Improving analytical templates and searching for gravitational waves from coalescing black hole binaries

Thumbnail Image
Publication or External Link
Ochsner, Evan Lee
Buonanno, Alessandra
The Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo are taking data at design sensitivity. They will be upgraded to Advanced LIGO and Virgo within the next 5 years and the detection of gravitational waves will be very likely. Binaries of two compact objects which inspiral and coalesce are one of the most promising sources for LIGO and Virgo. Most searches have focused solely on the inspiral portion of the waveform, and are consequently limited to low total mass. Recent breakthroughs in numerical relativity allow one to construct complete inspiral-merger-ringdown waveforms and search for the whole signal. This thesis will review some of the basic characteristics of gravitational waves from compact binaries and methods of searching for them. Analytical template waveforms for such systems will be presented including a comparison of different families of analytical waveforms, a study on the inclusion of spin effects in such waveforms, and a study of inspiral-merger-ringdown waveforms with amplitude corrections and the importance of these effects for parameter estimation. The thesis will culminate with a presentation of the first gravitational wave search to use inspiral-merger-ringdown templates, which was performed on data from the fifth science run of LIGO.