Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Orders of accumulation of entropy and random subshifts of finite type

    Thumbnail
    View/Open
    McGoff_umd_0117E_11991.pdf (897.7Kb)
    No. of downloads: 549

    Date
    2011
    Author
    McGoff, Kevin Alexander
    Advisor
    Boyle, McBlaine M
    Metadata
    Show full item record
    Abstract
    For a continuous map T of a compact metrizable space X with finite topological entropy, the order of accumulation of entropy of T is a countable ordinal that arises in the context of entropy structure and symbolic extensions. We show that every countable ordinal is realized as the order of accumulation of some dynamical system. Our proof relies on the functional analysis of metrizable Choquet simplices and a realization theorem of Downarowicz and Serafin. Further, if M is a metrizable Choquet simplex, we bound the ordinals that appear as the order of accumulation of entropy of a dynamical system whose simplex of invariant measures is affinely homeomorphic to M. These bounds are given in terms of the Cantor-Bendixson rank of F, the closure of the extreme points of M, and the relative Cantor-Bendixson rank of F with respect to the extreme points of M. We address the optimality of these bounds. Given any compact manifold M and any countable ordinal alpha, we construct a continuous, surjective self-map of M having order of accumulation of entropy alpha. If the dimension of M is at least 2, then the map can be chosen to be a homeomorphism. The realization theorem of Downarowicz and Serafin produces dynamical systems on the Cantor set; by contrast, our constructions work on any manifold and provide a more direct dynamical method of obtaining systems with prescribed entropy properties. Next we consider random subshifts of finite type. Let X be an irreducible shift of finite type (SFT) of positive entropy with its set of words of length n denoted B_n(X). Define a random subset E of B_n(X) by independently choosing each word from B_n(X) with some probability alpha. Let X_E be the (random) SFT built from the set E. For each alpha in [0,1] and n tending to infinity, we compute the limit of the likelihood that X_E; is empty, as well as the limiting distribution of entropy for X_E. For alpha near 1 and n tending to infinity, we show that the likelihood that X_E contains a unique irreducible component of positive entropy converges exponentially to 1.
    URI
    http://hdl.handle.net/1903/11628
    Collections
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility