘imperfection’ in

forms of bias and correlation, further entropy distillation, or often called secrecy

amplification in PUF-related works, is necessary to make the output appear to be

in uniform distribution. Uniform distribution is regarded ‘ideal’ for it yields the

maximal entropy of a sequence of random variables. Given a non-uniform bitstring

containing certain min-entropy, a universal hash function (UHF) can transform it

into another bitstring in uniform distribution but of shorter length. Roughly speak-

ing, Fuzzy Extractor is a security primitive consisting of the functionality of error

correction, e.g. ECC, and the functionality of secrecy amplification, e.g., UHF [53].
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1.2.2.5 Tests for Randomness and Reliability

The security of a random number generator (RNG) can be judged by the

statistical characteristic of random sequences it produces. The NIST test suite [5]

is designed to serve this purpose and is widely regarded as the standard for the

security industry. Reliability, on the other hand, can be gauged by subjecting PUF

devices to extreme operating conditions in terms of temperature and supply voltage.

In general, the target failure rate is below 1 ppm [56].

1.2.3 Statement of Problems

This dissertation will improve upon the typical workflow we have just de-

scribed. In particular, we will provide original methodologies to better address the

issues of reliability, security and hardware efficiency. Although the three issues are

sort of related, for clarity we state the problems separately and point to our solutions

in later chapters.

1.2.3.1 On Hardware Efficiency

To deal with the crossover issue in Figure 1.6 (a), 1-out-of-8 Coding [47] and

index-based syndrome (IBS) Coding [56] aim at generating one reliable bit out of

8 hardware-wired RO pairs as shown in Figure 1.7. Only the pair with the largest

frequency difference will be selected for use and the rest will be discarded. There is

good chance that the selected pair will yield a reliable result in terms of frequency

comparison across all environmental conditions, see Figure 1.6 (b). The information
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about which pair is selected can be disclosed to the public without hindering the

security, assuming the probability of one RO runs faster than the other is 1/2. As

we see, the enhancement on reliability is at the cost of hardware efficiency since the

scheme in the best case can only generate n/8 bits given n pairs of ROs.

Another popular coding scheme is the Chain-Like Neighbor Coding [32], which

pairs a RO with its neighbors like a chain, i.e., (RO1, RO2), (RO2, RO3). . . (ROn−1, ROn).

For reconfigurable devices like FPGA, Chain-Like Neighbor Coding may search

through different combinations of look-up tables (LUTs) and select the most re-

liable configuration for secret regeneration. Given n ROs, the best case scenario

improves from n/16 bits using the 1-out-of-8 Coding to n − 1 bits; however, it is

still falls short of the theoretical upper bound log2 n!. To further improve on hard-

ware efficiency, we provides two original designs. Firstly, Chapter 2 describes a new

Temperature-Aware Cooperative (TAC) RO PUF that takes advantage of the linear

frequency response of a RO as the temperature varies. Secondly, in Chapter 3, the

proposed Longest Increasing Subsequence Algorithm (LISA) approaches the log2 n!

theoretical bound by forming groups made of two or more ROs.

1.2.3.2 On Security

While main objective of PUFs is to produce an unpredictable but reliable

bitstring from uncontrollable fabrication variations. However, the entropy source

of natural phenomena may also contain certain systematic bias that forbids direct

cryptographic uses. As Figure 4.2 shows, the roughness of the surface (pure ran-
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Figure 1.7: The hardware structure of the 1-out-of-8 RO PUF [47]

dom variations) is superimposed upon a spatial trend (systematic variations). The

systematic component can significantly reduce the min-entropy of the extracted se-

crecy such that one may not be able to generate 1-bit worth secrecy out of one

RO pair. To see this, in Figure 4.2, if one generates bit A as ‘0’ if A1 < A2,

else ‘1’, bit B ‘0’ if B1 < B2, else ‘1’, the strong spatial correlation would render

p(A = B) >> p(A 6= B). In light of the security threat, the Chain-Like Neigh-

bor Pairing suggests that 1) place ROs as close as possible and 2) pair only ROs

located adjacent to each other, such that the systematic factor would cancel out

in comparison [32]. Unfortunately, the solution causes another security problem in

the chain, rendering its secret bits not independent and identically distributed (IID)

uniform. These observations lead to the development of our solution in Chapter 4:

the Regression-Based Entropy Distiller.
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Figure 1.8: The across-die frequency topology of a 2D RO array. The roughness of

the surface represents the random variations while the slope represents the system-

atic [44]

1.2.4 On Reliability

For a (n, k, t) linear error correcting code (ECC), the more the correctable

errors t, the more the min-entropy loss n− k, where k is the number of information

bits in a n-bit code block. In other words, the increase in ECC error correction

capability will either increase the complexity of ECC by using a larger code block

n or increase the min-entropy loss t per n-bit block or both. Instead of devising the

most hardware efficient ECC, we develop a more error-resistant syndrome coding

scheme based on Kendall tau distance to further reduce the hardware cost of our

group-based RO PUF. When various BCH codes are assumed, the proposed Kendall

Syndrome Coding (KSC) generally can achieve a lower error rate when compared
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with a more intuitive approach based on a compact codebook, see Chapter 5.

1.3 Contribution

This dissertation contributes several original methodologies to improve RO

PUFs in terms of security, reliability and hardware efficiency. First, we devise the

temperature-aware cooperative (TAC) RO PUF to recycle the ROs that were dis-

carded previously due to crossover’s. Second, we design the algorithmic solver LISA

to harvest the maximal entropy extractable in comparison-based RO PUFs. Third,

we demonstrate certain weaknesses in the statistical characteristics of existing RO

PUFs and provide a cure through the proposed regression-based entropy distiller.

Further, we identify the coding inefficiency if one were to encode the results of com-

parisons of RO frequencies compactly; instead, we propose a more error-resistant

coding scheme based on Kendall tau distance to reduce the complexity of the error

correcting code (ECC) in the company. Lastly, we put all together and implemented

the proposed group-based RO PUF as an embedded system on modern FPGAs; ex-

tensive experiments have also been conducted and detailed test results are reported

to support our claims.

1.4 Summary

In this chapter we introduced the background of hardware security and how

PUFs can provide a higher level of security when applied to current tamper-resistant

devices. We also mentioned three most remarkable PUF constructions that can be
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realized on integrated circuitry and walked through the typical steps in order to

produce secure and reliable PUF output. Based on that, we stated the problems

that will be addressed by the remaining of the dissertation, which is thus organized:

Chapter 2 describes a method that recycles those unusable ring oscillators to enhance

the hardware efficiency; Chapter 3 presents LISA, an algorithmic approach that

derives the secrecy from groups of ring oscillators. In such a group-based setting,

Chapter 4 tackles the security problems caused by spatial correlations. Chapter

5 further reduces the complexity of ECC with Kendall syndrome coding (KSC);

moreover, we put together the concepts in previous chapters to construct the grand

design of our group-based RO PUF. Finally, we conclude in Chapter 6.

18



Chapter 2

Temperature-Aware Cooperative (TAC) RO PUF

Previously, we mentioned that RO PUFs can generate a reliable unclonable

secret through comparing two amplified delays determined by uncontrollable fabri-

cation variations. Given RO1 and RO2, we can define that the pair generates bit ‘1’

if RO1 is faster than RO2, otherwise ‘0’. We also said that not all pairs of ROs can

generate one reliable unclonable bit as the ambient condition changes. In particular,

the temperature has a significant impact on frequency such that one RO faster at

low temperature may become slower than its peer at high temperature. Previous

wisdom suggested to pick only those pairs with frequency differences large enough

to avoid frequency crossovers throughout the temperature range of concern. As we

see, the solution has a high hardware price tag on it. Rather than trading hard-

ware efficiency for reliability, this chapter describes a more cost-effective approach.

Through cooperation, we can generate a reliable bit from two pairs of ROs previ-

ously discarded for lack of unreliable. Empirical results showed that the proposed

mechanism can improve the hardware efficiency by 80% when compared with the

classic approach.
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2.1 Preliminary

2.1.1 The Impact of Temperature on the Frequency of ROs

Literature [13] showed that every 15◦C temperature increase will roughly in-

crease the delay of a RO by 10%–15%. As such, temperature is critical factor that

affects the reliability of RO PUFs. Figure 2.1 shows the experimental results of

three RO-based temperature sensors, each of them centered at a different frequency

by being assigned with a different type of FPGA interconnect. As we see, all ROs

run faster in low temperature and slow down in high temperature. An important

observation is that the frequency of ROs respond linearly as temperature changes.

The linear dynamic between the running frequency of ROs and their operating tem-

perature has also been reported in other literature like [42]. For RO PUFs, as long as

two running frequencies never cross each other throughout the temperature range of

concern, we can use the pair to generate a reliable bit with a frequency comparator.

But if the speed of one RO drops much faster than its peer like s1 and s2 in Figure

2.1, a crossover may occur and result in an unreliable secret bit.

2.1.2 Temperature-Aware Bit Generation Rules

Due to random measurement errors, when two running speeds of a RO pair

get very close, say, less than certain threshold fth, we may not be able to derive

consistent results regarding which RO runs faster than the other. The unreliable

region, or undecided temperature gap, is denoted by [klow, khigh]. When the tem-

perature at the time of measurement falls outside the region of [klow, khigh], we
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Figure 2.1: The linear relation on frequency vs. temperature for three ROs [13]

may generate a reliable bit by obeying the temperature-aware rules R1 and R2 as

below, assuming the chip can tell the temperature at the time of measurement via

a built-in temperature sensor. In case the temperature at the time of measurement

falls into the the region [klow, khigh] of certain pair, say, RO1 and RO2, the pair

can not generate a reliable bit; when this happens, we turn to some other pair, say,

RO3 and RO4, to supply the secret bit that is supposed to be generated by RO1

and RO2. In other words, we use two or more pairs to work out one reliable bit in

a cooperative way.

• R1. If the operating temperature k◦C is lower than klow, i.e., k◦C< klow, the

bit generated is ‘0’ if RO1 is faster than RO2, otherwise ‘1’.

• R2. If the operating temperature k◦C is higher than khigh, i.e., khigh < k◦C,
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the bit generated is ‘0’ if RO1 is slower than RO2, otherwise ‘1’.

2.2 System Overview

• Deployment In the logic design phase, suppose there are n pairs of ROs and

each RO is directly connected to a counter; each pair is connected to a software

or hardware comparator. Manual placement and route is performed when

necessary to ensure the symmetry of the RO pair such that the uncontrollable

fabrication variations dominate the running speed of RO pairs.

• Measurement In the wafer testing phase, we build the linear frequency-

temperature model for all ROs through the readings in the frequency counters

sampled at two temperature points. For better resolution, more samples can

be acquired as needed. As modern processors can heat themselves up quickly,

acquiring frequency samples at two different temperature points is not ex-

pected to introduce notable delay to the testing process.

• Enrollment In the wafer testing phase, we also classify each RO pair, say,

RO1 and RO2, as:

– A good pair: If RO1 (or RO2) is sufficiently faster than RO2 (or RO1)

throughout the entire range of the concerned operating temperature, we

define this to be a bit ‘1’ (or ‘0’), respectively. This is a reliable bit.

– A bad pair: If the delay of RO1 and RO2 are not sufficiently apart to

define a reliable bit at anywhere in temperature of concern, this pair of
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RO is totally unusable and will be disconnected from the power source

to save power.

– A contributing pair: If the delay difference of RO1 and RO2 is large

enough to define a bit only in a certain interval of the operating tempera-

ture, we use the bit generation rules R1 and R2 to generate a reliable bit

in this reliable interval and rely on cooperation with other RO pairs to

generate the same bit when the temperature is beyond. Although coop-

eration involving multiple good, bad, and contributing pairs are possible,

for simplicity our discussion only considers the case between two con-

tributing pairs.

• Secrecy Generation Still in the wafer testing phase, assuming we have a

number g of good pairs, b bad pairs and c contributing pairs, where g+b+c = n,

for those good pairs, we can derive g reliable bits bi where i = 0, 1, . . . , g − 1;

for bad pairs, no bit can be defined; for contributing pairs, we can come up

with at best c/2 bits by forming pairwise cooperation among the contributing

pairs. The secret bits can be treated as a cryptographic key per se or as a seed

to a random number generator (RNG) for future key generation. To further

enhance on reliability and secrecy, error correcting codes (ECC) or a Fuzzy

Extractor can be applied accordingly [47, 25, 41].
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2.2.1 An Example of Temperature-Aware Cooperation

While contributing pairs cannot generate a reliable bit by itself, they can work

together to produce reliable bits. As the example illustrated in Figure 2.2, we have 6

pairs of ROs and each has its own undecided temperature gap [klow, khigh], where the

delay difference of that pair is not enough to tell consistently which RO is faster than

the other. The operating temperature we are concerned is between kmin and kmax. If

the temperature at the time of measurement is k1, since k1 is lower than all the klow’s,

we can consistently observe the speed difference of each pair and derive a 6-bitstring

‘010001’ by applying the temperature-aware bit generation rule R1. Similarly, when

the temperature at the time of measurement is k2, since k2 does not fall into any

undecided gap [klow, khigh], we can obtain the same bitstring by applying R1 to Pair

4 and R2 to the rest 5 pairs. But if the temperature at the time of measurement is

k, the bitstring we get would be ‘0?00?1’, where two ?’s indicate Pair 2 and Pair 5

cannot make a reliable decision because the operating temperature k falls into their

undecided temperature gap. Note that since the undecided temperature gap of Pair

2 does not overlap with the gap of Pair 4, we know the operating temperature can

never fall into both undecided temperature gaps at the same time and therefore,

the two pairs can work together to generate a reliable bit throughout the entire

temperature range we are concerned. That is, when the temperature at the time

of measurement falls into Pair 2’s undecided temperature gap, we know that Pair 4

can produce the reliable bit ‘1’ on behalf of Pair 2 after complementing its output

‘0’. Likewise, we can pair up Pair 1 and 6, Pair 3 and 5 for cooperation. Table
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Figure 2.2: Contributing pairs in cooperation to generate reliable bits: V: 1st RO

in the pair is sufficiently faster than 2nd; X: 2nd RO in the pair is sufficiently faster

than 1st; ?: none of the RO is sufficiently faster than the other.

2.2.1 lists the information stored in the non-volatile memory that enables reliable

regeneration of the 6-bit secret ‘010001’ as long as the operating temperature is

within the predefined range kmin and kmax. The disclose of the helper data does not

reveal the hidden secret ‘010001’ as long as the probability for one RO to run faster

than its peer is 1/2.

2.3 Discussion

2.3.1 The Undecided Temperature Gap

Now let’s quantitatively define the term ‘sufficiently large’ we have used so far

in describing the delay difference between two ROs of a pair. Consider RO1 and RO2
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Pair Number Gap Low Gap High Backup Number Complement

1 klow1 khigh1 6 Yes

2 klow2 khigh2 4 Yes

3 klow3 khigh3 5 No

4 klow4 khigh4 2 Yes

5 klow5 khigh5 3 No

6 klow6 khigh6 1 Yes

Table 2.1: Information stored for contributing pairs in Figure 2.2

and their counter readings N1 and N2. The two ROs start and stop simultaneously,

controlled by a reference counter with reading 0 (start) to N (stop). We say the delay

difference of RO1 and RO2 is sufficiently large if and only if |N1−N2| ≥ δN , where

δ is a reliability threshold factor, a predefined constant. Clearly, the larger the δ, the

more reliable the extracted bit. Due to the delay-temperature linearity of ROs, we

write the counter readings of RO1, RO2 and the reference RO as a1k+ b1, a2k+ b2,

and ak + b, respectively. With (a1 − a2)k + (b1 − b2) = ±δN and two boundary

conditions kmin ≤ klow and khigh ≤ kmax, we can solve for klow and khigh of the given

RO pair.

2.3.2 Security of the Generated Bitstring

From Table 2.2.1, one may argue that the bits generated by the proposed TAC

RO PUF are reliable but are not secure. For example, suppose the adversary reveals

the table information stored in the non-volatile memory, and then he will learn that

the bits generated by Pair 1 and Pair 6 are complement. This does release certain

locality information and the security concern can be addressed, but not completely
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resolved, with help from good pairs. For instance, assuming that the first 6 bits gen-

erated by good pairs are ‘110101’, to ensure the six contributing pairs can generate

a reliable bitstring ‘010001’, we first generate their bit-wise exclusive-or, which is

‘100100’ in this case and then for the i-th bit bi in ‘100100’, we find a contributing

pair that satisfies the following two conditions: (1) the pair’s undecided tempera-

ture gap does not overlap with the i-th pair; (2) the pair produces a reliable bit

that equals to bi. Consequently, we can replace the last two columns in Table 2.2.1

with the indices to the corresponding peer pairs.1 In our case, the last column after

replacement can be Pair 6, Pair 4, Pair 5, Pair 2, Pair 4, and Pair 5, corresponding

to the exclusive-or result ‘100100’. Now we show how to generate reliable bits from

contributing pairs after the hardening. Recall that in Figure 2.2, at temperature k,

we can only get ‘0?00?1’. For the undecided Pair 2 and Pair 5, the modified table

indicates that we should look at the outputs of Pair 4, which is a bit ‘0’. Now we

extract bits 2 and 5, ‘1’ and ‘0’ respectively from the bitstring ‘110101. . . ’ generated

by the good pairs. A new table look-up tells us to exclusive-or both the bits with

the output ‘0’ from Pair 4, yielding bits ‘1’ and ‘0’ respectively to replace the two

?’s and the enrolled 6-bit secret ‘010001’. Note that in this modified version, the

adversary only learns from the table which two contributing pairs are cooperating

but does not gain explicit information on whether they generate the same bit value

or its complement. Nevertheless, this security enhancement does not help when the

1If there is no such contributing pair, we may simply discard the singleton or pair it with a

good pair; however, it must be done with caution because the increase of correlation reduces the

strength of security.
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adversary uses brute force to search for the key. After accounting for the 3-bit en-

tropy loss in Table 2.2.1, the min-entropy of the 6-bit secret ‘010001’ is 3. Moreover,

there is no guarantee on the output of TAC RO PUF to be in uniform distribution;

interested readers can jump to Chapter 4 for our treatment.

2.4 Validation

2.4.1 Experiment Setup

Our experiment was conducted on 9 Xilinx XC4010XL FPGA boards. For each

FPGA, we implemented 32 target ROs on each to simulate the 1-out-of-8 scheme

and our 1-out-of-2 temperature-aware cooperation scheme. To double the secrecy

generation power, here the 1-out-of-k selects the most reliable pair out of k ROs

instead of k pairs of ROs.

Our design tool is Xilinx Foundation 2.1i. In order to gain full control on the

number and the placement of logic gates, the design is conducted in schematics.

The ROM16×1 in the design library is the primitive logic block in our design. By

setting up the initial value of ROM16×1, primitive logic gates such as NAND can

be realized as shown in Figure 2.3. The physical location of each ROM16×1 can be

specified in the user constraint file, ∗.ucf that guides the design tool in placement

and route. As indicated in Figure 2.4, the 32 target ROs are placed in two rows and

labeled sequentially. We are able to create 4 disjoint units: (1–8), (9–16), (17–24),

(25–32) for the 1-out-of-8 scheme and 16 disjoint pairs for our 1-out-of-2 scheme.

The default routes determined by the tool for all the ROs and counters are not
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Figure 2.3: Schematics: The ROs (above row) and ripple counters (center) are

realized through LUTs and flip-flops, primitive elements on Xilinx FPGAs.

symmetric; however, through manual routing the asymmetry can be fixed in Xilinx

FPGA Editor as shows Figure 2.5.

The compiled design is uploaded to Xilinx XC4010XL via a parallel port.

Each measurement is triggered by a start signal sent from the PC software to the

board and the on-board LED indicates the relative frequencies recorded in the target

counter and the reference counter. For each target RO, 10 measurements are taken

at 0◦C and the average is used as the frequency. The same methodology is applied

to obtain the frequency of each RO at 100◦C. The temperature is modulated by

placing the boards in the freezer or the oven until the thermal meter attached on
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Figure 2.4: Symmetric placement: The ROs are placed symmetrically in 32 columns

divided in two rows.

the FPGA indicates that the target temperature is reached.2 For our 9 FPGAs,

each with 32 ROs, we collected two sets of 288 frequencies, one at 0◦C and one at

100◦C. Based on these, we derived the linear delay-temperature model for each of

the 288 ROs.

Considering the total number of reliable bits generated by the two schemes

are different, we use the number of reliable bits per NAND gate to compare the

2Since the sensor is external to the ICs, we do not rule out the possibility that there are minor

differences in temperature among the ROs across the chip. In later chapters when we will conduct

our experiment on the latest FPGAs where we can derive temperature readings from on-chip

sensors for better accuracy.
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Logic Element Cost in number of NAND gates

A. 5-stage RO 5

B. 8-to-1 multiplexer 21

C. 7-stage ripple counter 49

Table 2.2: Hardware cost of the logic elements in the design

hardware cost of the two schemes.3 Table 2.2 breaks down the cost for each hardware

component.4 To conduct a fair comparison between the two schemes, the same delay

constraint must be specified, which means there is no sharing of MUXes among

reliable bits in both schemes, otherwise all measurements would then have to be

taken sequentially. To accommodate the maximum frequency difference between

the reference and target ROs without overflow, the counter size at least has to be 7

stages.

Consequently, the total cost to implement 144 pairs of a 1-out-of-2 TAC RO

PUF and 36 units of a 1-out-of-8 RO PUF is 288× (5 + 49) = 15552 and 36× (8×

5 + 2× 21 + 2× 49) = 6480, respectively. Note that since the calculation does not

take into account like the cost of the non-volatile memory to store helper data, the

gain can be smaller.

3Although (look-up table) LUT is a handy high-level logic unit on FPGA, we choose NAND as

the unit for we envision ASIC implementations in the future.
4No hardware comparator is assumed as we do it in software.
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2.4.2 Experimental Results

Figure 2.6 shows the number of good pairs, bad pairs and contributing pairs

we discovered from the 144 RO pairs in the 1-out-of-2 scheme. We can see a clear

trend that as δ increases, that is, raising the bar to qualifying a good pair, we see the

number of good pairs decreases and the number of bad pairs increases. Searching

all combinations, Figure 2.7 shows the number of reliable bits that can be generated

from the contributing pairs. We see the number of reliable bits generated from

contributing pairs is less than c/2 for perfect cooperation seldom exists. In total,

the number of extracted secret bits is the sum of the number of good cells plus the

number of the reliable contributing bits. Figure 2.8 draws the comparison between

the secrecy generation power of two schemes. As it shows, for a large δ, that is, for

a high requirement on reliability, our TAC RO PUF can be 1.8× more hardware

efficient than the conventional 1-out-of-8 approach.

2.5 Summary

This chapter describe a new mechanism to improve the hardware utilization

of RO PUFs. By exploiting the linearity of ROs with respect to their speed versus

temperature and forming cooperation among RO pairs, we can utilize those pairs

previously deemed unreliable and discarded. Our empirical data and cost analysis

suggest 80% hardware savings from the new design. Having that said, the maximal

entropy that can be extracted from a TAC RO PUF is still far less than the theo-

retical bound log2 n!, where n is the total number of ROs. In the next chapter, we
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will continue to improve the hardware efficiency and achieve the bound through an

algorithmic solution.
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Figure 2.5: Symmetric layout: The symmetry of two target ROs placed at two CLB

columns C12 and C14 is crafted manually in Xilinx FPGA Editor.
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Figure 2.6: Cell classification vs. reliability threshold: Data are collected from

144 pairs generated by our 1-out-of-2 scheme, number of cells identified in each

classification.

Figure 2.7: Cell cooperation vs. reliability threshold: It shows the number of reliable

bits (left axis) generated by the contributing pairs (right axis) as δ (x-axis) changes.
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Figure 2.8: Cost performance vs. reliability threshold: performance gain from our

1-out-of-2 scheme compared with the 1-out-of-8 benchmark.
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Chapter 3

LISA: Longest Increasing Subsequence Algorithm

In the previous chapter, we discussed how to improve the secrecy generation

power of a RO PUF from n/8 to n/2 given n ROs. In this chapter, we will introduce

LISA to further improve the hardware utilization, aiming for the theoretical bound

log2 n!. We will analyze the performance of LISA based on a hybrid architecture

and formulate its cost and delay metrics. Meanwhile, RO PUF designers can use

a hybrid coefficient h to quickly determine the optimal hardware configuration. As

with the TAC RO PUF, our claims are validated on FPGAs.

3.1 Maximal Entropy of a Comparison-based RO PUF

As we know, RO PUFs can generate one secret bit out of a pair of ROs through

a simple comparison of two frequencies. Given n ROs, the best case for a TAC RO

PUF is that all the n/2 pairs are good and thus produce n/2 reliable bits. However,

what is the maximal number of secret bits one can generate from a RO PUF by

frequency comparison? Say we have 3 ROs A, B, and C, can we extract 3-bit worth

entropy from comparing frequencies of {A,B}, {B,C}, and {A,C}? Let us denote

the three bits as bAB, bBC , bAC and bxy is ‘1’ if RO x is faster than y, otherwise

‘0’. The answer is negative due to the existence of logic dependency. To illustrate,

the three bits must satisfy one of the following 6 Boolean equations listed in Table
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bAB = bAC · bBC bBC = bAB · bAC bAC = bAB · bBC

bAB = bBC · bAC bBC = bAC · bAB bAC = bBC · bAB

Table 3.1: 6 Boolean equations expressed in terms bAB, bBC and bAC

3.1, where operators · and are the logic AND and NOT, respectively. This

means that the value of one bit can always be deduced from the other two. Take

the first Boolean equation bAB = bAC · bBC for example: It means if A is faster

than C (bAC = 1) and B is slower than C (bBC = 0), then A must be faster than

B (bAB = 1). In other words, the outcomes of bAB, bBC , bAC = 0,0,1 and 1,1,0 are

impossible to occur. As these three bits cannot be assigned values independently,

the maximal entropy of this case is actually less than 3.

To have another example: one may try to generate O(n2) independent bits by

dividing the n ROs into two groups, say, left and right and each of size n/2. By

pairing up one from each group and defining the outcome as ‘0’ if the left faster

than the right, otherwise ‘1’, one may generate (n/2)2 bits. It seems that no bit

can be deducted from other pairs so that one may conclude that the (n/2)2 bits are

independent. In fact, dependency does exist among the n2/4 bits and this can be

shown by listing all n! permutations lexicographically in terms of the running speed.

That is, since O(n2) > O(n log n), thus n2/4 > log2 n! asymptotically; therefore,

dependency exists. The argument also shows that the maximal amount of secret

bits extractable from a comparison-based RO PUF is less or equal to log2 n!) [47].

In the following, we define two properties for the generated secret bits:

Definition 1: k bits are independent if the probability of any bit is not affected
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by the knowledge of the rest k − 1 bits.

Furthermore, when pairing up two ROs to generate one bit, we want the bit

value to be consistent regardless of ambient conditions such as across 0◦C to 100◦C.

As such, we say

Definition 2: a bit is reliable if its value remains constant regardless of en-

vironmental changes, such as temperature, supply voltage, humidity, aging, etc.

In this work, the reliability of RO PUFs is ensured by requiring the speed

difference between two ROs larger than certain threshold, herein, defined as fth.

The higher the threshold, the more reliable the extracted bits. At the moment, our

efforts in this chapter is to tolerate temperature fluctuations while assuming other

environmental factors can be accommodated by a careful choice of fth. Later on,

all impacts will be treated equally with the introduction of error correcting codes

(ECC).

3.2 RO PUF Secrecy Extraction Algorithms

In this section, we provide two algorithms SPA and LISA to maximize the

secrecy extraction power of RO PUFs.

3.2.1 Sequential Pairing Algorithm (SPA)

To our best knowledge, all RO PUFs extract their secrecy by forming RO

pairs. To avoid logic dependency, we may restrict every RO be paired no more than

once. As such, in the best case we can extract bn/2c bits. To be more resilient to
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environmental changes, the bound can be much lower, like bn/16c for the 1-out-of-

8 masking scheme [47]. Even though the chain-like neighbor pairing can generate

as much as (n − 1) bits, all ROs except the first and the last are paired twice,

violating the one-pairing policy and having logic dependency among the secret bits.

Furthermore, neighbor pairing has a smaller operating range between 25◦C and

65◦C [32]. As the pseudo code shows, SPA has two greedy characteristics in nature.

Firstly, SPA starts with pairing the fastest RO in fmin where (i = 0) with the RO

right in the middle of fmin where (j = n/2) such that SPA can generate n/2 bits

in the best case. Secondly, SPA always tries to form a pair with an unpaired RO,

indexed by i, that is fastest in fmin. The complexity of SPA is dominated by the

sorting algorithm used in Line 1, while Line 2–12 take O(n) time because j increases

by 1 for each iteration of the single loop.

3.2.2 Longest Increasing Subsequence Algorithm (LISA)

In order to beat the upper bound O(n) of pairing algorithms, we consider two

or more ROs at a time. Suppose we have 4 ROs {A,B,C,D}, there are 4! = 24

different ways to list their running speed in an increasing order. To list them all

lexicographically, we have {ABCD}, {ABDC}, {ACBD}, {ACDB} . . . {DCBA}.

Each permutation is unique and equally likely when we assume RO X faster than RO

Y is 1/2 and vice versa. The 24 permutations can be encoded in five bits, say, a one-

on-one mapping to ‘00000’, ‘00001’, ‘00010’, ‘00011’,. . .,‘10111’. The 5-bit bitstring

represents the extracted random unclonable secret in a binary form. For instance,
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Algorithm 1 SPA

Input: (1) RO link list phy[n] in physical order on the silicon. Each element of

phy[n] contains the information of the lowest frequency phy[i].fmin at the high-

est temperature as well as the highest frequency phy[i].fmax at the lowest tem-

perature; (2) the link list size n. For simplicity, n is an even number; (3) the

frequency threshold fth for reliability.

Output: 1) The link list of discovered pairs p[]; (2) the size k of the link list p[]. k

is also the number of independent reliable bits.

1: sort phy[n] by fmin in the decreasing order and store the result in link list

sorted[n]

2: i← 0, k ← 0, p← ∅

3: for j ← n/2 to (n− 1) do

4: if ((sorted[i].fmin−sorted[j].fmin ≥ fth) && (sorted[i].fmax−sorted[j].fmax ≥

fth)) then

5: p.append(i, j)

6: i++, k++

7: if (i ≥ n/2) then

8: break

9: end if

10: end if

11: end for

12: return p, k
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if the 4 ROs ordered from slow to fast is {ACBD}, the physically unclonable secret

is ‘00010’. In this way, we can have 24 possible kinds of secret information. Note

that the p.m.f of the most significant bits b5 is not uniform but has a bias to take ‘0’

with probability 2/3 and a probability 1/3 to take ‘1’. Furthermore, b5 and b4 are

not independent because the knowledge on b5 affects the p.m.f of b4. In fact, b5 = 1

implies b4 = 0. Nevertheless, the least significant 3 bits b3, b2 and b1 are independent

and have an equal probability to take ‘0’ and ‘1’. Roughly speaking, we say we can

generate blog2 24c = 4 secret bits from 4 ROs of identical design. To study such a

group-based approach, we formulate the following optimization problem:

Given n ROs {1, 2, . . . , n}, a threshold fth to tolerate measurement noise, and

the highest and lowest running frequencies fmax and fmin throughout interested en-

vironmental conditions for each RO, we want to find a partition s = {s1, s2, . . . , sm}

where for any set of ROs si Constraints 1)–4) are satisfied and
∑

i=1,...,m log2 |si|! is

maximized, where m is the number of sets in partition s and |si| is the number of

ROs in set si.

1. si ∩ sj = ∅, where 1 = i, j = m

2. s1 ∪ s2 ∪ s3 ∪ . . . ∪ sm = 1 . . . n

3. ∀x, y ∈ si, if fmin(x) < fmin(y), then fmax(x) < fmax(y)

4. ∀x, y ∈ si, |fmin(x)− fmin(y)| ≥ fth && |fmax(x)− fmax(y)| ≥ fth

Constraints 1) and 2) ensure that s = s1, s2, . . . , sm is a partition; Constraint

3) protects against potential bit flips under different operating temperature; Con-
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straint 4) ensures that the frequency difference between any two ROs in the same

set si is large enough to accommodate measurement errors. The objective function∑
i=1,...,m log2 |si|! measures the number of independent and reliable bits generated

by partition s. While SPA can be viewed as a special case of this partitioning prob-

lem, where each set si has either a single or a pair of ROs, finding sets in larger

sizes yields more bits in total. The challenge boils down to finding large si’S while

satisfying Constraints 3)–4). To address, LISA first sorts ROs increasingly with

respect to phy[n].fmin and denotes the sorted result sorted[n]. Then, it iteratively

searches for longest increasing subsequences (LIS) that satisfy Constraints 3) and

4). For each iteration, LISA discovers one group (set) of ROs; all ROs in that group

are removed from sorted[n] (Line 4–5) before the next iteration. For each LIS si,

Constraint 3) is satisfied in that all fmin’s and all fmax’s are in an increasing order.

In other words, no crossover as mentioned in Chapter 1 is possible. Constraint 4) is

satisfied in function findReliableLIS().

The findReliableLIS() procedure is based on the optimal LIS algorithm in

[33]. For each RO j, if it can be included in the current longest list, a new stack

STh will be created to extend the length the subsequence (Lines 6–8); otherwise it

forms a sequence with length (p+ 1) whenever it is feasible (Lines 10–13). When all

the n ROs are pushed to one of the stacks ST1 . . . STh, a LIS is discovered backward

by starting from the last element of the LIS on top of STh and tracing back the

link pointers of PRE until ST1 (Line 18). The tests on Line 5 and 10 enforce

Constraints 3) and 4). The complexity of LISA is O(mn log2 n) where m is the

number of groups (sets) in the partition s returned from the algorithm. In the worst
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Algorithm 2 LISA

Input: (1) A link list phy[n] of ROs in their physical order on chip where each

element of phy[n] contains the information of the lowest frequency phy[i].fmin

at the highest temperature and the highest frequency phy[i].fmax at the lowest

temperature; (2) The number of ROs n. For simplicity, n is an even number

and n ≥ 2; (3) The reliability threshold fth.

Output: (1) The partition of ROs.

1: sort phy[n] by fmin in the increasing order and store the result in link list

sorted[n]

2: i← 0

3: while there are ungrouped ROs do

4: si ← findReliableLIS(sorted[n])

5: mark ROs in si grouped, remove them from sorted[n] and update n

6: i++

7: end while

8: return s0, . . . , si−1
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Procedure 3 findReliableLIS()

1: create a stack ST1 and push the first RO sorted[1] to it

2: h← 1

3: for j ← 2 to n do

4: top← the top RO on stack STh

5: if ((sorted[j].fmin − top.fmin ≥ fth) && (sorted[j].fmax − top.fmax ≥ fth))

then

6: h++

7: new a stack STh, push sorted[j] to it

8: sorted[j].PRE ← top

9: else

10: find the stack STp with the largest index p that has its top element’s

((fmax < sorted[j].fmax − fth) && (fmin < sorted[j].fmin − fth))

11: if p 6= ∅ then

12: push sorted[j] to STp+1

13: sorted[j].PRE ← top element of STp

14: end if

15: end if

16: end for

17: return sequence (sorted[j1], sorted[j2], . . . , sorted[jh]), where sorted[jh] is the

top element of STh and sorted[jq−1] = sorted[jq].PRE, q from 2 to h
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case, this is bounded by O(n2 log2 n). Two points are worth noting: First, with a

minor change, LISA can run in O(n log2 n) by reusing ST1 to STh created at the

first round; however, the optimization in speed will diminish its power in secret

generation. Second, LISA also works with the case as only one frequency reading,

say, at room temperature 25◦C, is available for each RO. However, in such a case,

the linear frequency-temperature characteristic of RO is not available and a more

conservation fth and/or a stronger error correcting code or fuzzy extractor are likely

required to achieve the same level of reliability.

3.3 Hardware Cost and Delay Analysis

Hardware utilization and execution speed are often a trade-off. To facilitate

the cost and delay analysis of RO PUFs and to evaluate the secret extraction power

of LISA, we construct a hybrid architecture. Through solving a hybrid parameter

h, a designer can determine the most efficient structure that meets diverse design

specifications. The proposed hybrid hardware architecture is meant to be general

and independent of secret extraction algorithms such as SPA and LISA. The hybrid

coefficient h is defined as the number of target ROs sharing the same target counter

and the value of h is between 1, completely parallel and n, fully sequential. Take

n as 8 and h as 4 for example, 2 target ROs can be measured simultaneously and

the values of the target counters can then be transmitted to CPU via a pipeline as

shown in Figure 3.1. In this case, it takes 4 iterations to conduct a full frequency

characterization.
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Figure 3.1: The hybrid architecture with hybrid coefficient h = 4.

c = (5(n+ 1) + 3(n/h) · (h− 1) + 7q(n/h+ 1))/k (3.1)

d = 2b− 1h/f (3.2)

For k physical unclonable bits extracted, Equations (3.1) and (3.2) normalize

the cost and delay metrics c and d as NAND gates and micro-seconds per bit. For

the cost metric, a RO composed of 5 stages costs 5 NANDs gates, assuming the

overhead of control logic is negligible; a x-to-1 multiplexer costs 3(x − 1) NANDs

as it can be implemented as (x − 1) 2-to-1 multiplexers, 3 NANDs each; a b-stage

reference counter and a q-stage target counter cost 7b and 7q NANDs as one stage

of ripple counter costs one NOT gate (1 NAND) plus one flip-flop (6 NANDs). For

the delay metric c, we only account for the time to conduct frequency measurement;
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other factors such as memory access time and CPU time are excluded for simplicity.

Each RO is targeted to run at f MHz.

3.4 Validation

3.4.1 Experiment Setup

As in the previous chapter, the experiments were conducted on the same 9 Xil-

inx XC4010XL FPGAs, 32 target ROs each. 576 frequency readings were collected

in total from the 288 ROs as the input of SPA and LISA respectively for secrecy

extraction. The logic design is accomplished in the Schematic Editor of Xilinx Foun-

dation 2.1i and the user constraint file (.ucf) allows us to specify CLBs to implement

the logic. Logic gates such as NAND and NOT are realized by configuring the initial

value of ROM16×1, a Xilinx logic primitive in the design library. Figure 3.2 demon-

strates the symmetry of the place-and-route of two ROs located at CLB R15–19C12

and R15–19C14. For each target RO, we take 10 measurements once at 0◦C and

once at 100◦C. The average of the 10 measurements is one frequency reading of the

input to SPA and LISA. Each algorithm outputs the number of extracted bits k as

well as related information to facilitate secrecy regeneration. The temperature was

modulated by placing the board in freezer/oven until the thermal meter attached

to the FPGA indicates the target temperature.
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Figure 3.2: Identical logic layout by manual place-and-route of two ROs

3.4.2 Experimental Results

From the total 288 linear frequency-temperature relations, Figure 3.3 shows

the number of reliable unclonable bits k identified by SPA, LISA and the benchmark

1-out-of-8 scheme. The x-axis is the reliability threshold Rth defined as the ratio of

fth over the capacity of the reference counter. We see that relaxing Rth does not help

much on the secrecy extraction power of the 1-out-of-8 pairing scheme, suggesting

that the 1-out-of-8 scheme is very robust in reliability. On the other hand, SPA and

LISA are much more sensitive on Rth. Take Rth as 0.01 for example, the gain in

k from SPA and LISA is 5.66 and 6.94 times respectively when compared with the

1-out-of-8 benchmark.

Next we take the hardware cost and delay into account. Table 3.2 lists the

parameters we plugged into the calculation. As mentioned earlier, both the hardware
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Figure 3.3: The total number of reliable unclonable bits k discovered out of 288

target ROs on 9 Xilinx XC4010XL FPGAs

cost and delay depend on the hybrid coefficient h. Here the value h is picked such

that the hardware cost is minimized given a predefined delay constraint. Figures

3.4 and 3.5 show the dynamic of the cost and the delay as a function of the hybrid

coefficient h. For a fair comparison, the difference in the cost structure between

the hybrid architecture and the 1-out-of-8 hardware architecture is also taken into

account, see Table 3.3. In terms of the number of reliable unclonable bits generated

per NAND gate, Figure 3.6 reports the hardware efficiency of SPA and LISA when

compared with the benchmark. When Rth is as small as 0.001, it is to the advantage

of LISA for it is easier to find LIS’s in great length. When Rth moves up from 0.001

to 0.01, the hardware efficiency gains of SPA and LISA decrease. In this interval

tightening up the threshold does not bring down as much the reliable bits generated

from the benchmark as in the case of SPA and LISA. Interestingly, when raising the

bar further with Rth between 0.01 to 0.02, it hinders the secret extraction power
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Parameter Value Parameter Value

n: num of target RO 288 h: hybrid coefficient 4

b: stages of ref. counter 11 q: stages of target cnt. 7

f : ref. RO freq. (MHz) 150 c: delay constraint (us) 200

Table 3.2: Values applied to the cost and delay metrics

Architecture Hardware Cost (NAND/bit)

1-out-of-8 36 · (8 · 5 + 2 · 7 · 3 + 2 · 7 · 7)/k

Hybrid (h = 4) (5 · 289 + 3(288
4

)(4− 1) + 7 · 7 · (288
4

+ 1))/k

Table 3.3: Cost models of two architectures

of the benchmark more than it does to the proposed schemes. However, different

reacting rates cause a crossover between SPA and LISA in their uptick tails. Our

estimation suggests that when Rth is 0.01, to generate a 128-bit RO PUF secret

using LISA only requires 5818 NAND gates, about 8x saving on hardware.

3.5 Summary

In this chapter, we proposed two algorithms SPA and LISA to solve the op-

timization problem we formulated for secrecy extraction. Theoretically, LISA can

achieve the upper bound log2 n! by forming o giant group containing all ROs. Unlike

TAC RO PUF, solutions in this chapter do not require an on-board temperature

sensor. We also analyzed the hardware cost and delay of a generic RO PUF archi-

tecture such that the optimal configuration can be quickly determined afterwards.
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Figure 3.4: h− c characteristic

Figure 3.5: h− d characteristic

Based on the cost analysis upon our experimental results, LISA is about 8x more

hardware efficient than the 1-out-of-8 benchmark. However, recall Chapter 1 where

we mentioned that the systematic variability may undermine the security of the
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Figure 3.6: The cost-performance gains of SPA and LISA vs. the benchmark

secret we generate. In the next chapter, we will shift our gears from hardware effi-

ciency to security and use a regression-based entropy distiller to tackle the potential

threat.
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Chapter 4

Regression-Based Entropy Distiller

In previous chapters, we mentioned how to extract a reliable secret efficiently

from fabrication variations on each chip. One may postulate that the frequencies

of ROs can be modeled by independent and identically distributed (i.i.d.) normal

random variables; however, it is not the case because of the existence of spatial

correlation. In fact, spatial correlation can weaken the secrecy of RO PUFs. We

found that when applying the NIST statistical tests [5] to the random sequences

generated from a population of 125 RO PUFs [31] with both the classic 1-out-of-8

coding [47, 56] and the chain-like neighbor coding [32], none of them can pass all

the test. In this chapter, we propose a regression-based distiller to decouple the

unwanted systematic variation from the desired random variation. Indeed, through

modelling and subtracting the systematic effect on each chip, the distillation process

can eliminate the unwanted spatial correlation, leaving the residue an ideal i.i.d.

uniform. Indeed, by applying the 2nd- or 3rd-order distiller to the same benchmark

data [31], the decoupled neighbor coding can pass all the NIST randomness test,

so can the 1-out-of-8 coding with the help from the 4th-order distiller. There are

two security premises for our scheme: first, it is difficult for adversaries to derive a

model more accurate than the one calculated on the chip; second, the disclosure of

the model does not compromise the security of the extracted secret.
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1-out-of-8 Chain-like Decoupled

P-VALUE PROP. P-VALUE PROP. P-VALUE PROP. STATISTICAL TEST

0.013689 122/125 0.000072 * 125/125 0.000003 * 115/125 * Frequency

0.166594 125/125 0.000000 * 125/125 0.050764 120/125 BlockFrequency

0.231636 121/125 0.000000 * 125/125 0.000000 * 119/125 * CumulativeSums (m-2)

0.059743 122/125 0.000000 * 125/125 0.000000 * 118/125 * CumulativeSums (m-3)

0.002320 117/125 * 0.000000 * 0/125 * 0.302788 120/125 Runs

0.000603 123/125 0.000000 * 62/125 * 0.000062 * 124/125 LongestRun

0.000001 * 117/125 * 0.000000 * 0/125 * 0.000001 * 119/125 * ApproximateEntropy

0.004904 124/125 0.000000 * 1/125 * 0.070160 116/125 * Serial (forward)

0.552185 125/125 0.000000 * 117/125 * 0.192277 123/125 Serial (backward)

Table 4.1: NIST test results with respect to the random sequences generated by

1-out-of-8 Coding, Chain-like Neighbor Coding and Chain-like Neighbor

Coding. For 1-out-of-8 Coding: M = 32 for Block Frequency Test, m = 1 for

Approximate Entropy Test and m = 4 for Serial Test. For Chain-like Neighbor

Coding and Decoupled Neighbor Coding: M = 32 for Block Frequency Test,

m = 2 for Approximate Entropy Test and m = 5 for Serial Test. ‘*’ marks a failure.
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4.1 Security Analysis

The security aspects of a random number generator (RNG) can be argued by

the statistical characteristics of the random sequences it produces and the NIST

test suite [5] is regarded as the industry standard in testing cryptographic RNGs.

As one may expect that random sequences generated by well-known secret selec-

tion strategies such as 1-out-of-8 Coding and Neighbor Coding shall pass the NIST

randomness tests, to our surprise, based on the frequency characterization collected

from 125 FPGAs [31], no random sequence actually pass all tests that are applicable

to their length, see Table 4.1. While the underlying causes of the failures can be

composite and infinite, there are at least two main causes that are detrimental to

PUF security.

4.1.1 Failure Cause 1: Chain Dependency

The high failure rate of Chain-like Neighbor Coding can be attributed to the

non-independent comparison chain. Take 3 ROs ROA, ROB and ROC for example,

two random bits are generated by comparing ROA with ROB and ROB with ROC .

As we know, to pass NIST test for randomness, the random sequence is expected

to demonstrate no significant deviation from the probability mass function (p.m.f)

of tossing a fair coin twice, i.e., the 4 possible outcomes ‘00’, ‘01’, ‘10’ and ‘11’ are

expected to equally likely with probability 1/4. In fact, it is not case for the two bits

we generate from the 3 ROs, assuming that the 6 outcomes ROA < ROB < ROC ,

ROA < ROC < ROB, ROB < ROA < ROC ,. . . , ROC < ROB < ROA are equally
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Figure 4.1: The placement of 512 ROs as a 16 (columns) by 32 (rows) array; for site

ROx,y, its running frequency is labeled zx,y

likely with probability exactly 1/6. In turn, the probability of the outcome ‘00’, ‘01’,

‘10’ and ‘11’ of the 2-bit random sequence is 1/6, 1/3, 1/3 and 1/6 respectively, a

clear deviation from the p.m.f of the ‘ideal’ random sequence; consequently, the min-

entropy is actually 1.58 rather than 2, our first thought. One solution is to break up

the chain such that all ROs only pair up with its neighbor once, i.e., (ROA, ROB),

(ROC , ROD). . . . As Table 4.1 shows, the decoupling improves the pass rate but

still is not good enough to pass all.

4.1.2 Failure Cause 2: Spatial Correlation

Generally RO PUFs places its ROs as a 2-D array. The dataset we use lays

out 512 ROs as a 16 (columns) by 32 (rows) grid on each of the 125 FPGA devices

[31] as illustrated in Figure 4.1, where zx,y denotes the running frequency of RO at
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Figure 4.2: The across-die frequency topology of a RO array. The roughness of the

surface represents the random variation while the slope represents the systematic

[44]

site ROx,y. One may conjecture that we can generate 1-bit secrecy out of any RO

pair; however, it is not secure if we consider about the underlying spatial correla-

tion. Figure 4.2 shows how the fabrication variation of the semiconductor process

portrays: The roughness of the surface (random variation) is superimposed upon

a spatial trend (systematic variation). The systematic component can significantly

reduce the min-entropy of the extracted secrecy; for instance, if one generates bit

A as ‘0’ if A1 < A2, else ‘1’ and similarly, bit B ‘0’ if B1 < B2, else ‘1’, spatial

correlation would render p(A = B) >> p(A 6= B).

The security threat of spatial correlation was first acknowledged by Chain-

like Neighbor Coding [32]. In fact, it is exactly the reason behind their two design
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Figure 4.3: Illustration of the impact from systematic variation even after pairs are

decoupled.

principles: 1) place ROs as close as possible and 2) pair ROs located adjacent to

each other. The main idea is to let the systematic effect cancel out with each other,

extracting secrecy out of the random effect. We see the principles have been accepted

by [?, 50]. Nevertheless, to explain those failure cases we postulate that the small

remnant of the systematic effect can still be captured by the test. To illustrate,

Figure 4.3 shows a hypothetical frequency characterization of 16 consecutive ROs,

assuming a convex systematic trend superimposed upon i.i.d. Gaussian random

components. If, say, frequency relation zi < zi+1 gives us a ‘0’, else ‘1’, it is likely

for the up slope to yield more ‘0’s than ‘1’s and vice versa for the down slope.

The same argument can also explain the failures we found in 1-out-of-8 coding

strategy, or more generally, 1-out-of-k coding strategy; when k = 2, it reduces to

the proposed Decoupled Neighbor Coding mentioned above. Recently, Yu et al. [56]

used a similar strategy in their Index-Based Syndrome (IBS) Coding but encoded

a secret bit ‘0’ or ‘1’ as a helper index ‘000’, ‘001’,. . . ,‘111’ pointing to the pair
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yielding the largest positive (say case ‘0’) or negative (say case ‘1’) magnitude.

Like its predecessor 1-out-of-8 Coding, the problem of spatial correlation was not

addressed explicitly. Note that the systematic trend can stay undiscovered when

one tallies the total number of ‘0’s and ‘1’s or even when one calculates the inter-die

uniqueness [47] via Hamming distance, e.g., 46.15-48.51% for RO PUFs [47, 20] and

49.97% for SRAM PUFs [24].

4.1.3 A Cautious Note on Spatial Correlation

As Table 4.1, Figure 4.2 as well as Figure 7 in [18] indicate, it is questionable

to assume the raw RO PUF frequency characterization i.i.d.; nevertheless, the i.i.d.

assumption is not uncommon in PUF literature and even has support from statistical

results [56]. A possible explanation is that we conducted the test directly on raw

output as opposed to their ‘controlled output’ obfuscated by a linear feedback shift

register (LFSR) and/or an output hash function that de-correlate the challenge

and the response [7, 18, 56]. Since the seed for obfuscation is typically provisioned

externally, they have to trust the seed has never been compromised. In contrast, our

scheme requires no external seed and thus more secure in this sense. Secondly, the

issue of spatial correlation may be more serious than we thought because across-

die spatial variation mostly results from deterministic across-wafer variation [29],

that is, once process parameters surrounding chips under attack get exposed, the

opponent can gain unexpected advantage to model the systematic trend and attack

the min-entropy we over-estimate [53, 18, 17, 39]. Next, we describe how to eliminate
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Figure 4.4: The typical workflow of a Weak RO PUF augmented with a new entropy

distillation step marked in dashes

the systematic variation upfront.

4.2 Systematic Variation Elimination

Our main objective is to model the unwanted systematic variation so that we

can decouple it from the desired random variation. To achieve this, Figure 4.4 adds

a new distillation process to the typical workflow previously depicted in Chapter 1.

4.2.1 Modeling Fabrication Variations

To identify, model and decompose fabrication variations, Stine et al. [6] first

proposed a comprehensive framework. Their methods can model variations at wafer

level as well as at die level by analyzing the measurements collected from each chip

on the same wafer. We find the framework not that suitable for our use because it

requires revealing on-die characterization as well as trusting external information for

model building, either of which would seriously compromise the security of PUFs.
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Also surveyed was Liu’s framework for spatial correlation modeling [30], where the

author used Generalized Least Square (GLS) fitting and structured correlation func-

tion to improve the accuracy of prediction for unobservable sites. However, since

we can always take measurement at any RO site of interest as wish, prediction for

unobservable sites is not required. Also partly related are works devoted to extract-

ing the correlation matrix of the entire fabrication process to facilitate, for example,

statistical static timing analysis (SSTA) [52, 29]. It is worth noting that the au-

thors in [29] concluded that once across-wafer systematic variation is captured and

removed by a quadratic polynomial, within-die variation no longer contains useful

spatial correlation.

As mentioned, relying on external information for model building would result

in a security loophole; hence, we require that each PUF chip build its own across-die

systematic model. In line with this, previous works include [43, 44, 48]. Ohkawa et

al. first employed a 4th-order polynomial model and demonstrated its effectiveness

by contrasting the correlation coefficients of the systematic component and its ran-

dom counterpart [43]. Later on, Sedcole et al. employed a quadratic model to gauge

the expected magnitude of the random variation versus the maximum magnitude

of the systematic variation [44]. More recently Sato et al. argued that high order

polynomials could result in an over-fit and that corrected Akaike information cri-

terion (AICc) was accurate in selecting the optimal model; quite remarkably, they

found out that 1st order polynomial turned out to be the best fit in most cases with

respect to the variability of NMOS threshold voltages [48].

Our unique application to RO PUFs, however, distinguishes us from the above.
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In our case, the optimal model is determined by the results of the NIST sta-

tistical tests for randomness rather than AICc or D’Agostino-Pearson (D-P) and

Kolmogorov-Smirnov (K-S) statistical tests for normality against the variation pro-

file as did in [48]. Indeed, our model selection can find us the best-fit polynomial-

based regression distillers that fix all the failures in Table 4.1.

4.2.2 The Causes of Process Variation

The semiconductor process variation can be modeled as the sum of a system-

atic component and a random component [21, 6, 14, 43, 44, 12, 30, 52, 48, 29].

The systematic component attempts to capture a deterministic trend and other

identifiable patterns through one or a collection of estimators. The main causes of

the systematic variation can be attributed to equipment and process nonuniformity

such as the focus shift of photolithography, the gradient of thermal annealing, dis-

similar interactions between circuit layout and the chemical mechanical polishing

(CMP) process [6, 12]. On the other hand, the random component accounts for

the difference between those estimates and the observed data; the constituents in-

clude unidentified patterns, measurement errors and most importantly, atomic-level

stochastic phenomena such as random dopant profiles [21, 12].

4.2.3 Polynomial Regression

Polynomial regression is a form of linear regression in which the relationship

between independent variables and a dependent variable is modeled by a polynomial
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of order k, where k is a non-negative integer. For a RO PUF with its m ROs

arranged as r rows by c columns, the Cartesian coordinate (x, y) of ROs is regarded

as two independent variables and the oscillating frequency z is the single dependent

variable. In such a 2D setting, our polynomial regression model of order k, i.e.,

xpyq, p+ q ≤ k, 0 ≤ p, q ≤ k, takes the general form of

zx,y =
k∑
i=0

i∑
j=0

βk,i,jx
i−jyj + εk,x,y (4.1)

where 1 ≤ x ≤ c, 1 ≤ y ≤ r;x, y, c, r, i, j, k ∈ Z+
⋃

0; z, β, ε ∈ R. On the right hand

side of the equation, the summation term models the systematic variation and the

residual term εk,x,y models the random variation. Equivalently, they can be written

in matrix form

Z = Ωkβk + εk (4.2)

where

Ωk =



ωk,1,1 ωk,1,2 · · · ωk,1,n

ωk,2,1 ωk,2,2 · · · ωk,2,n

...
...

. . .
...

ωk,m,1 ωk,m,2 · · · ωk,m,n


,
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Z =



z1,1

...

zc,1

z1,2

...

zc,2

...

z1,r

...

zc,r



,βk =



βk,0,0

βk,1,0

βk,1,1

βk,2,0

βk,2,1

βk,2,2

...

βk,k,0

...

βk,k,k



, εk =



εk,1,1

...

εk,c,1

εk,1,2

...

εk,c,2

...

εk,1,r

...

εk,c,r



,

m = r × c, n = (k+1)(k+2)
2

and ωk,p,q = xi−jyj in which x = ((p − 1) mod r) + 1,

y = bp−1
r
c + 1, i = b−1+

√
1+8(q−1)
2

c, j = (q − 1) − i2+i
2

, 1 ≤ p ≤ m and 1 ≤ q ≤ n.

For each model of order k, it is an overdetermined system, i.e., m > n, and can

be solved by the ordinary least squares (OLS) method, which produces the ‘best’

estimates β̂ in the sense of minimum sum of squared errors as (4.3) indicates. By

taking partial directives of (4.4) with respect to each βk,i,j and letting each gradient

to zero, the solution of OLS can be expressed as (4.5) in matrix form. Interested

readers are referred to [51, 35] for a detailed derivation and background information.

β̂k = arg min
βk

{
c,r∑

x=1,y=1

ε2k,x,y

}
(4.3)

= arg min
βk

{
c,r∑

x=1,y=1

(zx,y −
k∑
i=0

i∑
j=0

βk,i,jx
i−jyj)2

}
(4.4)

= (ΩT
kΩk)

−1ΩT
kZ (4.5)
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4.2.4 Model Selection

The higher the order we use, the less the error in the least squares sense

results. Therefore, a model in high order is expected to yield less residual terms,

that is, increase the difficulties in error control and eventually reduce the efficiency

of RO PUFs. A model in low order, on the other hand, may not be able to capture

all deterministic variation in the systematic term and in turn weaken the security.

Due to these concerns, the goal of our model selection is to find out the minimal

(optimal) order of the polynomial-based entropy distiller through which the output

bitstrings demonstrate strong randomness. Two tasks remain: i) construct random

sequences highlighting underlying spatial correlation, and ii) apply effective tests for

randomness on the sequences. For simplicity, we pick an order and find a solution

against that model for each PUF device before considering another order. Due to

the characteristic of Weak PUFs, we only consider solutions applying to all devices

but in the case of Strong PUFs, however, it is possible to come up with different

solutions for different devices.

4.2.4.1 Random Sequence Generation

There are numerous ways to generate a random sequence from the frequency

profile of a RO array. As shown earlier, secret selection schemes are design specific.

Instead of exhausting all possibilities, we try to devise general-purpose random

sequences and use them to gauge the existence of spatial correlation in the distilled

random component. For this reason, we purposely pair up ROs at locations far apart,
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simply opposite to the design principle of Neighbor Coding whose goal is to avoid

spatial correlation. Also wanted is the length of sequence to be greater than certain

minimum values so that certain tests can bear statistical significance. As a result,

two indicator random sequences S and T are formulated according to rules (4.6)

and (4.7) respectively. Simply put, we cut the array into two subsets in the middle

along the axis and form pairs with two elements, one subset each, in distance half the

corresponding side length of the given rectangle RO array. Similarly, more random

sequences can be constructed for better coverage, e.g., by partitioning along two

diagonals. Note that S and T are meant to be general-purpose, when considering a

specific PUF, its own secret selection scheme should be used instead if applicable.1

S = X1, . . . , XlX , . . . , XLX
where XlX

=


0 if zuX ,vX ≤ zuX+b c

2
c,vX

1 otherwise

(4.6)

T = Y1, . . . , YlY , . . . , YLY
where YlY

=


0 if zuY ,vY ≤ zuY ,vY +b r

2
c

1 otherwise

(4.7)

where in (4.6), uX = ((lX−1) mod b c
2
c)+1, vX = b(lX−1)/b c

2
cc+1, 1 ≤ lX ≤ LX =

r×b c
2
c; similarly in (4.7), uY = b(lY −1)/b r

2
cc+ 1, vY = ((lY −1) mod b r

2
c) + 1, 1 ≤

lY ≤ LY = c× b r
2
c.

1Group-Based Coding [55] is not applicable since its secret selection will inject algorithmic

randomness.
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4.2.4.2 Tests for Randomness

An ‘ideal’ random sequence is regarded as the result of consecutive flips of a fair

coin: when a head turns out, denote the outcome as, say, ‘1’ and if it is a tail, then ‘0’,

while both events have probability exactly 1/2 and each toss is independent of one

another [5]. According to the NIST hypothesis testing, a RNG under test is deemed

‘bad’ if the statistical properties of its random sequences indicate a clear deviation

from the ‘ideal’, otherwise it is deemed ‘good’. In our case, given a polynomial

order and a secrecy selection scheme, the random sequence subject to the NIST test

comprisesN×L bits, whereN is the total number of PUFs and L is the output length

for each PUF. Since there are uncountable ways to identify non-random patterns,

no finite set of statistical tests can certify that a RNG is truly random. Regardless,

as the sample size and the number of independent statistical tests increase, we gain

more evidence to support our decision regarding whether the RNG of concern is

‘truly good’.2 Consequently, instead of viewing one device as one RNG at a time,

the conceptual RNG we test against generates multiple random sequences through

multiple fabricated devices and can be characterized by the involved fabrication

process, measurement circuitry, distiller and secret selection scheme. Given a set

of PUF devices in identical design, a range of polynomial orders 0 through k, and

random sequence generation rules S and T , we form 2 × (k + 1) RNGs and test

them individually. At the end of the test, a distiller is deemed ‘good’ if it passes all

2Independence of tests are discussed in Section ‘Application of Multiple Tests’ of [5].
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tests according to NIST’s guidelines.3

4.3 Experimental Results

Our test bench is the frequency characterization of a population of RO PUFs

implemented on 125 Xilinx Spartan-3 FPGA devices. For each device, 512 ROs were

placed as a 16 × 32 array and for each RO, 100 frequency readings were measured

at room temperature [31].

4.3.1 Random Variation Distillation

Take the dataset of Chip No. 1 for instance, we first average the 100 mea-

surement readings for each RO site and use the resulting 16 × 32 data points as

its frequency variation profile. Next, we apply the polynomial-based distiller of or-

der 0 through 6 to model the systematic variation respectively. The solutions of

(4.5) with respect to order 0 through 6 are illustrated in Figure 4.6, while the cor-

responding residual terms, the distilled random variations, are depicted in Figure

4.7, where 0th-order corresponds to the raw frequency profile subtracting the chip

average. Notably, we see the ‘bull’s eye’, i.e., the radial pattern close to the center,

vanishing in the cases of 2nd order model and beyond. From the histograms of the

distilled random variations shows Figure 4.8, all of them appear drawing from a

3Tests like Overlapping Template Matching Test, Linear Complexity Test, Random Excursions

Test and Random Excursion Variant Test require a random sequence at least a million bit long

and thus may not be applicable to a True RNG like ours. To clarify, testing on a Pseudo RNG

seeded with ours is not the main interest to show of this work.
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Figure 4.5: The fabrication variation of Chip No. 1 [31] with the z-axis indicating

the average value of the 100 frequency readings of each RO site.

Figure 4.6: The modeled systematic variation after applying 0th through 6th-order

polynomial regression to the dataset of Chip No. 1.

normal distribution with a diminishing variance as the order of the applied model

increases.
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Figure 4.7: The distilled random variation after applying 0th through 6th-order

polynomial regression to the dataset of Chip No. 1. Notably, we see the ‘bull’s eye’,

i.e., the radial pattern close to the center, vanishing in the cases of 2nd order model

and beyond.

4.3.2 Model Selection

4.3.2.1 Random Sequences S and T

For each RNG, the input file fed to the test suite contains 32000 bits, a con-

catenation of the 256-bit bitstrings generated from Chip No. 1–125. Tests applicable

to this length include Frequency Test, Block Frequency Test, Cumulative Sums Test,

Runs Test, Longest Run Test, Serial Test and Approximate Entropy Test. Param-

eters are chosen according to NIST recommendations, in particular, block length

M = 32 for Block Frequency Test, block length m = 2 for Approximate Entropy
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Figure 4.8: The histogram of the distilled random variation after applying 0th

through 6th-order polynomial regression to the dataset of Chip No. 1. It is dif-

ficult to judge simply from the chart which model is the best fit without running

NIST tests for all appears normal but with a diminishing variance as the order

increases

Test and block length m = 5 for Serial Test. According to [5], empirical results

have to be interpreted in two forms of analysis: First, the proportion of sequences

passing a test shall be above a the minimum rate, 0.96 in our case, i.e., to pass

120 sequences out of a sample size of 125 sequences at significance level α = 0.01.

Secondly, the P-values of all the random sequences shall be uniformly distributed.

Based on χ2 Goodness-of-Fit Test, the underlying distribution is deemed uniform

if the P-value of the P-values is equal or greater than 0.0001 given a population

of 125 sequences. Whenever either of these two approaches fails, further analysis
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drawn from a different sample space is necessary to conclude the failure either as a

statistical anomaly or a clear non-randomness. The left four columns of Table 4.2

4 summarizes the test results of random sequences S and T ; see Table 4.5 and 4.8

for complete C1–C10 distribution of ‘P-VALUE OF P-VALUES’. As the 0th-order

section shows, random sequences generated without entropy distillation fail miser-

ably for both forms of analysis ‘PROP. (PROPORTION)’ and ‘P-VAL. (P-VALUE

OF P-VALUES)’, where ‘*’ marks a failure. This strongly suggests the existence of

systematic variation in the raw data. The failure rate decrease sharply when ap-

plied with 1st-, 2nd- or 3rd-order distiller in the case of S and with 2nd- or 3rd-order

distiller in the case of T . Unfortunately, there is at least one failure with respect to

S, though the failure is only slightly below the cutting value. In such a boarder case

where a weak existence of systematic variation is inferred, further investigation with

different dataset is necessary to conclude the RNGs and the corresponding distillers

‘good’ or ‘bad’. If simply taking the sum of failure rates with respect to S and

T , either 2nd- or 3rd-order distillers can be considered optimal. To break the tie,

one may favor the 2nd-order distiller due to computational simplicity and hardware

efficiency as the latter is contingent on the variance of residual terms as discussed

earlier with Figure 4.8. Still, one may prefer the 3rd-order because in general it

4The seven sections correspond to distillers of order 0th (top) through 6th (bottom). In each

section, the nine rows corresponds to 1) Frequency Test, 2) Block Frequency Test, 3) Cumulative

Sums Test (m − 2), 4) Cumulative Sums Test (m − 3), 5) Runs Test, 6) Longest Run Test, 7)

Approximate Entropy Test, 8) Serial Test (forward), 9) Serial Test (backward). The last two

columns correspond to two forms of analysis while ‘*’ marks a failure.
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passes more sequences in the ‘PROPORTION’ analysis while yielding comparable

performance in the ‘P-VALUE OF P-VALUES’ analysis. Moreover, the pass rate

of the ’P-VALUE OF P-VALUES’ analysis drops when applied with a model in 4th

order or beyond, whereas the pass rate of the ‘PROPORTION’ analysis remains

unchanged. The rate drop is due to the clustering phenomenon of P-values towards

the C10 side, as opposed to the clustering phenomenon towards the C1 side in the

low order cases. These can be used as indicators for model over-fitting and model

under-fitting respectively.

4.3.2.2 1-out-of-8 Coding

To evaluate the effectiveness of our distiller upon existing PUF designs, the

general secret selection schemes are substituted with 1-out-of-8 Coding and Neighbor

Coding. In the case of 1-out-of-8 Coding, a 3-bit index ‘000’, ‘001’,. . . ,‘110’, or ‘111’

is generated by pointing to the fastest RO out of 8 consecutive ROs in the same

row, resulting a random sequence of length 192 bits per device.5 Accordingly, block

sizes are set as 32 for Block Frequency Test, 1 for Approximate Entropy Test and

4 for Serial Test. For 1-out-of-8 Coding, a 3-bit index ‘000’, ‘001’,. . . ,‘110’, or ‘111’

is generated by pointing to the fastest RO out of 8 consecutive ROs in the same

row, resulting a random sequence of length 192 bits per device. 6 Accordingly,

block sizes are set as 32 for Block Frequency Test, 1 for Approximate Entropy

Test and 4 for Serial Test. Table 4.2 shows that distillers of 4th order and beyond

5The original design takes 8 independent pairs of ROs to generate one index.
6The original design takes 8 independent pairs of ROs to generate one index.
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S T 1-out-of-8 Chain-like Decoupled

P-VAL. PRO. P-VAL. PRO. P-VAL. PRO. P-VAL. PRO. P-VAL. PRO. STAT TEST

0
th
-o
rd

er

0.000000 *45 * 0.000000 *38 * 0.013689 122 0.000072 *125 0.000003 *115 * Frequency

0.000000 *59 * 0.000000 *49 * 0.166594 125 0.000000 *125 0.050764 120 BlockFrequency

0.000000 *46 * 0.000000 *39 * 0.231636 121 0.000000 *125 0.000000 *119 * CumulativeSums (m-2)

0.000000 *46 * 0.000000 *38 * 0.059743 122 0.000000 *125 0.000000 *118 * CumulativeSums (m-3)

0.000000 *65 * 0.000000 *31 * 0.002320 117 * 0.000000 *0 * 0.302788 120 Runs

0.000000 *66 * 0.000000 *44 * 0.000603 123 0.000000 *62 * 0.000062 *124 LongestRun

0.000000 *53 * 0.000000 *23 * 0.000001 *117 * 0.000000 *0 * 0.000001 *119 * ApproximateEntropy

0.000000 *65 * 0.000000 *25 * 0.004904 124 0.000000 *1 * 0.070160 116 * Serial (forward)

0.000000 *103 * 0.000000 *74 * 0.552185 125 0.000000 *117 * 0.192277 123 Serial (backward)

1
s
t
-o
rd

er

0.166594 124 0.003598 122 0.000949 120 0.000072 *125 0.130323 124 Frequency

0.000002 *120 0.889414 121 0.529142 125 0.000000 *125 0.056599 122 BlockFrequency

0.000100 120 0.136969 122 0.063046 120 0.000000 *125 0.082208 124 CumulativeSums (m-2)

0.405918 122 0.020616 119 * 0.043046 120 0.000000 *125 0.034444 123 CumulativeSums (m-3)

0.082208 124 0.000000 *68 * 0.192277 124 0.000000 *0 * 0.096097 122 Runs

0.048059 120 0.000000 *90 * 0.000067 *123 0.000000 *62 * 0.000274 124 LongestRun

0.025948 120 0.000000 *75 * 0.002471 120 0.000000 *0 * 0.130323 122 ApproximateEntropy

0.112055 122 0.000000 *80 * 0.262219 124 0.000000 *1 * 0.956806 122 Serial (forward)

0.474938 121 0.000000 *117 * 0.551044 125 0.000000 *117 * 0.620686 123 Serial (backward)

Table 4.2: The results of NIST ‘P-VAL. (P-VALUE of P-VALUES)’ and ‘PROP.

(PROPORTION)’ analyses with respect to random sequences generated by S, T ,

1-out-of-8 Coding, Chain-like Neighbor Coding and Decoupled Neighbor Coding

accompanied by 0th- to 1st-order distillers, where ‘*’ marks a failure.

75



S T 1-out-of-8 Chain-like Decoupled

P-VAL. PRO. P-VAL. PRO. P-VAL. PRO. P-VAL. PRO. P-VAL. PRO. STAT TEST

2
n
d
-o
rd

er

0.369588 122 0.012159 121 0.000000 *115 * 0.001228 125 0.086622 121 Frequency

0.000782 122 0.422488 122 0.059743 124 0.000000 *125 0.262219 123 BlockFrequency

0.020616 120 0.086622 120 0.000000 *118 * 0.000000 *125 0.073984 123 CumulativeSums (m-2)

0.575157 122 0.066516 122 0.000000 *116 * 0.000000 *125 0.389809 120 CumulativeSums (m-3)

0.316158 125 0.915772 122 0.552185 123 0.000000 *0 * 0.493319 124 Runs

0.000062 *122 0.000782 120 0.000000 *123 0.000000 *58 * 0.000115 124 LongestRun

0.750075 124 0.474938 120 0.000000 *120 0.000000 *0 * 0.316158 122 ApproximateEntropy

0.874833 124 0.077998 122 0.000123 123 0.000000 *0 * 0.643139 121 Serial (forward)

0.231636 123 0.302788 125 0.457002 124 0.000000 *110 * 0.262219 123 Serial (backward)

3
r
d
-o
rd

er

0.011457 125 0.136969 124 0.000000 *111 * 0.000000 *125 0.389809 123 Frequency

0.262219 124 0.551044 125 0.003829 123 0.000000 *125 0.457002 122 BlockFrequency

0.002320 125 0.000131 125 0.000000 *112 * 0.000000 *125 0.551044 124 CumulativeSums (m-2)

0.002984 125 0.017315 125 0.000000 *111 * 0.000000 *125 0.192277 123 CumulativeSums (m-3)

0.643139 124 0.529142 121 0.889414 124 0.000000 *0 * 0.529142 124 Runs

0.000058 *123 0.012903 124 0.000000 *120 0.000000 *48 * 0.000000 *123 LongestRun

0.020616 125 0.422488 123 0.000000 *114 * 0.000000 *0 * 0.889414 125 ApproximateEntropy

0.369588 124 0.915772 123 0.000017 *121 0.000000 *0 * 0.493319 123 Serial (forward)

0.439517 124 0.506075 122 0.575157 124 0.000000 *114 * 0.439517 125 Serial (backward)

4
th
-o
rd

er

0.000001 *125 0.000000 *125 0.000407 121 0.000000 *125 0.192277 124 Frequency

0.166594 125 0.000051 *125 0.344248 123 0.000000 *125 0.807956 124 BlockFrequency

0.000000 *125 0.000000 *125 0.143910 121 0.000000 *125 0.070160 124 CumulativeSums (m-2)

0.000011 *125 0.000000 *124 0.130323 120 0.000000 *125 0.117876 124 CumulativeSums (m-3)

0.316158 125 0.903069 122 0.437182 125 0.000000 *0 * 0.414457 125 Runs

0.004904 123 0.045489 125 0.007522 120 0.000000 *54 * 0.000000 *123 LongestRun

0.289860 125 0.265309 122 0.708591 122 0.000000 *0 * 0.143910 122 ApproximateEntropy

0.571108 125 0.665311 123 0.571108 125 0.000000 *1 * 0.457002 123 Serial (forward)

0.405918 123 0.283039 124 0.551044 125 0.000000 *110 * 0.825875 124 Serial (backward)

Table 4.3: Cont’d with the results using 2nd − 4th order models
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S T 1-out-of-8 Chain-like Decoupled

P-VAL. PRO. P-VAL. PRO. P-VAL. PRO. P-VAL. PRO. P-VAL. PRO. STAT TEST

5
th
-o
rd

er

0.000029 *125 0.211194 125 0.316158124 0.000000 *125 0.096097 125 Frequency

0.004074 125 0.000000 *125 0.493319124 0.000000 *125 0.552185 124 BlockFrequency

0.000000 *125 0.000000 *125 0.665311124 0.000000 *125 0.043046 124 CumulativeSums (m-2)

0.000000 *125 0.000000 *125 0.166594123 0.000000 *125 0.036430 125 CumulativeSums (m-3)

0.493319 124 0.687147 124 0.036430125 0.000000 *0 * 0.192277 123 Runs

0.006661 124 0.001801 125 0.036430124 0.000000 *42 * 0.000000 *124 LongestRun

0.059743 125 0.302788 124 0.729586125 0.000000 *0 * 0.665311 122 ApproximateEntropy

0.687147 125 0.304210 121 0.096097125 0.000000 *0 * 0.512137 124 Serial (forward)

0.262219 123 0.789315 123 0.457002125 0.000000 *114 * 0.474938 125 Serial (backward)

6
th
-o
rd

er

0.000009 *125 0.001586 125 0.001080125 0.000000 *125 0.231636 122 Frequency

0.000000 *125 0.000000 *125 0.086622125 0.000000 *125 0.437182 123 BlockFrequency

0.000000 *125 0.000000 *125 0.231636125 0.000000 *125 0.091249 123 CumulativeSums (m-2)

0.000000 *125 0.000000 *125 0.050764124 0.000000 *125 0.211194 123 CumulativeSums (m-3)

0.101175 125 0.130323 123 0.422488124 0.000000 *0 * 0.529142 122 Runs

0.000643 124 0.007992 124 0.211194125 0.000000 *44 * 0.000017 *122 LongestRun

0.000006 *125 0.643139 124 0.130323124 0.000000 *0 * 0.598008 124 ApproximateEntropy

0.552185 124 0.289860 123 0.329976124 0.000000 *0 * 0.277369 123 Serial (forward)

0.874833 124 0.529142 124 0.405918124 0.000000 *113 * 0.843024 121 Serial (backward)

Table 4.4: Cont’d with the results using 5th − 6th order models

77



C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

0
th
-o
rd

er

93 7 3 4 2 6 1 2 4 3 0.000000 * 45/125 * Frequency

95 8 8 3 3 1 1 4 0 2 0.000000 * 59/125 * BlockFrequency

95 6 3 5 4 2 3 0 3 4 0.000000 * 46/125 * CumulativeSums (m-2)

96 7 3 3 7 1 4 1 0 3 0.000000 * 46/125 * CumulativeSums (m-3)

67 5 5 13 9 6 6 4 7 3 0.000000 * 65/125 * Runs

82 6 7 11 6 3 1 3 3 3 0.000000 * 66/125 * LongestRun

88 10 4 7 3 6 1 2 2 2 0.000000 * 53/125 * ApproximateEntropy

81 8 7 5 10 3 1 6 1 3 0.000000 * 65/125 * Serial (forward)

41 12 16 6 16 10 8 5 5 6 0.000000 * 103/125 * Serial (backward)

1
s
t
-o
rd

er

13 19 12 12 13 7 11 7 11 20 0.166594 124/125 Frequency

29 20 16 16 8 9 8 6 5 8 0.000002 * 120/125 BlockFrequency

18 26 15 16 4 8 9 9 15 5 0.000100 120/125 CumulativeSums (m-2)

18 14 17 14 16 10 10 8 9 9 0.405918 122/125 CumulativeSums (m-3)

12 15 19 14 11 20 9 5 9 11 0.082208 124/125 Runs

16 17 15 21 13 7 8 13 7 8 0.048059 120/125 LongestRun

24 14 10 15 9 10 10 15 13 5 0.025948 120/125 ApproximateEntropy

18 16 13 15 6 11 16 4 14 12 0.112055 122/125 Serial (forward)

15 15 17 11 10 11 7 12 9 18 0.474938 121/125 Serial (backward)

Table 4.5: NIST test results with respect to random sequence S using 0th and 1st

distillers, where M = 32 for Block Frequency Test, m = 2 for Approximate Entropy

Test and m = 5 for Serial Test and ‘*’ marks a failure.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST
2
n
d
-o
rd

er

17 12 16 13 8 11 12 9 10 17 0.369588 122/125 Frequency

27 14 12 19 7 11 7 10 9 9 0.000782 122/125 BlockFrequency

13 22 12 12 5 13 14 4 13 17 0.020616 120/125 CumulativeSums (m-2)

15 16 14 10 9 11 17 9 11 13 0.575157 122/125 CumulativeSums (m-3)

15 6 10 18 11 16 16 14 8 11 0.316158 125/125 Runs

9 13 13 30 14 14 9 7 5 11 0.000062 * 122/125 LongestRun

18 9 12 9 13 13 13 14 13 11 0.750075 124/125 ApproximateEntropy

13 14 11 15 10 14 16 9 11 12 0.874833 124/125 Serial (forward)

12 9 22 13 14 11 12 10 15 7 0.231636 123/125 Serial (backward)

3
r
d
-o
rd

er

4 9 11 15 8 16 22 8 15 17 0.011457 125/125 Frequency

8 14 14 14 6 16 11 12 17 13 0.262219 124/125 BlockFrequency

6 5 11 10 11 14 18 8 23 19 0.002320 125/125 CumulativeSums (m-2)

4 10 10 8 6 18 20 12 18 19 0.002984 125/125 CumulativeSums (m-3)

9 10 14 14 11 18 11 15 13 10 0.643139 124/125 Runs

9 5 14 24 24 14 7 5 11 12 0.000058 * 123/125 LongestRun

5 12 12 7 15 14 20 10 9 21 0.020616 125/125 ApproximateEntropy

7 17 15 12 9 12 16 12 15 10 0.369588 124/125 Serial (forward)

12 19 17 12 13 12 14 10 6 10 0.439517 124/125 Serial (backward)

4
th
-o
rd

er

2 2 8 26 13 16 21 10 17 10 0.000001 * 125/125 Frequency

11 7 8 7 11 15 16 16 19 15 0.166594 125/125 BlockFrequency

2 3 5 11 10 24 19 8 20 23 0.000000 * 125/125 CumulativeSums (m-2)

2 4 5 15 13 16 16 17 11 26 0.000011 * 125/125 CumulativeSums (m-3)

11 11 13 5 16 13 10 19 16 11 0.316158 125/125 Runs

9 6 14 22 20 10 17 5 11 11 0.004904 123/125 LongestRun

4 11 9 15 13 12 12 17 15 17 0.289860 125/125 ApproximateEntropy

14 11 6 13 10 15 11 12 14 19 0.571108 125/125 Serial (forward)

8 16 11 21 11 11 9 13 13 12 0.405918 123/125 Serial (backward)

Table 4.6: Cont’d with the results using 2nd − 4th order models

79



C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

5
th
-o
rd

er

0 5 12 20 13 10 11 20 11 23 0.000029 * 125/125 Frequency

6 10 8 8 11 16 15 14 11 26 0.004074 125/125 BlockFrequency

0 4 8 9 14 14 16 10 16 34 0.000000 * 125/125 CumulativeSums (m-2)

0 8 4 13 10 16 10 12 24 28 0.000000 * 125/125 CumulativeSums (m-3)

9 13 16 10 10 8 13 11 19 16 0.493319 124/125 Runs

9 11 18 23 17 7 13 4 12 11 0.006661 124/125 LongestRun

5 9 11 11 14 15 22 15 15 8 0.059743 125/125 ApproximateEntropy

15 12 15 13 10 11 11 10 18 10 0.687147 125/125 Serial (forward)

19 11 17 13 8 11 14 12 11 9 0.262219 123/125 Serial (backward)

6
th
-o
rd

er

4 8 2 19 10 8 14 15 22 23 0.000009 * 125/125 Frequency

2 8 12 9 6 9 10 18 20 31 0.000000 * 125/125 BlockFrequency

2 5 4 11 7 11 20 7 19 39 0.000000 * 125/125 CumulativeSums (m-2)

3 9 5 5 5 14 13 9 18 44 0.000000 * 125/125 CumulativeSums (m-3)

8 18 8 6 19 14 12 17 13 10 0.101175 125/125 Runs

7 6 16 22 23 9 7 12 8 15 0.000643 124/125 LongestRun

1 5 16 14 13 14 9 11 13 29 0.000006 * 125/125 ApproximateEntropy

9 6 12 14 14 13 13 13 16 15 0.552185 124/125 Serial (forward)

8 14 11 13 10 16 13 13 14 13 0.874833 124/125 Serial (backward)

Table 4.7: Cont’d with the results using 5th − 6th order models

80



C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

0
th
-o
rd

er

100 6 3 4 2 1 2 2 0 5 0.000000 * 38/125 * Frequency

88 9 3 5 4 4 5 1 6 0 0.000000 * 49/125 * BlockFrequency

100 5 4 5 1 3 2 2 0 3 0.000000 * 39/125 * CumulativeSums (m-2)

100 10 0 6 1 3 0 2 1 2 0.000000 * 38/125 * CumulativeSums (m-3)

108 7 4 1 2 0 1 1 1 0 0.000000 * 31/125 * Runs

100 4 7 7 3 2 0 1 1 0 0.000000 * 44/125 * LongestRun

114 3 2 1 1 1 1 2 0 0 0.000000 * 23/125 * ApproximateEntropy

112 5 4 1 1 0 1 1 0 0 0.000000 * 25/125 * Serial (forward)

73 11 8 7 10 3 4 2 1 6 0.000000 * 74/125 * Serial (backward)

1
s
t
-o
rd

er

25 8 10 13 6 11 7 13 13 19 0.003598 122/125 Frequency

14 8 13 16 12 14 10 13 12 13 0.889414 121/125 BlockFrequency

22 11 13 7 13 13 15 12 6 13 0.136969 122/125 CumulativeSums (m-2)

25 14 11 13 12 9 8 6 15 12 0.020616 119/125 * CumulativeSums (m-3)

86 14 4 6 4 4 1 2 2 2 0.000000 * 68/125 * Runs

66 15 13 16 5 3 3 3 0 1 0.000000 * 90/125 * LongestRun

78 15 7 9 2 5 2 2 2 3 0.000000 * 75/125 * ApproximateEntropy

80 6 9 6 4 6 6 0 5 3 0.000000 * 80/125 * Serial (forward)

40 15 13 14 6 8 6 6 7 10 0.000000 * 117/125 * Serial (backward)

Table 4.8: NIST test results with respect to random sequence T using 0th and 1st

distillers , where M = 32 for Block Frequency Test, m = 2 for Approximate Entropy

Test and m = 5 for Serial Test and ‘*’ marks a failure.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST
2
n
d
-o
rd

er

20 15 14 22 6 9 8 12 7 12 0.012159 121/125 Frequency

13 11 15 14 10 18 9 9 8 18 0.422488 122/125 BlockFrequency

20 12 6 18 13 10 11 7 11 17 0.086622 120/125 CumulativeSums (m-2)

18 15 9 15 9 17 13 2 13 14 0.066516 122/125 CumulativeSums (m-3)

16 14 14 11 9 10 12 14 13 12 0.915772 122/125 Runs

18 8 15 18 24 11 6 13 6 6 0.000782 120/125 LongestRun

19 14 17 12 13 7 9 10 11 13 0.474938 120/125 ApproximateEntropy

19 6 11 13 11 18 16 8 16 7 0.077998 122/125 Serial (forward)

16 16 9 10 11 9 11 21 12 10 0.302788 125/125 Serial (backward)

3
r
d
-o
rd

er

10 7 10 18 10 14 15 10 10 21 0.136969 124/125 Frequency

10 10 12 16 9 8 13 12 17 18 0.551044 125/125 BlockFrequency

8 9 8 15 9 10 27 5 14 20 0.000131 125/125 CumulativeSums (m-2)

8 8 9 10 14 8 17 11 16 24 0.017315 125/125 CumulativeSums (m-3)

14 13 13 19 11 7 12 12 11 13 0.529142 121/125 Runs

9 11 11 24 20 10 11 11 12 6 0.012903 124/125 LongestRun

15 10 11 6 14 11 9 18 15 16 0.422488 123/125 ApproximateEntropy

11 9 11 15 12 12 15 11 14 15 0.915772 123/125 Serial (forward)

11 18 15 9 13 12 9 10 12 16 0.506075 122/125 Serial (backward)

4
th
-o
rd

er

3 6 18 26 12 10 4 9 12 25 0.000000 * 125/125 Frequency

6 10 5 5 12 15 8 19 22 23 0.000051 * 125/125 BlockFrequency

2 5 8 18 15 9 18 8 11 31 0.000000 * 125/125 CumulativeSums (m-2)

2 6 11 15 12 20 14 4 12 29 0.000000 * 124/125 CumulativeSums (m-3)

14 13 12 13 8 11 11 13 14 16 0.903069 122/125 Runs

12 6 23 15 16 8 13 8 13 11 0.045489 125/125 LongestRun

18 7 11 7 13 19 12 11 12 15 0.265309 122/125 ApproximateEntropy

13 16 8 13 13 15 13 15 8 11 0.665311 123/125 Serial (forward)

14 13 13 12 12 13 18 15 10 5 0.283039 124/125 Serial (backward)

Table 4.9: Cont’d with the results using 2nd − 4th order models
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

5
th
-o
rd

er

6 10 11 17 9 14 10 20 15 13 0.211194 125/125 Frequency

6 5 4 6 7 13 18 13 22 31 0.000000 * 125/125 BlockFrequency

2 8 8 19 5 9 16 10 19 29 0.000000 * 125/125 CumulativeSums (m-2)

3 9 5 12 8 14 18 6 14 36 0.000000 * 125/125 CumulativeSums (m-3)

13 17 9 17 11 10 13 11 11 13 0.687147 124/125 Runs

11 9 17 25 18 9 13 5 7 11 0.001801 125/125 LongestRun

9 15 15 7 14 14 15 18 12 6 0.302788 124/125 ApproximateEntropy

13 11 11 10 10 11 17 11 20 11 0.304210 121/125 Serial (forward)

12 13 13 16 10 16 11 12 14 8 0.789315 123/125 Serial (backward)

6
th
-o
rd

er

2 13 10 14 11 11 20 9 11 24 0.001586 125/125 Frequency

5 2 4 8 8 8 16 22 19 33 0.000000 * 125/125 BlockFrequency

1 4 11 10 10 12 12 15 19 31 0.000000 * 125/125 CumulativeSums (m-2)

2 6 7 10 6 13 17 7 20 37 0.000000 * 125/125 CumulativeSums (m-3)

23 14 12 14 7 10 13 8 13 11 0.130323 123/125 Runs

9 12 13 24 19 6 15 8 9 10 0.007992 124/125 LongestRun

13 17 11 18 12 10 11 12 11 10 0.643139 124/125 ApproximateEntropy

11 14 11 18 11 13 11 4 17 15 0.289860 123/125 Serial (forward)

15 9 14 13 11 13 15 14 6 15 0.529142 124/125 Serial (backward)

Table 4.10: Cont’d with the results using 5th − 6th order models
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

0
th
-o
rd

er

21 15 7 20 11 13 9 14 11 4 0.013689 122/125 Frequency

7 19 19 10 10 12 13 7 13 15 0.166594 125/125 BlockFrequency

21 9 9 14 13 10 18 10 11 10 0.231636 121/125 CumulativeSums (m-2)

22 10 9 17 13 7 11 8 11 17 0.059743 122/125 CumulativeSums (m-3)

26 20 13 11 10 11 8 8 9 9 0.002320 117/125 * Runs

22 13 16 13 22 11 3 11 9 5 0.000603 123/125 LongestRun

30 21 15 8 13 7 10 3 9 9 0.000001 * 117/125 * ApproximateEntropy

27 16 14 11 11 8 10 11 8 9 0.004904 124/125 Serial (forward)

10 16 18 15 9 11 10 12 11 13 0.552185 125/125 Serial (backward)

1
s
t
-o
rd

er

24 21 13 14 9 10 11 13 4 6 0.000949 120/125 Frequency

11 18 16 10 10 11 14 15 10 10 0.529142 125/125 BlockFrequency

18 22 13 11 11 8 13 6 14 9 0.063046 120/125 CumulativeSums (m-2)

21 17 17 6 14 6 13 11 9 11 0.043046 120/125 CumulativeSums (m-3)

17 19 13 15 6 16 11 10 10 8 0.192277 124/125 Runs

13 13 13 13 27 20 7 9 5 5 0.000067 * 123/125 LongestRun

22 20 16 14 12 15 7 6 7 6 0.002471 120/125 ApproximateEntropy

12 14 16 16 13 16 14 7 8 9 0.262219 124/125 Serial (forward)

8 14 13 15 14 16 14 8 7 16 0.551044 125/125 Serial (backward)

Table 4.11: NIST test results with respect to the random sequence generated by

1-out-of-8 Coding using 0th and 1st distillers, where M = 32 for Block Frequency

Test, m = 1 for Approximate Entropy Test and m = 4 for Serial Test and ‘*’ marks

a failure.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST
2
n
d
-o
rd

er

46 21 6 16 6 12 7 7 3 1 0.000000 * 115/125 * Frequency

20 18 10 15 9 7 18 10 10 8 0.059743 124/125 BlockFrequency

41 17 15 10 5 9 9 6 6 7 0.000000 * 118/125 * CumulativeSums (m-2)

39 16 14 9 11 6 10 2 12 6 0.000000 * 116/125 * CumulativeSums (m-3)

19 10 13 12 9 13 14 9 14 12 0.552185 123/125 Runs

21 11 27 12 23 14 2 6 4 5 0.000000 * 123/125 LongestRun

41 18 10 12 9 10 5 9 8 3 0.000000 * 120/125 ApproximateEntropy

15 28 16 10 8 12 16 8 7 5 0.000123 123/125 Serial (forward)

14 10 9 14 14 15 19 13 11 6 0.457002 124/125 Serial (backward)

3
r
d
-o
rd

er

55 14 4 15 7 8 6 3 8 5 0.000000 * 111/125 * Frequency

22 19 20 11 13 8 9 6 9 8 0.003829 123/125 BlockFrequency

47 21 9 9 5 5 10 3 8 8 0.000000 * 112/125 * CumulativeSums (m-2)

47 19 7 4 13 4 12 4 12 3 0.000000 * 111/125 * CumulativeSums (m-3)

15 10 13 13 14 13 15 8 13 11 0.889414 124/125 Runs

21 16 33 12 17 10 3 7 4 2 0.000000 * 120/125 LongestRun

42 17 13 7 10 11 8 5 8 4 0.000000 * 114/125 * ApproximateEntropy

26 25 12 9 7 7 12 12 7 8 0.000017 * 121/125 Serial (forward)

16 12 13 11 9 16 11 17 11 9 0.575157 124/125 Serial (backward)

4
th
-o
rd

er

19 23 7 16 8 7 15 17 10 3 0.000407 121/125 Frequency

19 14 9 15 11 16 15 7 9 10 0.344248 123/125 BlockFrequency

20 20 13 11 13 7 10 10 9 12 0.143910 121/125 CumulativeSums (m-2)

19 17 14 12 10 4 15 9 15 10 0.130323 120/125 CumulativeSums (m-3)

10 13 8 14 14 12 16 9 18 11 0.437182 125/125 Runs

15 12 23 18 17 8 8 6 10 8 0.007522 120/125 LongestRun

19 11 15 10 13 11 12 11 12 11 0.708591 122/125 ApproximateEntropy

12 15 6 10 11 13 19 14 14 11 0.571108 125/125 Serial (forward)

9 7 9 15 14 17 10 13 16 15 0.551044 125/125 Serial (backward)

Table 4.12: Cont’d with the results using 2nd − 4th order models
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

5
th
-o
rd

er

12 18 8 18 11 12 9 17 12 8 0.316158 124/125 Frequency

12 16 13 9 15 19 10 9 14 8 0.493319 124/125 BlockFrequency

14 14 14 11 12 10 17 7 12 14 0.665311 124/125 CumulativeSums (m-2)

10 15 18 8 10 11 18 6 17 12 0.166594 123/125 CumulativeSums (m-3)

9 10 12 23 6 11 10 12 19 13 0.036430 125/125 Runs

11 18 18 15 20 11 9 8 10 5 0.036430 124/125 LongestRun

12 12 13 9 9 18 14 11 14 13 0.729586 125/125 ApproximateEntropy

7 14 8 6 14 20 10 16 14 16 0.096097 125/125 Serial (forward)

9 9 11 10 12 10 17 13 14 20 0.457002 125/125 Serial (backward)

6
th
-o
rd

er

7 20 5 18 15 15 12 12 19 2 0.001080 125/125 Frequency

7 18 5 15 14 10 17 11 10 18 0.086622 125/125 BlockFrequency

9 18 11 13 12 9 12 8 21 12 0.231636 125/125 CumulativeSums (m-2)

6 15 18 10 10 6 20 10 16 14 0.050764 124/125 CumulativeSums (m-3)

5 9 9 13 16 16 13 14 14 16 0.422488 124/125 Runs

10 14 18 12 21 11 7 10 11 11 0.211194 125/125 LongestRun

4 12 7 16 15 9 14 15 17 16 0.130323 124/125 ApproximateEntropy

11 7 9 15 15 11 9 19 17 12 0.329976 124/125 Serial (forward)

15 15 15 14 7 6 13 9 16 15 0.405918 124/125 Serial (backward)

Table 4.13: Cont’d with the results using 5th − 6th order models
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

0
th
-o
rd

er

0 9 6 12 12 20 15 23 10 18 0.000072 * 125/125 Frequency

0 0 0 1 0 1 4 4 15 100 0.000000 * 125/125 BlockFrequency

0 0 8 5 5 9 13 16 9 60 0.000000 * 125/125 CumulativeSums (m-2)

0 3 8 2 5 10 13 19 12 53 0.000000 * 125/125 CumulativeSums (m-3)

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Runs

113 6 4 0 2 0 0 0 0 0 0.000000 * 62/125 * LongestRun

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * ApproximateEntropy

125 0 0 0 0 0 0 0 0 0 0.000000 * 1/125 * Serial (forward)

36 21 12 11 8 8 9 8 7 5 0.000000 * 117/125 * Serial (backward)

1
s
t
-o
rd

er

0 9 6 12 12 20 15 23 10 18 0.000072 * 125/125 Frequency

0 0 0 1 0 1 4 4 15 100 0.000000 * 125/125 BlockFrequency

0 0 8 5 5 9 13 16 9 60 0.000000 * 125/125 CumulativeSums (m-2)

0 3 8 2 5 10 13 19 12 53 0.000000 * 125/125 CumulativeSums (m-3)

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Runs

113 6 4 0 2 0 0 0 0 0 0.000000 * 62/125 * LongestRun

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * ApproximateEntropy

125 0 0 0 0 0 0 0 0 0 0.000000 * 1/125 * Serial (forward)

36 21 12 11 8 8 9 8 7 5 0.000000 * 117/125 * Serial (backward)

Table 4.14: NIST test results with respect to the random sequence generated by the

original Neighbor Coding using using 0th − 1st order models, where M = 32 for

Block Frequency Test, m = 2 for Approximate Entropy Test and m = 5 for Serial

Test and ‘*’ marks a failure.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST
2
n
d
-o
rd

er

1 6 10 9 14 17 15 22 17 14 0.001228 125/125 Frequency

0 0 0 0 2 2 6 2 20 93 0.000000 * 125/125 BlockFrequency

0 2 6 6 6 11 12 14 7 61 0.000000 * 125/125 CumulativeSums (m-2)

1 1 4 11 7 7 13 10 14 57 0.000000 * 125/125 CumulativeSums (m-3)

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Runs

111 8 3 2 0 0 1 0 0 0 0.000000 * 58/125 * LongestRun

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * ApproximateEntropy

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Serial (forward)

38 24 14 11 6 6 12 6 3 5 0.000000 * 110/125 * Serial (backward)

3
r
d
-o
rd

er

1 2 6 6 15 24 8 30 17 16 0.000000 * 125/125 Frequency

0 0 0 0 2 1 3 7 11 101 0.000000 * 125/125 BlockFrequency

1 0 3 4 3 7 7 23 16 61 0.000000 * 125/125 CumulativeSums (m-2)

0 1 4 3 9 5 9 19 16 59 0.000000 * 125/125 CumulativeSums (m-3)

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Runs

115 6 2 0 1 1 0 0 0 0 0.000000 * 48/125 * LongestRun

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * ApproximateEntropy

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Serial (forward)

38 27 10 12 11 9 6 6 4 2 0.000000 * 114/125 * Serial (backward)

4
th
-o
rd

er

0 2 6 11 8 23 11 36 10 18 0.000000 * 125/125 Frequency

0 0 0 0 1 2 1 6 14 101 0.000000 * 125/125 BlockFrequency

0 2 1 3 5 7 9 17 12 69 0.000000 * 125/125 CumulativeSums (m-2)

0 1 2 3 5 9 6 22 10 67 0.000000 * 125/125 CumulativeSums (m-3)

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Runs

113 8 2 0 0 0 2 0 0 0 0.000000 * 54/125 * LongestRun

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * ApproximateEntropy

125 0 0 0 0 0 0 0 0 0 0.000000 * 1/125 * Serial (forward)

40 22 15 14 3 10 7 6 4 4 0.000000 * 110/125 * Serial (backward)

Table 4.15: Cont’d with the results using 2nd − 4th order models
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

5
th
-o
rd

er

2 3 6 6 10 16 15 22 17 28 0.000000 * 125/125 Frequency

0 0 0 0 0 1 3 5 14 102 0.000000 * 125/125 BlockFrequency

1 1 2 7 3 5 6 11 17 72 0.000000 * 125/125 CumulativeSums (m-2)

1 1 5 2 4 5 6 21 11 69 0.000000 * 125/125 CumulativeSums (m-3)

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Runs

110 9 2 1 2 1 0 0 0 0 0.000000 * 42/125 * LongestRun

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * ApproximateEntropy

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Serial (forward)

40 28 13 12 8 10 5 3 3 3 0.000000 * 114/125 * Serial (backward)

6
th
-o
rd

er

2 3 4 7 13 19 13 26 18 20 0.000000 * 125/125 Frequency

0 0 0 0 0 0 3 8 12 102 0.000000 * 125/125 BlockFrequency

1 1 4 2 8 5 8 12 10 74 0.000000 * 125/125 CumulativeSums (m-2)

1 3 1 1 2 10 6 20 14 67 0.000000 * 125/125 CumulativeSums (m-3)

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Runs

115 6 2 0 1 1 0 0 0 0 0.000000 * 44/125 * LongestRun

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * ApproximateEntropy

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Serial (forward)

41 23 20 13 7 6 8 0 2 5 0.000000 * 113/125 * Serial (backward)

Table 4.16: Cont’d with the results using 5th − 6th order models

89



C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

0
th
-o
rd

er

30 21 12 10 8 9 5 7 10 13 0.000003 * 115/125 * Frequency

20 9 11 16 11 12 9 21 8 8 0.050764 120/125 BlockFrequency

31 14 9 9 9 14 7 3 9 20 0.000000 * 119/125 * CumulativeSums (m-2)

32 15 11 6 10 14 5 3 11 18 0.000000 * 118/125 * CumulativeSums (m-3)

22 12 11 13 16 11 12 9 9 10 0.302788 120/125 Runs

11 16 15 26 16 17 9 7 5 3 0.000062 * 124/125 LongestRun

29 17 7 20 10 6 9 3 11 13 0.000001 * 119/125 * ApproximateEntropy

21 16 12 11 11 15 4 16 9 10 0.070160 116/125 * Serial (forward)

17 7 10 14 18 17 13 13 10 6 0.192277 123/125 Serial (backward)

1
s
t
-o
rd

er

21 17 13 15 11 7 13 7 9 12 0.130323 124/125 Frequency

16 7 9 21 12 7 15 18 10 10 0.056599 122/125 BlockFrequency

23 10 12 13 12 9 9 7 13 17 0.082208 124/125 CumulativeSums (m-2)

24 9 12 12 9 15 16 6 12 10 0.034444 123/125 CumulativeSums (m-3)

22 11 10 11 8 18 13 7 11 14 0.096097 122/125 Runs

7 13 16 27 17 9 13 11 4 8 0.000274 124/125 LongestRun

21 16 12 14 9 10 5 10 13 15 0.130323 122/125 ApproximateEntropy

14 12 16 11 12 15 12 10 12 11 0.956806 122/125 Serial (forward)

10 12 13 15 12 17 11 13 15 7 0.620686 123/125 Serial (backward)

Table 4.17: NIST test results with respect to the random sequence generated by

the decoupled Neighbor Coding using 0th− 1st order models, where M = 32 for

Block Frequency Test, m = 2 for Approximate Entropy Test and m = 5 for Serial

Test and ‘*’ marks a failure.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST
2
n
d
-o
rd

er

20 16 15 17 5 14 10 10 9 9 0.086622 121/125 Frequency

17 6 15 12 8 14 16 12 13 12 0.262219 123/125 BlockFrequency

21 16 11 13 12 7 12 5 11 17 0.073984 123/125 CumulativeSums (m-2)

20 10 13 10 15 13 15 6 11 12 0.389809 120/125 CumulativeSums (m-3)

20 14 11 13 13 8 7 13 14 12 0.493319 124/125 Runs

7 11 20 23 22 10 9 12 6 5 0.000115 124/125 LongestRun

20 15 15 12 11 5 10 13 11 13 0.316158 122/125 ApproximateEntropy

15 15 11 8 16 11 15 14 10 10 0.643139 121/125 Serial (forward)

16 7 7 11 15 12 13 17 14 13 0.262219 123/125 Serial (backward)

3
r
d
-o
rd

er

18 17 12 10 17 8 14 11 9 9 0.389809 123/125 Frequency

13 9 13 10 9 12 18 15 18 8 0.457002 122/125 BlockFrequency

17 15 14 9 13 8 14 9 9 17 0.551044 124/125 CumulativeSums (m-2)

16 11 12 13 8 16 19 5 15 10 0.192277 123/125 CumulativeSums (m-3)

18 15 13 15 8 9 11 12 13 11 0.529142 124/125 Runs

5 13 20 29 16 16 8 8 2 8 0.000000 * 123/125 LongestRun

17 13 13 11 12 11 14 9 14 11 0.889414 125/125 ApproximateEntropy

15 11 8 13 16 5 16 14 13 14 0.493319 123/125 Serial (forward)

16 10 8 10 10 10 19 16 15 11 0.439517 125/125 Serial (backward)

4
th
-o
rd

er

18 17 15 17 10 10 10 13 5 10 0.192277 124/125 Frequency

15 8 14 13 12 12 11 11 17 12 0.807956 124/125 BlockFrequency

20 17 12 8 11 14 5 13 8 17 0.070160 124/125 CumulativeSums (m-2)

16 18 7 16 15 9 13 5 10 16 0.117876 124/125 CumulativeSums (m-3)

18 14 12 9 16 13 9 13 8 13 0.414457 125/125 Runs

7 8 19 30 21 7 13 5 5 10 0.000000 * 123/125 LongestRun

15 17 17 7 11 5 17 11 10 15 0.143910 122/125 ApproximateEntropy

12 12 15 8 11 16 11 14 19 7 0.457002 123/125 Serial (forward)

13 6 12 13 13 15 13 14 13 13 0.825875 124/125 Serial (backward)

Table 4.18: Cont’d with the results using 2nd − 4th order models
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

5
th
-o
rd

er

20 17 14 8 15 11 9 6 9 16 0.096097 125/125 Frequency

10 9 12 12 13 13 16 15 17 8 0.552185 124/125 BlockFrequency

21 13 10 14 10 9 13 3 15 17 0.043046 124/125 CumulativeSums (m-2)

16 18 8 12 12 13 7 5 21 13 0.036430 125/125 CumulativeSums (m-3)

16 10 13 10 7 13 12 19 7 18 0.192277 123/125 Runs

4 13 17 30 20 11 10 5 3 12 0.000000 * 124/125 LongestRun

15 14 14 12 9 10 18 12 10 11 0.665311 122/125 ApproximateEntropy

13 15 13 12 14 13 19 7 12 7 0.512137 124/125 Serial (forward)

11 10 20 10 13 16 12 10 15 8 0.474938 125/125 Serial (backward)

6
th
-o
rd

er

21 12 10 13 10 12 17 7 9 14 0.231636 122/125 Frequency

16 10 11 9 9 11 17 17 13 12 0.437182 123/125 BlockFrequency

21 12 11 11 7 15 11 6 13 18 0.091249 123/125 CumulativeSums (m-2)

18 12 7 15 12 13 9 10 9 20 0.211194 123/125 CumulativeSums (m-3)

14 10 15 15 15 15 11 6 13 11 0.529142 122/125 Runs

7 7 22 25 20 10 7 13 6 8 0.000017 * 122/125 LongestRun

17 12 11 13 11 14 17 8 12 10 0.598008 124/125 ApproximateEntropy

19 14 6 11 9 14 16 16 9 11 0.277369 123/125 Serial (forward)

15 10 10 13 10 13 11 17 14 12 0.843024 121/125 Serial (backward)

Table 4.19: Cont’d with the results using 5th − 6th order models
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are deemed ‘good’ but it is not clear to us why the failure rate increases until 3rd

order and drops suddenly. The performance of 1-out-of-8 Coding is generally worse

when applied column-wise for both forms of analysis; failures persist throughout the

models we consider in this work.

4.3.2.3 Neighbor Coding

In the case of Chain-like Neighbor Coding, 15 bits are generated per row by

pairing up row neighbors and a total 480-bit random sequence results per device. As

shown in the fourth column of Table 4.2, none of our distillers can make meaningful

improvement. The phenomenon aligns with our expectation for the failures are

caused by the intrinsic chain dependencies of the pairing strategy rather than spatial

correlation. The argument also draws support from the pass rate of Decoupled

Neighbor Coding enhanced by a distiller in 1st order or beyond. Overfitting is mild

compared with other coding strategies. Like 1-out-of-8 Coding, pairing column-wise

yields worse pass rate regardless chained or not; results are omitted for brevity. The

high failure rate is attributed to the mutual-dependent comparison chain formed in

every row. Take an ‘ideal’ 2-bit random sequence for example: the 4 outcomes ‘00’,

‘01’, ‘10’ and ‘11’ would occur all with probability exactly 1/4. However, given 3

ROs ROA, ROB and ROC and assuming that the 6 outcomes ROA < ROB < ROC ,

ROA < ROC < ROB, ROB < ROA < ROC ,. . . , ROC < ROB < ROA are equally

likely with probability exactly 1/6, then the probability of the 2-bit random sequence

‘00’, ‘01’, ‘10’ and ‘11’ generated by Neighbor Coding would be 1/6, 1/3, 1/3 and
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1/6, a clear deviation from the ‘ideal’. To validate our thought, we modify the

scheme and pair up any RO no more than once; that is, we compare ROi,j and

ROi+1,j where 1 ≤ i ≤ c and i is odd. After such a decoupling, the random

sequence becomes 256-bit long. It turned out that a significant increase in pass

rate was observed in the fifth column of Table 4.2. Block sizes selected for Block

Frequency Test, Approximate Entropy Test and for Serial Test are 32, 2, and 5.

4.4 Summary

The systematic component of fabrication variation has posed a security threat

to RO PUFs such that none of the current coding schemes can pass all NIST ran-

domness tests without further secrecy amplification. To tackle the problem, we

proposed a family of regression-based entropy distillers to separate random varia-

tion from systematic variation. The effectiveness of our distiller is affirmed by all

passes in the new test results. In the next chapter, we will incorporate the entropy

distiller into the complete design of the group-based RO PUF; meanwhile, we will

consider ECC and devise a more error-resilient syndrome coding scheme to reduce

its complexity.
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Chapter 5

Kendall Syndrome Coding (KSC)

In Chapter 3, we designed the group-based algorithm LISA that searches for

longest increasing subsequences to maximize the entropy extraction power of RO

PUFs. Then in Chapter 4, we discussed the security threats caused by the underly-

ing spatial correlation and tackled them with the regression-based entropy distiller

that removed the systematic component so as to extract purely the i.i.d. Gaussian

variations. In this chapter, we will incorporate the error correcting code (ECC) into

the design and introduce Kendall Syndrome Coding (KSC) to further enhance the

hardware efficiency. Recall that in Chapter 3 we encode a permutation of n ele-

ments into a binary integer 0 . . . n!− 1 in a compact fashion, which here we refer to

as Compact Syndrome Coding (CSC). The problem of CSC is that its error weight

distribution does not correlate well with the underlying error probability distribu-

tion such that many errors occurring frequently are encoded in greater (instead of

smaller) Hamming distance than those less likely to happen. In light of this, KSC

preserves the underlying Kendall tau distance [26] between two rank permutations

in the encoded/mapped Hamming space. Not only is the new design more error

tolerant, it is also more robust in security and much easier to fabricate. Overall,

the new group-based design is 9% more efficient than the previous and 50% or more

efficient than an index-based (IBS) approach [56] in most error correcting scenar-
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000002 {ABCD} 010002 {BCAD} 100002 {CDAB}

000012 {ABDC} 010012 {BCDA} 100012 {CDBA}

000102 {ACBD} 010102 {BDAC} 100102 {DABC}

000112 {ACDB} 010112 {BDCA} 100112 {DACB}

001002 {ADBC} 011002 {CABD} 101002 {DBAC}

001012 {ADCB} 011012 {CADB} 101012 {DBCA}

001102 {BACD} 011102 {CBAD} 101102 {DCAB}

001112 {BADC} 011112 {CBDA} 101112 {DCBA}

Table 5.1: The codebook of the rank permutations of 4 ROs using Compact Syn-

drome Coding (CSC), where {ABCD} is a shorthand of the frequency relation

ROA < ROB < ROC < ROD

ios we constructed with BCH. The i.i.d. uniform output assumption is validated

by the NIST random test [5] results, which indicate that our output statistics is

indistinguishable from the uniform distribution.

5.1 Problems of the Previous Design

LISA heuristically extract the maximal comparison-based entropy log2M ! out

of M ROs by searching for longest increasing subsequences (LIS) iteratively to form

independent groups that contain the largest set of ROs while maintaining the sta-

bility threshold between any two ROs within the group. Still, there are four issues

that may reduce its usability.

• Manufacturing Complexity In the enrollment phase, LISA requires sam-
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pling of RO frequencies at two temperature points, e.g., 0◦C and 100◦C, to

ensure the reliability. This complicates and slows down the fabrication process.

• Error Tolerance While LISA is effective to address temperature variability

that has a linear impact on RO frequencies, it is not as efficient to deal with

non-linear variability such as supply voltage fluctuation. Because it relies

on the reliability threshold to accommodate all potential errors, it has to

maintain a relatively high margin in choosing the value of the threshold. Being

conservative in the choice reduces the hardware efficiency and thus may not

yield the best solution when one can also leverage on ECC for error control.

• Spatial Correlation As mentioned in the last chapter, when two ROs are

distant from each other, the generated secret can be better predicted if one

has the knowledge of the underlying systematic trend. We have shown statis-

tically how the trend weakens the security of PUFs as the output bits are not

independent and identically distributed (i.i.d.).

• Coding Inefficiency The previous work encodes the frequency rank permu-

tation of M ROs in binary of integer 0 . . .M !−1, here we refer to as Compact

Syndrome Coding (CSC). CSC does not work well with error correcting codes

(ECC). To illustrate, let us consider a list of four ROs ROA, ROB, ROC and

ROD; the CSC codebook in lexicographic order is listed in Table 5.1. Suppose

a rank permutation {ROA < ROD < ROC < ROB} is first enrolled with its

codeword 001012; later on, we would like to regenerate the codeword given

certain errors. Let us say a flipover occurs between ROA and ROD, yielding
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us a new frequency measurement {ROD < ROA < ROC < ROB} or 100112

in its encoded form. Since the Hamming distance dh between the two code-

words 001012 and 100112 is three, the error can be corrected by BCH(n = 15,

k = 5, t = 3) code using the Code-Offset technique in [53], assuming there is

no more error in the subsequent 10 bit of the 15-bit code block. To estimate

the effective min-entropy, which is defined later, let us assume the 10 bits are

derived from other two independent lists of 4 ROs. If each rank permutation is

equally likely with probability 1
4!

, then the raw entropy of the block is 3 log2 4!

or 13.754 bits. The min-entropy, however, is merely 3.7543 bits because we

have to deduct 10 bits of entropy loss due to public syndrome disclosure1. In

fact, the loss can be reduced by better correlating the error weight distribution

in Hamming space with the probability mass function (p.m.f.) of erroneous

flipovers. In other words, if an error event happens in higher probability, it

should be encoded closer in Hamming space. To see how this may not be

true in CSC, consider three flipovers happening at the same time: the first

between ROA and ROB, the second between ROA and ROC and the third

between ROA and ROD, with presumably fairly low probability. But instead,

the Hamming distance between the new codeword 101112 of {DCBA} and

the enrolled codeword 001012 of {ADCB} is only two, even closer than the

previous error pattern presumably in higher probability.

To address the four issues, this chapter provides a new group-based design with

improved entropy efficiency, security and fabrication simplicity: 1) we propose a new

1More generally, (n− k)-bit loss for linear codes [53].
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syndrome coding based on Kendall tau distance for better stability in the encoded

Hamming space; 2) we incorporate two new processes for entropy distillation and

entropy packing to strengthen security; 3) we redesign the grouping algorithm to

simplify the manufacturing process. The improvements make the new design 9%

more efficient than its predecessor and 50% or more efficient than the index-based

(IBS) approach [56] in most of our experimental scenarios. The NIST hypothesis

testing affirms that our PUF output is indistinguishable from those drawn from

an ideal uniform distribution. We emphasize that our results do not resort to the

help from universal hash function (UHF) nor linear feedback shift register (LFSR)

typically employed by PUFs for secrecy amplification. Without an external seed,

our PUF can generate the secret in a fully autonomous fashion.

5.2 Kendall Syndrome Coding (KSC)

Kendall’s correlation statistic [26] is used to address the issue of coding in-

efficiency. To begin with, rank permutation of n elements is defined as permu-

tation of integers (ranks) 1 . . . n; Kendall tau distance dτ (σ, π) is defined as the

minimum number of transpositions of adjacent ranks required to change from one

rank permutation σ into another π of the same size [11]. For instance, consider

two rank permutations of three elements σ = {σ(1) = 1, σ(2) = 3, σ(3) = 2} and

π = {π(1) = 2, π(2) = 3, π(3) = 1}. The Kendall distance dτ (σ, π) is one because

σ would be equal to π after transposing of rank 1 and rank 2 of the first element
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and the third element2. dτ can also defined as the number of pairwise disagreements

between two rank permutations [15], namely,

dτ (σ, π) =
n−1∑
i=1

n∑
j=i+1

s(i, j) (5.1)

where

s(i, j) =


1 if (σ(i) < σ(j) ∩ π(i) > π(j))

∪ (σ(i) > σ(j) ∩ π(i) < π(j))

0 otherwise.

For a group-based RO PUF, dτ is equal to the number of flipovers in a group during

secret regeneration and presumably reversely proportional to the error probability.

Now we want to encode the frequency rank permutation of a list of ROs from the

Kendall space into the Hamming space such that the Kendall distance dτ between

any two rank permutations is equivalent to the Hamming distance dh of the cor-

responding codewords. Indeed, such a class of codes exists and the conversion is

efficient [16]. Given a group of ROs g, {RO1 . . . ROn} in certain physical order, its

rank permutation can be encoded pairwisely into a bitstring sg of length n(n−1)
2

,

sg = (sg(1, 2) . . . sg(1, n), sg(2, 3) . . . sg(n− 1, n)) (5.2)

where ∀sg(i, j), i < j, 1 ≤ i, j ≤ n,

sg(i, j) =


0 if ROi < ROj

1 otherwise.

2In the previous section, the elements are listed in the order of ranks, different from here the

ranks are listed in the order of elements.
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Figure 5.1: The architecture of the proposed group-based RO PUF

For instance, consider a group g composed of 3 ROs with frequency readings {ROA =

38, ROB = 97, ROC = 54} in the same rank permutation as the σ = {1, 3, 2} defined

earlier; from Eqn. (5.2), we can KSC encode g into sg = (0, 0, 1). Let us say

later certain environmental variations cause a re-measurement of the frequencies to

g′ = {ROA = 78, ROB = 103, ROC = 60}, which has the same rank permutation as

the π = {2, 3, 1} defined above. In turn, Eqn. (5.2) yields a KSC encoded bitstring

sg′ = (0, 1, 1). As we see, dh(sg, sg′) = dτ (σ, π) = 1, where the pairwise disorder

takes place between elements (1, 3) for g(1) < g(3) but g′(1) > g′(3). Reversely,

[16] also shows how to decode sg into σ = (σ(1) . . . σ(n)), where

σ(i) = 1 +
i−1∑
j=1

(1− s(i, j)) +
n∑

j=i+1

s(i, j). (5.3)

5.3 The Proposed Group-Based RO PUF

The architecture of the proposed PUF is depicted in Figure 5.1. Our public

helper data comprises three parts (i) distiller coefficients, (ii) group information and

(iii) syndrome bits; all of them are determined and stored publicly in non-volatile

memory such as EEPROM or NAND/NOR flash when the secret is first enrolled.
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The seven-step secrecy extraction procedure is explained in the following.

5.3.1 Frequency Characterization

A RO PUF typically consists of a RO array as well as counters and multi-

plexers to help acquire frequency readings of the RO array. Given M ROs, the

frequency readings are denoted as RO1 . . . ROM in certain physical order, say, scan-

ning sequentially by rows when ROs are placed as a 2-D array. One may take an

average over multiple measurements for each RO as the output of the step.

5.3.2 Randomness Distillation

The output from Step 1 contains both random and systematic variations. Since

the systematic component may render the output lack of randomness, we apply poly-

nomial regression to remove it [54]. Each PUF calculates its own model coefficients

and stores them as public helper data. The optimal order of the polynomial regres-

sion model can be determined empirically or by AICc [48]. As an example, let us

model the systematic trend of a m-by-n 2-D RO array by means of 1st-order poly-

nomial sysx,y = β1x + β2y + β3, where βi’s are the model coefficients to be solved

and (1, 1) ≤ (x, y) ≤ (n,m). The frequency measurement can then be written as

ROx,y = sysx,y + εx,y, where sysx,y denotes the systematic variability and εx,y de-

notes the random variation at location (x, y). Putting m × n model equations in

matrix form,

102



z = Ωβ + ε, (5.4)

where

z =



RO1,1

...

ROn,1

...

RO1,m

...

ROn,m



,Ωβ =



1 1 1

...
...

...

n 1 1

...
...

...

1 m 1

...
...

...

n m 1




β1

β2

β3

 , ε =



ε1,1

...

εn,1

...

ε1,m

...

εn,m



.

To solve the model coefficients β, one can use the least squares method that takes

the first derivative on the sum of the squares of the residual terms ε and set the

derivative to zero, or formally,

∂ε2

∂β
=
∂(z − Ωβ)T (z − Ωβ)

∂β
(5.5)

=
∂(zTz − zTΩβ − βTΩTz + βTΩTΩβ)

∂β
(5.6)

= −2ΩTz + 2ΩTΩβ = 0 (5.7)

=⇒ β = (ΩTΩ)−1ΩTz, (5.8)

where (ΩTΩ)−1ΩT is a constant solver and z is the frequency characterization

of the m × n ROs at enrollment. Once β is determined, we can easily calculate

the output of the step, that is, the distilled random variation ε′, which is equal to

z′ − Ωβ for any frequency re-characterization z′.
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5.3.3 Grouping Algorithm

The goal of the step is to form independent groups while meeting certain

stability criterion. The key difference from its predecessor [55] is that only one

environmental condition is needed to take the measurements in the enrollment phase.

This resolves the manufacturing problem mentioned in the very beginning. Due

to the change, the maximization problem in [55] is rephrased as: given M ROs

whose frequency output are i.i.d., we want to find a partition G = {g1 . . . g|G|} that

maximizes the total group entropy
∑|G|

i=1 log2 |gi|! while ensuring that no RO pair in

the same group gi have their frequency difference less than a stability threshold fth

at enrollment time, that is,

maximize
∑|G|

i=1 log2 |gi|! subject to

1. gi ∩ gj = ∅, where 1 ≤ i, j ≤ |G|, i 6= j

2. g1 ∪ g2 ∪ . . . ∪ g|G| = RO1, . . . ROM

3. ∀ROi, ROj ∈ gk, |ROi −ROj| ≥ fth, where 1 ≤ i, j ≤ |gk|, i 6= j, 1 ≤ k ≤ |G|.

Constraint a) ensures that no RO is used twice to maintain the i.i.d. PUF output

assumption; b) leaves no RO unexplored3; c) parametrizes PUF stability with fth,

whose value can be determined empirically. To solve the new maximization problem,

LISA can be simplified as LISA-lite as below. LISA-lite completes in O(M2) and

the worst case occurs, for instance, when all ROs have the same frequency readings

such that only one RO can be removed from the linked list for each run of the for

3The constraint is redundant in the setting of a maximization problem but kept for clarity
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loop. Lastly, each RO is assigned with a group ID in solution G and all ROi.gid’s

are stored in their physical order for future reference.

5.3.4 Kendall Syndrome Coding

Each group gi in solution G is KSC encoded by Eqn. (5.2). The resulting

bitstrings sg1 . . . sg|G| are concatenated as the output of the step.

5.3.5 Conventional ECC

A linear block code (n, k, t) can be used to correct runtime errors, where n

denotes block size, k the number of information bits, n − k the number of parity

bits and t maximum errors within the block that are correctable by the code. The

Code-Offset technique [53] is assumed to bound the min-entropy loss due to public

disclosure of syndrome bits. At enrollment, the output from the previous step is

divided into blocks of n-bit secret w. The first k bits of w is encoded with certain

ECC to produce n−k parity bits p. The parity bits p then exclusive-or with the last

n−k bits of w to produce the n−k syndrome bits h, which are then saved as public

helper data to assist secrecy recovery. To recover the enrolled secret block w given

new input w′ from Step 4, we retrieve the saved syndrome bits h and exclusive-or

with the last n − k bits of w′ to produce n − k parity bits p′. The first k-bit of w′

is then appended with p′ to form a n-bit block to decode. As long as dh(w,w
′) ≤ t,

ECC decoder can correct all errors in w′ and output the w enrolled at first. All

restored secret blocks w’s form the output of the step and input of Step 6–7.

105



Procedure 4 LISA-lite
Input: (i) M ROs, RO1 . . . ROM , in their physical order with ROi.phy denoting

ith RO’s physical position, ROi.frq its frequency reading at enrollment, and

ROi.gid its group ID (with initial value −1); (ii) reliability threshold fth

Output: (i) RO1 . . . ROM with all ROi.gid 6= −1

1: sort RO1 . . . ROM in increasing order of ROi.frq’s and keep the sorted objects

RO′1 . . . RO
′
M on a linked list L

2: gid← 1

3: frqpre ← −∞ // previous frequency

4: while frqpre 6= −∞ do

5: frqpre ← −∞

6: for i← 1 to |L| do

7: if (RO′i.frq − frqpre) ≥ fth then

8: RO′i.gid← gid

9: frqpre ← RO′i.frq

10: remove RO′i from L

11: i = i− 1

12: end if

13: end for

14: gid = gid+ 1

15: end while

16: return G = {RO1 . . . ROM}
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5.3.6 Entropy Packing

Although KSC is designed to help reduce the complexity of ECC, it does

not encode entropy efficiently. Many bitstrings are left unused; taking three ROs for

example, (0, 1, 0) would never occur due to the contradiction (ROA < ROB, ROA ≥

ROC , ROB < ROC). Therefore, we have to re-encode each group gi compactly with

CSC with help from the stored group information ROi.gid’s. Since error correction

has been done, the coding inefficiency issue mentioned in the very beginning is no

longer a concern. Before encoding in CSC, we have to KSC decode each group

sgi into its rank permutation via Eqn. 5.3. To encode a group g in the most

compact form cg, we can calculate the inversion vector (line 2–8,10) and interpret

it in factorial number system (line 9) as below [27]. Note that the algorithm we are

showing does not produce a codebook in lexicographic order like Table 5.1. CSC

decoding can also be done efficiently but is beyond the scope of the work. Lastly,

in order to construct a secret in uniform distribution, we have to close the unused

gap between |g|! and 2dlog2 |g|!e − 1 for each output cg as we put together all cgi ’s to

form the final PUF secret. This can be done by simple addition, subtraction and

shift operations; the pseudo code is omitted for brevity.

5.3.7 Test for Randomness and Stability

This verification process not only helps us ensure security and reliability of

the final secret but also helps us choose the parameter fth and the exact regression

model. This leads our discussion to the next section.
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Procedure 5 Compact Syndrome Coding (CSC) Encoding

Input: a group g containing ordered ROs RO1 . . . RO|g|

Output: a CSC encoded integer cg in dlog2 |g|!e bits

1: cg = 0

2: for i← |g| to |2| do

3: inv = 0 // number of inversions

4: for j ← 1 to i− 1 do

5: if ROi < ROj then

6: inv = inv + 1

7: end if

8: end for

9: cg = (cg + inv)× (i− 1)

10: end for

11: return cg
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5.4 Experimental Results

This section provides the details of the last step in the previous section. In

particular, we will describe how to determine the polynomial model empirically and

how statistical results affirm the i.i.d. uniform assumption we have made on the

secret. In addition, we will search for the optimal value of the stability threshold fth

and calculate the amount of entropy our PUF can generate in several error correct-

ing scenarios. Likewise, the estimate for the IBS-based scheme will be derived for

comparison. Two datasets are used in the experiment and results will be presented

separately. The prototype of the proposed PUF has been realized as an embed-

ded system on Xilinx Virtex-5 FPGAs using Xilinx ISE and Xilinx Platform Studio

(XPS) EDK/SDK 13.2 and 9.2 tool chains4. The PUF is implemented as an IP

core connecting to the MicroBlazeTM soft processor core through Processor Local

Bus (PLB). The bus exchanges control signals and RO frequency characterization

between the processor and the IP via user defined soft registers. The frequency

characterization is in turn passed through to a RS232 serial port logger on PC for

the following analyses. Timing critical logic such as RO is instantiated as a hard

macro in ISE. Polynomial regression employed in Step 2 can be solved quickly as

the Floating Point Unit (FPU) of MicroBlazeTM is enabled. In addition to our own

dataset, the public dataset [31] is also used to confirm the results.

4v13.2 for ML506 and ML510 development boards and v9.2 for ML501 boards.
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5.4.1 Test for Randomness

The first goal is to test whether our PUF is secure. To this end, the output of

Step 6 is subject to the NIST statistical test for randomness [5]. An ‘ideal’ random

sequence is regarded as the outcome of consecutive flips of a fair coin. In other words,

the random variable assigned to each toss is identical and independent distributed

(i.i.d.) and uniformly distributed between 0 and 1 with equal probability 1/2. The

null hypothesis of the test is that the random sequence under test is ‘ideal’ unless

the test statistic indicates a clear deviation. NIST test results are interpreted in

two ways: a) the proportion of total bitstrings that passes a test shall be above

a minimum value; b) the P-values of all bitstrings shall be uniformly distributed

such that the P-value of the P-values is equal or greater than a minimum value;

default settings were used in the test suite. Eleven out of fifteen tests in the suite

are applicable to our output length; for each of the two datasets, we use the first

half to select the order of the polynomial model and the second half to validate the

randomness of the output.

5.4.1.1 Virginia Tech Dataset

This dataset comprises frequency characterization of 125 Xilinx Spartan-3 (90-

nm) FPGAs [31]. For each FPGA, 512 ROs are implemented in 32 rows by 16

columns. Although there are 100 frequency measurements available for each RO

in one operating condition, only the first measurement at 1.2V 25◦C is used as the

output of Step 1. The outputs of Step 6 from chip No.1 to No.125 are concatenated
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altogether to construct a long random sequence subject to test. Test parameters

are set as follows: bitstring length 400 (except 3× for FFT Test in order to meet

with the minimum length requirement), block length for Frequency Test 32, 2 for

Approximate Entropy Test and 5 for Serial Test, all following NIST recommenda-

tions. The test results from the first half of the dataset suggest that we can select

1st-order polynomial to remove the systematic component with least computation.

Indeed, the results from the second half affirm the selection and more importantly

the i.i.d. uniform assumption we have made on our PUF output; see Table 5.3 and

Table 5.9 at the end of the chapter for detailed reports.

5.4.1.2 In-House Dataset

The second dataset is collected from 9 Xilinx Virtex-5 (65-nm) FPGAs in our

own lab. The 9 FPGAs come with three different types of development boards: 3

ML501, 3 ML506 and 3 ML510. Because of different sizes, they are placed with

different number of RO arrays: 3 for ML501, 6 for ML506 and 12 for ML510, 63

in total. Each array contains 32 × 16 ROs just as in the previous dataset and is

regarded as an independent PUF for the test. Although multiple measurements are

available for each array, only the first measurement at 20◦C is used as the output of

Step 1 to produce the final secret. All test parameters are the same as mentioned

previously. Similar results are derived from this dataset: The first half suggests the

choice of the first order model since it passes all tests with the lowest computing

and storage cost. The i.i.d. uniform assumption along with the selected model is
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affirmed by the second half. Respective results are listed in Table 5.6 and Table

5.10 at the end of the chapter.

5.4.2 Test for Stability

The second goal is to determine the optimal value of fth given a class of ECC

in Step 5; moreover, in the criterion that all errors have to be corrected, we want

to estimate the effective min-entropy we can extract given a fixed number of ROs.

Three classes of BCH codes are considered, namely, BCH(n = 31, k, t), BCH(n = 63,

k, t) and BCH(n = 127, k, t), where n denotes code block size, k the number of

information bits per block and t the maximum correctable errors within a block.

As we know from [53], the larger the k, the smaller the min-entropy loss n− k per

block; both depend on t. For each class of code, we first pick a fth and find out the

largest t among all ECC blocks under test. As long as t is small enough such that

all errors can be corrected by the given class of code, we have at least one solution k

for the picked fth, among which the largest k is used to calculate the effective min-

entropy of PUF schemes. For the proposed PUF, the effective min-entropy HKSC
∞

is estimated as

|G|∑
i=1

log2 |gi|!− d
∑|G|

i=1 |sgi |
n

e(n− k) if ≥ 0, else 0, (5.9)

where the first term represents the total entropy extracted from the grouping al-

gorithm in Step 3 and the second term discounts the total min-entropy loss due

to public disclosure of syndrome bits for ECC in Step 5. To compare, when CSC
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rather than KSC is used in Step 4 (as proposed in [55]), replacing the sgi ’s in Eqn.

(5.9) with the cgi ’s defined in Step 6 forms the estimate of HCSC
∞ . In case there

is no solution k for a code class to correct all errors with a given fth, the effective

min-entropy is then set to 0 as the case when the result of Eqn. (5.9) turns negative.

For both datasets, fth is swept from 0.1 to 3 standard deviation of the 512 random

variations distilled in Step 2.

5.4.2.1 Virginia Tech Dataset

This dataset consists of frequency characterization of 5 Spartan-3 FPGAs pro-

visioned with ±10% and ±20% core supply voltage fluctuation and separately tem-

perature variation from 25◦C to 65◦C [31]. We rule out the cases with ±20% voltage

swings for they would drive the results too conservative. Rather, our estimate is

based on the criterion that all errors must be corrected in rest of the 7 cases: Case

1) the nominal condition at 1.2V 25◦C; Case 2–3) provisioned in 25◦C with core

supply voltage at 1.08V and 1.32V; Case 4–7) provisioned at 1.2V 35◦C, 45◦C, 55◦C

and 65◦C. The secret is enrolled in Case 1 and regenerated in Case 2–7). Also, we

scan through 0th to 6th order model in Step 2 and use the average to report.

Figure 5.2 5.3 and 5.4 draws two key results when BCH(n=31, k, t), BCH(n=63,

k, t) and BCH(n=127, k, t) is considered respectively: (i) the maximum number

of errors among all ECC blocks, see vertical bars that correspond to the secondary

y-axis; (ii) the averaged HCSC
∞ and HKSC

∞ given (i), see lines and the primary y-axis.

As we see, both HCSC
∞ and HKSC

∞ drop to zero when fth approaches zero, meaning
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Figure 5.2: The estimated HCSC
∞ and HKSC

∞ derived with BCH(31, k, t) based on

the Virginia Tech dataset

that errors are so overwhelming that either there is no solution to make all blocks

error-free or the entropy loss surpasses the group entropy in Eqn. 5.9. On the other

hand, as fth approaches 3 there is no error to be corrected such that HCSC
∞ and

HKSC
∞ converge. When fth is in between, HCSC

∞ and HKSC
∞ increase if the reduction

in min-entropy loss is greater than the reduction in group entropy extraction; oth-

erwise, they decrease. The tipping point, 1.9 for HKSC
∞ , suggests the optimal value

we can choose for fth. On average HKSC
∞ outperforms HCSC

∞ by 8% in those optimal

cases.

5.4.2.2 In-House Dataset

The second dataset is derived from the 9 FPGAs mentioned earlier. Frequency

measurements are provisioned at chip temperature 20◦C, 50◦C and 100◦C respec-
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Figure 5.3: The estimated HCSC
∞ and HKSC

∞ derived with BCH(63, k, t) based on

the Virginia Tech dataset

Figure 5.4: The estimated HCSC
∞ and HKSC

∞ derived with BCH(127, k, t) based on

the Virginia Tech dataset

tively with no intended core supply voltage variation. Temperatures are manually

controlled by monitoring the on-chip system sensor. Ten measurements are taken
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Figure 5.5: The estimated HCSC
∞ and HKSC

∞ derived with BCH(31, k, t) based on

the in-house dataset

for each of the three scenarios; the first measurement at 20◦C is used to generate

the secret and then we try to recover it from the rest of 29 measurements with help

from ECC. As in the previous dataset, polynomial orders 0th to 6th are all tested

out. The test results are similar to those derived from the previous dataset only

the tipping point shift lower to fth around 0.4 to 0.9 standard deviation due to less

errors are introduced with a stable voltage supply. Consequently, the estimates of

HCSC
∞ and HKSC

∞ in those optimal cases almost double than in the previous dataset

to 353 and 385 bits respectively, which translates to a 9% gain. Complete charts

are reported in Figure 5.5, 5.6, 5.7.
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Figure 5.6: The estimated HCSC
∞ and HKSC

∞ derived with BCH(63, k, t) based on

the in-house dataset

Figure 5.7: The estimated HCSC
∞ and HKSC

∞ derived with BCH(127, k, t) based on

the in-house dataset

5.4.3 In Comparison with IBS-Based RO PUF

To compare with the IBS-based scheme [56] in the context of the i.i.d. uniform

PUF output assumption, we form IBS blocks each out of k consecutive ROs5 and

5Since there is no distillation process assumed, a block has to be formed out of ROs physically

as close as possible to reduce systematic correlation [32].
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Virginia Tech In-house

HIBS
∞ HKSC

∞ Gain HIBS
∞ HKSC

∞ Gain

No ECC 85 128 50% 128 102 -20%

BCH(31) 96 184 92% 128 280 118%

BCH(63) 104 189 82% 134 366 173%

BCH(127) 121 197 63% 172 509 196%

Average 107 190 72% 140 314 123%

Table 5.2: The estimate of HIBS
∞ and HKSC

∞ in various ECC scenarios with Virginia

Tech’s dataset on the left and our in-house dataset on the right

ensure no blocks share a common RO. Each IBS block generates one bit secret

through comparing the ROs that yield the largest frequency difference at enrollment

time; the selected pair is recalled by keeping a log2

(
k
2

)
-bit index as public helper

data. The k we consider ranges from 2 to 6. Applying a similar methodology

we estimate the effective min-entropy HIBS
∞ using the the same datasets and BCH

codes. For the Virginia Tech dataset no error takes place when k = 6, whereas no

error is observed when k ≥ 4 for the in-house dataset. The HIBS
∞ vs. k relation is

drawn in Figure 5.8 and 5.9. Table 5.2 summarizes the best case HIBS
∞ and HKSC

∞

when different error correcting capability is assumed. As we see, in most cases the

proposed group-based RO PUF is 50% or more efficient than the conjectured IBS-

based RO PUF in terms of effective min-entropy given the same number of ROs.

The only case KSC underperforms is due to one single error that cannot be cured

until fth reaches 2.7; the study of the root cause and preventing mechanisms is

among our future work. Note that when k = 2 it is a disjointed neighbor pairing

scheme with no index needed [54].
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Figure 5.8: The estimated HIBS
∞ derived from the Virginia Tech dataset

Figure 5.9: The estimated HIBS
∞ derived from the in-house dataset
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5.5 Summary

This chapter provided the complete design of our group-based RO PUF. First

of all, we designed a more hardware-efficient syndrome coding scheme based on

Kendall tau distance. Kendall Syndrome Coding (KSC) can achieve a 9% gain

in terms of effective min-entropy when compared with Compact Syndrome Coding

(CSC) used previously. Besides, we incorporated the regression-based entropy dis-

tiller and the entropy packing process to achieve stronger secrecy. In this regard,

two independent datasets were tested against the NIST test suite and both affirmed

the i.i.d. uniform assumption we have made on our PUF output. Furthermore,

we revised the previous grouping algorithm LISA as LISA-lite which simplifies the

manufacturing process. In most error correcting scenarios we considered, our design

is 50% or more efficient when compared with an IBS-based PUF under the i.i.d.

assumption. We also showed that our group-based RO PUF can be quickly realized

as an embedded system on FPGAs with a modern tool chain.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

0
th
-o
rd

er

10 9 4 6 4 4 9 3 5 11 0.187777 64/65 Frequency

11 10 12 6 5 3 6 4 5 3 0.068316 64/65 BlockFrequency

12 8 5 11 6 3 9 3 5 3 0.061374 63/65 CumulativeSums (m-2)

9 10 5 7 4 7 5 6 7 5 0.676274 63/65 CumulativeSums (m-3)

19 9 5 8 4 6 5 4 2 3 0.000049 * 59/65 * Runs

7 6 7 14 14 4 5 1 3 4 0.000919 65/65 LongestRun

11 4 8 6 7 6 4 5 10 4 0.484073 64/65 Rank

4 2 2 0 3 3 0 3 0 4 0.323011 21/21 FFT

18 9 5 6 6 5 8 5 2 1 0.000145 62/65 ApproximateEntropy

15 9 5 9 6 5 1 7 4 4 0.009867 63/65 Serial (forward)

6 3 4 7 11 11 7 6 9 1 0.075967 65/65 Serial (backward)

1
s
t
-o
rd

er

7 7 6 7 9 2 8 5 5 9 0.494547 63/65 Frequency

9 7 11 6 4 4 6 5 4 9 0.521707 61/65 BlockFrequency

8 8 6 10 6 2 5 6 9 5 0.314919 63/65 CumulativeSums (m-2)

6 7 9 7 5 6 4 8 7 6 0.921761 63/65 CumulativeSums (m-3)

6 9 5 6 8 7 7 8 3 6 0.798722 64/65 Runs

8 3 6 8 14 4 4 5 8 5 0.093645 65/65 LongestRun

7 8 7 4 7 6 9 7 6 4 0.867205 62/65 Rank

1 3 4 0 2 3 0 4 0 4 0.187777 21/21 FFT

9 6 5 7 6 5 6 7 9 5 0.896359 63/65 ApproximateEntropy

13 4 6 11 3 4 10 6 7 1 0.011121 65/65 Serial (forward)

7 5 6 7 13 7 2 5 10 3 0.093645 63/65 Serial (backward)

Table 5.3: NIST test results derived from the first half of the dataset [31] using

0th− 1st order distillers, where the length of one bitstring is 400 (except 3x for FFT

test), the block length for Frequency Test 32, the block length for Approximate

Entropy Test 2 and the block length for Serial Test 5. ‘*’ marks a failure.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

2
n
d
-o
rd

er
8 7 9 6 10 5 4 5 5 6 0.631944 64/65 Frequency

11 8 11 7 4 5 5 6 3 5 0.296269 64/65 BlockFrequency

10 6 7 6 7 3 5 5 8 8 0.631944 64/65 CumulativeSums (m-2)

8 10 6 7 5 6 4 5 6 8 0.760113 64/65 CumulativeSums (m-3)

13 8 9 4 8 2 6 3 5 7 0.084389 62/65 Runs

8 1 8 12 11 1 7 7 6 4 0.017828 64/65 LongestRun

9 8 6 2 5 5 7 7 8 8 0.540669 64/65 Rank

1 0 4 0 8 5 0 3 0 0 0.000065 * 21/21 FFT

12 8 8 3 6 8 6 5 5 4 0.414146 63/65 ApproximateEntropy

14 9 5 6 10 3 5 5 4 4 0.044252 64/65 Serial (forward)

12 5 4 5 8 5 9 6 4 7 0.448203 64/65 Serial (backward)

3
r
d
-o
rd

er

6 9 6 7 10 2 7 3 8 7 0.521707 65/65 Frequency

7 8 9 9 8 2 6 9 1 6 0.226378 64/65 BlockFrequency

3 13 5 10 10 10 3 0 7 4 0.002550 65/65 CumulativeSums (m-2)

3 11 7 5 10 5 5 7 7 5 0.521707 65/65 CumulativeSums (m-3)

10 10 6 8 8 4 10 4 3 2 0.127107 64/65 Runs

4 5 7 8 14 2 3 9 4 9 0.022481 65/65 LongestRun

6 10 6 3 5 3 2 8 14 8 0.020027 65/65 Rank

2 6 1 0 2 8 0 2 0 0 0.000097 * 21/21 FFT

11 6 6 11 7 3 7 3 5 6 0.296269 64/65 ApproximateEntropy

9 11 8 3 6 5 7 4 5 7 0.561026 64/65 Serial (forward)

8 8 5 8 2 7 7 5 6 9 0.540669 63/65 Serial (backward)

4
th
-o
rd

er

9 5 4 7 6 3 11 6 3 11 0.170659 63/65 Frequency

8 13 8 4 3 10 4 5 4 6 0.093645 64/65 BlockFrequency

7 5 9 5 2 4 10 9 8 6 0.448203 63/65 CumulativeSums (m-2)

8 7 4 6 10 3 10 4 6 7 0.561026 62/65 CumulativeSums (m-3)

7 9 6 6 6 1 6 9 8 7 0.358516 64/65 Runs

4 10 5 8 11 9 4 5 3 6 0.271286 65/65 LongestRun

9 5 5 3 6 11 10 5 6 5 0.414146 63/65 Rank

3 4 2 0 3 3 0 2 0 4 0.323011 20/21 FFT

8 10 4 7 8 5 2 7 4 10 0.351554 63/65 ApproximateEntropy

9 5 9 5 5 7 6 4 7 8 0.760113 65/65 Serial (forward)

3 6 6 7 10 5 8 9 3 8 0.272584 65/65 Serial (backward)

Table 5.4: Cont’d with the results using 2nd − 4th order models
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

5
th
-o
rd

er

6 8 5 3 11 3 11 6 6 6 0.271286 64/65 Frequency

13 5 8 5 10 7 5 7 0 5 0.039609 63/65 BlockFrequency

7 8 6 3 9 3 4 8 9 8 0.272584 64/65 CumulativeSums (m-2)

8 9 7 6 5 3 5 13 6 3 0.170659 64/65 CumulativeSums (m-3)

13 9 5 9 6 3 6 7 3 4 0.114933 61/65 Runs

3 9 12 10 13 4 3 1 4 6 0.001981 64/65 LongestRun

5 3 13 7 3 7 3 9 7 8 0.103803 63/65 Rank

0 2 4 0 4 7 0 1 0 3 0.003277 21/21 FFT

18 8 6 1 9 5 5 1 5 7 0.000074 * 64/65 ApproximateEntropy

12 7 3 11 7 8 7 4 4 2 0.068316 64/65 Serial (forward)

6 8 8 6 5 8 6 10 7 1 0.561026 65/65 Serial (backward)

6
th
-o
rd

er

7 4 9 2 4 5 9 8 5 12 0.154893 64/65 Frequency

14 13 13 8 2 2 4 4 2 3 0.000019 * 65/65 BlockFrequency

7 10 8 8 5 6 3 3 11 4 0.271286 65/65 CumulativeSums (m-2)

5 6 8 6 12 7 4 6 6 5 0.403161 65/65 CumulativeSums (m-3)

15 14 3 6 5 2 6 7 2 5 0.000323 64/65 Runs

7 3 13 9 10 7 5 2 4 5 0.049394 65/65 LongestRun

8 8 5 5 7 5 6 6 7 8 0.960834 63/65 Rank

1 4 3 0 1 5 0 4 0 3 0.075967 21/21 FFT

15 7 5 9 7 5 3 4 7 3 0.028264 64/65 ApproximateEntropy

13 7 8 10 5 6 4 0 8 4 0.025217 64/65 Serial (forward)

10 8 5 6 9 4 4 6 4 9 0.314919 64/65 Serial (backward)

Table 5.5: Cont’d with the results using 5nd − 6th order models
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

0
th
-o
rd

er

13 3 3 1 1 1 4 1 2 5 0.000008 * 30/34 * Frequency

16 3 4 3 0 2 2 1 2 1 0.000000 * 29/34 * BlockFrequency

14 4 3 1 2 2 2 1 3 2 0.000001 * 27/34 * CumulativeSums (m-2)

10 5 5 2 3 0 2 2 3 2 0.007297 29/34 * CumulativeSums (m-3)

15 6 4 2 0 3 1 1 1 1 0.000000 * 26/34 * Runs

12 1 4 3 3 4 4 1 2 0 0.000119 31/34 LongestRun

5 3 6 7 4 1 2 2 3 1 0.196868 33/34 Rank

1 2 1 0 2 1 0 1 0 3 0.581286 11/11 FFT

17 4 3 4 1 1 1 2 1 0 0.000000 * 24/34 * ApproximateEntropy

16 4 2 6 1 1 2 1 0 1 0.000000 * 26/34 * Serial (forward)

6 5 3 2 4 2 3 5 2 2 0.471531 34/34 Serial (backward)

1
s
t
-o
rd

er

6 5 0 5 5 0 5 2 3 3 0.133610 33/34 Frequency

6 6 4 2 4 1 2 2 4 3 0.541162 33/34 BlockFrequency

6 3 5 3 4 1 1 3 4 4 0.380722 33/34 CumulativeSums (m-2)

6 5 1 6 3 1 1 2 5 4 0.196868 33/34 CumulativeSums (m-3)

7 5 4 2 4 0 4 2 0 6 0.058152 33/34 Runs

3 1 4 7 6 3 2 2 5 1 0.196868 34/34 LongestRun

4 3 4 5 0 4 4 3 6 1 0.465914 32/34 Rank

2 4 0 0 0 1 0 4 0 0 0.003950 11/11 FFT

6 1 6 6 3 3 3 1 3 2 0.283561 32/34 ApproximateEntropy

6 5 6 4 3 1 3 2 0 4 0.236992 32/34 Serial (forward)

3 5 7 7 4 2 0 1 1 4 0.037462 34/34 Serial (backward)

Table 5.6: NIST test results derived from the first half of the in-house dataset

using 0th−1st order distillers, where the length of one bitstring is 400 (except 3x for

FFT test), the block length for Frequency Test 32, the block length for Approximate

Entropy Test 2 and the block length for Serial Test 5. ‘*’ marks a failure.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

2
n
d
-o
rd

er
9 3 3 1 4 2 4 1 2 5 0.058152 32/34 Frequency

8 4 4 4 1 2 4 6 1 0 0.037462 32/34 BlockFrequency

6 6 2 4 3 5 3 1 2 2 0.465914 33/34 CumulativeSums (m-2)

11 1 4 4 5 0 2 3 3 1 0.000757 32/34 CumulativeSums (m-3)

11 6 2 0 2 1 6 1 1 4 0.000069 * 31/34 Runs

6 3 7 3 3 4 0 3 4 1 0.196868 33/34 LongestRun

9 8 2 4 1 3 2 2 3 0 0.002716 32/34 Rank

2 2 4 0 0 2 0 1 0 0 0.064760 10/11 FFT

12 3 6 4 4 1 2 0 1 1 0.000023 * 32/34 ApproximateEntropy

11 1 7 1 5 2 2 0 4 1 0.000053 * 32/34 Serial (forward)

5 5 6 3 2 1 2 2 7 1 0.133610 34/34 Serial (backward)

3
r
d
-o
rd

er

3 5 4 5 1 2 5 3 4 2 0.563683 34/34 Frequency

5 6 5 2 5 2 2 3 3 1 0.541162 33/34 BlockFrequency

5 2 5 6 2 2 5 3 2 2 0.293582 34/34 CumulativeSums (m-2)

4 2 2 5 7 3 4 3 2 2 0.293582 34/34 CumulativeSums (m-3)

7 5 7 1 3 3 4 1 1 2 0.072049 31/34 Runs

1 1 5 4 6 5 4 5 1 2 0.283561 34/34 LongestRun

6 4 4 3 4 4 2 3 1 3 0.654263 33/34 Rank

1 4 2 0 1 1 0 1 0 1 0.216159 11/11 FFT

4 5 9 3 3 2 1 2 4 1 0.058152 34/34 ApproximateEntropy

7 3 5 1 4 2 4 2 3 3 0.541162 33/34 Serial (forward)

4 4 8 2 1 3 3 1 4 4 0.236992 34/34 Serial (backward)

4
th
-o
rd

er

5 7 1 1 5 4 4 2 1 4 0.196868 33/34 Frequency

7 2 6 1 7 0 4 3 2 2 0.029914 34/34 BlockFrequency

5 5 3 2 5 2 2 3 4 3 0.739897 33/34 CumulativeSums (m-2)

4 7 1 6 2 2 3 2 4 3 0.337055 34/34 CumulativeSums (m-3)

5 8 4 2 2 0 4 7 1 1 0.011803 33/34 Runs

4 2 4 4 7 2 2 4 4 1 0.541162 34/34 LongestRun

6 1 2 3 5 3 4 4 2 4 0.471531 34/34 Rank

1 4 2 0 0 3 0 1 0 0 0.033490 11/11 FFT

7 6 1 4 5 1 5 1 3 1 0.072049 33/34 ApproximateEntropy

4 4 5 3 4 5 3 4 2 0 0.471531 34/34 Serial (forward)

2 5 4 5 6 4 0 2 1 5 0.236992 34/34 Serial (backward)

Table 5.7: Cont’d with the results using 2nd − 4th order models
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

5
th
-o
rd

er

4 3 2 2 4 2 6 3 2 6 0.380722 34/34 Frequency

5 1 2 2 3 1 2 6 5 7 0.133610 34/34 BlockFrequency

2 5 1 4 3 1 4 7 5 2 0.283561 34/34 CumulativeSums (m-2)

4 0 1 2 4 5 3 4 5 6 0.337055 34/34 CumulativeSums (m-3)

5 7 3 5 1 2 3 2 1 5 0.236992 34/34 Runs

2 1 5 6 9 4 3 3 1 0 0.009292 34/34 LongestRun

3 5 2 3 6 1 4 1 4 5 0.541162 34/34 Rank

1 2 1 0 2 1 0 3 0 1 0.581286 11/11 FFT

7 5 1 5 2 1 3 2 4 4 0.283561 34/34 ApproximateEntropy

5 6 5 3 1 4 3 4 1 2 0.541162 34/34 Serial (forward)

5 5 2 1 4 8 2 2 4 1 0.109242 34/34 Serial (backward)

6
th
-o
rd

er

7 4 3 4 5 1 3 1 4 2 0.397806 34/34 Frequency

6 2 4 5 4 3 5 0 0 5 0.162612 33/34 BlockFrequency

6 4 5 3 2 3 2 4 3 2 0.654263 34/34 CumulativeSums (m-2)

8 1 4 8 3 1 2 1 2 4 0.011803 34/34 CumulativeSums (m-3)

11 3 3 0 4 3 3 3 2 2 0.003488 32/34 Runs

3 4 9 7 4 1 0 3 2 1 0.005718 34/34 LongestRun

8 3 6 3 3 0 3 3 3 2 0.133610 31/34 Rank

2 2 2 0 0 2 0 2 0 1 0.581286 11/11 FFT

9 5 5 1 2 3 4 1 2 2 0.037462 33/34 ApproximateEntropy

8 6 2 3 6 2 4 1 2 0 0.023812 31/34 Serial (forward)

4 4 6 3 3 2 2 4 4 2 0.739897 32/34 Serial (backward)

Table 5.8: Cont’d with the results using 5nd − 6th order models
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

1
s
t
-o
rd

er
7 6 8 4 7 6 10 4 8 4 0.609372 63/64 Frequency

12 9 7 4 6 6 5 4 7 4 0.465914 62/64 BlockFrequency

8 6 11 8 5 5 5 7 5 4 0.517608 63/64 CumulativeSums (m-2)

7 8 10 8 11 4 8 3 2 3 0.109242 63/64 CumulativeSums (m-3)

7 2 14 10 6 2 5 5 8 5 0.023812 63/64 Runs

6 3 12 7 4 9 7 7 5 4 0.366511 63/64 LongestRun

7 9 6 6 5 4 8 7 8 4 0.817009 64/64 Rank

1 2 3 0 4 4 0 6 0 1 0.028264 21/21 FFT

10 8 3 9 5 5 7 6 5 6 0.517608 63/64 ApproximateEntropy

10 5 6 7 6 5 6 6 6 7 0.933004 64/64 Serial (forward)

4 9 9 6 6 8 3 6 4 9 0.380722 64/64 Serial (backward)

Table 5.9: NIST test results derived from the second half of the Virginia Teach

dataset [31] with 1st-order polynomial regression model applied in Step 2. All tests

are passed.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

1
s
t
-o
rd

er

5 4 3 2 7 0 2 5 3 2 0.259438 31/33 Frequency

9 6 1 3 2 1 4 2 3 2 0.033490 31/33 BlockFrequency

7 5 2 4 2 1 4 1 6 1 0.120885 31/33 CumulativeSums (m-2)

6 4 3 3 4 3 5 1 4 0 0.502674 30/33 CumulativeSums (m-3)

8 2 3 2 1 4 2 2 5 4 0.216159 32/33 Runs

6 7 2 5 2 4 0 2 1 4 0.098607 33/33 LongestRun

6 3 3 8 1 2 3 2 4 1 0.120885 31/33 Rank

0 3 1 0 1 1 0 5 0 0 0.003950 11/11 FFT

9 4 2 4 3 0 2 4 3 2 0.064760 33/33 ApproximateEntropy

7 3 2 5 4 5 4 3 0 0 0.120885 32/33 Serial (forward)

3 3 5 3 2 5 3 5 1 3 0.697921 32/33 Serial (backward)

Table 5.10: NIST test results derived from the second half of our own dataset

with 1st-order polynomial regression model applied in Step 2. All tests are passed
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST
0
th
-o
rd

er

17 16 12 12 13 12 17 6 7 17 0.231636 128/129 Frequency

27 18 23 11 11 5 10 6 12 6 0.000004 * 125/129 BlockFrequency

20 15 19 18 11 10 11 8 10 7 0.056599 126/129 CumulativeSums (m-2)

16 20 14 12 17 15 7 9 12 7 0.130323 127/129 CumulativeSums (m-3)

39 16 12 11 11 12 10 4 6 8 0.000000 * 118/129 * Runs

13 9 24 23 18 9 10 9 4 10 0.000150 129/129 LongestRun

18 13 14 12 12 17 11 9 14 9 0.460053 125/129 Rank

6 6 6 0 7 6 0 7 0 5 0.018355 42/43 FFT

35 17 15 12 9 14 10 7 5 5 0.000000 * 124/129 ApproximateEntropy

22 21 12 16 17 9 6 11 6 9 0.002632 124/129 Serial (forward)

11 9 12 18 14 17 11 8 17 12 0.493319 129/129 Serial (backward)

1
s
t
-o
rd

er

16 17 8 13 16 5 19 9 11 15 0.091249 126/129 Frequency

18 19 17 12 10 10 10 8 11 14 0.289860 124/129 BlockFrequency

20 15 13 13 12 6 9 12 17 12 0.277369 126/129 CumulativeSums (m-2)

18 11 16 11 16 13 9 12 11 12 0.552185 126/129 CumulativeSums (m-3)

19 18 11 9 12 11 12 12 7 18 0.211194 128/129 Runs

10 9 13 17 27 11 7 10 14 11 0.004074 129/129 LongestRun

15 15 17 7 8 12 19 16 12 8 0.174809 124/129 Rank

3 4 9 0 6 4 0 10 0 7 0.000434 42/43 FFT

17 15 14 14 18 9 10 9 16 7 0.302788 127/129 ApproximateEntropy

21 7 16 20 8 14 16 10 10 7 0.015401 127/129 Serial (forward)

13 10 17 14 18 15 6 10 16 10 0.316158 126/129 Serial (backward)

Table 5.11: NIST test results derived from the entire Virginia Tech’s dataset

[31] using 0th − 1st order distillers, where the length of one bitstring is 400 (except

3x for FFT test), the block length for Frequency Test 32, the block length for

Approximate Entropy Test 2 and the block length for Serial Test 5. ‘*’ marks a

failure.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

2
n
d
-o
rd

er
20 15 11 10 19 10 14 7 9 14 0.143910 128/129 Frequency

17 16 17 16 9 8 15 11 8 12 0.358975 127/129 BlockFrequency

21 13 13 11 11 9 14 6 16 15 0.201550 127/129 CumulativeSums (m-2)

19 14 11 15 11 12 8 11 13 15 0.437182 128/129 CumulativeSums (m-3)

22 14 17 12 11 9 13 7 12 12 0.174809 124/129 Runs

14 4 19 17 22 6 10 14 7 16 0.001690 128/129 LongestRun

19 19 12 6 10 13 13 12 12 13 0.302788 128/129 Rank

6 4 6 0 9 8 0 6 0 4 0.003598 43/43 FFT

21 15 15 13 10 19 11 9 9 7 0.077998 124/129 ApproximateEntropy

22 19 12 12 16 6 14 11 11 6 0.021842 126/129 Serial (forward)

20 13 9 8 13 16 21 12 7 10 0.045489 128/129 Serial (backward)

3
r
d
-o
rd

er

13 18 11 12 18 6 17 10 12 12 0.316158 129/129 Frequency

15 17 15 17 12 5 12 16 7 13 0.201550 128/129 BlockFrequency

10 25 11 17 16 14 8 8 10 10 0.013689 129/129 CumulativeSums (m-2)

10 18 17 9 16 8 13 12 15 11 0.493319 129/129 CumulativeSums (m-3)

23 17 12 12 13 9 17 9 6 11 0.034444 126/129 Runs

9 12 19 18 25 7 6 12 7 14 0.000733 129/129 LongestRun

18 20 9 6 7 12 11 15 18 13 0.045489 127/129 Rank

5 9 2 0 5 13 0 7 0 2 0.000003 * 43/43 FFT

24 14 13 19 10 8 12 11 6 12 0.015401 126/129 ApproximateEntropy

19 19 15 15 9 13 11 9 11 8 0.231636 128/129 Serial (forward)

16 13 13 12 7 16 16 11 11 14 0.552185 127/129 Serial (backward)

4
th
-o
rd

er

11 13 9 21 16 6 22 8 4 19 0.000381 126/129 Frequency

17 21 14 8 11 17 9 14 7 11 0.091249 127/129 BlockFrequency

11 12 12 13 16 11 16 14 16 8 0.665311 126/129 CumulativeSums (m-2)

13 17 6 14 19 9 15 12 12 12 0.358975 125/129 CumulativeSums (m-3)

14 17 16 10 17 7 7 17 15 9 0.166594 126/129 Runs

9 14 19 15 23 15 8 7 11 8 0.013689 128/129 LongestRun

16 12 16 8 12 18 17 13 9 8 0.344248 126/129 Rank

6 10 6 0 5 6 0 6 0 4 0.003598 42/43 FFT

19 15 8 9 17 17 7 12 10 15 0.151154 125/129 ApproximateEntropy

19 10 16 11 12 13 12 6 12 18 0.289860 129/129 Serial (forward)

10 11 14 12 21 7 13 16 11 14 0.329976 128/129 Serial (backward)

Table 5.12: Cont’d with the results using 2nd − 4th order models
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

5
th
-o
rd

er

10 13 10 9 18 9 20 14 8 18 0.112055 128/129 Frequency

25 14 10 14 13 12 11 13 3 14 0.010167 126/129 BlockFrequency

7 18 14 8 19 7 11 12 19 14 0.056599 128/129 CumulativeSums (m-2)

10 15 13 9 13 12 11 19 14 13 0.575157 128/129 CumulativeSums (m-3)

21 20 8 16 11 9 11 15 9 9 0.048059 124/129 Runs

6 12 22 21 24 9 10 4 8 13 0.000024 * 128/129 LongestRun

12 8 17 18 11 11 10 13 17 12 0.571108 125/129 Rank

2 6 7 0 8 10 0 4 0 6 0.000529 43/43 FFT

25 13 12 7 18 12 5 7 16 14 0.001801 128/129 ApproximateEntropy

21 12 9 19 11 12 13 7 13 12 0.166594 126/129 Serial (forward)

13 15 11 12 13 16 10 15 13 11 0.915772 128/129 Serial (backward)

6
th
-o
rd

er

14 6 13 9 14 11 21 15 7 19 0.043046 128/129 Frequency

21 25 20 17 10 5 10 7 4 10 0.000007 * 127/129 BlockFrequency

14 13 11 15 13 14 11 8 21 9 0.405918 129/129 CumulativeSums (m-2)

7 15 15 11 21 11 7 12 18 12 0.101175 129/129 CumulativeSums (m-3)

25 22 9 10 11 6 13 13 7 13 0.000890 128/129 Runs

12 6 26 14 21 13 8 7 10 12 0.000529 129/129 LongestRun

19 12 11 8 10 13 16 12 12 16 0.304210 125/129 Rank

3 7 7 0 2 12 0 9 0 3 0.000009 * 42/43 FFT

21 12 11 20 15 13 5 9 15 8 0.024505 128/129 ApproximateEntropy

20 16 17 16 10 9 10 5 14 12 0.091249 128/129 Serial (forward)

20 15 12 15 10 7 9 15 8 18 0.117876 128/129 Serial (backward)

Table 5.13: Cont’d with the results using 5th − 6th order models
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

0
th
-o
rd

er

21 9 4 1 5 2 8 3 5 9 0.000000 * 62/67 * Frequency

28 6 5 5 1 6 5 2 7 2 0.000000 * 57/67 * BlockFrequency

25 6 7 5 2 5 6 2 5 4 0.000000 * 59/67 * CumulativeSums (m-2)

20 10 6 7 4 1 4 4 7 4 0.000004 * 60/67 * CumulativeSums (m-3)

21 11 7 10 3 3 1 6 2 3 0.000000 * 58/67 * Runs

16 5 10 7 7 5 6 2 4 5 0.006867 64/67 LongestRun

10 5 11 7 7 5 4 5 10 3 0.248010 66/67 Rank

2 2 6 0 2 2 0 5 0 3 0.033490 22/22 FFT

24 8 10 9 3 2 3 5 2 1 0.000000 * 57/67 * ApproximateEntropy

23 8 3 11 4 3 6 4 3 2 0.000000 * 57/67 * Serial (forward)

9 10 7 4 7 4 6 10 6 4 0.561026 67/67 Serial (backward)

1
s
t
-o
rd

er

9 11 3 8 8 0 10 5 6 7 0.055085 66/67 Frequency

13 12 10 3 5 3 7 3 4 7 0.009867 66/67 BlockFrequency

10 5 10 9 8 4 2 6 5 8 0.296269 65/67 CumulativeSums (m-2)

11 7 5 11 6 4 7 3 7 6 0.351554 66/67 CumulativeSums (m-3)

14 7 6 8 4 3 6 6 3 10 0.049394 64/67 Runs

5 3 9 13 12 7 6 3 7 2 0.012526 67/67 LongestRun

11 5 9 8 2 6 10 4 9 3 0.103803 63/67 Rank

2 6 1 0 0 4 0 6 0 3 0.001859 22/22 FFT

12 5 7 7 9 8 6 2 7 4 0.271286 64/67 ApproximateEntropy

8 9 12 9 5 4 8 4 0 8 0.039609 63/67 Serial (forward)

6 7 13 11 7 2 1 9 7 4 0.012526 67/67 Serial (backward)

Table 5.14: NIST test results derived from the entire in-house dataset using

0th− 1st order distillers, where the length of one bitstring is 400 (except 3x for FFT

test), the block length for Frequency Test 32, the block length for Approximate

Entropy Test 2 and the block length for Serial Test 5. ‘*’ marks a failure.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

2
n
d
-o
rd

er
19 9 5 5 6 2 7 1 4 9 0.000014 * 60/67 * Frequency

17 6 6 7 6 4 7 7 6 1 0.003277 60/67 * BlockFrequency

15 12 6 9 4 6 5 3 3 4 0.003277 62/67 * CumulativeSums (m-2)

21 6 5 7 8 2 5 5 6 2 0.000002 * 61/67 * CumulativeSums (m-3)

18 8 8 0 8 4 8 3 4 6 0.000065 * 63/67 Runs

13 3 10 9 7 8 3 7 5 2 0.031655 64/67 LongestRun

13 13 3 6 4 5 5 6 8 4 0.022481 63/67 Rank

4 2 8 0 1 3 0 3 0 1 0.001268 21/22 FFT

23 6 10 10 5 2 4 3 2 2 0.000000 * 61/67 * ApproximateEntropy

20 3 11 3 7 9 5 3 5 1 0.000000 * 63/67 Serial (forward)

10 8 8 8 7 3 4 5 11 3 0.226378 67/67 Serial (backward)

3
r
d
-o
rd

er

8 12 8 8 3 5 9 6 4 4 0.248010 67/67 Frequency

13 14 7 2 8 4 6 7 3 3 0.002550 66/67 BlockFrequency

11 8 8 10 6 5 7 5 5 2 0.323011 67/67 CumulativeSums (m-2)

10 7 6 9 13 5 5 6 4 2 0.084389 67/67 CumulativeSums (m-3)

10 9 10 5 8 5 6 2 6 6 0.414146 63/67 Runs

4 7 12 13 8 6 4 6 3 4 0.039609 67/67 LongestRun

10 8 12 3 7 7 6 4 6 4 0.248010 66/67 Rank

3 5 3 0 3 3 0 4 0 1 0.120885 21/22 FFT

7 10 13 7 4 3 8 7 5 3 0.093645 66/67 ApproximateEntropy

15 8 10 4 8 2 7 5 4 4 0.009867 65/67 Serial (forward)

6 8 17 6 4 4 7 5 5 5 0.008749 67/67 Serial (backward)

4
th
-o
rd

er

11 9 1 7 9 8 7 3 3 9 0.068316 65/67 Frequency

12 5 12 6 10 5 5 3 6 3 0.044252 67/67 BlockFrequency

10 10 7 4 9 5 4 5 7 6 0.272584 65/67 CumulativeSums (m-2)

8 10 7 10 4 6 4 8 5 5 0.314919 66/67 CumulativeSums (m-3)

7 11 4 4 9 4 8 12 2 6 0.061374 66/67 Runs

8 4 9 12 11 6 4 6 5 2 0.075967 67/67 LongestRun

8 6 8 3 5 9 4 7 9 8 0.448602 66/67 Rank

2 7 4 0 2 5 0 2 0 0 0.001859 22/22 FFT

12 8 4 9 5 2 10 6 7 4 0.114933 66/67 ApproximateEntropy

6 7 10 5 6 9 8 7 4 5 0.631944 67/67 Serial (forward)

3 9 6 9 8 9 1 7 6 9 0.248010 67/67 Serial (backward)

Table 5.15: Cont’d with the results using 2nd − 4th order models
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROP. STATISTICAL TEST

5
th
-o
rd

er

9 9 9 2 6 2 8 6 4 12 0.061374 66/67 Frequency

13 5 6 6 6 2 4 9 8 8 0.140402 63/67 BlockFrequency

7 10 4 7 7 2 7 12 7 4 0.187777 66/67 CumulativeSums (m-2)

11 5 4 6 9 6 4 7 8 7 0.358516 66/67 CumulativeSums (m-3)

6 10 4 11 3 7 4 8 3 11 0.084389 66/67 Runs

6 4 11 10 12 8 5 4 4 3 0.061374 67/67 LongestRun

10 9 8 5 8 5 7 3 5 7 0.403161 67/67 Rank

4 2 1 0 4 2 0 7 0 2 0.008237 22/22 FFT

12 6 6 9 3 3 6 8 6 8 0.296269 67/67 ApproximateEntropy

9 9 7 10 2 10 5 5 3 7 0.206325 66/67 Serial (forward)

8 11 5 6 6 11 5 4 5 6 0.448203 67/67 Serial (backward)

6
th
-o
rd

er

14 9 6 8 7 1 5 2 8 7 0.017828 66/67 Frequency

10 8 7 11 6 6 9 1 2 7 0.084389 65/67 BlockFrequency

13 8 8 5 7 5 4 6 7 4 0.323011 67/67 CumulativeSums (m-2)

14 6 7 13 6 3 7 2 2 7 0.002550 67/67 CumulativeSums (m-3)

14 9 4 3 7 7 8 6 5 4 0.084389 65/67 Runs

8 6 12 14 9 4 2 6 3 3 0.003712 66/67 LongestRun

14 5 10 7 6 4 8 3 4 6 0.061374 63/67 Rank

3 4 2 0 2 4 0 4 0 3 0.216159 22/22 FFT

17 6 10 5 6 4 7 4 4 4 0.002892 66/67 ApproximateEntropy

13 8 9 7 8 3 7 3 7 2 0.061374 63/67 Serial (forward)

6 7 14 6 7 6 5 4 6 6 0.296269 64/67 Serial (backward)

Table 5.16: Cont’d with the results using 5nd − 6th order models
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Chapter 6

Conclusion

A Physical Unclonable Function (PUF) is a physical structure whose functional

characteristic is hard to predict before fabrication but once fabricated its charac-

teristic is rather stable and unique. PUF is a security primitive that can generate

cryptographic keys and evade physical attacks. In this dissertation, we discussed

several original methodologies to improve RO PUFs in terms of security, reliability

and hardware efficiency. We started with temperature-aware cooperation (TAC)

and then introduced LISA to extract the maximal entropy of a comparison-based

RO PUF through finding longest increasing subsequences iteratively. After that, we

broke up the chains of Neighbor Coding and applied the regression-based entropy

distiller right after frequency measurement to resolve the security problems posed

by the underlying spatial correlation. We also incorporated ECC into the design

and devised the more error tolerant Kendall Syndrome Coding (KSC) to further

reduce the complexity of ECC. According to the NIST test results of two large-scale

datasets, the output of our group-based RO PUF is indistinguishable from those

drawn from the ideal uniform distribution. Under the same i.i.d. output assumption

and reliability criteria, our design is 50% or more efficient than the state-of-the-art

IBS-based design in most cases. In addition, our design is self-sufficient, requiring

no seeding from outside the chip that others do. While existing proposals are pre-
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dominantly in pure hardware, we take advantage of the ‘free’ computing resource

of the existing microprocessor for less cost on the PUF IP. Our software-hardware

co-design can be quickly realized on FPGAs as an embedded system using today’s

tool chain.
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