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Chapter 1

Preamble

General Relativity posits that what we observe as the gravitational attraction

between any two bodies is in fact a manifestation of the curvature of spacetime. In

this theory, the Universe is described as a four-dimensional manifold of space and

time. The manifold is characterized by a metric tensor, gµν , which allows one to

calculate the separation between any two events (points in space and time). The

geometry of spacetime determines the behavior of the matter and energy within it;

matter and energy move along geodesics (extremal paths between two events) of the

spacetime.

In Newtonian gravity, space and time are an absolute, immutable frame-

work within which all physical processes play out. General relativity is a dramatic

paradigm shift away from this conception of the Universe. General relativistic space-

time is a dynamical structure that is affected by the matter and energy within it.

Matter and energy curve spacetime, and the geometry of spacetime determines the

behavior of the matter and energy. Mathematically, this is described by Einstein’s

equation:

Rµν −
1

2
Rgµν = 8π Tµν . (1.1)

Here gµν is the metric tensor, Rµν is the Ricci tensor (a function of the metric

1



and its first and second derivatives) and R is the Ricci scalar, the contraction of the

Ricci tensor. Thus, the left hand side of the equation represents the curvature of

spacetime. On the right hand side, Tµν is the stress-energy tensor, which describes

the distribution of matter and energy within the spacetime. This tensor equation

describes the interaction between matter, energy and spacetime. If the distribution

of matter and energy varies in time, then the curvature, as described by the metric

gµν , can also vary in time. This variation in the metric will propagate outward

from the varying matter and energy distribution throughout the rest of spacetime

as gravitational waves (GWs) which stretch and squeeze spacetime itself, causing

the measured distance between two points to grow and shrink at different times.

The strain, or fractional change in length, is used to quantify the effect of

gravitational waves. Suppose the proper distance between some two freely falling

reference points at rest with respect to each other is L, and a gravitational wave

of strain h passes by. The wave will produce a time-dependent variation in L,

∆L(t) = h(t)L. So, if we can measure the distance between two points to high

enough precision, and we find that the distance varies in time, this may be evidence

of a gravitational wave. Of course, we must be sure that the change in distance

is not caused by some other factor. For instance, if our reference points are on

the surface of the Earth, seismic activity could cause their separation to vary in

time. The most important way to rule out such “noise” sources is to perform these

distance measurement experiments at two or more widely separated locations. We

then require that multiple sites measure a strain at the same time (within some

coincidence window to allow for the fact that a gravitational wave can arrive at the
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different locations at slightly different times), and that the measured strains are all

of consistent strength and functional form h(t).

In electrodynamics, one can describe the electromagnetic waves emitted from

a source electromagnetic potential by expanding the potential in multipoles. If these

multipoles vary in time, they can create electromagnetic radiation. Because elec-

tromagnetic charge is conserved, the electric monopole (i.e. the total charge) will

not vary and cannot produce electromagnetic waves. However, if the electric dipole

of the potential varies in time, this will produce electromagnetic waves. Higher

time derivatives of higher order multipoles can also contribute to electromagnetic

radiation. In general relativity, we can use an analogous approach to describe grav-

itational waves in terms of multipoles of the stress-energy tensor (which represents

the distribution of mass-energy and mass-energy “currents”) of a source. Because

mass-energy (mass monopole), linear momentum (mass dipole) and angular momen-

tum (current dipole) are conserved, they cannot contribute to gravitational waves.

It turns out that the second time derivative of the mass quadrupole is the lowest

order contribution to gravitational radiation. This represents the dominant contri-

bution to gravitational waves, with higher time derivatives of higher order multipoles

giving smaller corrections. Since the dominant contribution to gravitational waves

is related to the second time derivative of the mass distribution of a source, this

means that one must have a mass undergoing acceleration to produce gravitational

waves.

Now, because gravity is much weaker than the other fundamental forces of Na-

ture, one must have very large masses undergoing extreme accelerations to produce

3



detectable gravitational waves. One of the classic examples is a binary of two com-

pact objects (neutron stars and/or black holes) undergoing centripetal acceleration

as they orbit one another.

The Hulse-Taylor binary system of two neutron stars provides compelling (al-

though indirect) evidence for the existence of gravitational waves [1]. Discovered

in 1974, it is observed as a pulsar which emits bursts of radio waves approximately

every 59 ms. This emission comes from a magnetic hot spot on a rotating neutron

star that beams radiation every time the bright spot faces Earth. The period of

these bursts is Doppler shifted by a pattern consistent with a 1.441 M� pulsar in

a binary orbit with a 1.387 M� companion with an eccentricity of 0.617131 and

an orbital period of about 7.75 hours. This period has slowly decreased over the

years at a rate that agrees very well with the energy loss (thus shrinking radius and

decreased period) predicted by general relativity. After a few years of observation,

the rate of change in the period was measured accurately enough to show that it

agreed with the prediction of general relativity to within a few percent [2]. Further

years of observation allowed a more precise measurement of the rate of change of

the period, so that after 30 years of observation, it is found to agree with general

relativity to within 0.2% [3, 4]. So, although gravitational waves from this binary

have not been observed directly, the observations strongly support their existence,

as there is no other explanation for the changing orbital period that can fit the data

so precisely.

Gravitational waves from this binary have not been detected because their

observable effect is extremely weak, and they are at frequencies well below the
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sensitive band of any current gravitational wave detector. Just before the Hulse-

Taylor binary merges in roughly 300 million years, the two neutron stars will orbit

each other many times a second, and their gravitational waves will be of a high

enough frequency that current detectors could observe them. Thus, if other binaries

in the Universe consisting of two neutron stars and/or black holes are merging right

now, we may be able to detect them if they are not too far away.

To see just how difficult it is to detect gravitational waves directly, and why

we do not notice them in our everyday lives, consider the well-known quadrupole

formula (see e.g. Ref. [5]), which gives this leading order expression for the strain of

gravitational waves emitted from a compact binary such as the Hulse-Taylor binary:

h(t) ∼ 2.36 10−22

(
M

10M�

)5/3 ( η

0.25

)( Forb

100 Hz

)2/3 (
100 Mpc

Deff

)
. (1.2)

In this equation, M = m1 +m2 is the total mass of the binary, 0 < η = m1m2/M
2 ≤

0.25 is the symmetric mass ratio, Forb is the orbital frequency of the binary, and

Deff is the effective distance between the binary and detector (the distance adjusted

to take into account the relative orientation between the binary and detector). For

the example binary in the above equation, we get a strain O(10−22). If a ∼ 2 m

long freely falling test apparatus is impinged upon by a gravitational wave from

our example source, it will be stretched and squeezed by O(10−22) m. Now, the

closest extra-solar stars are ∼ 1 pc away, so if we moved this same binary to their

location, the gravitational waves would still only warp our apparatus by O(10−14) m.

This should make it quite clear that gravitational waves from astrophysical sources
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are very weak and can only be detected by precision experiments. However, if we

were much closer to a source, the strain would be much stronger. Perhaps there is

some experiment we could perform in a laboratory on Earth to produce gravitational

waves that are easily detectable near the source? By converting the units of Eq. (1.2)

into laboratory scale units, it becomes quite apparent that producing detectable

gravitational waves in a laboratory would be exceedingly difficult.

h(t) ∼ 7.35 10−42

(
M

20, 000 kg

)5/3 ( η

0.25

)( Forb

100 Hz

)2/3 (
0.1 m

Deff

)
. (1.3)

This tells us that if we can rotate a 20-ton barbell-shaped weight 100 times a second,

a freely falling ∼ 1 m object located 10 cm from the system would only be stretched

by O(10−42) m. The effect could be made somewhat stronger by changing the

geometry and mass of the rotating weight, by spinning it faster, or by measuring

the effect at closer distances. However, one would need a system that is many orders

of magnitude heavier, more compact, faster and closer to get an easily measurable

effect. As with astrophysical sources, GWs produced in a laboratory on Earth have

a very tiny effect that could only be detected by a very precise measurement. Sadly,

it seems college freshmen will never see a classroom demonstration of gravitational

waves in an introductory physics lab.

Despite the challenges, the detection of gravitational waves could reap hand-

some benefits. First of all, it would allow us to test general relativity. The predic-

tions of general relativity have been confirmed by numerous experiments, includ-

ing the perihelion precession of Mercury, bending of light by the Sun, the gravita-
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tional redshift of electromagnetic radiation, the “time-dilation” corrections needed

for global positioning satellites to work correctly and many others. For a general

discussion of these and other tests of general relativity, see Ref. [6]. However, all

of these tests occur where gravity is relatively weak. They do not test general rel-

ativity in regimes where gravity is strongest, such as near the surface of a black

hole. Since the sources of gravitational waves are systems experiencing strong grav-

ity, observing GWs could tell whether strong-field gravity obeys general relativity.

GW observations could also provide a wealth of astrophysical information. Much as

radio astronomy opened a whole new window on the Universe by detecting objects

such as pulsars which emit radio waves rather than visible light, GW observations

could shed new light on electromagnetically dark objects. It could also offer a com-

plementary view of objects which are electromagnetically visible. One promising

scenario is if both gravitational and electromagnetic waves are observed from the

same event (such as a compact binary coalescence). Then, one can determine both

the physical distance and the redshift of the object rather accurately and thus get a

precise measurement of the rate of expansion of the Universe and Hubble’s constant,

as proposed in Ref. [7].

The rest of this thesis is organized as follows: In Chapter 2, we will begin

by deriving some of the basic properties of gravitational waves. Then, we will give

an overview of work by the author and collaborators related to building analytic

template waveforms for gravitational waves from compact binaries, and how these

waveforms can be applied to search for and analyze gravitational waves. Chapter 3

will present a comparison of various families of post-Newtonian waveforms to assess
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their reliability. Chapter 4 will present post-Newtonian waveforms for inspiralling

compact binaries in which one or both of the bodies is rapidly spinning and study

the consequences of these spin effects. Some of the lengthier expressions from this

chapter will appear in Appendices A-D. Chapter 5 will present a study which used

effective one-body template waveforms to search for numerical relativity waveforms

injected into simulated data. Chapter 6 will present effective one-body waveforms

with amplitude corrections for the inspiral, merger and ringdown of compact binaries

and study the implications of the merger-ringdown and amplitude corrections on

the precision with which the parameters of the compact binary can be recovered.

Chapter 7 will present the results of a search for gravitational waves from compact

binaries in LIGO’s fifth science run (S5). This search attempted to find gravitational

waves from binaries with a total mass between (25−100)M� with individual masses

in the range (1 − 99)M�, and is the first search to use complete inspiral-merger-

ringdown waveforms. Finally, we have some brief concluding remarks in Ch. 8.
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Chapter 2

Introduction

2.1 Basic properties of gravitational waves

We now set about to derive some of the basic properties of gravitational waves

propagating far from their source within the framework of linearized gravity. This

means that we will treat gravitational waves as a small perturbation to a flat back-

ground spacetime. Einstein performed such a calculation and predicted the existence

and basic properties of gravitational waves [8]. The derivation of the properties of

gravitational waves in this section is modelled after the presentation in the first

chapter of the excellent text book on gravitational waves by Maggiore [9].

2.1.1 Linearized gravity metric

As we have argued in the preamble, any gravitational waves that we might

hope to observe here on Earth will be very tiny and difficult to detect. Because of

this, it should be reasonable to treat them as a small perturbation of a background

spacetime metric. For simplicity, we will begin by assuming a flat, Minkowski back-

ground spacetime, ηµν , and the effect of the gravitational wave will be described by

hµν . For the gravitational waves to be a “small perturbation”, this means that there

exists a frame in which the components of hµν are small. So, we will decompose our
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spacetime metric as

gµν = ηµν + hµν , |hµν | � 1 (2.1)

and only keep terms that are linear in hµν . One consequence of this is that we can

raise and lower tensor indices by contracting with the flat spacetime metric ηµν .

Now, general relativity is invariant under any diffeomorphic (smooth mapping

with a smooth inverse mapping) coordinate transformation. It turns out that if we

specify a coordinate frame which satisfies Eq. (2.1), we still have a remaining gauge

freedom. To see this, note that if we perform a coordinate transformation xµ → x′µ,

then our spacetime metric will transform as

gµν →
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ . (2.2)

So, if we consider a transformation of the form xµ → xµ + ξµ(x), our metric will

transform as gµν → ηµν + hµν − ∂µξν − ∂νξµ. Thus, the tensor describing the gravi-

tational waves has transformed as

hµν → hµν − ∂µξν − ∂νξµ (2.3)

and so we are allowed to perform any such transformation so long as |∂µξν +∂νξµ| ≤

|hµν |. In fact, we will find such transformations useful to simplify our equations and

expressions [9].
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2.1.2 Describing curvature

In differential geometry, the curvature of a manifold (spacetime) can be de-

scribed in terms of parallel transport of a vector. To parallel transport a vector

means to move a vector along a curve so that it remains tangent to that curve at all

times. On a flat manifold, parallel transport is path independent, or equivalently if

a vector is invariant when parallel transported along a closed path. If the direction

of the final vector depends upon the path over which it was parallel transported,

then this is a sign that the manifold is curved.

A sphere such as the Earth provides a classic example to illustrate this concept.

Let us start with a vector at 0◦ longitude at the equator. If we transport it to

the north pole along the line of 0◦ longitude, it will point in the direction of 180◦

longitude at the north pole. If instead we first transport our vector along the equator

to 90◦ east longitude, and then transport it to the north pole along the line of 90◦

east longitude, it will then point in the direction of 90◦ west longitude at the north

pole. Equivalently, we could also travel along one curve and then backwards along

the other to arrive back at the equator at 0◦ longitude and we would find our vector

rotated 90◦ relative to it’s initial orientation. So, the curvature of the sphere means

that a vector will not be invariant when parallel transported over a closed loop.

This concept can be used to describe the curvature of a generic manifold

(spacetime) via the Riemann tensor. Given a spacetime metric gµν , the covariant
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Figure 2.1: Depiction of measuring curvature with the path dependence of parallel
transport. We have a vector at point p and parallel transport it along either path
A (red) or B (blue). The direction of the vector at q depends on the path taken.

derivative of a vector is defined as

∇µx
ν = ∂µ + Γνµλ x

λ (2.4)

where Γνµλ is the Christoffel symbol (or connection coefficient) defined as

Γνµλ =
1

2
gνρ
(
∂gρµ
∂xλ

+
∂gρλ
∂xµ

− ∂gµλ
∂xρ

)
. (2.5)

The covariant derivative can be used to parallel transport a vector. Given a curve

C with tangent vector yµ, a vector xν will parallel transported if yµ∇µ x
ν = 0

everywhere along C.

The path dependence of parallel transport is related to the non-commutation

of covariant derivatives. To get an intuitive feel for why this is, let us consider
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parallel transport of a vector from point p to q over an infinitesimally small distance

(so the metric does not change appreciably) of a curved spacetime, as depicted in

Fig. 2.1. If we parallel transport along curve A where we first go in the direction

of x2 and then x1, the final direction of the vector is depicted in red. If we parallel

transport along curve B, which first goes in the direction of x1 and then x2, the

final direction of the vector is depicted in blue. Now, curves A and B only differ

in the order in which they traverse the x1 and x2 segments. So, the fact that we

obtain a different result depending on the order in which the segments are traversed

means that the covariant derivative along the x1 direction does not commute with

the covariant derivative along the x2 direction. Recalling, Eq. (2.4), it is clear that

the non-commutation is caused by the presence of the Christoffel symbols (which

are zero in flat spacetimes) in the covariant derivatives.

Guided by this intuition, we will define the Riemann tensor in terms of the

commutator of covariant derivatives

Rλ
σµνx

σ = (∇µ∇ν −∇ν ∇µ)xλ . (2.6)

Using the definition of the covariant derivative, Eq. (2.4), this leads to

Rλ
σµν =

∂Γλσν
∂xµ

−
∂Γλσµ
∂xν

+ Γλγµ Γγσν − Γλγν Γγσµ . (2.7)
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From this definition, one finds that the Riemann tensor has several symmetries

Rλσµν = −Rσλµν = −Rλσνµ , (2.8)

Rλσµν = Rµνλσ , (2.9)

0 = Rλσµν +Rλµνσ +Rλνσµ , (2.10)

0 = ∇γ R
λ
σµν +∇µR

λ
σνγ +∇ν R

λ
σγµ . (2.11)

The Ricci tensor and scalar are defined from contractions of the Riemann tensor

with the metric

Rµν = gλσ Rλσµν , (2.12)

R = gµν Rµν . (2.13)

We have now defined the Riemann tensor, Ricci tensor, and Ricci scalar which

describe the curvature of a spacetime with a generic metric gµν [10]. In linearized

gravity, with a metric of the form Eq. (2.1) and keeping only terms linear in hµν ,

we find [11]

Γνµλ =
1

2
ηνρ
(
∂hρµ
∂xλ

+
∂hρλ
∂xµ

− ∂hµλ
∂xρ

)
, (2.14)

Rλσµν =
1

2
(∂µ∂σhλν + ∂ν∂λhσµ − ∂µ∂λhσν − ∂ν∂σhλµ) . (2.15)
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2.1.3 Wave equation for gravitational waves and the TT gauge

Recall that Einstein’s equation is given by

Rµν −
1

2
Rgµν = 8π Tµν . (2.16)

Here Tµν is the stress-energy tensor for the matter and energy in the spacetime.

Since we are working at linear order in hµν , we can obtain expressions for the Ricci

tensor and scalar by contracting the linearized Riemann tensor of Eq. (2.15) with

the flat spacetime metric ηµν . Doing this, Eq. (2.16) can be greatly simplified by

expressing it in terms of the trace-reversed tensor

h̄µν = hµν −
1

2
ηµνh , (2.17)

where h = ηµνhµν and so h̄ = −h. Then, Einstein’s equation, Eq. (2.16), becomes

2h̄µν + ηµν∂
λ∂σh̄λσ − ∂λ∂ν h̄µλ − ∂λ∂µh̄νλ = 16π Tµν . (2.18)

Note that 2 = ∂µ∂µ is the D’Alembertian operator. At this point, it is very conve-

nient to exploit our gauge freedom and impose the Lorenz gauge condition

∂ν h̄µν = 0 . (2.19)
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In this gauge, all but the first term on the left hand side vanish and we are left with

2h̄µν = −16π Tµν . (2.20)

This is a nice concise wave equation with a source term given by the stress-energy

tensor, and therefore the matter and energy distribution in the spacetime.

Note that our wave equation, Eq. (2.20) coupled with our gauge condition, Eq.

(2.19) and the fact that partial derivatives commute gives us a simple conservation

law for energy-momentum in the linearized theory

∂µTµν = 0 . (2.21)

Now, we will be interested in detecting gravitational waves of astrophysical

origin far away from the source. Therefore, we will set the source term Tµν = 0 and

our wave equation becomes

2h̄µν = 0 . (2.22)

First, since (restoring c) 2 = − 1
c2
∂2
t + ∇2, this equation means that we expect

gravitational waves to propagate at the speed of light. Next, we note that since

Eq. (2.22) is an equation for a symmetric rank-2 tensor, it has 10 independent

components. However, the gauge condition of Eq. (2.19) fixes 4 of those components,

and so we are left with 6. However, there is still a remaining gauge freedom. Let us

perform a coordinate transformation xµ → xµ + ξµ. Then, from Eq. (2.3) and Eq.
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(2.17), the trace-reversed tensor transforms as

h̄µν → h̄µν + ξµν ξµν = ∂µξν + ∂νξµ − ηµν∂λξλ . (2.23)

Now, if ξµ satisfies 2ξµ = 0, then it follows that 2ξµν = 0 also. So, we can perform

any coordinate transformation so long as 2ξµ = 0. In particular, we can choose

ξ0 such that h̄ = 0. Therefore, from Eq. (2.17) we have h̄µν = hµν . We will also

choose the ξi so that h0i = 0. The Lorenz gauge condition, Eq. (2.19) now implies

∂0h00 + ∂ih0i = 0 and given our choice of ξi, this implies ∂0h00 = 0. Since a time-

independent h00 corresponds to a static contribution to the gravitational field, and

gravitational waves are time-dependent fluctuations, we can set h00 = 0. So, with

our gauge choices, only the spatial components hij can be non-zero. This gauge is

known as the transverse-traceless (TT) gauge, the gravitational wave strain in this

gauge is often denoted hTTij , and it is given by the constraints

h0µ = 0, hi i = 0, ∂jhij = 0 . (2.24)

Note that this gauge admits plane wave solutions. If a plane wave is traveling along

the z-axis with angular frequency ω, the strain takes the form

hTTij =


h+ h× 0

h× −h+ 0

0 0 0


ij

cos (ω(t− z/c)) . (2.25)
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Suppose that we have the strain in some harmonic gauge coordinate system,

but not in the TT gauge for propagation along some direction N̂. Then, we can

transform into the TT gauge using the Lambda tensor [9],

Λij,kl(N̂) = Pik Pjl −
1

2
Pij Pkl , (2.26)

where Pij(N̂) = δij −NiNj is a projector along N̂. Then, if hkl is the strain is some

arbitrary harmonic coordinate frame, we have

hTT
ij = Λij,kl(N̂)hkl . (2.27)

Equivalently, we can construct an orthonormal basis
(
N̂, P̂, Q̂

)
(where N̂ is the

direction of propagation) and construct the two polarizations h+ and h× appearing

in Eq. (2.25) directly as

h+ =
1

2
(P i P j −QiQj)hij , (2.28)

h× =
1

2
(P iQj +Qi P j)hij . (2.29)

Let us consider a rotation by an angle Ψ about the z-axis. This coordinate

transformation can be described with the rotation matrix

R(Ψ)i j =


cos Ψ sin Ψ 0

− sin Ψ cos Ψ 0

0 0 1

 . (2.30)
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According to the tensor transformation law [12], the GW strain tensor will transform

as h′ij = R(Ψ)kiR(Ψ)l j hkl, and so

h′TTij =


h+ cos 2 Ψ + h× sin 2 Ψ −h+ sin 2 Ψ + h× cos 2 Ψ 0

−h+ sin 2 Ψ + h× cos 2 Ψ −h+ cos 2 Ψ− h× sin 2 Ψ 0

0 0 0


ij

, (2.31)

where we have dropped the factor cos (ω(t− z/c)) above for brevity. Note that when

we apply a coordinate rotation by the angle Ψ, the components of the gravitational

wave strain are rotated by an angle 2 Ψ. This shows that gravitational waves are a

spin-2 field [9].

2.1.4 Interactions with gravitational waves

The equation of motion for a freely falling test mass in a curved spacetime is

given by the geodesic equation

d2xµ

dτ 2
+ Γµνλ

dxν

dτ

dxλ

dτ
= 0 , (2.32)

where τ is proper time (or some other affine parameter) parametrizing the location

of the test mass along the geodesic [12, 9]. Let us work in the TT gauge and consider

a gravitational wave propagating along the z-axis, which at proper time τ = 0 passes

three test particles which are all at rest in the TT gauge with (x, y, z) coordinates of

(0, 0, 0), (L, 0, 0) and (0, L, 0). We can use the geodesic equation to find the motion

of each test particle. Since they are all initially at rest, each test particle will have
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dxi/dτ = 0 and dx0/dτ = c. Therefore, at the instant the gravitational wave reaches

the test particles, we have

d2xµ

dτ 2

∣∣∣∣
τ=0

= −c2 Γµ00

∣∣∣∣
τ=0

. (2.33)

Using Eq. (2.14), we find

Γµ00 =
1

2
(2 ∂0 h0µ − ∂µ h00) . (2.34)

Note that Eq. (2.33) is identically zero, since in the TT gauge we have h0µ = 0.

Therefore, if a particle is initially at rest with respect to the TT frame, it will

remain at rest with respect to this frame as a gravitational wave passes. However,

this is a statement about the coordinate distance between the test particle, while

what is physically observable is the proper distance between the particles. Using

the TT gravitational strain of Eq. (2.25), we have

ds2 = −c2 dt2 + [1 + h+ cos (ω(t− z/c))] dx2 + [1− h+ cos (ω(t− z/c))] dy2

+2h× cos (ω(t− z/c)) dx dy , (2.35)

and we can compute the proper distance between the test particles on the x- or

y-axis by integrating along that axis. These proper distances are [11, 9]

s = L
√

1± h+ cos (ω(t− z/c)) ' L

[
1± h+

2
cos (ω(t− z/c))

]
, (2.36)
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Figure 2.2: A ring of test particles in the x-y plane will be stretched and squeezed
by a gravitational wave travelling along the z-axis. The effect of the polarization
modes h+ and h× is shown at each quarter gravitational wave cycle.

where the upper sign is for the x-axis and the lower sign is for the y-axis. Therefore,

the proper separations along the x- and y-axes undergo an oscillatory fractional

change proportional to h+. When one is stretched, the other is squeezed. Similarly,

the diagonal directions are stretched and squeezed proportionally to h×. Fig 2.2

depicts the effect of each gravitational wave strain on a ring of test particles.

2.1.5 Detecting gravitational waves

The basic idea of a laser interferometer gravitational wave detector like LIGO

is to measure the distance along two perpendicular directions to a very high pre-

cision to detect a differential change in length from a passing gravitational wave.

We have seen how the polarizations of a passing gravitational wave will warp the

plane perpendicular to the direction of propagation. The effect of a gravitational
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wave from an arbitrary direction can be described with the aid of antenna pattern

functions. These depend on the geometry of the detector. For an interferometer

with arms at right angles, they are given by [5]

F+ =
1

2

(
1 + cos2 θ̄

)
cos 2φ̄ cos 2ψ − cos θ̄ sin 2φ̄ sin 2ψ , (2.37)

F× =
1

2

(
1 + cos2 θ̄

)
cos 2φ̄ sin 2ψ + cos θ̄ sin 2φ̄ cos 2ψ . (2.38)

where (θ̄, φ̄) are the spherical coordinates from which the gravitational wave prop-

agates (measured relative to directly above the center of the detector), and the

polarization angle ψ describes the angle of the vector P i appearing in Eqs. (2.28)-

(2.29) relative to the plane of constant sky azimuthal angle φ̄. The measured strain

(the fractional differential change in arm length) is then

h(t) = F+ h+(t) + F× h×(t) . (2.39)

A basic schematic for a LIGO-type interferometer is depicted in Fig. 2.3. A

laser is fired at a beam splitter, which sends the light down each arm in equal

parts. The beams travel down the arms and return to the beam splitter, where

they interfere with one another, and this combined light is monitored at the “dark

port”. The dark port is so named because the interferometer is designed so that

when the instrument is locked the arm lengths will differ by a half wavelength (plus

some integral number of wavelengths) and the beams from each arm will interfere

destructively and cancel. If some light is observed at the dark port, this means there
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Figure 2.3: Basic schematic of a ground-based interferometer such as LIGO. A
laser impinges upon a beam splitter which splits the light equally along two arms
perpendicular to one another. Each arm consists of a Fabry-Perot cavity, where the
light reflects several times before returning to the beam splitter. Light which heads
back towards the laser is reflected back to the beam splitter by a power recycling
mirror, increasing the laser power in the instrument. The superposition of light from
both arms is measured at the dark port, and perturbations to the arm lengths will
change the measured intensity of light.

has been a relative phase shift in the two beams, and thus a differential change in

the path length of each beam.

Since a gravitational wave will produce a fractional change in length, while the

phase shift (and hence the change in light intensity at the dark port) is proportional

to the absolute change in path length of the light, one should make each of the arms

of the interferometer as long as possible. For this reason, the main LIGO inter-

ferometers have 4 km arms. Furthermore, each arm of the interferometer consists

of a Fabry-Perot cavity, which reflects the light several times before it escapes and

returns to the beam splitter, effectively increasing the path length of the light. Such
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Figure 2.4: Amplitude spectral densities as a function of frequency for typical times
during S5. The curves are for the H1 4km interferometer at Hanford, WA (red),
the L1 4km interferometer at Livingston, LA (green), the H2 2km interferometer
at Hanford (blue) and the design goal of initial LIGO (dashed grey). This plot is
taken from Ref. [13].

a configuration is capable of measuring a strain of the order ∼ 10−22 at which we

hope to observe gravitational waves. However, it must contend with environmental

noise sources which perturb the instrument. The three main types of noise sources

(at least for first generation detectors) are seismic, thermal and shot noise.

Seismic noise is caused by vibrations of the Earth and is the dominant noise

source at low frequencies. It can be mitigated by isolating all of the mirrors from the

ground as much as possible. The Initial LIGO interferometers suspend their mirrors

from pendula attached to mass and spring “isolation stacks”. This can significantly

attenuate seismic noise down to ∼ 40 Hz, but the noise rises very rapidly at lower

frequencies, creating a “seismic wall” in the instruments’ noise curve. The Advanced

LIGO (and the European Virgo) detectors will suspend their mirrors from multiple

pendula, which are capable of attenuating the seismic noise down to ∼ 10 Hz.
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Shot noise is caused by fluctuations in the number of photons which impinge

upon the dark port and is the dominant noise source above frequencies of & 200

Hz. The arrival of photons is a Poisson process, so if 〈N〉 is the average rate at

which photons arrive at the dark port, the standard deviation is
√
〈N〉, and so the

fractional change in intensity will be less for higher intensity laser light. Thus, shot

noise can be mitigated by using a more powerful laser, and using a power recycling

mirror to increase the power in the interferometer.

However, a more powerful laser can increase the thermal noise, which is dom-

inant at intermediate frequencies, roughly 40 . f . 200 Hz. The initial LIGO

design uses a 10W laser while advanced instruments will use higher powered lasers.

Thermal noise is caused by thermal vibrations in the mirrors and their suspension

wires. One way to address this is to use materials which have very sharp thermal

peaks, so that the oscillations occur in a very narrow frequency band. The proposed

(and recently funded!) Japanese Large-scale Cryogenic Gravitational-wave Tele-

scope (LCGT) interferometer would also cryogenically cool the mirrors to reduce

thermal noise [14].

Through careful design, the initial LIGO design is able to achieve sensitivities

∼ 10−22 in the frequency band of ∼ 40 − 2000 Hz. The LIGO design sensitivity

and the actual sensitivity achieved during each of LIGO’s first five science runs are

depicted in Fig. 2.4.
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2.2 Constructing analytic templates for compact binary co-

alescences

Compact binary coalescences are one of the most promising sources of gravita-

tional waves detectable by LIGO and Virgo. One of the reasons is that the waveforms

from such systems can be computed analytically to create search templates which

make it easier to dig weak signals out of noise. Compactness can be quantified with

a so-called compactness parameter, γ = Gm/(c2 L) ∼ 1, where m is the mass of a

body and L is its characteristic size (e.g. radius). Note that γ ∼ 0.5 for a black hole

(BH), γ ∼ 0.16 for a neutron star (NS), while γ � 1 for ordinary stars. “Compact

binaries” are composed of two compact objects (black holes and/or neutron stars)

which orbit one another with a radial separation that is a few tens of gravitational

radii (defined as r = GM/c2 ∼ 1.5 (M/M�) km where M = m1 + m2 is the total

mass of the binary) or less. The orbit shrinks as energy is lost to gravitational

waves. At relatively large separations, the radial motion will be much slower than

the orbital motion, so that the two bodies will undergo an adiabatic inspiral along

slowly shrinking orbits. When the bodies are separated by only a few gravitational

radii, the radial velocity will become more significant and the two bodies will plunge

together and merge into a final deformed black hole, which will undergo “ringing”

as it radiates away its deformations and settles into a final state.

Typically, one assumes that the binaries move along quasi-circular orbits (that

is, circular apart from the slowly shrinking radius), which simplifies the waveforms

greatly. This is reasonable, at least in the expected scenario of a binary star system
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in which both stars produce compact objects at the end of their life cycle, because

even if the binary forms on an eccentric orbit, the eccentricity will radiate away and

the orbit will tend to circularize by the time it enters the sensitive band of ground-

based detectors [15, 16]. However, Refs. [17, 18] proposed a scenario which could

produce compact binaries on eccentric orbits that would not have time to circularize.

Ref. [17] explains that four-body interactions between black holes of mass ∼ 10M�

in globular clusters could lead to one of the black holes being ejected, two of the

black holes forming an inner binary, and a third black hole orbiting the inner binary.

If the orbit of the outer object is tilted relative to the orbital plane of the inner

binary, it could perturb the inner binary via the Kozai mechanism so that binary

will have significant eccentricity despite the circularizing effects of GW emission.

Ref. [18] finds that ∼ 30% of these systems could have an eccentricity > 0.1 at a

GW frequency of 10 Hz. Ref. [17] also points out that many of these systems would

not have a significant “kick” from the asymmetric emission of gravitational waves,

and so they would remain in the center of the globular cluster, where they could

undergo further mergers. A series of such mergers could produce larger black holes

of masses & 100M�. In this work we will only consider waveforms for binaries on

quasicircular orbits.

If general relativity is correct, there is an upper limit on the spin (rotational

angular momentum) of a black hole of a given mass. If the black hole were to

exceed this maximum spin a naked singularity would form. If we write the rotational

angular momentum of a black hole as S = Gm2 χ/c (where m is the mass of the

black hole), then this limit (known as the Kerr limit) can be written as |χ| ≤ 1.
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Neutron stars have spin magnitudes which are much smaller than the Kerr limit.

The fastest known pulsar has a spin |χ| = 0.02. With the observed range of pulsar

periods and current understanding of spindown rates, it is expected the neutron

stars are likely to be born with periods of 10 − 140 ms, corresponding to spins of

|χ| . 0.04 [19]. On the other hand, there is a great deal of uncertainty in the

distribution of values of χ for black holes. However, as summarized in Ref. [19],

observations of X-ray binaries have suggested that many black holes could have

|χ| & 0.7. In particular, observations suggest that one such BH in an X-ray binary

has a near-extremal spin, with |χ| ≥ 0.98 [20]. Therefore, it is quite possible that

many black holes will have spins which are a substantial fraction of the Kerr limit.

In that case, the spins can significantly affect the behavior of the binary and the

observed waveform. In Sec. 2.2.1.1, we will begin by deriving inspiral waveforms for

non-spinning compact binaries in the post-Newtonian (PN) formalism. In Sec. 2.2.2,

we will present the basics of the effective-one-body (EOB) formalism, which can

generate complete inspiral-merger-ringdown (IMR) waveforms. In Sec. 2.2.3, we

will see how spin corrections can be included in the PN formalism, and the effect

they have on the binary and the gravitational waveform.

2.2.1 Post-Newtonian waveforms

2.2.1.1 Post-Newtonian expansion

The PN formalism provides a framework to compute gravitational waveforms

emitted by systems which are “slow-moving” (v/c � 1) and “weakly-gravitating”
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(GM/r c2 � 1). One or both of these quantities is treated a small parameter, and

Einstein’s equations are solved iteratively. From the virial theorem, which states

that the average kinetic energy equals half the average potential energy, we find the

relation v2 ' GM/r. When we refer to a k–PN order expression, this means that

terms up to the power (v/c)2k and (GM/r c2)k beyond the leading order have been

retained and higher order terms have been discarded.

For example, the usual Kepler relation (r ω)2 = GM/r is only true to leading

order. There are general relativistic corrections, which enter as higher powers of the

PN expansion parameters. The generalized Kepler relation between ω and r in PN

theory takes the form

(r ω)2 =
GM

r

[
1 + a1

(
GM

r c2

)
+ a2

(
GM

r c2

)2

+ a3

(
GM

r c2

)3

+O
(
GM

r c2

)4
]
.

(2.40)

Note that the above relation is currently known to 3PN order. The values of the

coefficients are coordinate-dependent, and can be found in Eq. (147) of [21] for

harmonic coordinates. Using Eq. (2.40), and assuming circular orbits, it is possible

to compute any relevant quantity as a power series using either the orbital frequency

or radius. Throughout this thesis, we shall expand in the frequency by defining the

PN expansion parameter

v ≡
(
GM ω

c3

)1/3

, (2.41)

with every power of v beyond the leading order counting as half a PN order.
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2.2.1.2 Gravitational wave strain

We have shown that in linearized gravity with appropriate gauge choices, Ein-

stein’s equation can be recast as a wave equation, Eq. (2.20). As was done in

Ref. [22], one can can actually express Einstein’s equations in the form of a wave

equation without making any simplifying assumptions such as keeping only linear

terms. To do this, we can define the quantity

~µν = ηµν −
√
−g gµν , (2.42)

which is sometimes referred to as a gravitational potential, or a gravitational-field

amplitude. In terms of this gravitational-field amplitude, Einstein’s equations be-

come [22, 21, 23, 9]

2~µν = −16 π τµν . (2.43)

Here 2 = ∂µ∂
µ is the flat spacetime D’Alembertian, τµν = |g|T µν + 1

16π
Λµν is a

stress-energy pseudo-tensor which is the sum of the stress-energy tensor of the matter

(T µν) plus the contribution from the gravitational waves (Λµν), which is defined in

Eq. (2.6) of [23]. Λµν is due to the non-linearity of the full theory, and contains

terms quadratic in derivatives of ~µν .1 This is related to the fact that gravitational

waves carry energy, and therefore can themselves be a source of gravitational waves.

We can preserve the usual form of a wave equation with a source term by putting

these non-linear terms on the right hand side and treating them as a source term

1Because this non-linear term is second order in h, it did not appear in the linearized theory.
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arising from the energy in the gravitational waves themselves.

The form of Eq. (2.43) suggests that we can solve Einstein’s equations for the

gravitational-field amplitude ~µν by using a Green’s function

~µν(t,x) = 4

∫
τµν δ4(t− t′ + |x− x′|)

|x− x′|
d4x′ . (2.44)

In PN theory, one uses this Green’s function representation of the solution to

Eq. (2.43) and finds an approximate expression for the Green’s function by ex-

panding the integral of Eq. (2.44) in a series of multipoles, and then expanding each

of the multipoles in a power series in PN expansion parameters [21, 23, 9]. This is

in analogy with the computation of electromagnetic waves from a vector potential

source in electrodynamics, but there are several subtle complications.

For example, we have already noted that the “source term”, τµν , depends

explicitly on the gravitational-field amplitude, ~µν , which makes the equations non-

linear and difficult to solve. Ref. [23] further explains the effect of a term−~αβ ∂α ∂β ~µν

appearing in Λµν . Note that the d’Alembertian operator appearing on the left hand

side of Eq. (2.43) is 2 = ηαβ ∂α ∂β, which is the wave operator for a wave trav-

elling through flat spacetime. Although we have swept up the term −~αβ ∂α ∂β

(acting on ~µν) into the right hand side of Eq. (2.43), in a sense it belongs with

the d’Alembertian on the left hand side, as this term is a manifestation of the

fact that the gravitational waves are not propagating through a flat spacetime, but

through a spacetime which is curved around the source. To deal with these and

other subtleties, PN theory uses matched asymptotic expansions to calculate ~µν .
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In particular, one must expand with one set of “source” multipoles that are valid

in the “near zone” (distances from the source that are short compared to the gravi-

tational wavelength) and another set of “radiative” multipoles that are valid in the

“far zone” (distances that are large compared to the physical size of the source) and

then match the two expansions in an intermediate region where both are valid. This

calculation has been carried out to 3.5PN order [24, 25, 26, 27]. The subject is also

reviewed in [21, 9].

The end result of this calculation is an expression for the gravitational wave

strain of the form [23]

hTT
ij = Λij,kl

2M ν

DL

(
Qkl + P 0.5Qkl + P 1Qkl + ...

)
, (2.45)

where DL is the luminosity distance and Λij,kl is the Lambda tensor of Eq. (2.26),

which projects into the TT gauge. The lowest order contribution to the radiation,

Qij comes from the second time derivative of the mass quadrupole of the source.

There are also PN corrections to the quadrupole formula, denoted as P nQij, coming

from higher order multipoles. For a compact binary on a quasi-circular orbit, we

have

Qij = 2 v2 (λi λj − ni nj) , (2.46)

where n̂ is a unit separation vector pointing from one of the bodies to the other and

λ̂ is a unit vector along the instantaneous velocity of n̂. If we choose a source frame

with z-axis along the orbital angular momentum of the binary, then these vectors
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are given as

n̂ = (sin Φ,− cos Φ, 0) , (2.47)

λ̂ = (cos Φ, sin Φ, 0) , (2.48)

where Φ is the orbital phase of the binary. If we want to find the strain in the TT

gauge for a gravitational wave propagating at some angle θ relative to the z-axis

(the azimuthal angle is degenerate with the initial orbital phase, so we can set it to

zero without loss of generality), i.e. along the direction

N̂ = (sin θ, 0, cos θ) , (2.49)

then we can use Eq. (2.25), or equivalently Eqs. (2.28) and (2.29), to obtain the TT

strain and polarizations. One finds

h+(t) =
2M ν v(t)2

DL

(
1 + cos2 θ

)
cos 2Φ(t) , (2.50)

h+(t) =
4M ν v(t)2

DL

cos θ sin 2Φ(t) . (2.51)

These polarizations are typically used to describe a gravitational wave as observed

by a detector. We can insert these polarizations into Eq. (2.39) to find the strain

measured by the detector.

However, the measured strain depends on the relative orientation between the

source and detector through the so-called antenna pattern function F+ and F× of

33



Eqs. (2.37)-(2.37) and also through the angle θ appearing in the polarizations. In

some applications, such as numerical relativity, one does not wish to specify a par-

ticular orientation between source and detector, but rather wants a more global

description of the radiation emitted by a source. In this case, it is common to de-

compose the gravitational wave strain in terms of a set of -2 spin-weighted spherical

harmonics, denoted −2Y
`m(θ, φ). They are a generalization of the usual spherical

harmonics, and are defined in Eq. (4.41) of Chapter 4.

If we know the polarizations for a gravitational wave propagating in an arbi-

trary direction with spherical coordinates (θ, φ) relative to the source frame, then

we can construct a series of harmonic modes via

h`m(t) =

∫
dΩ (h+ − i h×)(θ, φ, t) −2Y

`m∗(θ, φ) , (2.52)

where 2 ≤ ` < ∞, −` ≤ m ≤ `. Alternatively, if the modes are known, one can

recover the polarizations via

(h+ − i h×) (θ, φ, t) =
∞∑
`=2

∑̀
m=−`

h`m(t) −2Y
`m(θ, φ) . (2.53)

Notice that the h`m do not depend on the orientation relative to the source, this is

all encoded in the −2Y
`m’s.

Now, if we use the leading order quadrupole expression for the strain, the only

non-vanishing mode is h22 (and h2−2 because the −m modes are related to the +m
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modes by a symmetry explained in Chapter 4). At leading order, it is given by

h22(t) = −2M ν v2(t)

DL

√
16π

5
e−i 2 Φ(t)

(
1 +O(v2)

)
. (2.54)

The P nQij higher order corrections to the strain will contribute to other modes, as

well as corrections to the h22 mode. Note that the (2, 2) mode is proportional to

exp(−imΦ). In fact, for all ` and m, we have

h`m ∝ e−imΦ , (2.55)

so long as the mode decomposition is done in a frame in which the z-axis is along the

orbital angular momentum. This can always be done for a non-spinning binary, but

for a generic spinning binary the orbital angular momentum can precess, making

such a decomposition impossible. We will revisit this point in the context of spin

effects in Sec. 2.2.3 and in Chapter 4.

2.2.1.3 Waveform phasing

We have outlined how the form of the gravitational wave strain can be derived

in PN theory, the various ways it can be described as a tensor, a pair of polarizations,

or a series of −2 spin-weighted spherical harmonic modes. In any of these forms,

it is crucial to have an accurate knowledge of the orbital phase Φ(t) and the PN

expansion parameter v(t). In this thesis, as is usually done, we will construct PN

waveforms for binaries which move on adiabatic, quasicircular orbits. That is, the
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binary moves along orbits which are circular apart from a very slowly shrinking

radius, and the radial velocity is negligible compared to the circular motion. In this

regime, it is common to use the PN parameter we defined in Eq. (2.41).

If the orbital radius of the binary did not shrink due to the emission of grav-

itational waves, the bodies would orbit one another at a constant frequency, and

we could simply integrate the frequency in time to find the orbital phase at any

given instant. Of course, energy loss to gravitational waves does cause the radius

to shrink, and in turn the frequency increases. So, in essence, we need to find a

formula for the rate of change of the orbital frequency, and integrate it twice in time

to determine the evolution of the phase.

To do this, we assume that all of the energy loss of the binary goes into

gravitational waves,

−dE
dt

= F . (2.56)

This is known as the energy balance equation. Using PN expansions for the binary

energy E(v) and gravitational wave flux F(v), an application of the chain rule gives

us an evolution equation for our PN expansion parameter

−dE
dv

dv

dt
= F ⇒ dv

dt
= − F

dE/dv
. (2.57)

So, we obtain an evolution equation for v. By using Eq. (2.57) and

dΦ

dt
≡ ωorb =

v3

M
, (2.58)
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we can evolve both Φ(t) and ωorb(t).

There are in fact several different ways that one may solve these equations to

evolve Φ and v to construct waveforms. They are all equivalent to within whichever

PN order we expand E and F , but there will be differences in the waveforms, in

effect due to different (unknown) truncation errors for each method. The waveforms

obtained from the various methods are called PN approximants.

For example, one could simply take the phasing equations, Eqs. (2.57), (2.58),

and solve them numerically. This method is known as the TaylorT1 approximant.

It was introduced at 2PN order in Refs. [28, 29, 23, 30], and at 3PN and 3.5PN

order in Refs. [31, 32, 33]. Alternatively, note that the right hand side of Eq. (2.57)

is a rational function in v. One could first re-expand it in a Taylor series polyno-

mial in v, and then numerically integrate it along with Eq. (2.58). This is known

as the TaylorT4 approximant and was introduced in Ref. [34]. There is another

approximant known as TaylorEt, used in Refs. [35, 36, 37], which is analogous to

the TaylorT1 except that a dimensionless energy ζ = −2E/(Mν) is used as an

expansion parameter rather than v.

One can also work with an integral form of the phasing equations by integrating

Eqs. (2.57), (2.58) by dv. That is,

t(v) = tref +

∫ vref

v

dv
dE/dv

F
(2.59)

Φ(v) = Φref +
1

M

∫ vref

v

dv v3 dE/dv

F
, (2.60)

where vref is an arbitrary reference frequency and tref and Φref are integration con-
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stants. Since the integrands are rational functions of v, they can be performed

analytically. The TaylorT2 approximant builds a waveform from these parametric

expressions for t(v) and Φ(v). One can also explicitly invert t(v) to obtain an an-

alytic expression for v(t) (and Φ(t) = Φ(v(t))), which is known as the TaylorT3

approximant.

There is one last approximant, the TaylorF2, which gives the waveform in the

frequency domain rather than the time domain. This approximant first applies the

stationary-phase approximation (SPA) to the time domain gravitational wave strain

to obtain an ansatz analytic frequency domain waveform

h̃(f) ≡
∫ ∞
−∞

h(t) e2π i f t dt ' A f−7/6 ei(2π f t(v)−Φ(v)−π/4) , (2.61)

where A is a constant. Then, one plugs in the TaylorT2 expressions for t(v) and

Φ(v) to get an explicit analytic frequency domain PN waveform. Because it uses

the stationary-phase approximation, these waveforms are often referred to as “SPA

waveforms”.

2.2.1.4 Limits of the post-Newtonian formalism

It is a common practice to retain only the leading order quadrupole contribu-

tion to the waveform amplitude, but to compute the waveform phase to as high a

PN order as possible. This is the so-called restricted waveform approximation. This

is used because it is crucial to know the waveform phasing to a very high precision,

but it is not crucial to know the amplitude to the same high precision [38]. It is vital
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Figure 2.5: Plot of the effectualness between different PN approximants in initial
LIGO for a (1.42 + 1.38)M� binary (left panel) and a (10.5 + 9.5)M� binary (right
panel). As the total mass is increased, more of the large v portion of the waveform
falls in the LIGO sensitive band, and the differences between the PN approximants
begin to grow.

to accurately model the phasing of the waveform because one searches for binary

inspirals by filtering against a bank of template waveforms. If the template gets

out of phase with the actual signal, they will interfere destructively and this will

degrade the ability to detect the signal. However, if the amplitude is wrong, one

will simply over- or under-estimate the distance to the source, but it will not limit

the ability to detect the signal.

Now, we have derived PN waveforms by assuming v is a small parameter for

sources which are “slow-moving” and “weakly gravitating”, but how slow and weakly

gravitating must the sources be for the approximation to be valid? In addition, we

have seen that there is not a single, unique prediction for the PN phasing, but several

different approximants which differ by truncation errors. These factors may make

one wonder if and when PN waveforms are accurate enough to be reliable detection

templates. This question is addressed in detail in Chapter 3.

In short, we find that PN waveforms make good detection templates for
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ground-based laser interferometers so long as the total mass of the binary is less

than M ∼ 12M�. The reason that PN waveforms become inaccurate for higher

mass signals is that larger values of v appear in the sensitive band as the mass is

increased. Recall that v = (M ωorb/c
3)1/3 = (πM fGW/c

3)1/3. Now, ground-based

laser interfometers like LIGO are most sensitive at frequencies fGW ∼ 150 Hz. For

a binary of total mass 1M�, this is at v = 0.132. For a binary of total mass 10M�,

this is at v = 0.285. For a binary of total mass 100M�, this is at v = 0.615. So, our

assumption that v is small begins to break down, and the PN approximants (based

on Taylor series expansions in v) become less accurate.

If the total mass is much greater than ∼ 12M�, the various PN approximants

start to differ significantly from one another, and also from waveforms calibrated

to numerical relativity (NR) simulations. This can be quantified in terms of either

faithfulness or effectualness. Faithfulness is the overlap between a signal and tem-

plate waveform with the same mass parameters weighted by the noise curve of the

detector normalized to be between 0 and 1. Effectualness is computed the same as

faithfulness, except that the mass parameters of the template waveform are allowed

to vary. Effectualness is the most appropriate measure of the performance of a tem-

plate bank, since a signal would still be considered found if it matches a template

with different parameters. Faithfulness is a more stringent test on the accuracy

of a waveform, and quantifies the level of systematic errors in the parameters of a

detected signal.

In Fig. 2.5, we illustrate the degraded effectualness among the PN approxi-

mants at 3.5PN order in initial LIGO as the total mass of the signal is increased. For
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Figure 2.6: Effectualness and corresponding loss in event rate of PN templates and
an EOB IMR signal for mass ratios 1:1 (top), 4:1 (center) and 10:1.4 (bottom).
Note the green curve is for EOB inspiral-only templates. Beyond a total mass of
∼ 12− 15 M�, PN templates would lose more than 10% of IMR signals.

a (1.42+1.38)M� binary (left panel), all of the PN approximants (except TaylorEt)

have an effectualness > 0.99, while for a (10.5 + 9.5)M� binary (right panel) the

effectualness is typically ∼ 0.90−0.98, and even lower for TaylorT3. This shows that

the differences between the PN approximants grows as the total mass is increased.

In Fig. 2.6, we illustrate that the PN templates become ineffectual at detecting

complete IMR waveforms as the total mass is increased. We plot the effectualness

of the PN approximants and an inspiral-only EOB model at 3.5PN against an EOB

IMR signal which has been calibrated to NR simulations (so it is a good represen-

tation of a true, complete coalescence signal) in initial LIGO as a function of total

mass for three different mass ratios. The dashed horizontal lines correspond to the

effectualness at which 10% of signals are lost. Note that the PN approximants begin
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to lose more than 10% of the signals once the total mass is larger than ∼ 12M�.

Fortunately, waveforms have been developed which improve upon the PN for-

malism. We will focus on the effective one-body formalism, which is described in the

next section. This method employs resummation techniques to improve the PN se-

ries for large v by including the plunge-merger-ringdown signal to provide complete

waveforms. By calibrating to numerical relativity simulations of the late inspiral

and merger, this method can produce highly accurate IMR waveforms.

2.2.2 Effective one-body formalism

EOB dynamics and gravitational waveforms were first proposed and studied

in [39, 40] to accurately describe binary black-hole systems of comparable masses.

This approach was inspired by similar efforts to study two-body problems in quan-

tum electrodynamics when the two charged bodies have comparable mass [41]. The

basic idea is to create a mapping between the actual physical problem of two compact

bodies interacting gravitationally and an effective problem of a single body moving

in a background spacetime. A solution is found for the effective problem, and then

mapped back to a solution of the actual physical problem, thereby resumming and

improving the solution to the physical problem. Unlike the post-Newtonian wave-

forms we have discussed so far, this method does not assume an adiabatic inspiral.

It can, in fact, produce a waveform up to the final plunge when the two bodies

merge, at which point a ringdown waveform can be attached to create a complete

inspiral-merger-ringdown waveform. Through comparison to numerical relativity

42



simulations, the values of certain adjustable parameters in the model describing the

higher order (unknown) PN terms can be calibrated to produce analytic waveforms

which agree with the numerical waveforms to a very high accuracy.

NR simulations are extremely computationally expensive to produce (a high

accuracy simulation with ∼ 30 GW cycles can take O(105–106) CPU-hours depend-

ing on the NR code), and have been produced for a rather small number of discrete

waveform parameter values. Once the EOB waveforms have been calibrated to the

NR simulations, one can interpolate and extrapolate to produce IMR waveforms

for any set of waveform parameters at vastly less computational expense (a few

CPU-seconds). This makes EOB waveforms very valuable for any number of data

analysis tasks. In this thesis, we will use them to test the reliability of PN wave-

forms (Ch. 3), to predict the parameter estimation capabilities of second- and third-

generation ground-based detectors (Ch. 6), and as detection templates (Ch. 5 and

Ch. 7). First, we will briefly review the formalism for producing EOB waveforms.

2.2.2.1 EOB dynamics

For simplicity, we restrict the discussion to the non-spinning case, although

in Sec. 2.2.2.6 we will note some more recent EOB models which include spin ef-

fects. The mapping between the real and effective problems is done within the

Hamilton-Jacobi formalism. One finds a mapping between the energy levels of the

two problems (that is, the two Hamiltonians) such that the total angular momentum

and radial action variables are the same in both problems. If the masses of the two
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compact bodies in the real problem are m1 and m2 (so M = m1 + m2), then the

effective problem will be a single body of mass µ = m1m2/M moving in a back-

ground spacetime. In the absence of radiation reaction, this background spacetime

is a deformation of the usual Schwarzschild spacetime with deformation parame-

ter ν = m1m2/M
2. Without loss of generality, we can assume the body moves in

the equatorial plane, and describe its position with polar coordinates (R, φ). The

Hamiltonian of the effective problem will depend on these coordinates and their

conjugate momenta (PR, Pφ). However, we will find it more convenient to express

things in terms of “reduced” variables, which are made dimensionless by factoring

out the relevant masses and constants. Therefore, we define:

r ≡ R

GMc2
, pr ≡

PR
µ
, pφ ≡

Pφ
GMµc2

, t̂ ≡ t

GMc3
, ω̂ ≡ GMωc3 , (2.62)

In terms of these reduced variables, the metric of the effective spacetime is

ds2 = −A(r) c2 dt2 +
D(r)

A(r)
dr2 + r2

(
dθ2 + sin2 θ dφ2

)
, (2.63)

and the effective Hamiltonian is

Heff ≡ µ Ĥeff = µ

√
A(r)

[
1 +

A(r)

D(r)
p2
r +

p2
φ

r2
+ 2ν (4− 3ν)

p4
r

r2

]
. (2.64)
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The improved real Hamiltonian (and the mapping between real and effective energy

levels) is given by

Hreal ≡ µ Ĥreal = M

√
1 + 2ν

(
Heff − µ

µ

)
. (2.65)

We note that through 2PN order, the test particle can be considered to undergo

geodesic motion within the effective spacetime, as was done in Refs [39, 40]. In this

case the effective Hamiltonian would contain only terms up to quadratic order in the

components of the test particle momentum (i.e. the last term in Eq. (2.64) would

not be present). However, at 3PN order, requiring geodesic motion would give

more constraints than free parameters and the system would be overdetermined.

Therefore, Ref. [42] resolved this problem by adding a non-geodesic term to the

effective Hamiltonian which is quartic in the test particle momentum. There is

some freedom in the combinations of pr and pφ that appear in the quartic term. We

shall only consider the simplest choice, as suggested in Ref. [42], in which we include

only the quartic term proportional to p4
r (the last term in Eq. (2.64)).

The radial potential functions A(r) and D(r) appearing in the effective metric

and Hamiltonian reduce to the Schwarzschild values of 1 − 2/r and 1 respectively

in the limit ν → 0. Their Taylor series in 1/r are given as

A(r) = 1− 2

r
+

2 ν

r3
+

(
94

3
− 41π2

32

)
ν

1

r4
+
a5

r5
, (2.66)

D(r) = 1− 6 ν

r2
+

2 ν (3 ν − 26)

r3
+
d4

r4
. (2.67)
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Both of these functions are currently known to 3PN order. The coefficients a5 and

d4 are 4PN coefficients (because they are O(r−4) beyond the Schwarzschild values)

which are not currently known. However, as we will see, one can calibrate these

coefficients to mimic the behavior of all the unknown higher order PN coefficients

and improve the agreement with NR simulations.

This Hamiltonian describes the conservative portion of the dynamics, so far

we have not included the loss of energy to gravitational waves. Indeed, Hamilton’s

equation for the orbital angular momentum, pφ, would give

dpφ

dt̂
=
∂Ĥreal

∂φ
= 0 , (2.68)

so the orbital angular momentum would be conserved and the binary would not in-

spiral. This equation must be modified to include the φ-component of the (reduced)

radiation reaction force, F̂φ = Fφ/ν. In principle, we should also consider the radial

component of this force, but in Ref. [40], it was argued that for binaries moving

along quasi-circular orbits this component is much smaller and can be neglected.

Using the energy balance equation and the relation ω dL/dt = dE/dt one can relate

the radiation reaction force, F̂φ, to the gravitational wave flux, F , by F̂φ = F/(ν v3).

The EOB waveform is computed by numerically solving Hamilton’s equations
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for our improved real Hamiltonian augmented by our radiation reaction force:

dr

dt̂
=

∂Ĥreal

∂pr
, (2.69)

dφ

dt̂
= ω̂ =

∂Ĥreal

∂pφ
, (2.70)

dpr

dt̂
= −∂Ĥ

real

∂r
, (2.71)

dpφ

dt̂
= F̂φ . (2.72)

Note that these waveforms compute the evolution of both φ and r, and so do not

rely on the adiabatic approximation, i.e. that pr will vary much more slowly than

r ω̂. Using Hamilton’s equations, we can calculate the waveform even when the

adiabatic assumption breaks down, all the way to the final plunge before the two

bodies merge.

2.2.2.2 EOB initial conditions

If we know the dynamical variables at some time, we can numerically integrate

Hamilton’s equations to find the values of the dynamical variables a short time

later, and iterate this process to generate a waveform. However, we need a way to

determine to values of the dynamical variables at the initial time. We can do this

by following Ref. [40] (see also Ref. [43]) and making an adiabatic assumption for

the initial conditions, i.e. that pr is sufficiently small that we can neglect terms ∝ p2
r

and assume that the initial orbital angular momentum is approximately a constant,

p0
ϕ ≡ j. If we start at a sufficiently large radius, this assumption will be valid.
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For convenience, here we will use the variable u = 1/r. Then, under the adiabatic

assumption, our effective Hamiltonian becomes

Ĥeff(u, j) =
√
A(u) (1 + j2 u2) . (2.73)

We can obtain a relation between j and u by solving Eq. (2.71) in the adiabatic

limit,

dpr

dt̂
= 0 = −∂Ĥ

real

∂r
. (2.74)

This will be satisfied when ∂Ĥeff(u, j)/∂u = 0, and therefore

j2(u) = − A′(u)

(u2A(u))′
, (2.75)

where the prime denotes differentiation by u. Now, if we choose some initial radius

r0 (so u0 = 1/r0), then we can find the initial frequency from Eq. (2.70),

ω̂0 =
∂Ĥreal(u, j(u))

∂j

∣∣∣∣∣
u=u0

. (2.76)

Conversely, if one wants to specify an initial frequency, one could invert this equation

to find the initial radius corresponding to that frequency. Lastly, we need to find

p0
r, the initial value for the radial momentum. We can get this from Eq. (2.72) and

the chain rule,

dj

dt̂
=
dj

dr

dr

dt̂
= F̂φ . (2.77)
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This gives us dr/dt in terms of the radiation reaction force and the relation between

j and r. Noting that dj/dr = −u2 dj/du and using Eq. (2.69), we get

dr

dt̂
=

F̂φ
−u2 dj/du

=
∂Ĥreal

∂pr
. (2.78)

Note that the right hand side has a term linear in pr, and a term cubic in pr. One

can neglect the p3
r term, and get an explicit formula for p0

r as a function of u0, A(u0)

and D(u0). Alternatively, one could keep the p3
r and numerically solve for the value

p0
r which satisfies Eq. (2.78).

2.2.2.3 Modeling the ringdown waveform

We have seen how the EOB formalism can be used to generate waveforms

through the inspiral and plunge of the two compact bodies. We would now like to

complete the waveform by including the ringdown of the merged black hole. When

the two bodies merge, they will create a deformed Kerr black hole. This black

hole will radiate away its deformations in a superposition of damped sinusoids [44,

45, 46]. A framework has been developed in Refs. [40, 47, 48, 49] to describe the

gravitational waves emitted by a ringing Kerr black hole, in which each harmonic

mode is described as a superposition of quasinormal modes (QNMs), including a

fundamental (n = 0) and an infinite number of overtones (n > 1),

hRD
`m (t) =

∞∑
n=0

A`mn e
−i σ`mn t . (2.79)
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Here, A`mn is an unknown complex amplitude (or real amplitude and phase constant)

and σ`mn = ω`mn− i/τ`mn is a complex frequency containing the real frequency and

decay time of the QNM. Ref. [50] provides fits to the σ`mn as functions of the mass

and spin of the Kerr black hole.

We need to stitch the ringdown together with the inspiral-plunge to create a

single IMR waveform. This can be done following the procedure of Refs. [48, 49],

which is written quite concisely in Eqs. (42)-(44) of Ref. [49]. First, we will calculate

the value of the inspiral waveform (i.e. harmonic mode) and its first two time

derivatives hinsp
`m (tmatch) , ḣinsp

`m (tmatch) , ḧinsp
`m (tmatch) at some matching point tmatch.

Then, we will approximate the ringdown waveform by including the fundamental

QNM and its first two overtones,

hRD
`m (t) '

2∑
n=0

A`mn e
−i σ`mn (t−tmatch) , (2.80)

where the σ`mn are given in Ref. [50]. Finally, we fix the A`mn by imposing that the

inspiral and ringdown waveforms and their first two time derivatives agree at tmatch.

which is equivalent to solving the linear system


1 1 1

−i σ`m0 −i σ`m1 −i σ`m2

−σ2
`m0 −σ2

`m1 −σ2
`m2




A`m0

A`m1

A`m2

 =


h`m(tmatch)

ḣ`m(tmatch)

ḧ`m(tmatch)

 . (2.81)

The last thing we need is a way to determine where this tmatch should occur.

This is provided by Refs. [40, 51, 52]. They found that a test particle falling ra-
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dially into a black hole will begin to excite the QNMs of the black hole once it

crosses r = 3GM/c2, the light ring (innermost unstable circular photon orbit) of a

Schwarzschild black hole. This suggests that one should attach the ringdown at or

near the time when the radial separation crosses the EOB light ring.

2.2.2.4 Advantages of the EOB formalism

Now that we have outlined the procedure for constructing EOB waveforms, we

pause to reflect on some of the advantages of this method. We have noted that the

EOB formalism does not assume an adiabatic inspiral, but rather uses a Hamiltonian

to simultaneously solve for the orbital and radial motion of the binary. One could

attempt to construct a non-adiabatic PN waveform model, for example by using a

PN Taylor-expanded Hamiltonian. However, this will give a result which is quite

different from the numerical simulations. For example, the 3PN Hamiltonian does

not exhibit an innermost stable circular orbit (ISCO) (see e.g., [53]), and so the

binary would never undergo a “plunge” of rapid radial motion, but would instead

follow quasicircular orbits all the way down to the merger, quite unlike the numerical

simulations. This suggests that the Taylor-expanded Hamiltonian is inadequate, and

was a primary motivation for trying to improve the Hamiltonian by mapping onto

an effective problem.

Furthermore, because the final state of coalescence is a single black hole, the

effective problem of a test body orbiting a perturbed black hole spacetime is well-

suited to describing the late portion of the coalescence signal. For example, the
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ISCO and light ring of the perturbed spacetime arise quite naturally in the EOB

formalism, and are important landmarks. The ISCO marks the onset of the plunge,

while the light ring marks the beginning of excitation of ringdown QNMs. The

locations of these two important landmarks are determined by the radial potential

function, A(r). This is very helpful in calibrating the EOB model to NR simulations,

as one can adjust this radial potential with a single free parameter (the unknown

4PN coefficient a5) to get the appropriate onset of plunge and ringdown. Compare

this to the Taylor-expanded two-body Hamiltonian, where there would be many

possible 4PN coefficients (corresponding to different combinations of powers of r

and/or components of the momentum) and the notion of a light ring is not well-

defined for a two-body spacetime.

2.2.2.5 Calibration to numerical relativity simulations

We now briefly summarize a series of improvements to the EOB model, leading

up to the model of Ref. [54]. This model was compared to numerical simulations

produced in 2006 by the NASA-Goddard NR group, and was found to faithfully

represent those NR waveforms. That is, for the same mass parameters, its overlap

with the NR waveforms was & 0.965 and phase differences were typically . 8% of

a GW cycle. This model was implemented into the LSC Algorithm Library (LAL)

by the author of this thesis with the help of Yi Pan and B.S. Sathyaprakash, and

is the EOB model used throughout this thesis. For convenience, we also provide all

of the equations needed to generate this waveform model. Note that this model is
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not a final destination, but rather a milestone along a journey. There is currently

a great deal of effort to further improve the EOB model by comparing to longer,

more accurate simulations, using newer resummation techniques, and including spin

effects. We will briefly highlight some of these efforts in Sec. 2.2.2.6.

The first EOB model was introduced in Refs. [39, 40], and used a 2PN order

EOB Hamiltonian with Taylor-expanded radial potential functions A(r) and D(r).

It also incorporated radiation reaction force through a flux function, introduced

in [55], which has a complex pole factored out and a Padé resummation is applied

to the remainder. A ringdown waveform was attached analogously to the procedure

described in Sec. 2.2.2.3, except that only the (2, 2, 0) mode was included. A 3PN

Hamiltonian was derived in Ref. [56]. Ref. [57] introduced the idea of further im-

proving the model by applying Padé resummations to the radial potential functions

A(r) and D(r). Padé resummation means that if one has a Taylor series for some

function, this series is re-expressed as a rational function with coefficients fixed by

requiring that the Taylor series of the rational function is equal to the original Tay-

lor series [58]. Therefore, the Taylor and Padé expressions will be equivalent to the

order of the Taylor series, but will differ in higher order truncation terms. The Padé

resummation also provides greater freedom in the functional form of the expressions,

potentially allowing for a closer approximation to the true value.

In Ref. [48], the authors compared analytic waveform models to the NR sim-

ulation of Pretorius. They found that an EOB model with a 3PN Hamiltonian

with Padé-resummed radial potential functions and a 3.5PN order GW flux, Padé-

resummed as in Ref. [55], gave the best agreement with the NR waveform. Ref. [48]
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also proposed attaching ringdown waveforms with the dominant QNM and the first

two overtones (rather than just the dominant QNM). While the first NR simula-

tion by Pretorius had significant numerical error, the authors suggested that the

agreement between EOB and numerical waveforms was quite promising, and that

once more accurate NR simulations were available, it should be possible to further

improve the EOB waveforms to create highly accurate analytic IMR waveforms.

In Ref. [54], EOB waveforms were compared to newly available simulations by the

NASA-Goddard NR group. The EOB waveforms used here were the same as in

Ref. [48], except that the pseudo-4PN coefficient a5 appearing in Eq. (2.66) was

introduced to the radial potential A(r) [43]. The label “pseudo” is used because the

true value is not known. However, the authors introduced it to mimic the true 4PN

order term (and all higher PN order terms) and searched over all possible values

to find the value which gave the best agreement with the NR waveforms. In this

way, the EOB model was calibrated to the NR simulations. One could add similar

pseudo-4PN coefficients to D(r) and F and search over their values, but a single

coefficient added to A(r) was found to be sufficient.

We now summarize all of the equations needed to generate the EOB waveform
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model of Ref. [54]. First of all, the Padé-resummed radial potential functions are

Num [A(r)] = r3 (32− 24ν − 4a4 − a5) + r4 (a4 − 16 + 8ν) , (2.82)

Den [A(r)] = −a4
4 − 8a5 − 8a4ν + 2a5ν − 16ν2 + r (−8a4 − 4a5 − 2a4ν − 16ν2)

+ r2 (−4a4 − 2a5 − 16ν) + r3 (−2a4 − a5 − 8ν) + r4 (−16 + a4 + 8ν) ,

D(r) =
r4

r4 + 6 ν r2 + (26− 3ν) 2 ν r + 36ν2
(2.83)

where “Num” and “Den” refer to numerator and denominator, respectively and

a4 = (91/3− 41 π2/32) ν is the coefficient multiplying r−4 in Eq. (2.66). Note that

in Eq. (2.83) we have corrected a typo in Ref. [54], namely that the last term should

be 36 ν2 rather than 36 ν. For the Padé-resummed A(r), choosing a5 = 60 ν was

found to give the best agreement with the NR simulations to which this model was

compared.

The radiation reaction force is of the form proposed in Ref. [55], where the

Taylor-expanded PN GW flux (used here at 3.5PN order) has a real pole factored

out and the remainder is Padé-resummed. The radiation reaction force is given as

F̂φ(v) = −32

5
ν v7 f(v, ν)

1− v/vpole

, (2.84)

where the Padé-resummed portion f(v, ν) (given in continued fraction form) can be

read from Eqs. (50)-(54) of Ref. [59] and the complex pole is that proposed by [55],

vpole =
1√
3

√
1 + 1

3
ν

1− 35
36
ν
. (2.85)
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With these choices of A(r), D(r) (inserted into the effective Hamiltonian of

Eq. (2.64)) and F̂φ, the inspiral waveform is generated by numerically solving Hamil-

ton’s equations, Eqs. (2.69)-(2.72). Initial conditions for the dynamical variables can

be derived in the adiabatic limit, as in Ref. [40]. Here we express A and D as func-

tions of u = 1/r, and a prime denotes differentiation by u. For an initial choice of

r0 = 1/u0, one finds

ω̂0 = u3/2

√√√√√ −A′/2

1 + 2 ν

(
A√

A+uA′/2
− 1

)
∣∣∣∣∣∣∣∣∣
u=u0

, (2.86)

p0
φ =

√
− A′

u (2A+ uA′)

∣∣∣∣∣
u=u0

, (2.87)

p0
r =

u
(
2A+ uA

′)
A
′
D

A (2u (A′)2 + AA′ − uAA′′)

∣∣∣∣∣
u=u0

F̂φ(v = ω̂
1/3
0 ) . (2.88)

Note that the initial value of φ can be chosen arbitrarily. One can also specify an

initial frequency, rather than an initial radius. In this case, one inverts Eq. (2.86)

to find the corresponding initial radius and plugs it into Eqs. (2.87) and (2.88).

The matching point is chosen as the time at which the reduced orbital fre-

quency reaches the value

ω̂match = 0.133 + 0.183 ν + 0.161 ν2 . (2.89)

The ringdown waveform is attached according to Eq. (2.81), with the σ`mn given by

Eqs. (E1)-(E2) and Table VIII of Ref. [50]. Note that these depend on the mass
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and dimensionless spin of the final black hole (j = afinal/Mfinal). By fitting to the

NR simulations, these values were chosen to be

Mfinal = M
(

1 + (
√

8/9− 1) ν − 0.498 ν2
)
, (2.90)

afinal/Mfinal =
√

12 ν − 2.900 ν2 . (2.91)

This procedure allows one to compute the harmonic modes of the EOB wave-

form of Ref. [54] through inspiral, merger and ringdown. One can obtain the polar-

izations, and thus the strain measured by a detector, by using Eq. (2.53). Note that

Ref. [54] included the modes (2, 2), (3, 3) and (4, 4), while in Ch. 5 and Ch. 7 we

include only the (2, 2) mode and in Ch. 6 we include the (2, 2), (2, 1), (3, 3) and (3, 1)

modes (plus the m→ −m modes in all cases). Each harmonic mode is constructed

in the same way, so it is straightforward to include as many modes as desired.

2.2.2.6 More recent and future EOB improvements

The EOB model of Ref. [54] described in the previous section was the first

attempt to faithfully match NR simulations with a complete merger and ringdown,

for mass ratios 1 : 1 to 1 : 4. A few months after Ref. [54] appeared, other variations

of the EOB model calibrated to NR simulations of the Jena and AEI groups were

proposed and investigated [60, 61]. Since then, more NR simulations have been done

which are longer, more accurate, and span a larger parameter space, in particular

the ones from the Caltech/Cornell/CITA collaboration using a pseudo spectral code.

By comparing with these NR simulations, the EOB waveforms have been improved
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in a number of ways [62, 63, 64, 65], and will no doubt continue to improve as they

are calibrated against more and better NR simulations.

So far, the most important improvement has been the multiplicative decom-

position of the harmonic modes h`m and the GW flux F [66, 64, 67, 68] which has

produced waveforms which agree in amplitude and phase to within the numerical

error of the most accurate NR simulations. More recently, some of the adjustable

parameters in the EOB model have been constrained [69, 70, 71, 72] using self-force

calculation predictions, in particular the ISCO shift due to finite-size effect [73].

Finally, the EOB model has been also successful in modeling small-mass ratio merg-

ers [74, 75] and extreme-mass ratio inspirals [76].

The EOB model we have described was constructed to describe non-spinning

compact binaries. It is also possible to construct EOB models for spinning compact

binaries. In this case, the effective problem is that of a single spinning body moving

in a deformed Kerr background spacetime. The foundations of this formalism were

developed in Refs. [77, 78, 79, 80, 81, 67]. Spinning EOB models have been de-

veloped and are currently being calibrated against NR simulations of binaries with

spins aligned and anti-aligned with the orbital angular momentum [65]. Efforts

are underway to develop EOB waveforms for generic, precessing spin configurations.

One of these efforts is the numerical-relativity–analytical-relativity (NR-AR) collab-

oration [82], which brings together a number of NR groups as well as many waveform

model builders (not only EOB, but also PN and phenomenological waveforms). The

goal is to increase the interaction between these two fields, and to strategically plan

which simulations are carried out, so that they will produce the simulations which
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are most valuable to model builders, cover as much of the parameter space as pos-

sible, and to cross-check one another. The analytic model builders will be able

to directly compare their various techniques, which will be calibrated against the

same set of simulations, and share their methods and results with the collaboration.

The author is working within this collaboration, and it should produce exciting new

results in the near future.

2.2.3 Spin effects and precession

We began our discussion of building analytic templates for compact binary

coalescences by assuming that the compact bodies were non-spinning. However, real

astrophysical black holes will likely be spinning about some axis, and so we want

to consider the case where one or both of the compact bodies can have a rotational

angular momentum Si (where i = 1, 2 labels either of the compact bodies). As we

will see, spin effects can have a dramatic effect on the behavior of the binary and

the emitted waveform, both in the amplitude and phase. We can divide spin effects

into two basic categories: spin-orbit (SO) corrections, which come from interactions

between the spins and the orbital angular momentum of the binary ∝ S · L, and

spin-spin (SS) corrections which arise from interactions between the spins ∝ S1 ·S2

or ∝ S2
i .
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2.2.3.1 Spin corrections to the waveform

Just as in the non-spinning case, one matches two sets of mass-energy multi-

poles to derive the gravitational wave strain, which will again be expressible in the

form of Eq. (2.45). However, there is energy associated with the spinning of the

compact bodies, and so there are spin contributions to the multipoles, which lead

to spin corrections to the strain, Eq. (2.45). The first such correction is a 1PN SO

term,

P 1QSO
ij =

2

M2
n(i (∆× N̂) j) , (2.92)

where

∆ = M

(
S2

m2

− S1

m1

)
. (2.93)

1.5PN SO and 2PN SS corrections to the strain tensor have also been computed in

Refs. [23, 83]. Using Eq. (2.92), an explicit form for the 1PN SO correction to the

polarizations is derived in Ref. [83]. In Ch. 4, we extend this result by providing

explicitly the polarizations with SO corrections through 1.5PN order. In Ch. 4, we

also provide expressions for the −2 spin-weighted spherical harmonics modes with

SO corrections through 1.5PN order.

Note that both [83] and this work construct the polarizations in a different

source frame than what is typically used for non-spinning binaries. This source

frame, and all the angles appearing in the polarizations and modes, are depicted in

Fig. 2.7. This frame is more appropriate for describing a generic spinning binary,

whose orbital plane can undergo precessional motion as described in Sec. 2.2.3.2.
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Figure 2.7: We show (i) our source frame defined by the orthonormal basis (x̂, ŷ, ẑ),
(ii) the instantaneous orbital plane which is described by the orthonormal basis
(x̂L, ŷL, L̂N), (iii) the polarization triad (N̂, P̂, Q̂), and (iv) the direction of the total
angular momentum at initial time J0. Dashed lines show projections into the x–y
plane.

Just as in the non-spinning case, we can obtain phasing equations for the wave-

form valid during the adiabatic inspiral from the energy balance equation, Eq. (2.56),

but we must take into account spin corrections to the binary energy E [83, 84, 85],

and the gravitational wave flux, F [86, 85, 87, 88]. In Eq. (8.3) of [86], the authors

give an expression for ω̇orb/ω
2
orb including SO effects through 2.5PN order.

This equation can be integrated twice in time to obtain the orbital frequency

ωorb and phase Φ. If the spins are aligned or anti-aligned with the orbital angular

momentum, then these integrals can be performed analytically to obtain an analytic

expression for Φ(v) (or, in the notation of [86], Φ(x) where x = v2). However, for any

other generic spin configuration, the integrals must be done numerically to correctly

include the effect of precessional motion. In Ch. 4, Eqs. (4.81)-(4.84), we explicitly
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provide the SO phase corrections through 2.5PN and the 2PN SS phase correction

to the TaylorF2 (SPA) approximant valid for spins aligned or anti-aligned with the

orbital angular momentum. The 1.5PN SO and spin(1)-spin(2) SS corrections were

previously known [89, 90], while we added the 2.5PN SO term and the spin(1)-

spin(1) and spin(2)-spin(2) SS terms.

2.2.3.2 Precession

We have seen that when one or both of the objects in a compact binary is

spinning, this affects the amplitude and phase of the emitted gravitational waves.

In fact, the spin can have a significant impact on the motion of the binary itself. In

particular, the spins will create a torque on the orbital angular momentum, causing it

(and thus the orbital plane) to precess on a cone about the total angular momentum,

J = L+S1 +S2. We now briefly introduce the main features of precessional motion,

and refer the reader to [91] for an in-depth analysis of the subject. The precessional

motion is governed by the precession equations:

dS1

dt
= Ω1 × S1 , (2.94)

dS2

dt
= Ω2 × S2 , (2.95)

˙̂
LN = −v

ν
(Ṡ1 + Ṡ2) , (2.96)
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Figure 2.8: Precessional motion of L and S about J labeled early (1) and late (2)
in the evolution. Precession causes L and S to rotate on cones about J. Radiation
reaction will cause L to move away from J and S to move towards J as the binary
evolves.

where the last equation can be obtained averaging over an orbital period (see

Sec. IVB in [92]) and at 1.5PN order

Ω1,2 = ω
5/3
orb

(
3

4
+
ν

2
∓ 3

4
δ

)
L̂N , (2.97)

and LN ≡ µ r×v is the Newtonian orbital angular momentum, which is perpendic-

ular to the instantaneous orbital plane. From these equations, we can deduce that

each of L̂N, S1 and S2 will rotate about a fixed direction, sweeping out a cone. Since

at any instant, the change in L is exactly opposite to the change in the total spin

S = S1 + S2, the direction of J will remain fixed. So, Ĵ is in fact the fixed direction

about which the other vectors rotate.

We have not yet considered radiation reaction (which enters at 2.5PN order)

in our discussion of the precession equations (which we have given at 1.5PN order).
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If we include radiation reaction, the vectors L̂N, S1 and S2 will still move according

to the precession equations. However, it will cause the magnitude of LN to slowly

shrink. Meanwhile, at lowest order the magnitude of the spin vectors S1 and S2 will

remain constant, as will their angle relative to L̂N. Thus, the only change in the

magnitude of J will come from the shrinking of LN. This means that as the system

evolves, LN will contribute a smaller fraction of J and the spins will contribute a

greater fraction of J. Therefore, at early times, the vectors J and LN will be close

to one another, but as the system evolves, J will become closer to S. Said another

way, the cone on which LN precesses about J will continually grow wider and the

cone on which S precesses about J will continually grow tighter because of radiation

reaction. This precessional motion is depicted in Fig. 2.8.

2.2.3.3 Consequences of precession

The precessional motion of the orbital plane can have a significant effect on

the gravitational waveform emitted by the binary. Non-spinning corrections to the

strain and phase of a gravitational waveform are constant in time, apart from the

time-dependence through v. However, spin corrections such as Eq. (2.92), the lead-

ing SO correction to the strain, depend on the orientation of the spins relative to N̂

(or other vectors such as L̂N) and this orientation varies in time. So, in addition to

solving the phasing equations, Eqs. (2.57)–(2.58) or (2.59)–(2.60), one must simulta-

neously solve the precession equations, Eq. (2.94)-(2.96), to generate the waveform.

Waveforms from precessing binaries can therefore be much more feature-rich than
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Figure 2.9: h+ polarization for a 4:1 mass ratio binary with maximal spins perpen-
dicular to L̂N and each other viewed from four different angles θ measured from
the center of the precessional cone. The blue curve is h+, the red curve is cos 2Φ,
the green curve is cosα and the black curve is ι (the latter three scaled to fit the
plot). The modulation pattern changes with the viewing angle, and becomes more
dramatic as the line of sight moves away from the center of the precessional cone.

waveforms from non-spinning or even spin-aligned (with the orbital angular momen-

tum) binaries. The effects of precession on inspiral waveforms are studied in Ch. 4.

We now briefly highlight some of their effects on both the waveform polarizations

and harmonic modes.

The gravitational wave polarizations will be modulated in phase by 1.5PN

SO, 2PN SS, and 2.5PN SO corrections (plus higher order corrections not currently

known) and in amplitude by spin corrections starting at 0.5PN order for the con-

tributions from the subdominant modes, and at 1PN for the dominant (2, 2) mode.

However, the most striking effect of precession occurs in the leading order (non-
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Figure 2.10: Re(h22) mode for a 4:1 mass ratio binary with maximal spins perpen-
dicular to LN and each other. The blue curve is h+, the red curve is cos 2Φ, the
green curve is cosα and the black curve is ι (the latter three scaled to fit the plot).
Unlike the polarizations, precessional motion modulates the modes on the orbital
time scale because of interference between different harmonics of the orbital phase.

spinning) amplitude term of the polarizations. Note that the angle θ appearing in

Eqs. (2.28) and (2.29) is defined by cos θ ≡ L̂N · N̂. Precesssion will cause L̂N to

move relative to N̂ and thus modulate the amplitude of the waveform. Because this

is a modulation of the leading order amplitude, and not some higher order correc-

tion, the change in amplitude can be quite significant. This modulation occurs on

the precessional time scale, and so provides an “envelope function” within which

the polarizations oscillate on the more rapid orbital time scale. Note that these

modulations will be significantly different depending on the direction at which the

binary is observed relative to the precessional cone of the binary. This is illustrated

in Fig. 2.9.

We see that precession can significantly modulate the amplitude of the polar-
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izations, and that the modulation pattern depends on the observation angle. This

would suggest that the harmonic modes would be especially useful for describing

waveforms emitted by precessing binaries, since the modes do not depend on the

observation angle. However, precession also has a dramatic effect on the harmonic

modes. As we noted in Eq. (2.55), if the mode decomposition is performed in a

frame in which ẑ ‖ LN, then every h`m is proportional to the mth harmonic of the

orbital phase. For a precessing binary, there is no inertial frame where this relation

holds at all times. As a result, the simple form of the harmonic modes is not pre-

served, and they will have terms which depend on different harmonics of the orbital

phase. These different terms interfere with one another and produce complicated

modulation patterns on the orbital time scale, rather than the slower precessional

time scale.

2.3 Applications of analytic waveforms

2.3.1 Matched filter templates

The primary application of the waveforms we have developed so far is to use

them as matched filtering templates. This will allow us to use our knowledge of the

waveform to extract weak signals from a noisy data stream. That is, we have a data

stream from our detector

s(t) =


n(t) no signal present

n(t) + h(t) signal present

(2.98)
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which consists of instrumental noise n(t), and possibly a weak gravitational wave-

form h(t) which we hope is closely matched by one or more of our analytic waveform

models for some values of the mass and other parameters. The theory of matched

filtering is given a rigorous presentation in a general context in Ref. [93] . Ref. [94]

presents the subject in the context of gravitational wave detectors. We will now

briefly summarize some of the main points.

In Sec. 2.1.5, we identified some of the principal sources of noise in a laser

interferometer and noted that the level of noise varies with frequency. This can be

quantified by a (one-sided) power spectral density (PSD or “noise curve”) Sn(f)

defined for positive f ,

〈ñ(f) ñ∗(f ′)〉 =
1

2
Sn(f) δ(f − f ′) , (2.99)

where ˜ denotes a Fourier transform, ∗ denotes a complex conjugate, and 〈 〉 is an

ensemble average. The ensemble average can be computed by taking the Fourier

transform of a long stretch of data. Formally, if we take noisy data for a duration

of time T , then

〈ñ(f) ñ∗(f ′)〉 = lim
T→∞

1

T
ñ(f) ñ∗(f) . (2.100)

In practice, the PSD is computed over a stretch T = 2048s. This is long enough to

average out the effect of short, transient disturbances (“glitches”), but short enough

not to wash out natural variations in the sensitivity over longer time scales (such

as from weather or increased/decreased seismic noise from human activities during
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the day/night) [94].

Now, given our (real-valued) time series s(t), we want to pass this data through

a (real-valued) filter K(t) such that the output of the filter,

z =

∫ ∞
−∞

K(t) s(t) dt =

∫ ∞
−∞

K̃(f) s̃∗(f) df (2.101)

will be large when a signal is present and small when there is no signal. Note that

the second equality comes from Parseval’s Theorem [95], and means that we can

perform the filtering in the frequency domain. It is a well-known result, originally

shown by Norbert Wiener, that the optimal2 (Wiener) filter for detecting a signal

h(t) with Fourier transform h̃(f) in stationary, Gaussian noise is given by

K̃(f) =
h̃(f)

Sn(f)
(2.102)

(modulo a multiplicative constant) [93]. That is, we simply filter with the signal we

are looking for, weighted by the PSD of the instrument. It is convenient to define

an inner product to describe the matched filtering, and any other integral weighted

by the PSD of a detector. Given two real-valued functions a(t) and b(t), their inner

product is defined as

(a|b) ≡
∫ ∞
−∞

ã(f) b̃∗(f) + ã∗(f) b̃(f)

Sn(|f |)
df = 2

∫ ∞
0

ã(f) b̃∗(f) + ã∗(f) b̃(f)

Sn(f)
df

= 4 Re

[∫ ∞
0

ã(f) b̃∗(f)

Sn(f)
df

]
= 4 Re

[∫ ∞
0

ã∗(f) b̃(f)

Sn(f)
df

]
. (2.103)

2The filter is optimal in the sense that it maximizes the ratio of the filter output when a signal
is present to the filter output when there is no signal.
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Note that in the first line we have used the fact that for a real-valued function

ã(−f) = ã∗(f) and in the second line we have used that
(
ã(f) b̃∗(f)

)∗
= ã∗(f) b̃(f).

It is straightforward to show that in the absence of a signal, the output of the filter

will have mean zero and variance σ2 = (h|h) [93, 94]. It is useful to divide the

output of our filter by the variance to get a measure of how much stronger a signal

is than what we expect to get from random background noise. Therefore, we define

the signal-to-noise ratio (SNR)

ρ =
|z|
σ

=
(s|h)√
(h|h)

. (2.104)

The SNR is the basic statistic used to rank events. If the SNR crosses a predeter-

mined threshold, then it is considered a trigger. Once a list of such triggers from

each interferometer is generated, techniques such as signal-based vetoes and coinci-

dence tests among interferometers are used to determine if the trigger is likely to be

a true signal, or caused by noise fluctuations.

2.3.2 A complete search pipeline

In a realistic search pipeline, there are many more steps besides simply com-

puting the SNR of the data relative to a single template. In Ch. 7, we will describe

such a search pipeline in more detail. Here we give a broad outline of the steps in-

volved in the pipeline used by the compact binary coalescence (CBC) working group

of the LSC for both the “low mass” (M = (2−35)M�) S5 search efforts [96, 97, 98]

and the “high mass” (M = (25− 100)M�) S5 search described in Ch. 7:
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• Data selection: One must identify the times when the instruments are op-

erating properly and taking good data. Data quality flags are typically used

to identify times when there might be excessive noise or problems with the

instrument and data should not be analyzed. For information about LIGO

methods of data quality control, see Ref. [99].

• Template bank generation: It would be impossible to filter with a template

for each point in the continuum of parameter space, so one must choose a finite

number of templates which adequately cover the parameter space. Templates

are placed so that a signal with parameter values falling between templates will

only lose an acceptable fraction of its SNR. We refer the reader to Ref. [100]

for information about the placement of templates within the parameter space.

• Matched filtering: We filter the data against each template in our bank

and produce a list of triggers for which the SNR exceeds the threshold. If

a certain template crosses the SNR threshold at a certain time, many other

nearby times and nearby parameter values will also produce a trigger above

threshold. Therefore, clustering over time and parameters is done to find local

maxima in the set of triggers, and reduce them to a manageable number.

Details of the implementation of the matched filtering in the LAL code can

be found in Ref. [101].

• Signal-based vetoes: Once we have our clustered list of triggers, signal-

based vetoes are used to eliminate or decrease the ranking of triggers which

are likely to be caused by background noise. The most important is the χ2
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veto, which determines the goodness-of-fit between signal and template by par-

titioning the template into several frequency bands which contribute equally

to the total SNR. If the power of the signal in each frequency band is close to

that of the template, the signal is consistent with the template and χ2 will be

small. If χ2 is large, it means the power of the signal is distributed differently

in frequency from the template and the trigger is likely to be noise. The χ2

value is used to re-weight the SNR of an event to create an improved detection

statistic known as effective SNR, denoted ρeff . See Ref. [102] for details about

the χ2 veto.

• Coincidence: After signal-based vetoes have been applied, the lists of trig-

gers from each instrument are compared. If two or more instruments have

triggers that are within the light travel time between sites and have the same

mass parameter values (both within some tolerance), this is counted as a coin-

cidence. We then add in quadrature the effective SNR of the coincident events

in each instrument to obtain a combined effective SNR, ρeff,c =
√∑

i ρ
2
eff,i,

which is used to rank coincident events.

• Followup: Once we have the list of coincidence events, the most significant

events are examined more carefully. This includes further comparisons on the

consistency of the raw signals and template waveforms from each interferome-

ter and a detailed look at the state of each interferometer and its environment

during the event to see if transient noise glitches were likely to occur. Then, a

decision is made as to whether or not there is enough evidence to confidently
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claim the event is a true detection.

• Event rate upper limits: If a successful detection is not made, then an

upper limit is set on the event rate of compact binary coalescences using

the approach of Ref. [103]. To do this, one defines a “loudness” statistic

which quantifies how likely an event is to be a true signal rather than noise

(a higher value meaning it is more likely to be a signal). The trigger with the

greatest value of the loudness statistic is called the “loudest event”. If one

can estimate the efficiency of detecting signals louder than this loudest event

and also the background distribution of noise triggers, one can compute a

Bayesian posterior probability distribution p(R|ε,Λ) for the event rate R given

our detection efficiency above the loudest event, ε, and the relative likelihood

the loudest event was caused by noise versus a true signal, Λ. Then, one can

integrate this posterior distribution to a certain confidence level, say 90%, to

obtain an upper limit. Therefore, we find the R that satisfies

0.9 =

∫ R

0

p(R′|ε(ρ∗eff,c),Λ(ρ∗eff,c)) dR
′ = 1−

[
1 +

R ε(ρ∗eff,c) Λ(ρ∗eff,c)

1 + Λ(ρ∗eff,c)

]
e−Rε(ρ

∗
eff,c) .

(2.105)

This amounts to a statement that “if the event rate were greater than R, there

is a 90% chance it would produce a trigger louder than ρ∗eff,c. Since we did not

observe such a trigger, we bound the event rate with 90% confidence.” For

more information about setting upper limits based on the loudest event, see

Ref. [103].
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In this thesis, we will present two projects which use the EOB waveforms

discussed in Sec. 2.2.2 as matched filter templates in such a detection pipeline. In

Ch. 5, we present the results of using EOB templates to search for NR waveforms

injected into simulated data as part of the Numerical INJection Analysis (NINJA)

project [104]. This study used the full pipeline outlined above, except that no

upper limit was set, as we did not search real data. It served as a first test of

whether the existing matched-filter templates and other search techniques would be

able to detect the waveforms predicted by numerical relativity. The author used

EOB waveforms for this purpose, while other collaborators used PN waveforms, the

so-called phenomenological IMR waveforms of Ref. [105], and unmodelled search

techniques, such as those of Refs [106, 107, 108]. As summarized in Table 2.1,

the EOB waveforms (denoted “EOBNR” in the table) did quite well, finding the

majority of injected signals and finding a few more than similar search pipelines.

This NINJA project was somewhat limited in that it used simulated noise rather

than real data, the NR waveforms were quite short, and so most could only be

injected at very high mass, and no attempt was made to compare the various search

pipelines at fixed false alarm rate. However, a second NINJA project has recently

begun which aims to improve upon the first NINJA effort by addressing all of these

issues as well as including spinning (but non-precessing) NR waveforms. The author

of this thesis is involved in this effort, and will once again use an EOB matched filter

pipeline to search for the injected waveforms.

The LSC and Virgo collaborations are currently performing a search for binary

black hole coalescences with total mass (25− 100)M� in the data from LIGO’s S5
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Template EOB EOBNR Phenom

Freq. Cutoff Light ring Full waveform Full waveform

Filter Start Freq. 40 Hz 30 Hz 30 Hz

Component Mass M� 10-60 15-160 20-80

Total Mass M� 20-90 30-200 40-160

Minimal Match 0.97 0.99 0.99

Found Single (H1, H2, L1, V1) 91, 64, 82, - 97, 68, 92, 102 92, 61, 87, -

Found Coincidence (LIGO, LV) 83, - 88, 106 81, -

Found Second Coincidence (LIGO, LV) 80, - 85, 102 80, -

Table 2.1: Main results of the NINJA project. There were 126 injections performed
into the analysed data. Details and the number of found injections are given for
three different search pipelines. “EOB” is a 3PN EOB model which does not have
a ringdown attached. “EOBNR” is the EOB IMR model described in Sec. 2.2.2
(EOBNR is the name given to its implementation in LAL), and “Phenom” is a
phenomenological frequency domain IMR waveform family. H1 and H2 are the 4 km
and 2 km LIGO interferometer in Hanford, WA, L1 is the 4 km LIGO interferometer
in Livingston, LA and V1 is the Virgo interferometer in Cascina, Italy. On the last
two lines, “LIGO” means a coincidence among the LIGO interferometers and “LV”
means a coincidence within the full LIGO-Virgo network.

Table 2.2: The 90% confidence upper limit on the merger rate as a function of
mass in units of M�. The upper limit is reported in two ways. The third column
represents the rate in units of mergers Mpc−3 yr−1. The fourth column converts this
to units of mergers L−1

10 yr−1 by noting that there are 0.0198 L10 / Mpc3 [109].

m1 m2 R90% (Mpc−3 yr−1) R90% (L10 yr−1)

5 23 3.2e-06 1.6e-04
5 50 5.1e-06 2.6e-04
14 14 1.6e-06 8.0e-05
14 76 1.0e-06 5.3e-05
23 23 1.3e-06 6.7e-05
23 50 4.8e-07 2.4e-05
32 32 4.8e-07 2.4e-05
32 68 2.0e-07 1.0e-05
41 41 2.1e-07 1.1e-05
41 59 1.6e-07 8.0e-06
50 50 1.1e-07 5.5e-06
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science run, known as the S5 highmass search. This search is the first attempt to use

EOB IMR matched filter templates to search real gravitational wave detector data

for gravitational waves from compact binary coalescences. This search is currently

undergoing an internal review process to check the methods and computer code used

in the search. The final results should be published in the near future. The author of

this thesis is one of the corresponding authors of the high-mass S5 paper for the LSC

and Virgo collaborations, along with Chad Hanna (Caltech) and Craig Robinson

(Cardiff University). The author of this thesis has been involved in implementing

the EOB waveforms into the LAL code, running the search on a portion of the data

(two months), tuning the χ2 veto, sanity checking parts of the code, and helping with

the review process. While the final results are not yet available, in Ch. 7, we will

see some preliminary results from this search. Since these preliminary results have

not undergone a full review process, they do not necessarily represent the opinion

of the LSC and Virgo collaborations, but only those of this author. Unfortunately,

we cannot claim a detection in these preliminary results. However, we can set an

upper limit (with 90% confidence) in the rate of coalescences. This upper limit has

been calculated for each mass pair within the range of the search. In Table 2.3.2,

we present a sampling of these upper limits. A more complete listing (and plot) of

the upper limits, as well as methods and other preliminary results of the search are

presented in Ch. 7.
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2.3.3 Parameter estimation

Once a detection has been made, the next step is to extract the parameters of

the waveform to learn as much as possible. This will of course include the masses, sky

position and orientation of the binary, and it could also involve testing whether the

observed waveform best matches the prediction of general relativity, or an alternative

theory of gravity. For example, Refs. [110, 111] considered whether corrections to

the waveform phase arising from either Brans-Dicke theory or a massive graviton

could be detectable by the Laser Interferometer Space Antenna (LISA).

Markov-chain Monte-Carlo (MCMC) methods have been developed that will

be used to estimate the parameters of the waveform for a true detection. For ex-

ample, Ref. [112] presents such a method for non-spinning binaries, while Ref. [113]

builds on this work to develop the technique for spinning binaries. Both of these

works used simulated data, while Ref. [114] further refines the method for spinning

binaries and is the first published study to apply MCMC techniques to simulated

signals injected into real interferometer data. In essence, these MCMC techniques

compute the Bayesian likelihood L(s|λ) that the data s(t) contains a signal h(λ, t)

with parameters λ by computing the integral

L(s|λ) ∝ exp

[
−2

∫ ∞
0

|s̃(f)− h̃(λ, f)|2

Sn(f)
df

]
= exp

[
−1

2
(s− h(λ)|s− h(λ))

]
.

(2.106)

Then, Bayes’ Theorem allows one to compute a posterior probability density for the
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parameters

p(λ|s) ∝ p(λ)L(s|λ) , (2.107)

where p(λ) is the prior distribution of the parameters. Often, this prior is simply

the assumption that the parameters have a uniform distribution over some range.

One then maps out p(λ|s) over the parameter space by repeating the procedure for

a very large number of parameter values, with parameter values chosen by some

jump criterion so that the parameter space is sampled thoroughly but efficiently.

Because one must generate a waveform and evaluate the inner product integral

of Eq. (2.106) very many times, these MCMC parameter estimation techniques are

quite computationally expensive. Therefore, because it is much more computation-

ally economical, it has been common practice to use the Fisher matrix formalism

to estimate how well one could determine the parameters of a detected gravita-

tional wave signal. See, e.g. Refs. [115, 89, 116, 111, 117, 118] for a cross section

of parameter estimation studies using the Fisher matrix, while Ref. [119] discusses

some of the problems and limitations of the Fisher matrix formalism. Note that

the Fisher matrix only provides an estimate of the precision with which we could

measure the parameters of a detected signal, it cannot be used to actually extract

the parameters once a detection is made. Nonetheless, it is a useful tool in this

pre-detection era to answer questions such as “Will adding some physical feature

(amplitude corrections, spins, merger-ringdown, etc.) to waveforms improve the

parameter estimation?”, “Where should a new detector be placed to best improve

sky localization?”, “How will design choices of proposed advanced detectors affect
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parameter estimation?” and many others.

Now, the basic idea of the Fisher matrix is to expand the signal h(λ0, t) with

parameters λ0 in a Taylor series of derivatives with respect to the parameters

h(λ, t) = h(λ0, t) + ∂ih(λ0, t) δλ
i + ... , (2.108)

where δλi = λi − λi0 and there is a summation over all of the parameters λi. If the

SNR is sufficiently large, or if the signal depends linearly on all of its parameters,

then it is valid to expand only through the first derivatives, and not include the

higher-order parameter derivatives. Then, if we assume a uniform prior distribu-

tion for all parameters (over their relevant ranges), from Eqs. (2.106)-(2.107) the

posterior probability density is

p(λ|s) ∝ exp

[
−1

2
Γij δλ

i δλj
]
, (2.109)

where

Γij ≡
(
∂h

∂λi

∣∣∣∣ ∂h∂λj
)∣∣∣∣

λ=λ0

(2.110)

is the Fisher information matrix. So, under our assumptions of stationary Gaussian

noise and large SNR, we find that p(λ|s) has the form of a multivariate Gaussian

distribution. Recall that a multivariate Gaussian distribution for a variable x with

mean µ takes the form

p(x) ∝ exp

[
−1

2

(
Σ−1

)
ij

(x− µ)i (x− µ)j
]
, (2.111)
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where Σ is the covariance matrix, which encodes the variance and correlations of

all the components of x. Therefore, we see that the covariance matrix must be the

inverse of the Fisher matrix,

Σij =
(
Γ−1
)
ij
. (2.112)

From the covariance matrix, we can obtain the root mean square parameter errors

(∆λi) and correlations among parameters (σij) as

∆λi =
√

Σii , (2.113)

σij =
Σij√
Σii Σjj

. (2.114)

This result is rigorously derived in both frequentist and Bayesian statistical

frameworks in Ref. [119]. Intuitively, what we are doing is approximating p(λ|s) by

a multivariate Gaussian in a region of parameter space around the true parameter

values. We evaluate parameter derivatives of the waveform to tell us how sensitive

the observed waveform is to changes in that parameter. The larger the derivative,

the more steeply the Gaussian will fall off along that parameter direction, and so

the more precisely that parameter can be determined. We build a matrix of inner

products of these parameters and invert it to obtain the errors and correlations

of all the parameters. Now, if the noise is non-Gaussian, the SNR is low, or the

dependence on the parameters is highly non-linear, this approximation can break

down. As noted in Ref. [119] and others, these assumptions may not necessarily be

valid for ground-based GW detectors. However, because one can estimate parameter
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Figure 2.11: We plot the fractional error on Mc as the total mass is varied
for symmetric mass ratio ν = 0.05 (left panel) and ν = 0.24 (right panel) for
waveform restricted inspiral-only waveforms (dashed red), restricted IMR wave-
forms (dashed blue), amplitude-corrected inspiral-only waveforms (solid red) and
amplitude-corrected IMR waveforms (solid blue).

errors by evaluating parameter derivatives of the waveform at a single point rather

than computing thousands or millions of waveforms and inner products as in the

MCMC approach, the Fisher matrix approach has been frequently used in GW

parameter estimation studies. Ideally, one might use the Fisher matrix formalism

as an initial study, and then attempt to cross-check the results with an MCMC

study.

In Ch. 6, we will use the Fisher matrix formalism with restricted and amplitude

corrected EOB waveforms to determine whether the inclusion of merger-ringdown

and/or amplitude corrections can improve parameter estimation. In short, we find

that including both of these features will improve the estimation of the masses and

other parameters, particularly for large masses and asymmetric mass ratios. As

an example, in Fig. 2.11, we show the error on the chirp mass Mc = M ν3/5 as a

function of total mass in initial LIGO at a fixed SNR of 10 for ν = 0.05 (left panel)

and ν = 0.24 (right panel). The solid lines contain a merger-ringdown, while the
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dashed lines contain only the inspiral. The blue lines are for amplitude-corrected

waveforms, while the red lines are for restricted waveforms. We see that both merger-

ringdown and amplitude corrections improve the estimation ofMc, especially as the

mass increases. The effect is also more pronounced for the highly asymmetric binary

(left panel) than for the symmetric binary (right panel). More results, along with a

discussion of the methods used (and the difficulties they present) are given in Ch. 6.
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Chapter 3

Comparison of post-Newtonian templates for compact

binary inspiral signals in gravitational wave detectors

Authors: Alessandra Buonanno, Bala Iyer, Evan Ochsner, Yi Pan and

B. S. Sathyaprakash1

Abstract: The two-body dynamics in general relativity has been solved perturbatively using

the post-Newtonian (PN) approximation. The evolution of the orbital phase and the emitted

gravitational radiation are now known to a rather high order up to O(v8), v being the characteristic

velocity of the binary. The orbital evolution, however, cannot be specified uniquely due to the

inherent freedom in the choice of parameter used in the PN expansion as well as the method

pursued in solving the relevant differential equations. The goal of this paper is to determine the

(dis)agreement between different PN waveform families in the context of initial and advanced GW

detectors. The waveforms employed in our analysis are those that are currently used by Initial

LIGO/Virgo, that is the time-domain PN models TaylorT1, TaylorT2, TaylorT3, the Fourier-

domain representation TaylorF2 (or stationary phase approximant, SPA) and the EOB model,

and two more recent models, TaylorT4 and TaylorEt. For these models we examine their overlaps

with one another for a number of different binaries at 2PN, 3PN and 3.5PN orders to quantify

1Originally published as Phys. Rev. D 80 084043 (2009)
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their differences. We then study the overlaps of these families with the prototype effective-one-

body family, currently used by Initial LIGO, calibrated to numerical relativity simulations to help

us decide whether there exist preferred families, in terms of detectability and computational cost,

that are the most appropriate as search templates. We conclude that as long as the total mass

remains less than a certain upper limit Mcrit, all template families at 3.5PN order (except TaylorT3

and TaylorEt) are equally good for the purpose of detection. The value of Mcrit is found to be

∼ 12M� for Initial, Enhanced and Advanced LIGO. From a purely computational point of view we

recommend that 3.5PN TaylorF2 be used below Mcrit and EOB calibrated to numerical relativity

simulations be used for total binary mass M > Mcrit.
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3.1 Introduction

Sensitivity of several interferometric GW detectors has either already reached,

or is close to, the design goals that were set more than a decade ago [120, 121, 122,

123, 124, 125, 126]. Upgrades that are currently underway and planned for the next

four to five years, will see their sensitivity improve by factors of a few to an order-of-

magnitude [127]. Coalescing binaries consisting of neutron stars and/or black holes

are probably the most promising sources for a first direct detection of gravitational

waves. At current sensitivities, initial interferometers are capable of detecting binary

neutron star inspirals at distances up to 30 Mpc, the range increasing to 60 Mpc

for enhanced detectors (circa 2009-2011) and 175 Mpc for advanced detectors (circa

2014+). Binary black holes or a mixed system consisting of a neutron star and a

black hole can be detected to a far greater distance depending on the total mass

and the mass ratio.

The range of interferometric detectors for coalescing binaries is computed by

assuming that one can pull the signal out of noise by matched filtering. This in

turn means that one is able to follow the phasing of gravitational waves typically

to within a fraction of a cycle over the duration of the signal in band. The reason

for this optimism comes from the fact that one knows the phase evolution of the

signal to a high order in post-Newtonian (PN) formalism [21]. Several authors have

assessed whether the accuracy with which the formalism provides the waveforms is

good enough for the purpose of detection and parameter estimation [128, 129, 130,

131, 132, 133, 134, 30, 33, 135, 136, 137, 34, 138, 139, 140]. The problem, as we
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shall see below, is complicated since the PN approximation does not lead to a unique

model of the phase evolution. Moreover, though PN results are good up to mildly

relativistic velocities, the standard PN approximants become less and less accurate

in the strongly relativistic regime as one approaches the last stable orbit (LSO).

Resummation methods [132] and in particular the EOB [39, 141, 57] extensions of

the PN approximants, are needed for analytical treatments close to and beyond the

LSO.

The success in numerical-relativity simulations of binary black holes [142,

143, 144, 145, 146] now provides results for gravitational waveforms that can be

compared to standard PN results and other resummed extensions. On the one

hand, the analytical PN results for the inspiral phase of the evolution are needed

to calibrate and interpret the numerical relativity waveforms of coalescence and

merger. On the other hand, the numerical relativity results extend the analytical

approximations beyond the inspiral phase and provide the important coalescence

and merger phases, producing the strongest signals that are crucial for the detection

of binary black holes. However, numerical simulations are still computationally

expensive and time-consuming and presently only a small region of the parameter

space can be explored. Even in the foreseeable future, numerical relativity may not

be able to handle the tens of thousands of cycles that are expected from low-mass

systems (e.g., a binary neutron star). Analytical models that smoothly go from

the inspiral through coalescense to quasi-normal ringing would be needed and this

has led to phenomenological templates [105, 147, 148]. and EOB waveforms [149,

147, 150, 54, 151, 152, 153, 154, 155, 156]. In particular, the recent improved
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EOB models [155, 156] which also incorporate a multiplicative decomposition of the

multipolar waveform into several physically motivated factors supplemented by a

suitable hybridisation (using test particle results) [157], and an improved treatment

of non-quasi-circular corrections, show evidence of remarkable success in modeling

accurately the numerical relativity waveforms for different mass ratios.

The emphasis of this work is different. Recently, there have been investigations

[158] on the ability of various standard families of PN templates to detect a specific

signal model TaylorEt [35, 36, 37] and the often-used TaylorF2 to detect a complete

numerical relativity signal including merger and ringdown [147, 148]. Reference [158]

modelled the signal by the TaylorEt approximant at 3.5PN order and looked at

the effectualness and systematic biases in the estimation of mass parameters for

TaylorT1, TaylorT4 and TaylorF2 templates in the LIGO and Virgo detectors. It

also looked into the possibility of improving the effectualness by using unphysical

values of ν beyond the maximum value of 0.25. It was found that the overlaps

of a TaylorEt signal with TaylorT1, TaylorT4 and TaylorF2 template is smaller

than 0.97 and involved for equal-mass systems a large bias in the total mass. For

unequal-mass systems higher overlaps can be obtained at the cost of a large bias in

mass and symmetric mass ratio ν and which can be further improved by unphysical

values of ν > 0.25. The templates are more unfaithful with increasing total mass.

To detect optimally the complete numerical-relativity signal, including merger and

ringdown, Ref. [147] suggested the possibility of using the TaylorF2 template bank

with a frequency cutoff fc larger than the usual upper cutoff (i.e., the Schwarzschild

LSO) and closer to the fundamental quasi-normal mode frequency of the final black
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hole. Moreover, they proposed to further improve this family by allowing either

for unphysical values of ν or for the inclusion of a pseudo 4PN (p4PN) coefficient

in the template phase, calibrated to the numerical simulations. Reference [148]

extended the results of Ref. [147] to more accurate numerical waveforms, found that

3.5PN templates are nearly always better and rarely significantly worse than the

2PN templates, and proposed simple analytical frequency cutoffs for both Initial

and Advanced LIGO — for example for Initial LIGO they recommended a strategy

using p4PN templates for M ≤ 35M� and 3.5PN templates with unphysical values

of ν for larger masses. However, we notice that there is no reason for changing the

template bank above 35M�. Reference [148] could have used the p4PN templates

over the entire mass region, if they had not employed in their analysis the p4PN

coefficient used in Ref. [147], but had calibrated it to the highly accurate waveforms

used in their paper2.

In this work our primary focus is on binary systems dominated by early inspi-

ral and on a critical study of the variety of approximants that describe this. Towards

this end, in this chapter we will provide a sufficiently exhaustive comparison of dif-

ferent PN models of adiabatic inspiral for an illustrative variety of different systems

and quantify how (dis)similar they are for the purpose of detection. The choice of

the PN models used in this paper is motivated by the fact that they are available

in the LAL code and some of them have been used in the searches by Initial LIGO.

We also compare all these PN models with one fiducial EOB model calibrated to

2We computed that the p4PN coefficient calibrated to the highly accurate waveforms used in
Ref. [148] is Y = 3714, instead of Y = 3923 found in Ref. [147].
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numerical-relativity simulations [54] to delineate the range of mass values where one

must definitely go beyond the inspiral-dominated PN models to a more complete

description including plunge and coalescence. The choice of this fiducial, prelimi-

nary EOB model is only motivated by the fact that it is the EOB model available in

LAL and it is currently used for searches by Initial LIGO. It will be improved in the

future using the recent results in Refs. [155, 156]. We will conclude that for total

masses below a certain upper limit Mcrit, all template families at 3.5PN order (ex-

cept for TaylorT3 and TaylorEt) are equally good for the purpose of detection. Mcrit

is found to be ∼ 12M� for Initial, Enhanced and Advanced LIGO. Based solely on

computational costs, we recommend that 3.5PN TaylorF2 be used below Mcrit and

EOB calibrated to numerical relativity simulations be used for total binary mass

M > Mcrit.

The paper is organized as follows. In Sec. 3.2 we summarise the present status

of the PN approximation. In Sec. 3.3 we recapitulate for completeness the main

PN approximants and try to provide a ready-reckoner for the equations describing

them and the relevant initial and termination conditions. In Sec. 3.4 we discuss the

frequency evolution in each of these models. In Sec. 3.5 we discuss overlaps and

the maximization used in this work. Section 3.6 and 3.7 presents the results of our

analysis related to the effectualness, while Sec. 3.8 summarizes the results related

to the faithfulness. In Sec. 3.9 we summarize our main conclusions. Readers who

are interested in the main results of the paper and want to avoid technical details

could skip Secs. 3.2, 3.3, 3.4, and 3.5, read the main results of Secs. 3.6, 3.7 and 3.8,

and mainly focus on Sec. 3.9.
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3.2 Current status of post-Newtonian approximation

Post-Newtonian approximation computes the evolution of the orbital phase

φ(t) of a compact binary as a perturbative expansion in a small parameter, typically

taken as v = (πMF )1/3 (characteristic velocity in the binary), or x = v2, although

other variants exist. Here M is the total mass of the binary and F the GW frequency.

In the adiabatic approximation, and for the restricted waveform in which case the

gravitational wave phase is twice the orbital phase, the theory allows the phasing to

be specified by a pair of differential equations φ̇(t) = v3/M, v̇ = −F(v)/E ′(v), where

M is the total mass of the system, F its GW luminosity and E ′(v) is the derivative

of the binding energy with respect to v. Different PN families arise because one can

choose to treat the ratio F/E ′(v) differently while being equivalent with the same

PN order [30]. For instance, one can leave the PN expansions of the luminosity

F(v) and E ′(v) as they appear (the so-called TaylorT1 model), or expand the

rational polynomial F(v)/E ′(v) in v to consistent PN order (the TaylorT4 model),

recast as a pair of parametric equations φ(v) and t(v) (the TaylorT2 model), or

the phasing could be written as an explicit function of time φ(t) (the TaylorT3

model). These different representations are made possible because one is dealing

with a perturbative series. Therefore, one is at liberty to “resum” or “reexpand”

the series in any way one wishes (as long as one keeps terms to the correct order in

the perturbation expansions), or even retain the expression as the quotient of two

polynomials and treat them numerically. There is also the freedom of writing the

series in a different variable, say (suitably adimensional) E (the so called TaylorEt
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model).

In addition to these models, there have been efforts to extend the evolution

of a binary beyond what is naturally prescribed by the PN formalism. Let us

briefly discuss two reasons why the PN evolution cannot be used all the way up

to the merger of the two bodies. PN evolution is based on the so-called adiabatic

approximation according to which the fractional change in the orbital frequency Forb

over each orbital period is negligibly small, i.e. Ḟorb/F
2
orb � 1. This assumption is

valid during most of the evolution, but begins to fail as the system approaches the

LSO where fLSO = (63/2πM)−1. In some cases, the frequency evolution stops from

being monotonic and ḟ changes from being positive to negative well before reaching

the LSO — an indication of the breakdown of the approximation.

From the view point of maximizing detection potential one is also interested in

going beyond the inspiral phase. The merger and ringdown phases of the evolution,

when the luminosity is greatest, cannot be modelled by standard PN approxima-

tion. The use of resummation techniques more than a decade ago was followed by

the construction of the EOB model [39, 141, 57], which has analytically provided the

plunge, merger and ringdown phases of the binary evolution. As mentioned before,

more recently, these models have been calibrated to numerical relativity simula-

tions [149, 147, 150, 54, 151, 152, 153, 154, 155, 156]. We now have a very reliable

EOB model that can be used to model the merger dynamics.

An astronomical binary is characterized by a large number of parameters some

of which are intrinsic to the system (e.g., the masses and spins of the component

stars and the changing eccentricity of the orbit) and others that are extrinsic (e.g.,
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source location and orientation relative to the detector). In this paper we will worry

about only the detection problem. Furthermore, we will assume that a coincident

detection strategy will be followed so that we do not have to worry about the angular

parameters such as the direction to the source, wave’s polarization, etc. If binaries

start their lives when their separation r is far larger compared to their gravitational

radius (i.e., r � GM/c2), by the time they enter the sensitivity band of ground-

based detectors any initial eccentricity would have been lost due to gravitational

radiation reaction, which tends to circularize3 a binary [15, 16]. Therefore, we shall

consider only systems that are on a quasi-circular inspiralling orbit. We shall also

neglect spins which means that we have to worry in reality about only the two

masses of the component bodies.

Our goal is to explore how (dis)similar the different waveform families are.

We do this by computing the (normalized) cross-correlation between signals and

templates, maximized either only over the extrinsic parameters of the templates

(faithfulness) or over the intrinsic and extrinsic parameters of the templates (effec-

tualness), the noise power spectral density of the detector serving as a weighting

factor in the computation of the correlation (see Sec.3.5). Our conclusions, there-

fore, will depend on the masses of the compact stars as well as the detector that we

hope to observe the signal with.

The overlaps (i.e., the normalized cross-correlation maximized over various

parameters and weighted by the noise power spectral density) we shall compute are

3Though this assumption is justified for the prototypical binaries we focus on in this work, there
exist credible astrophysical scenarios that lead to inspiral signals from binaries with non-negligible
eccentricity in the sensitive detector bandwidth. A more involved treatment is then called for and
available. See e.g. [159, 160, 161, 162, 163, 164, 165].

92



sensitive to the shape of the noise spectral density of a detector and not on how

deep that sensitivity is. Now, the upgrade from initial to advanced interferometers

will see improvements in sensitivity not only at a given frequency but over a larger

band. Therefore, the agreement between different PN models will be sensitive to the

noise spectral density that is used in the inner product. Thus, we will compare the

PN families using power spectral densities of initial and advanced interferometric

detectors.

We end this brief overview with the following observation. As mentioned

earlier, following all present gravitational wave data analysis pipelines, this paper

works only in the restricted wave approximation. This approximation assumes the

waveform amplitude to be Newtonian and thus includes only the leading second

harmonic of the orbital phase. Higher PN order amplitude terms bring in harmonics

of the orbital phase other than the dominant one at twice the orbital frequency.

Their effects can be significant [166, 167], especially close to merger [155], and

they need to be carefully included in future work.

3.3 The PN approximants

For the convenience of the reader, in this section, we recapitulate the basic

formulas for the different PN families from Refs. [30, 33]. While comparing the

expressions below to those in Refs. [30, 33] recall λ = −1987/3080 [168, 169] and Θ =

−11831/9240 [32, 170]. In addition to the evolution equations, we shall also provide

initial and final conditions. From the perspective of a data analyst, the initial
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condition is simply a starting frequency F0 and phase φ0, which can be translated,

with the help of evolution equations, as conditions on the relevant variables. We shall

also give explicit expressions for the evolution of the gravitational wave frequency,

namely Ḟ ≡ dF/dt, or more precisely, the dimensionless quantity Ḟ F−2, in Sec. 3.4,

where they will be used to study the rate at which the binary coalesces in different

PN families, which will help us understand the qualitative difference between them.

The contents of this section should act as a single point of resource for anyone who

is interested in implementing the waveforms for the purpose of data analysis and

other applications.

The basic inputs for all families are the PN expressions for the conserved 3PN

energy (per unit total mass) [168, 169, 171, 172, 173, 174] E3(v) and 3.5PN energy

flux [175, 176, 31, 32, 170] F3.5(v),

E3(v) = −1

2
νv2

[
1−
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(3.1)
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, (3.2)

where γ = 0.577216 . . . is the Euler constant. In the adiabatic approximation one
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assumes that the orbit evolves slowly so that the fractional change in the orbital ve-

locity ω over an orbital period is negligibly small. That is, ∆ω
ω
� 1, or, equivalently,

ω̇
ω2 � 1. In this approximation, one expects the luminosity in gravitational waves to

come from the change in orbital energy averaged over a period. For circular orbits

this means one can use the energy balance equation F = −dE/dt where E = ME.

In the adiabatic approximation one can write an equation for the evolution of

any of the binary parameters. For instance, the evolution of the orbital separation

r(t) can be written as ṙ(t) = Ė/(dE/dr) = −F/(dE/dr). Together with the Kepler’s

law, the energy balance equation can be used to obtain the evolution of the orbital

phase4:

dφ

dt
− v3

M
= 0, (3.3a)

dv

dt
+
F(v)

ME ′(v)
= 0, (3.3b)

or, equivalently,

t(v) = tref +M

∫ vref

v

dv
E ′(v)

F(v)
, (3.4a)

φ(v) = φref +

∫ vref

v

dv v3 E
′(v)

F(v)
, (3.4b)

where tref and φref are integration constants and vref is an arbitrary reference ve-

locity.

4Recall that the GW phase is twice the orbital phase for the restricted waveform and leads to
differences in factors of 2 between the equations here for the orbital phase and those in [30] for the
gravitational-wave phase.
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3.3.1 TaylorT1

The TaylorT1 approximant refers to the choice corresponding to leaving the

PN expansions of the luminosity F(v) and E ′(v) as they appear in Eq. (3.3) as a

ratio of polynomials and solving the differential equations numerically

dφ(T1)

dt
− v3

M
= 0, (3.5a)

dv

dt
+
F(v)

ME ′(v)
= 0. (3.5b)

In the above v ≡ v(T1) but for the sake of notational simplicity we write only v;

from the context the meaning should be clear. In the formulas of this section, and

in the sections that follow, the expressions for F(v) (E(v)) are to be truncated at

relative PN orders 2 (2), 3 (3) and 3.5 (3) to obtain 2PN [28, 29, 23, 30] , 3PN and

3.5PN [31, 32, 33] template or signal models respectively.

To see how to set up initial conditions, refer to Eq. (3.4). Let the initial

gravitational wave frequency be F0 or, equivalently, initial velocity v0 = (πMF0)1/3.

One normally chooses t = 0 at v = v0. This can be achieved by choosing vref = v0

and tref = 0, in Eq. (3.4). The initial phase φref is chosen to be either 0 or π/2 in

order to construct two orthogonal templates (see Sec. 3.5.1 for details).

3.3.2 TaylorT4

TaylorT4 was proposed in Ref. [34] and investigated in Refs. [149, 177, 145],

thus many years after the other approximants discussed in this paper were pro-

96



posed (with the exception of TaylorEt, which is even more recent). However, it is a

straightforward extension of TaylorT1 and at 3.5PN order by coincidence is found

to be in better agreement with numerical simulations of the inspiral phase [149, 147,

177, 145, 151, 36, 153]. The approximant is obtained by expanding the ratio of the

polynomials F(v)/E ′(v) to the consistent PN order. The equation for v(T4)(t) ≡ v(t)

at 3.5PN order reads,

dv

dt
=

32

5

ν
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]
. (3.6)

The orbital phase φ(T4) is determined, as in the case of TaylorT1, by Eq. (3.3a) and

numerical solution of Eq. (3.6) and (3.3a) yields the TaylorT4 approximant.

Note that although TaylorT1 and TaylorT4 are perturbatively equivalent, the

evolution of the phase can be quite different in these two approximations. The

asymptotic structure of the approximants are also quite different: while v̇ can have

a pole (although not necessarily in the region of interest) when using Eq. (3.5b)

none is possible when Eq. (3.6) is used. Differences of this kind can, in principle,

mean that the various PN families give different phasing of the orbit. The hope is

that when the PN order up to which the approximation is known is large, then the

difference between the various PN families becomes negligible.

Setting up the initial conditions for TaylorT4 is the same as in the case of
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TaylorT1.

3.3.3 TaylorT2

TaylorT2 is based on the second form of the phasing relations Eq. (3.4). Ex-

panding the ratio of the polynomials F(v)/E ′(v) in these equations to consistent

PN order and integrating them one obtains a pair of parametric equations for φ(v)

and t(v), the TaylorT2 model.

φ
(T2)
n/2 (v) = φ

(T2)
ref + φvN(v)

n∑
k=0

φ̂vkv
k, (3.7a)

t
(T2)
n/2 (v) = t

(T2)
ref + tvN(v)

n∑
k=0

t̂vkv
k. (3.7b)

Of all models considered in this study, TaylorT2 is computationally the most expen-

sive. This is because the phase evolution involves solving a pair of transcendental
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equations which is very time-consuming.
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In this case, tref has to be chosen so that t = 0 when F = F0 or v = v0. This

can be achieved most simply by solving for tref , using Eq. (3.8b), substituting v = v0

on the right hand side and putting the left side to zero.

3.3.4 TaylorT3

This form of the approximant goes a step further than the previous TaylorT2

approximant. After computing as before a parametric representation of the phasing
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formula φ(v) and t(v), one explicitly inverts t(v) to obtain v(t) and uses it to produce

an explicit representation of φ(t) ≡ φ(v(t))). This is the TaylorT3 approximant:

φ
(T3)
n/2 (t) = φ

(T3)
ref + φtN

n∑
k=0

φ̂tkθ
k, (3.9a)

F
(T3)
n/2 (t) = F t

N

n∑
k=0

F̂ t
kθ
k, (3.9b)

where θ = [ν(tref − t)/(5M)]−1/8 and F ≡ (2 dφ/dt)(2π)−1 = v3/(πM) is the

instantaneous GW frequency.

φ
(T3)
3.5 (t) = φ

(T3)
ref −

1

νθ5

[
1 +

(
3715

8064
+

55

96
ν

)
θ2 − 3π

4
θ3

+

(
9275495

14450688
+

284875

258048
ν +

1855

2048
ν2

)
θ4 +

(
38645

21504
− 65

256
ν

)
ln

(
θ

θlso

)
πθ5

+

{
831032450749357

57682522275840
− 53

40
π2 +

(
−126510089885

4161798144
+

2255

2048
π2

)
ν − 107

56
γ

+
154565

1835008
ν2 − 1179625

1769472
ν3 − 107

56
log(2θ)

}
θ6

+

(
188516689

173408256
+

488825

516096
ν − 141769

516096
ν2

)
πθ7

]
, (3.10a)

F
(T3)
3.5 (t) =

θ3

8πM

[
1 +

(
743

2688
+

11

32
ν

)
θ2 − 3

10
πθ3

+

(
1855099

14450688
+

56975

258048
ν +

371

2048
ν2

)
θ4 −

(
7729

21504
− 13

256
ν

)
πθ5

+

{
−720817631400877

288412611379200
+

53

200
π2 +

107

280
γ +

(
25302017977

4161798144
− 451

2048
π2

)
ν

− 30913

1835008
ν2 +

235925

1769472
ν3 +

107

280
log(2θ)

}
θ6

+

(
−188516689

433520640
− 97765

258048
ν +

141769

1290240
ν2

)
πθ7

]
. (3.10b)
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The initial conditions in this case is slightly more complicated than the previ-

ous cases. Given an initial frequency F0, one numerically solves Eq. (3.10b) to find

the value of tref at which F = F0 and t = 0 (recall that θ involves tref .) Note that as

t→ tref , formally F → diverges.

3.3.5 TaylorEt

The TaylorEt was recently introduced in Ref. [35, 36, 37]. Introducing5

ζ = −2E/ν (recall that our E is conserved energy per total mass), the TaylorEt

approximants are obtained starting from Eq. (3.1) for E(x) or ζ(x) and inverting it

to obtain x(ζ):

x = ζ

[
1 +

(
3

4
+

1

12
ν

)
ζ +

(
9

2
− 17

8
ν +

1

18
ν2

)
ζ2

+

(
405

16
+

(
205

96
π2 − 4795

72

)
ν +

55

64
ν2 +

35

1296
ν3

)
ζ3

]
. (3.11)

With this choice of variable the equation determining the evolution of v, Eq. (3.3b),

transforms to the balance equation for E rewritten in terms of the ζ variable:

dζ

dt
=

2F(v(ζ))

ν M
. (3.12)

There is no difference between T1 and T4 approximants in the Et-parametrisation

and the GW phasing equations Eq. (3.3a) and Eq. (3.3b) in terms of ζ become [158],

5Note that the ζ in this paper is denoted variously by ζ in [35] but by ξ in e.g. [158].
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dφ(Et)(t)

dt
=

ζ3/2

M

[
1 +

(
9

8
+

1

8
ν

)
ζ +

(
891

128
− 201

64
ν +

11

128
ν2

)
ζ2

+

{
41445

1024
−
(

309715

3072
− 205

64
π2

)
ν +

1215

1024
ν2 +

45

1024
ν3

}
ζ3

]
, (3.13a)

dζ

dt
=

64νζ5

5M

[
1 +

(
13

336
− 5

2
ν

)
ζ + 4πζ3/2 +

(
117857

18144
− 12017

2016
ν +

5

2
ν2

)
ζ2

+

(
4913

672
− 177

8
ν

)
πζ5/2 +

{
37999588601

279417600
+

16

3
π2 − 1712

105
γ

+

(
369

32
π2 − 24861497

72576

)
ν +

488849

16128
ν2 − 85

64
ν3 − 856

105
log(16ζ)

}
ζ3

+

(
129817

2304
− 3207739

48384
ν +

613373

12096
ν2

)
πζ7/2

]
. (3.13b)

To set up the initial condition note that 2πF = 2 dφ/dt. Given an initial frequency

F0 one finds the initial value ζ0 of ζ by numerically solving Eq. (3.13a), by setting

the left hand side to πF0.

3.3.6 TaylorF2

The most commonly used form of the approximant is the Fourier represen-

tation computed using the stationary phase approximation. Using the SPA the

waveform in the frequency domain may be written as,

h̃spa(f) =
a(tf )√
Ḟ (tf )

ei[ψf (tf )−π/4], ψf (t) ≡ 2πft− 2φ(t), (3.14)

where tf is the saddle point defined by solving for t, dψf (t)/dt = 0, i.e. the time

tf when the GW frequency F (t) becomes equal to the Fourier variable f . In the

adiabatic approximation, (denoting vf ≡ (πMf)1/3) the value of tf and ψf (tf ) are
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given by the following integrals:

tf = tref +M

∫ vref

vf

E ′(v)

F(v)
dv, (3.15a)

ψf (tf ) = 2πftref − φref + 2

∫ vref

vf

(v3
f − v3)

E ′(v)

F(v)
dv.

(3.15b)

As in the time domain case it is more efficient to use the equivalent differential

form

dψ

df
− 2πt = 0,

dt

df
+
πM2

3v2

E ′(f)

F(f)
= 0, (3.16)

and this characterizes the TaylorF1 approximant.

The analogue of the TaylorT2 in the frequency domain follows by explicitly

truncating the energy and flux functions to consistent post-Newtonian orders and

explicating the v- integration in the above. This leads us to a Fourier domain

waveform, the TaylorF2, which is the most often employed PN-approximant, given

by

h̃(f) = Af−7/6eiψ(f), (3.17)

where A ∝ M5/6Q(angles)/D, and D the distance to the binary. To 3.5PN order
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the phase of the Fourier domain waveform is given by

ψ
(F2)
3.5 (f) = 2πftc − φc −

π

4
+

3

128 ν v5

[
1 +

20

9

(
743

336
+

11

4
ν

)
v2 − 16πv3

+ 10

(
3058673

1016064
+

5429

1008
ν +

617

144
ν2

)
v4

+ π

(
38645

756
− 65

9
ν

){
1 + 3 log

(
v

vlso

)}
v5 +

{
11583231236531

4694215680

− 640

3
π2 − 6848 γ

21
− 6848

21
log (4 v) +

(
−15737765635

3048192
+

2255π2

12

)
ν

+
76055

1728
ν2 − 127825

1296
ν3

}
v6 + π

(
77096675

254016
+

378515

1512
ν − 74045

756
ν2

)
v7

]
,

(3.18)

where v = (πMf)1/3.

In this case one has to specify the constants tc and φc and they can be chosen

arbitrarily.

3.3.7 The effective-one-body model

In this paper since we are not particularly concerned with the coalescence

signal, we employ the less sophisticated earlier version of the EOB model calibrated

to numerical-relativity simulations from Ref. [54] (for more sophisticated versions

of the EOB model see Refs. [152, 153, 154, 155, 156]). Below we briefly review the

EOB model from Ref. [54].

Introducing polar coordinates (r, φ) and their conjugate momenta (pr, pφ), the
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EOB effective metric takes the form [39]

ds2
eff = −A(r) dt2 +

D(r)

A(r)
dr2 + r2

(
dθ2 + sin2 θ dφ2

)
. (3.19)

The EOB Hamiltonian reads

Hreal(r, pr, pφ) ≡ µĤreal = M

√
1 + 2ν

(
Heff − µ

µ

)
, (3.20)

with the effective Hamiltonian [39, 57]

Heff(r, pr, pφ) ≡ µ Ĥeff = µ

√
A(r)

[
1 +

A(r)

D(r)
p2
r +

p2
φ

r2
+ 2(4− 3ν) ν

p4
r

r2

]
. (3.21)

The Taylor-approximants to the coefficients A(r) and D(r) can be written as [39, 57]

Ak(r) =
k+1∑
i=0

ai(ν)

ri
, (3.22a)

Dk(r) =
k∑
i=0

di(ν)

ri
. (3.22b)

The functions A(r), D(r), Ak(r) and Dk(r) all depend on the symmetric mass

ratio ν through the ν–dependent coefficients ai(ν) and di(ν). These coefficients

are currently known through 3PN order (i.e. up to k = 4) and can be read from

Ref. [54]. During the last stages of inspiral and plunge6, the EOB dynamics can

6To deal with the steep rise of various quantities during the plunge, it is advantageous to
consider the EOB equations in terms of the tortoise radial coordinate r∗ and its conjugate pr∗
rather than in terms of the standard radial coordinate r and pr as above. The form of Heff in the
two cases will be different [150]. For the level of accuracy in our present work, this difference is
irrelevant.
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be adjusted closer to the numerical simulations by including in the radial potential

A(r) a p4PN coefficient a5(ν) and a5(ν) = λ0 ν, with λ0 a constant7. In order to

assure the presence of a horizon in the effective metric (3.19), a zero needs to be

factored out from A(r). This is obtained by applying a Padé resummation [57]. The

Padé coefficients for the expansion of A(r) and D(r) at p4PN order are denoted

A1
4(r) and D0

4(r), and their explicit form can be read from Ref. [54].

The EOB Hamilton equations are written in terms of the reduced (i.e., di-

mensionless) quantities Ĥreal [defined in Eq. (3.20)], t̂ = t/M , and ω̂ = ωM [141]:

dr

dt̂
=

∂Ĥreal

∂pr
(r, pr, pφ) , (3.23a)

dφ

dt̂
=

∂Ĥreal

∂pφ
(r, pr, pφ) , (3.23b)

dpr

dt̂
= −∂Ĥ

real

∂r
(r, pr, pφ) , (3.23c)

dpφ

dt̂
= F̂φ(r, pr, pφ) , (3.23d)

with the definition ω̂ ≡ dφ/dt̂. Another critical input to the EOB model is the form

for the radiation reaction force arising from the basic PN expression of the energy

flux. Different choices include Padé resummation [132], and the more recent ρ`m-

resummation [157]. It also further includes the introduction of terms describing

next-to-quasi-circular effects. Here, for the φ component of the radiation-reaction

force we use the less sophisticated Keplerian Padé-approximant to the energy flux

as given by Eq. (15) of Ref. [54].

7Note that λ0 was denoted λ in Ref. [54], and a5 in Refs. [150, 151, 153, 154].
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The inspiral-plunge EOB waveform at leading order in a PN expansion reads

hinsp−plunge(t) ≡ ω̂1/3 cos[2φ(t)] . (3.24)

The merger-ringdown waveform in the EOB approach is built as a superposition of

quasi-normal modes [141, 47, 149, 54, 150, 151], as

hmerger−RD(t) =
N−1∑
n=0

An e
−iσn(t−tmatch), (3.25)

where n is the overtone number of the Kerr quasi-normal mode, N is the number of

overtones included in our model, and An are complex amplitudes to be determined

by a matching procedure described below. The quantity σn = ωn − iαn, where the

oscillation frequencies ωn > 0 and the inverse decay-times αn > 0, are numbers

associated with each quasi-normal mode. The complex frequencies are known func-

tions of the final black-hole mass and spin and can be found in Ref. [178]. The

final black-hole masses and spins are obtained from the fitting to numerical results

worked out in Ref. [54].

The complex amplitudes An in Eq. (3.25) are determined by matching the

EOB merger-ringdown waveform with the EOB inspiral-plunge waveform close to

the EOB light ring. In particular, in Ref. [54] the matching point is provided

analytically by Eq. (37). In order to do this, N independent complex equations are

needed. The N equations are obtained at the matching time by imposing continuity
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of the waveform and its time derivatives,

dk

dtk
hinsp−plunge(tmatch) =

dk

dtk
hmerger−RD(tmatch) , (k = 0, 1, 2, · · · , N − 1) . (3.26)

In this paper we use N=3. The above matching approach is referred to as point

matching. It gives better smoothness around the matching time, but it is not

very stable numerically when N is large and higher order numerical derivatives are

needed. More sophisticated matching procedures have been proposed in the litera-

ture to overcome the stability issue. Reference [150] introduced the comb matching

approach where N equations are obtained at N points evenly sampled in a small

time interval ∆tmatch centered at tmatch. More recently, to improve the smoothness

of the comb matching Ref. [156] introduced the hybrid comb matching where one

chooses a time interval ∆tmatch ending at tmatch, and imposes not only the continuity

of the waveform at N − 4 points evenly sampled from tmatch−∆tmatch to tmatch, but

also requires continuity of the first and second order time derivatives of the waveform

at tmatch −∆tmatch and tmatch.

Finally, the full (inspiral-plunge-merger-ringdown) EOB waveform reads

h(t) = hinsp−plunge(t) θ(tmatch − t) + hmerger−RD θ(t− tmatch) , (3.27)

where we denote with θ the Heaviside step function.
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3.3.8 Waveforms and termination conditions

Before concluding this Section we note a few other points concerning the gen-

eration of the waveform. Since our goal is to study the agreement between different

waveforms it is not necessary to separately consider the two different polarizations

but only the detector response. For time-domain models TaylorT1, TaylorT2, Tay-

lorT3, TaylorT4 and EOB the waveform is taken as:

hA(t) = C v2
A sin[2φA(t)],

where vA and φA(t) are computed using the relevant formulas corresponding to the

approximant A. In the case of TaylorEt the waveform is taken to be

hEt(t) = C ζ(t) sin[2φEt(t)].

In all cases the constant C is fixed by demanding that the norm of the signal be

unity (cf. Sec. 3.5). The initial phase of the signal is set to 0, while in the case of

templates we construct two orthonormal waveforms corresponding to the starting

phases of 0 and π/2.

The waveforms are terminated when v reaches the value quoted in Table I or

before, if the frequency evolution is not monotonic (see next Section). For instance,

in the case of TaylorT3 at 3.5PN order the approximant has an unusual behaviour

whereby the frequency evolution ceases to be monotonic well before v reaches the

nominal value of 1/
√

6. In the case of TaylorT1, TaylorT2 and TaylorT3, the termi-
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Table 3.1: Termination condition for waveform generation is chosen to be either
LSO corresponding to Schwarzschild metric vS = 6−1/2, or the extremum defined
by the P-approximant of the energy function as in [132] which is vP4 at 2PN and
vP6 at 3- and 3.5PN. In the case of TaylorT3 at 3.5PN, as the frequency evolution
is not monotonic, the evolution has to be terminated prematurely at vm such that
Ḟ (vm) = 0.

Order/Approx T1 T2 T3 T4 Et F2

2PN vS vS vS vP4 vP4 vP4

3PN vS vS vS vP6 vP6 vP6

3.5PN vS vS vm vP6 vP6 vP6

nation is at the LSO defined by the Schwarzschild metric, namely v = 1/
√

6, at all

PN orders, but we also check for monotonicity of the frequency evolution. For other

approximants, except EOB, we terminate at the extremum of the P-approximant

energy function [132]. In the case of EOB, the waveform is terminated at the end

of the quasi-normal ringing.

3.4 Frequency evolution

The quantity that determines the evolution of a binary, its phasing and the

duration for which it lasts starting from a particular frequency, is the acceleration of

the bodies under radiation reaction. Equivalently, it is the evolution of the derivative

of the gravitational wave frequency Ḟ = dF/dt, which determines the phasing of the

waves. When the separation between the bodies is large, the frequency evolution

is slow and the quantity [30] ε(t) = ḞF−2, which measures the fractional change

in the frequency over a period, is small: ḞF−2 � 1. As the binary evolves, this
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quantity increases but, as seen in numerical evolutions, remains finite and positive

all the way up to the merger of the two bodies. In what follows we will explore

the behaviour of ε as a function of the PN parameter v rather than t, because the

former parameter is (mass) scale free, unlike the latter.

Computing the adiabaticity parameter ε(v) in the case of TaylorT1 and Tay-

lorT4 is straightforward using Eqs. (3.5b) and (3.6). In the case of TaylorT2, one

differentiates Eq. (3.8b) with respect to v and then takes its reciprocal. Finding ε(v)

in the case of TaylorEt is more involved. The frequency F is given by Eq. (3.13a)

but the right hand side is a function of ζ. One must, therefore, combine Eqs. (3.13a)

and (3.13b) to find the derivative of the frequency:

πḞ = π
dF

dζ

dζ

dt
=

d

dζ

(
dφ

dt

)
dζ

dt
. (3.28)

The above equation still gives Ḟ as a function of ζ. One can then use Eq. (3.11) to

get ε(v). Consequently, there is no guarantee that v will be monotonic in the region

of interest. However, we do find that the function εEt(v) is positive in the region

of interest and therefore v increases monotonically for TaylorEt. To find ε(v) for

TaylorT3, Ḟ is given by differentiating Eq. (3.10b) with respect to t (recall θ = θ(t))

and then one uses the same equation to find v = (πMF )1/3 at a given t. It turns

out that for TaylorT3 the function εT3 can become negative in the region of interest

(exactly when this happens depends on the PN order and mass ratio) and so v does

not generally increase monotonically.

Figure 3.1, left panel, plots ε(v) for two values of the mass ratio: ν = 0.10 and
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Figure 3.1: On the left hand panel the plots show the evolution of frequency in
different PN families. The adiabaticity parameter ε(t) ≡ F−2Ḟ is essentially the
same for all the different approximations at v � 1 As the binary gets close to
coalescence the various approximations begin to differ from each other. The right
hand panel shows the adiabaticity parameter for the TaylorT3 model as a function
of time t at 3.5PN order. Note that εT3(t) begins to decrease and even becomes less
than zero before v reaches its nominal value of 1/

√
6. This leads to waveforms that

are significantly shorter in the case of TaylorT3.

ν = 0.25. When v is small (v � 1/
√

6) ε(v) for the different approximants is the

same. Therefore, in systems for which v remains small when the signal is in band

(as, for example, in a binary neutron star), the different approximants, as we shall

see in the next Section, agree well with each other. As v approaches 1/
√

6, different

approximations tend to differ greatly, which means we cannot expect good agreement

between the different PN families. Of the approximants considered here, TaylorEt

seems to have the smallest value of ε(v) at any given v. Therefore, the evolution will

be slower, and the duration of the waveform from a given frequency larger, than

the other approximants [37]. TaylorT3 also differs from all others because ε(v)

becomes negative before the last stable orbit, and so v does not generally increase

monotonically for this approximant. This behavior can be seen at 2PN and 3.5PN

orders in the left panel of Fig. 3.1. The reason for this can be seen in Fig. 3.1,
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Figure 3.2: Schematic plot of distance (or mismatch) relation between templates
and exact, numerical and EOB waveforms.

right panel, where we have shown the time development of εT3(t) for two values of

ν = 0.10, 0.25. Since Ḟ becomes negative before reaching the last stable orbit, the

waveform has to be terminated before before v reaches 1/
√

6.

3.5 Effectualness

The goal of this study is to compare the different PN approximations by mea-

suring their mutual effectualness (i.e., overlaps maximized over intrinsic and ex-

trinsic parameters) for a number of different mass pairs. To this end it will be

very useful to define the scalar product of waveforms. Given waveforms hk and qk,

k = 0, . . . , N − 1, where hk is the kth sample of the signal h(t) at time tk = k∆,

∆ = 1/fs being the sampling interval corresponding to the sampling rate fs, their
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scalar product is defined by8

〈h, q〉 (τk) = 2
N−1∑
m=0

[HmQ
∗
m +H∗mQm] e−2πimk/N ∆f

Sh(fm)
(3.29)

where ∆f = fs/N, fm = m∆f , τk = k∆ is the lag of the template — a measure of

the relative time-shift between the template and signal, Hm = ∆
∑N−1

k=0 hk e
2πimk/N

is the discrete Fourier transform of h(t) (similarly, Qm) and Sh(fm) is the one-sided

noise power spectral density of a detector. In comparing two waveforms the overall

amplitude is of no interest and we should, therefore, consider waveforms with unit

norm, namely ĥ = h/
√
〈h, h〉. Consequently, the relevant quantity is the scalar

product between normalized waveforms defined by

O[h, q] =
〈
ĥ, q̂

〉
(3.30)

3.5.1 Maximization of the overlaps

The signal and the template both depend on a set of parameters of the source

(e.g., masses and initial spins of the component masses) and its orientation relative

to the detector. We shall be concerned with binaries with non-spinning components

on quasi-circular orbits. Such systems are characterized by two intrinsic parameters,

namely the masses m1 and m2 of the components, and two extrinsic parameters,

namely the time-of-coalescence tC and the phase of the signal at that time φc. The

8It is conventional to define the scalar product in the continuum limit. Here, however, we
have given the definition for a discretely sampled data and this is the expression that is used in
computing the overlaps.
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overlap integral, therefore, depends on the parameters of the signal and the template

and the relevant quantity is the overlap maximized over these parameters.

The data analysis problem is concerned with digging out a specific signal

buried in noisy data. This means that the parameters of the signal are fixed but

the data analyst is at liberty to maximize over the parameters of the template. In

this paper we will explore the effectualness of templates; that is to say the overlap

maximized over a template’s parameters keeping those of the signal fixed. We will

do this for several choices of the component masses of the binary. However, the time-

of-coalescence tC and the phase φC of the signal at that time, are arbitrarily chosen

to be equal to zero. A caveat is in order concerning the value of the effectualness

arising as a result of our choice of tC and φC : the maximized overlap is not very

sensitive to our choice of tC but it could vary by several percents depending on the

choice of a signal’s phase, especially when the signal and the template families are

not very close in the geometrical sense.

Maximization over a template’s masses is carried out using a bank of templates

and the template bank is set up such that for all signals of the same family as the

template their best overlap with the nearest template is larger than a certain value

called the minimal match MM. Our template placement is as in Ref. [179], which

is known to produce, with probability close to 1 [179], matches larger than the

minimal match for the TaylorT1, TaylorT3, TaylorF2 and EOB families of signals

(and templates) for the range of masses considered in this paper. We have checked

this to be true also for TaylorEt and TaylorT4 families.

We have used a minimal match of MM = 0.99 in all cases. Maximization over
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time-of-coalescence is accomplished by looking at the overlap integral at different

lags τk. Finally, since our templates are of the form hk = Ak cos(φk + φ0), where φ0

is an unknown constant phase offset, maximization over φ0 can be achieved by using

two quadratures of the template, h0
k = Ak cos(φk) and h

π/2
k = Ak cos(φk + π/2) :

max
φ0

O[h, q] =
[〈
h0, q

〉2
+
〈
hπ/2, q

〉2
]1/2

. (3.31)

When the signal and the template belong to the same family the maximized overlap

is at least MM. When the waveforms belong to different families the maximized

overlap is less than MM.

Our approach to finding the effectualness of a template with a signal of “fixed”

parameters is here somewhat different from what is normally followed in the litera-

ture, but more appropriate in the context of data analysis. In the literature on the

comparisons of different PN models, one normally measures either the best or the

minimax overlap [132]. The best overlap gives the maximum of the overlap over the

masses and tC but maximized over the constant phases of both the signal and the

template. On the other hand, the minimax overlap is the overlap maximized over

the masses and tC but minimized over the constant phases of the signal and the

template. As mentioned earlier, we fix the phase of the signal to be equal to zero

and hence our effectualness is, in principle, smaller than best overlaps but larger

than minimax overlaps. The difference between the best and minimax overlaps is

tiny when the effectualness is intrinsically large (i.e., close to 1), but could differ by

5− 8% when the best overlap is ∼ 0.8. This should be kept in mind while interpret-
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ing our results. Moreover, as mentioned earlier, instead of numerically searching for

the maxima of the overlap in the space of masses we just use a grid of templates

with a minimal match of MM = 0.99.

We will compute effectualness between every possible template and signal. If

our template is the PN approximation A and the signal is the PN approximation B

then we are interested in computing the matrix εAB defined by

εAB ≡ max
λA
O[hA(λA), hB(λB)], (3.32)

where λA and λB are the parameters of the template and the signal, respectively. The

overlap is symmetric in its arguments hA and hB only if the signal and template,

together with their parameters, are interchanged. That is, O[hA(λA), hB(λB)] =

O[hB(λB), hA(λA)] but, in general, O[hA(λA), hB(λB)] 6= O[hA(λB), hB(λA)]. There-

fore, the maximized overlap εAB need not be symmetric. The process of maximiza-

tion, in which the parameters of the “signal” are kept fixed and those of the “tem-

plate” are varied, breaks down the symmetry. The lack of symmetry arises primarily

because the signal manifolds MA,B representing the two families are distinct; the

nearest “distance” from a coordinate point P on MA to a point on MB need not

be the same as the nearest distance from P on MB to a point on MA.

3.5.2 Effectualness, faithfulness and loss in event rates

A direct measure of the efficiency of a template bank is the loss of event

rates due to differences between the template family and the exact signal. The loss
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of event rates is determined by two factors: the effectualness of the templates in

matching the exact waveforms and the minimal match of the template bank itself.

In this section, we will quantify this relation.

In Fig. 3.2 9 we sketch a portion of the waveform space. The solid line repre-

sents the template family subspace. Dots represent various waveforms: (i) hTmplt(x1)

and hTmplt(x2) are two neighboring templates in the template bank with physical

parameters x1 and x2; (ii) hTmplt(x0) and hTmplt(x
′
0) are waveforms in the same

family as the templates to be chosen as discussed below; (iii) he(x0), hNR(x0) and

hEOB(x0) are exact, numerical and EOB waveforms of the same physical parameters

x0, respectively. [The EOB waveform is calibrated to the numerical simulation.] We

choose x′0 such that the overlap between hTmplt(x1) and hTmplt(x
′
0) is the minimal

match (see below) of the template bank. We choose x0 such that he(x0) is the

exact waveform that has larger overlap with hTmplt(x
′
0) than with any other wave-

forms in the template family. This overlap is larger than the one between he(x0)

and hTmplt(x0) even though they have the same physical parameters, because of

the systematic difference between the family of exact waveforms and the family of

templates.

We define the distance in the waveform space between two waveforms h and

q by the scalar product
√

1−O[h, q]. For convenience, we define the mismatch

to be the square of the distance. The overlap between hTmplt(x1) and hTmplt(x
′
0) is

the minimal match and we denote the corresponding mismatch by dMM = 1−MM.

Similarly, 1 − dE and 1 − dF are the effectualness and faithfulness of the template

9This figure is very similar to Fig. 3 of Ref. [140].
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family with the exact waveform he(x0), respectively. The mismatch between he(x0)

and the closest template hTmplt(x1) quantifies the reduction in signal-to-noise ratio

when the template bank is used to search for the exact waveform. We denote this

mismatch by dER. When these mismatches are small, by Pythagorean theorem, we

have an the approximate relation dER ' dMM + dE. Assuming uniform spatial dis-

tribution of sources, the reduction in event rate is 1− (1−dER)3 ' 3dER. Therefore,

if we want to satisfy the usual requirement of < 10% loss in event rate, we need

dER = dMM + dE < 3.5%. Typical minimal match adopted in current searches has

either dMM = 3% or dMM = 1%, which means, in the first case, an extremely rigorous

requirement on the effectualness: dE < 0.5%, or in the second case, a reasonable

requirement of dE < 2.5%. The latter is achievable by PN models. Note that, if

both the minimal match of a template bank and the effectualness of the template

model are 97%, the loss in event rate rises to 17%.

However, it is not possible to calculate dER since we do not know the exact

waveform he(x0). In this paper, we adopt two strategies to estimate dER: (i) we

calculate the mutual effectualness of PN models for low-mass binaries and assume

it to be a good representation of their effectualness with exact waveforms; (ii) we

approximate he(x0) with the EOB waveform hEOB(x0) calibrated to the numerical

simulations. We can verify the goodness of the latter assumption as follows. The

mismatch between the best EOB waveforms [156, 155] and the numerical waveforms

is less than 10−3. In Ref. [156], the authors calculated the mismatch among accu-

rate numerical waveforms generated by simulations with different resolutions and/or

extraction schemes, as well. They found that the mismatch is less than 10−4. We
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consider the latter as an estimate of the mismatch between exact and numerical

waveforms. In the worst case, the mismatch between the exact and EOB wave-

forms with the same physical parameters is roughly (
√

10−3 +
√

10−4)2 = 1.7×10−3.

Therefore, we can conclude that by approximating he(x0) with hEOB(x0). we under-

estimate the loss of event rate by at most 0.5%.

Notice that the effectualness result presented in the following sections is slightly

different from 1−dE. It is obtained through discrete searches over template parame-

ters using template banks with MM = 0.99 rather than through continuous searches.

Therefore, the mismatch associated with this effectualness result includes already

the discreteness effect in the template banks, i.e. a mismatch d
(0)
MM = 0.01. In

this case, if a search is carried out with a template bank of a different minimal

match, say MM= 1 − dMM = 0.97, to calculate the loss of event-rate, a mismatch

of dMM − d(0)
MM = 0.02, instead of dMM, needs to be added to the effectualness result

in this paper, i.e. dER = dMM − d
(0)
MM + dE. The only exception in this paper is

the effectualness result between EOB models presented in the Conclusions which is

obtained through a continuous search.

3.5.3 Choice of binary systems and PN orders

We have chosen three conventional systems, binary neutron stars (BNS), bi-

nary black holes (BBH) and binary neutron star-black hole systems, but we have

chosen the BNS and BBH systems to be slightly asymmetric, (1.38, 1.42)M� and

(9.5, 10.5)M� but NS-BH is chosen to be the conventional (10, 1.4)M� system.
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To this we have added another binary with component masses (4.8, 5.2) which lies

on the border line between where most PN families are similar to one another and

where they begin to differ.

We compute overlaps maximized over a template bank between seven different

models (TaylorT1, TaylorT2, TaylorT3, TaylorT4, TaylorF2, TaylorEt, EOB), each

at three different PN orders (v4, v6, v7). The results will be presented in the form of

a set of Figures. For each mass pair there will be one Figure consisting of 9 panels

(one panel for each PN order), each panel containing seven curves (one each for each

template family at that order) and each curve with 21 data points corresponding to

signals from the seven PN families at each three different PN orders, 2PN, 3PN and

3.5PN.

3.6 Results of the effectualness of PN templates

We will present the results of our investigation in two complementary ways.

We will first discuss the effectualness of the different PN families with each other.

Such an analysis will help us understand how “close” the various families of PN

approximants are at different PN orders in regard to the construction of detection

templates. We then go on to look at the effectualness of the different approximants

with the EOB signal that contains not only the inspiral but also the merger and

ringdown parts. The goal of the latter analysis is to identify the region in the

parameter space where one can safely use any PN approximant template in a search,

without worrying about the loss in signal-to-noise ratio that might arise due to our
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Figure 3.3: The plot shows the effectualness of templates and signals of different
post-Newtonian familes and orders for four different binary systems for Initial LIGO.
For a template from a given PN approximation (indicated by different line styles and
symbols) and order (top panel 3.5PN, middle panel 3PN and bottom panel 2PN)
we compute the effectualness of each of the templates with signals from each of
the seven families, TaylorT1 (T1), TaylorT2 (T2), TaylorT3 (T3), TaylorT4 (T4),
TaylorF2 (F2), TaylorEt (Et) and Effective-One-Body (EOB), at 2PN, 3PN and
3.5PN orders. For instance, solid lines with filled circles give the effectualness of
TaylorT1 templates at 3.5PN (top panel), 3PN (middle panel) and 2PN(bottom
panel) PN orders, with signals that belong to different PN approximations and
orders. In clockwise order the panels from top left correspond to binaries consisting
of two neutron stars, with masses 1.38M� and 1.42M�, two black holes with masses
4.8M� and 5.2M�, two black holes with masses 9.5M� and 10.5M� and, finally, a
neutron star and a black hole binary with component masses 1.4M� and 10M�.
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lack of knowledge of the real signal, but without expending undue computational

resources. Outside this region, however, one must use template families that are

calibrated to waveforms obtained from numerical relativity simulations.

3.6.1 Mutual effectualness of various PN Inspiral template

banks

The effectualness of the different PN families with each other is shown in

Figs. 3.3 (Initial LIGO) and 3.4 (Advanced LIGO) for four different systems with

component masses as indicated at the top of each sub-figure. In each sub-figure, the

top panels correspond to the effectualness of different template families at 3.5PN

order, middle panels to 3PN order and bottom panels to 2PN order. For each

template family considered we find their overlap with signals from different PN

orders (as indicated along the x-axis) and approximants (as indicated by the text T1,

T2, etc.). Each symbol corresponds to the overlap obtained by a different template

family: (black) circles to TaylorT1, (red) squares to TaylorT2, etc., with signals

from different PN families. Note that we have used the logit scale10 for the vertical

axis. This is so that (minor) disagreements between the different approximants are

made clearly visible. Note that since we are considering systems with low total

mass, say ≤ 20M�, in this section we use the EOB model terminated at the EOB

light ring, that is we do not include the merger and ringdown parts.

Conventionally, one says that two approximants A and B are in close agree-

10Recall logit(p) = log
(

p
1−p

)
.
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Figure 3.4: Same as Fig. 3.3 but for Advanced LIGO.
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ment with each other if their mutual effectualness εAB is 0.965 or greater [30].

Though we shall mildly relax this target a bit to 0.95 for ease of presentation,

we shall also indicate in Sec. 3.7, the region of the parameter space where the effec-

tualness is better than 0.965, but we shall also quote regions where the effectualness

drops to a low value of 0.9. The latter should be helpful for data analysis pipelines

that employ a multi-stage hierarchical search, the first stage of which deploys a

coarse grid of templates.

These figures reveal many different aspects of the (dis)agreements between the

different approximants at PN orders 2PN, 3PN and 3.5PN and we shall principally

highlight in our discussion the “diagonal” behaviour, i.e. overlaps of each template

family with a signal family from the same PN order. Focusing first on the Initial

LIGO results (Fig. 3.3), we see the evidence for the clustering of the various ap-

proximants at 3PN and 3.5PN orders for systems with a smaller total mass. In

the case of BNS with component masses (1.38, 1.42)M�, 2PN “diagonal” overlaps

are dispersed between 0.74 to 1, 3PN and 3.5PN overlaps are all above 0.95, with

TaylorEt having the smallest overlaps.

In the case of BBH with component masses (4.8, 5.2)M�, 2PN overlaps are

between 0.8 and 1, 3PN overlaps are all greater than 0.95 except TaylorEt, 3.5PN

overlaps are greater than 0.95 for all except TaylorEt, TaylorT3 and EOB. There

are several important points to note: As discussed in Sec. 3.4, TaylorT3 terminates

somewhat prematurely before reaching the last stable orbit. Therefore, one expects

to have poorer overlaps for all templates if TaylorT3 signal terminates in band,

which will be the case for systems with a total mass greater than about 10M�.
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The asymmetry in the overlaps mentioned in Sec. 3.5.1 is apparent in the case of

TaylorEt: The overlaps of all templates with TaylorEt signal is greater than the

converse, namely the overlaps of the TaylorEt templates with other signals. The

smaller overlaps of the EOB templates (terminated at the light ring) is not surprising

given the very different termination frequencies of the two families and the fact that

the EOB waveform has power in the band beyond the last stable orbit.

In the case of NS-BH with component masses (1.4, 10)M�, 2PN “diagonal”

overlaps are distributed between 0.6 and 1, 3PN and 3.5PN overlaps are consistently

above 0.95 except for TaylorEt signals (both orders) and TaylorT3 (at 3.5PN).

In the case of BBH with component masses (9.5, 10.5)M�, there is no agree-

ment between approximants irrespective of the PN order. In this sense, one cannot

trust using any particular approximant as a search template.

Let us now turn to Fig. 3.4 which depicts the results for Advanced LIGO noise

power spectral density. In the case of BNS with component masses (1.38, 1.42)M�,

the 2PN “diagonal” overlaps are between 0.4 and 1 (note that some of the data points

are below the scale of 0.5 that we employ). The 3PN (except TaylorEt signal) and

3.5PN (except TaylorT3 template and TaylorT3 and TaylorEt signals) overlaps are

uniformly larger than 0.95. The effectualness of all templates with TaylorEt signal

is generally smaller (0.6-0.8) than the effectualness with a TaylorEt template. In

the case of BBH with component masses (4.8, 5.2)M�, the 2PN overlaps could be

as small as 0.65. At 3PN, all approximants (except TaylorEt templates) and 3.5PN

(except TaylorEt and TaylorT3 templates) the overlaps are 0.95 or greater. In the

case of NS-BH with component masses (1.4, 10)M�, the 2PN overlaps are as low
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Figure 3.5: Percentage bias in the estimation of the total mass M and symmetric
mass ratio ν at 3.5PN order. Left two columns are for Initial LIGO and the right
two for Advanced LIGO. The bias ∆M/M is defined as ∆M = (1−MTmplt/MSgnl) ,
where MSgnl and MTmplt denote the total mass corresponding to the signal and the
template that obtained the maximum effectualness, respectively (and similarly for
ν). What is plotted is percentage bias. The bias arises because the template family
(as indicated in the key) is different from that of the signal family (as indicated in
the top left panel as T1, T2, etc.).

as 0.4. At 3PN and 3.5PN, the overlaps are larger than 0.95 except in the case

of TaylorEt signals (3PN, 3.5PN) and TaylorT3 templates (3.5PN). In the case of

BBH with component masses (9.5, 10.5)M�, the 2PN overlap could be as low as

0.7. The overlaps are larger than 0.95 at 3PN except in the case of EOB templates

and TaylorEt and EOB signals. Finally, at 3.5PN order the different approximants

are seen not to agree with each other very well. The cause of these features is the

same as our discussion for Initial LIGO.

We conclude with some brief remarks on the “non-diagonal” cases displayed

in the two figures. The asymmetric roles of signal and template arising from the
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maximisation is obvious from the different panels. From the panels for 2PN signals

and 3PN (3.5PN) templates for systems involving neutron stars it is interesting to

see that higher PN order approximant templates do not necessarily lead to higher

effectualness. One can also read off whether 3PN templates are as effective as the

3.5PN templates for various systems and various detectors. The figures condense a

variety of such insights and may be useful to look at specific issues when required.

3.6.2 Discussion

In the case of binary neutron stars, the merger occurs far outside the sensitive

band of the detector and even the late stages of inspiral is out of band. Binary

neutron stars will very much be in the adiabatic regime as the signal sweeps through

the band and a good test of the PN approximation is to ask how well the different

waveforms agree with one another in this regime. The finite bandwidth of the

detector essentially probes this regime for binary neutron stars. Note that the

effectualness amongst different PN families at 2PN order is pretty poor but greater

than 0.95 (with the exceptions discussed earlier) at 3PN and 3.5PN orders. In the

case of Advanced LIGO (cf. Fig. 3.4), the lower frequency cutoff used in computing

the overlap integrals is 20 Hz and a binary neutron star spends more than 750 cycles

in band. Effectualness of 0.95 or greater means that the waveforms remain in phase

over the entire duration of the signal. Of course, in reality the parameters of the

signal and the template are not the same, but even so this is a remarkable success

of the PN scheme.
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Figure 3.6: Overlaps of different 3.5PN approximants with the EOB inspiral-merger-
ringdown signal in Initial LIGO in the (m1 − m2)M� plane. The approximants
considered from left-to-right are TaylorT1, TaylorT2, TaylorT3 (top panels), and
TaylorT4, TaylorF2, TaylorEt (bottom panels). The contours correspond to overlaps
of 0.75, 0.9, 0.95 and 0.965.

For a BBH system with masses (4.8, 5.2)M�, we see that 2PN and 3PN order

templates are qualitatively similar to the binary neutron star case. However, we

can see a marked deterioration of the effectualness at 3.5PN order. For a system of

total mass of 10M�, the Schwarzschild LSO occurs at ∼ 440 Hz and the detector

is sensitive to the late stages of the inspiral phase. It is not entirely surprising,

therefore, that different PN orders do not agree with each other to the same extent as

in the binary neutron star case. However, note that, with the exception of TaylorT3,

which terminates at a frequency somewhat lower than others, and TaylorEt, all other

templates have effectualness of 0.95 or better with each other. Among approximants

that agree with each other, EOB has the smallest effectualness. This is because the

latter model contains the plunge phase of the coalescence with ending frequencies
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far higher than the LSO while other approximants do not have the plunge phase.

The LSO of a BBH with component masses (9.5, 10.5)M�, is at ∼ 220 Hz

and the plunge phase spans 220 Hz to about 600 Hz. Therefore, the detector is

pretty sensitive to the late phases of the coalescence. We see deterioration of the

effectualness, both at 3PN and 3.5PN orders. Apart from TaylorT3, whose poor

overlaps at 3.5PN are explained by the early termination of the signal, the EOB

stands out by achieving overlaps as low as 0.92 with other families.

As a final example, the effectualness of templates for a signal from a neutron

star-black hole binary of masses (1.4, 10)M�, we see that the different PN families,

including the EOB, are in good agreement with each other, with the sole exception

of TaylorEt. In fact, the closeness amongst different families seems to be somewhat

better than the BBH system of component masses (9.5, 10.5)M�.

At this juncture, it is worth pointing out that our numerical results for effec-

tualness in the subset of cases where TaylorEt is chosen as the signal model, are

consistent with those in Ref. [158], which investigated the fitting factors to ascertain

if 3.5PN TaylorEt signals could be effectually and faithfully searched by TaylorT1,

TaylorT4 and TaylorF2 templates. There is agreement too on the general features of

our results with regard to systematic biases, the dependence on the total mass and

qualitative factors underlying them. However, this agreement of numerical results

for faithfulness and effectualness in no way extends to the general motivation and

claims regarding the TaylorEt approximants [35, 158, 37] and, hence, are worth

clarifying.

Indeed, there is no basis to refer to the x-based orbital phasing equation
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Eq. (3.5a) as Newtonian [37], since the ω here is nPN accurate (depending on

the PN-generation order one is working at) and implicitly incorporates conserva-

tive contributions to GW phase evolution at various PN orders. It is incorrect to

claim [158] that conservative contributions to the GW phase evolution do not appear

in the standard approximants, or that the TaylorEt-based scheme treats conserva-

tive and radiation-reaction contributions more equitably than the standard x-based

approximants. It is misleading [158] to refer to only TaylorEt-based approximants

as “fully gauge invariant in contrast to EOB” (especially in the circular orbit case).

All x-based schemes are also fully gauge invariant. Finally, one may work in specific

convenient coordinate systems as do EOB and numerical relativity simulations, as

long as one deals with and compares gauge invariant quantities at the end.

In our view, the very different behaviour of the TaylorEt approximant relative

to the standard x-based approximants may be traced to the manner in which the

orbital phasing is “packaged” in the two schemes. In the x-based schemes the

orbital phasing is implicitly in a resummed form, since the phasing is written in an

appropriate PN-accurate angular velocity ωnPN (n = 2, 3 for 2PN, 3PN templates).

On the other hand, the representation in terms of ζ, relative to the x schemes,

is a re-expanded form. And indeed, based on the comparison between analytical

schemes and numerical relativity simulations, the ζ schemes do relatively worse. The

feature related to the monotonic-convergence of the TaylorEt scheme is of secondary

importance in comparison to the main requirement of high phasing accuracy of an

analytical model with numerical relativity simulations over all mass-ratios.

A few general comments are in order before we conclude this Section. We
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do not believe that at present there are convincing theoretical reasons to consider

any one particular PN family of inspiral models to be a privileged signal model.

Consequently, the best that one can do is to examine the mutual closeness of these

various inspiral models, as we have done, and work at the PN order where these

various template families display the greatest agreement. It is precisely in this

regard that the viewpoint we present here differs from those in [35, 158, 37] which

assumes primacy for one specific approximant, namely the TaylorEt approximant,

based on theoretical motivations that at present do not appear to be fundamental or

compelling. Consequently, though there is no difference in the numerical results in

the subset of cases that are common in our investigations, there is a big difference

in the conclusions that we believe can be inferred. For instance, before one can

legitimately decide on the inability of standard template banks in the gravitational

data pipeline to detect signals from binaries with eccentricity [37], it is necessary

to first fold in the differences in the simpler quasi-circular case arising on account

of different parametrizations. Similar considerations should be borne in mind when

dealing with analogous problems in the spinning case.

Based on the analysis presented heretofore, we conclude that the mutual effec-

tualness of different families of PN approximants are close to each other (i.e. more

strongly clustered) at 3PN and 3.5PN orders11, as long as the total mass is less than

about 12M� (with the exceptions discussed in the previous Section).

11We find that the overlaps of the full EOB model obtained with the Virgo design PSD are very
similar to those obtained for Advanced LIGO PSD for all Taylor models. The only differences are
in the case of the EOB model cutoff at light ring where overlaps obtained with the Virgo PSD are
smaller by a few percent. Needless to add, that the situation for a space detector like LISA can
be expected to be even more different and interesting to study.
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Figure 3.7: Same as Fig. 3.6 except that the noise spectral density is that of Ad-
vanced LIGO. The contours correspond to overlaps of 0.9, 0.95 and 0.965.

For heavier binaries, the approximants begin to differ considerably, and this is

almost entirely because the adiabatic approximation begins to breakdown and the

plunge and the merger phases become more and more important. Hence, in the next

Section we will supplement the present analysis by looking more precisely into the

overlaps of the different PN templates with a prototype of the more complete signal

model, namely the EOB model, including the merger and ringdown parts.

3.6.3 Biases in the estimation of parameters

Recall that, in the computation of the effectualness one maximizes the scalar

product of a (normalized) signal with a template over the parameters of the template

keeping those of the signal fixed. Therefore, one can get an idea of how dissimilar

the parameters of an approximant need to be in order to match a given signal.
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This is a systematic effect that leads to a bias in the estimation of parameters if the

template approximant is not the same as the signal approximant. Let the total mass

of the signal and template waveforms be, respectively, MSgnl and MTmplt, when the

scalar product is maximized. The percentage bias ∆M in the total mass is defined

as ∆M = 100(1−MTmplt/MSgnl), and similarly for the symmetric mass ratio ν.

For a given binary, the biases are qualitatively similar for Initial and Advanced

LIGO noise power spectral densities. In general, the biases are appreciably smaller

at 3PN and 3.5PN orders than at 2PN order and progressively increase with the

total mass, although they are far larger than the statistical errors computed using

the Fisher information matrix [138]. Figs. 3.5 plots the percentage biases in the

total mass M and symmetric mass ratio ν at 3.5PN order. The left two (right

two) columns use the Initial LIGO (Advanced LIGO) noise spectral density. For

the four systems considered, namely (1.38 , 1.42)M�, (4.5 , 5.2)M�, (1.4 , 10)M�,

and (9.5 , 10.5)M� binaries, the largest bias in the total mass M is 1%, 20%, 20%

and 20%, respectively, and the symmetric mass ratio ν is 1%, 25%, 70% and 25%,

respectively.

3.7 Results of the effectualness of PN templates with the

full waveform

Having established the mutual closeness of the different families of PN approx-

imants at 3PN and 3.5PN orders (for determining effectual templates for detection)

in the regime where the approximation is expected to be valid, let us now examine
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the region in the parameter space where PN families can be used as search tem-

plates. To achieve this goal we will use the EOB model calibrated to numerical

relativity simulations [54]. For brevity, we have omitted plots of the effectualness of

the 3PN approximants with this EOB model; they are quite similar to the 3.5PN

plots.

Although Ref. [54] explored the agreement between the EOB model and nu-

merical simulations for several modes, in this study we will work with only the

dominant harmonic (i.e., the h22 mode) at leading PN order. Higher-order ampli-

tude corrections are known to be important for parameter estimation [166, 167] and

a future study must repeat this investigation with the full waveforms.

Fig. 3.6 shows the effectualness of the six PN families TaylorT1, TaylorT2,

TaylorT3 (top panels, respectively from left to right), TaylorT4, TaylorF2, and

TaylorEt (bottom panels, respectively from left to right) for Initial LIGO noise

power spectral density. Fig. 3.7 shows the same but for Advanced LIGO noise

power spectral density. The effectualness was computed using a hexagonal template

bank [179] and is shown as a gray-scale map in the space of the component masses

that are taken to vary from 3M� to 14.5M�. For all the maps we have chosen the

gray-scale to vary from 0.76 to 1. The dotted contours show effectualness at three

values: 0.965, 0.95 and 0.90.

The trends of the overlaps is rather similar irrespective of which noise power

spectral density we use, although the actual overlaps are systematically smaller in

the case of Advanced LIGO as compared to Initial LIGO. This is due to the broader

frequency sensitivity of the former in relation to the latter. The following discussion
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is, therefore, applicable in both cases.

Let us first note some peculiarities. TaylorT3 at 3.5PN leads to particu-

larly ineffectual templates. As mentioned before, TaylorT3 at 3.5PN terminates

rather prematurely. The LSO defined by the Schwarzschild potential is at fLSO ∼

(440/10M�) Hz, but TaylorT3 at 3.5PN approximants terminate at∼ (220/10M�) Hz.

This discrepancy is so large that even with the biases in the component masses al-

lowed in the computation of the effectualness (recall that we maximize the overlap

over template masses), which, in principle, makes it possible for a template of a

lower mass to match a signal of a higher mass, TaylorT3 is unable to achieve good

overlaps. This is because a mismatch in the component masses can make a template

more, or less, asymmetric than the signal, which has the effect of increasing, or de-

creasing, the duration of the template relative to the signal. While small differences

in the ending frequencies can be achieved by a mismatch in the total mass without

affecting the signal duration too greatly, large differences cannot be compensated

by such a mismatch in the parameters.

At 3PN and 3.5PN the effectualness of TaylorEt with a EOB signal for a bi-

nary of component masses (3, 10)M� [respectively, (10, 10)M�] is 0.83 and 0.90

[respectively, 0.87 and 0.89]. This is because amongst all PN approximants Tay-

lorEt seems to converge far slower than any other. Further, an examination of the

coefficients in the PN terms of the phasing formulas in Eqs. (3.13) indicates that

higher order PN terms have increasingly greater coefficients. In general, it has been

observed that the appearance of such larger coefficients in higher order terms of an

approximant scheme inevitably worsens its convergence and the present instance
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may be no exception to this case12.

A final observation: some of the models, TaylorT1 in particular, have lower

overlaps along the m1 = m2 or ν = 1/4 line. A similar feature has been observed

in other cases in the past [147] and can be traced to more limited possibilities

in maximisation over ν in the equal mass case. For unequal mass systems one can

explore template ν values both smaller and larger than the signal ν values. Certain

template families might agree better with the “exact” signal only for template ν

values larger than the signal ν value. However, for equal mass configurations we are

already on the boundary ν = 1/4 and if we are constrained to only physical values

of template ν, one can only admit values of ν smaller than 1/4.

With the exception of the peculiarities noted above, we see that all approxi-

mants do progressively better at higher PN orders. Conclusions drawn in the pre-

vious Section with regard to the mutual closeness of the different families of PN

approximants are further corroborated here where we have measured the overlaps

with a signal that is matched to numerical relativity simulation, which can, there-

fore, be taken to be close to what a real signal might be.

Computationally, TaylorF2, with its phasing formulas given explicitly in the

Fourier domain, is the least expensive. This is because matched filtering is most eas-

ily carried out in the Fourier domain, which means that a time-domain approximant

must be Fourier transformed before computing the cross correlation. By employing

TaylorF2 models one can avoid one forward Fourier transform. Moreover, TaylorF2

12While comparing the coefficients it may be useful to note that v ' 1/
√

6 corresponds to ζ in
the range of 0.136-0.138 depending on the symmetric mass ratio ν and the PN order.
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offers the flexibility in the choice of the ending frequency. Unlike the time-domain

models, which have either a natural ending frequency defined by the extremum of

the binding energy or the frequency evolution stops before reaching LSO, TaylorF2

has no such restriction. In fact, as obtained in Refs. [147, 148], by extending the

upper cutoff beyond the usual upper cutoff (i.e., the Schwarzschild LSO), the Tay-

lorF2 model matches remarkably well with numerical relativity waveforms for a far

greater range of masses. However, as noted in Ref. [148] the ending frequency

that must be employed in order to achieve the best match with numerical-relativity

waveforms depends on the noise power spectral density. This could turn out to be

an unnecessary computational burden in a data analysis pipeline. The alternative is

to choose the upper frequency cutoff as an additional search parameter or allow un-

physical values of ν > 0.25 [147, 158, 148] or to include a p4PN term in the template

phase and calibrate it to numerical simulations [147]. The first two choices would

result in an unwarranted increase in the computational cost of a search as also in

the false alarm rate, and we advice against it. The third choice could be pursued,

but it should be augmented by a more complete description of the merger/ringdown

signal — for example by introducing a slope break in the waveform amplitude and

a superposition of Lorentzians [147, 105]

If a search requires the minimal match to be much smaller than 0.95 (as, for

example, in a hierarchical search) one can extend a search with TaylorF2 to a total

mass of 20M� with effectualness of 0.90.

Before advanced detectors begin to operate, there will be a period when LIGO

and Virgo will operate with sensitivities slightly larger than, but bandwidths similar
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to initial detectors – the so-called Enhanced LIGO and Virgo+. Since Virgo and

Virgo+ are expected to have a sensitivity bandwidth similar to Advanced LIGO

the results presented in this paper are qualitatively similar to in those cases too.

Moreover, as our results are only sensitive to the bandwidth, conclusions drawn

by using the noise spectral density of Initial LIGO will also be valid for Enhanced

LIGO.

All approximants (no exceptions) achieve an effectualness of 0.95 or better at

3PN and 3.5PN orders, for binaries whose total mass is less than about ∼ 12M�.

From the view point of effectualness alone, we conclude that searches for binary

black holes, in Initial, Enhanced and Advanced LIGO, could employ any of the 3PN

or 3.5PN families as long as the total mass is smaller than about ∼ 12M�. The final

choice of the PN family should be based on other criteria. If it is desired that the

minimal match of a template bank is 0.965 or greater, then the best strategy would

be to use the full EOB waveform calibrated to numerical relativity.

Another criteria to be considered is the computational cost. A typical matched

filter search in LIGO data must compute thousands of template signals for every

2048 second data segment. This can be a heavy burden if it takes a significant

amount of time to compute each template. The EOB templates are computed in

the time domain by solving a set of differential equations, and the frequency domain

signal is then computed via Fourier transform. For low-mass systems this cost can

become significant and will of course vary depending on the implementation and

hardware used.

We have estimated the cost to compute TaylorF2 and EOB templates using
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their implementation in the LAL code used for matched filtering searches in LIGO

data. We find that for a total mass ≥ 40M�, the EOB templates take a factor of 2

longer to generate than the same TaylorF2 signals. For a (10, 10)M�, (5, 5)M� and

(1.4, 1.4)M� binary, the EOB templates take about a factor of 3, 7 and 20, longer

to generate, respectively. We tested the waveform generation on a high performance

computer with 32 2.7 GHz CPUs and 132 GB of RAM. On this system, EOB

templates with a total mass ≥ 40M� can be generated in about 0.1s, while the

(10, 10)M� EOB template could be generated in about 0.5s. Since LIGO searches

employ thousands of CPUs, this is feasible. However, for lower mass signals, the time

needed grows rather quickly and about 4s are needed to compute the (1.4, 1.4)M�

EOB template. It may be possible to reduce the computational cost somewhat by

optimizing the EOB waveform generation code, but the lowest mass templates would

almost certainly still have a significant computational cost. Thus, the increased

computational cost must be weighed against the benefit of increased effectualness

for lower mass signals.

3.8 Faithfulness

For completeness, we also report on the faithfulness of the different PN ap-

proximants with respect to one another. The faithfulness is the overlap between

normalized template and signal approximants when maximizing only over the time

and phase at coalescence, tC and φC . In Tables 3.2 and 3.3, we list the faithfulness

for each pair of PN approximants at their highest PN order, that is 3.5PN order,
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Table 3.2: Faithfulness of different approximants for (1.42, 1.38)M� (top panel) and
(5.2, 4.8)M� (bottom panel) binaries. The rows label template approximant, while
the columns label signal approximant. For each pair, the top number is Initial LIGO
while the bottom number is Advanced LIGO. All approximants are at 3.5PN order,
except our EOB model which has a p4PN coefficient.

EOB T1 T2 T3 T4 Et F2

EOB 1 .969 .994 .997 .990 .970 .994
1 .971 .996 .998 .991 .974 .996

T1 .969 1 .982 .981 .987 .928 .982
.971 1 .984 .983 .990 .920 .984

T2 .994 .982 1 .998 .999 .958 1.00
.996 .984 1 .999 .999 .961 1.00

T3 .997 .981 .998 1 .997 .959 .998
.998 .983 .999 1 .998 .961 .999

T4 .990 .987 .999 .997 1 .950 .999
.991 .990 .999 .998 1 .949 .999

Et .970 .928 .958 .959 .950 1 .958
.974 .920 .961 .961 .949 1 .961

F2 .994 .982 1.000 .998 .999 .958 1
.996 .984 1.000 .999 .999 .961 1

EOB T1 T2 T3 T4 Et F2

EOB 1 .916 .974 .938 .981 .888 .970
1 .877 .973 .928 .978 .841 .968

T1 .916 1 .974 .926 .964 .784 .975
.877 1 .955 .892 .947 .653 .957

T2 .974 .974 1 .949 .993 .861 .993
.973 .955 1 .932 .994 .775 .995

T3 .938 .926 .949 1 .943 .925 .944
.928 .892 .932 1 .926 .876 .930

T4 .981 .963 .993 .943 1 .854 .995
.978 .947 .994 .926 1 .766 .996

Et .888 .785 .861 .925 .854 1 .852
.841 .653 .775 .876 .767 1 .770

F2 .970 .975 .993 .944 .995 .853 1
.968 .957 .995 .930 .996 .770 1
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except for the EOB model which uses a p4PN order coefficient, for both Initial and

Advanced LIGO and for each of our reference binaries.

In the first row and column of the left panel of Table 3.2, notice that every

approximant has an overlap of at least 0.97 with the EOB model for both Initial

and Advanced LIGO. That all approximants have good agreement for a low mass

binary without searching over mass parameters is further evidence that the 3.5PN

approximants are rather close to one another during the adiabatic inspiral. Note

that the T2, T3, T4 and F2 approximants all have a faithfulness ≥ 0.99 with the

EOB model, while the T1 and Et approximants have somewhat worse agreement at

about 0.97. For each pair, the faithfulness for Initial and Advanced LIGO are quite

similar for these low mass binaries.

In the right panel of Table 3.2, we increase the total mass to 10M� while

keeping the mass ratio nearly equal. The faithfulness drops for every pair of ap-

proximants as the merger begins to enter the sensitive band. Recall that for these

masses, all pairs of approximants can achieve an effectualness of at least 0.95 by

searching over the mass parameters. When we fix the masses, the T2, T4 and F2

approximants still have very good agreement with the EOB model, with faithfulness

of 0.97−0.98. The EOB-T3 faithfulness has degraded somewhat to 0.93−0.94, and

the Et and T1 approximants have rather poor agreement with the EOB model with

faithfulness in the range 0.84 − 0.92. Note that the faithfulness is typically lower

for Advanced LIGO than for Initial LIGO. We attribute this to the signals having a

longer duration (and thus more time to accumulate a phase difference) in Advanced

LIGO’s wider sensitivity band.
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In the left panel of Table 3.3, we increase the total mass to 20M� while again

keeping the mass ratio nearly equal. Once again, the faithfulness drops for all cases

as the merger and ringdown become more important. The T4 and F2 approximants

have the best agreement with EOB, they are the only approximants to achieve an

overlap greater than 0.9 with EOB. The overlap between T3 and EOB has dropped

dramatically to 0.65 and 0.72 for Initial and Advanced LIGO respectively.

The right panel of Table 3.3 gives the faithfulness for each approximant pair for

an asymmetric (10, 1.4)M� binary. The EOB-F2 faithfulness is very good at 0.99.

The T1 and T2 approximants also have good agreement with the EOB model with

faithfulness 0.96− 0.98. The T3 and T4 have poor agreement with the EOB model

with faithfulness 0.80− 0.86. For this mass pair, the Et approximant has very poor

agreement with all of the others, the faithfulness is ≤ 0.60 for every approximant

except T3.

We see a clear trend of decreasing faithfulness as the total mass of the binary

increases. This is due to the late inspiral, merger and ringdown moving into the

sensitive band and becoming more important for higher mass binaries. The faith-

fulness is typically lower for Advanced LIGO than Initial LIGO due to its broader

sensitive band. The faithfulness can vary with mass ratio. For example, for the

(10, 1.4)M� binary, the T1 and T2 approximants have a better faithfulness with

the EOB model than the T4 approximant. However, for the nearly equal mass bi-

naries, the T4 approximant has the greater faithfulness with the EOB model. The

TaylorF2 approximant is generally the most faithful to the EOB aproximant, with

one of the highest overlaps in each case. This is another argument for using Tay-
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Table 3.3: Same as Table 3.2 but for (10.5, 9.5)M� (top panel) and (10, 1.4)M�
(bottom panel) binaries.

EOB T1 T2 T3 T4 Et F2

EOB 1 .877 .882 .650 .923 .860 .910
1 .811 .864 .721 .910 .775 .889

T1 .877 1 .972 .712 .970 .817 .982
.811 1 .955 .785 .943 .638 .966

T2 .882 .972 1 .742 .968 .886 .959
.864 .955 1 .831 .969 .784 .959

T3 .650 .712 .742 1 .707 .716 .709
.721 .785 .831 1 .794 .782 .790

T4 .923 .971 .968 .707 1 .906 .986
.910 .943 .970 .794 1 .785 .988

Et .859 .817 .886 .716 .906 1 .845
.776 .639 .784 .783 .785 1 .707

F2 .909 .982 .959 .708 .985 .846 1
.889 .967 .959 .790 .988 .706 1

EOB T1 T2 T3 T4 Et F2

EOB 1 .977 .973 .817 .859 .526 .990
1 .959 .972 .801 .797 .413 .993

T1 .977 1 .972 .796 .805 .508 .991
.959 1 .954 .753 .691 .398 .978

T2 .973 .972 1 .835 .894 .543 .980
.972 .954 1 .820 .834 .430 .976

T3 .817 .796 .835 1 .851 .778 .818
.801 .753 .820 1 .841 .631 .798

T4 .859 .805 .894 .851 1 .595 .852
.797 .691 .834 .841 1 .456 .779

Et .526 .508 .543 .778 .595 1 .525
.413 .398 .430 .631 .456 1 .411

F2 .990 .991 .980 .818 .852 .525 1
.993 .978 .976 .799 .779 .411 1
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lorF2 templates in the mass regime where EOB templates are too computationally

expensive to be employed in a matched filtering search.

3.9 Conclusions

In this paper we have examined the mutual effectualness of the different fam-

ilies of PN approximants with the view to validating their closeness for use in the

construction of search templates for compact binaries in Initial, Enhanced and Ad-

vanced LIGO. We considered seven different approximants, each at three different

PN orders, a total of 21 waveforms in all. We computed the effectualness of each of

the waveforms with every other at 2PN, 3PN and 3.5PN orders by using a template

bank constructed with a minimal match of 0.99 and Initial and Advanced LIGO

noise power spectral densities. Our results from a sample of four binaries show that

different PN approximations are consistent with one another at 3PN and 3.5PN

order. They begin to differ only when the mass becomes so large that the plunge

phase, not contained in standard PN waveforms in the adiabatic approximation,

enters the detector band.

The above conclusion is best summarized by Fig. 3.8, where we plot the

effectualness of the various PN approximants (except for TaylorT3 and TaylorEt

that we recommend be discarded, since we have shown that not only do they differ

considerably from the others but importantly have poorer overlaps with EOBNR

waveforms) with an EOB inspiral-merger-ringdown signal as a function of the total

mass of the binary. These plots are convenient for identifying the Mcrit above which
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the PN approximants begin to differ with one another. We find that any of the

above approximants could be used as detection templates with less than a 10% loss

in event rate up to a total mass of 12M� for both Initial and Advanced LIGO.

Note that this value of Mcrit is limited by the equal-mass case, as the value of Mcrit

corresponding to a 10% loss in event rate is somewhat greater for mass ratios of

4:1 and 10:1.4. We attribute this result to asymmetric binaries accumulating more

signal at low frequencies than in the equal-mass case. Thus, for a fixed total mass,

the merger and ringdown are less important for asymmetric binaries than for equal-

mass binaries. Therefore, we conclude that we can safely use any of the above 3.5PN

families as search templates to detect binaries whose total mass is less than about

12M�. However, purely from the point of view of computational burden TaylorF2 is

the least expensive and we recommend that TaylorF2 at 3.5 PN order be deployed as

search templates below a total mass of 12M�. It is quite remarkable to note that up

to a total mass of 30M�, the uncalibrated EOB model at 3.5PN order is rather close

to the calibrated EOB inspiral-merger-ringdown signal. In fact, Ref. [154] found

a phase difference of only 0.05 rads after 30 GW cycles, at roughly 3 GW cycles

before merger between the EOB at 3.5PN order and the highly accurate equal-mass

numerical waveform of Caltech/Cornell collaboration.

For systems with total mass larger than about 12M�, TaylorF2 at 3.5PN might

be effectual if the upper cutoff frequency is artificially extended to a higher frequency.

However, this might require a tweaking of the upper frequency cutoff depending on

the noise spectral density of the detector [148] and the mass ratio of the system,

and either the extension to unphysical values of ν [147, 148] or the inclusion of
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Figure 3.8: Effectualness (left y-axis) and the corresponding loss in event rate (right
y-axis) of 3.5PN approximants with the EOB inspiral-merger-ringdown signal cal-
ibrated to numerical relativity in Initial LIGO (top panel) and Advanced LIGO
(bottom panel) as a function of total mass for 1:1, 4:1 and 10:1.4 mass ratios. The
EOB curve is the effectualness between the uncalibrated 3.5PN EOB model contain-
ing only the inspiral and the calibrated inspiral-merger-ringdown EOB signal. Note
that any of these approximants are suitable for detection templates below a total
mass of about 12M� for both Initial LIGO and Advanced LIGO, provided a 10%
loss of event rate is deemed acceptable.
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a p4PN term in the template phase [147] calibrated to the numerical simulations.

We believe that a better alternative for heavier systems are the EOB templates

calibrated to numerical relativity simulations [149, 147, 150, 54, 151, 152, 153, 154,

155, 156]. The most recent EOB models are in near perfect agreement with the most

accurate numerical simulations to date, although only a small number of systems

corresponding to different mass ratios have been studied so far. Nevertheless, a

physical model with physically meaningful parameters is a far safer bet as search

templates unless, of course, if the model in question is not in agreement with the

waveform predicted by numerical relativity. So far, the EOB is the best physical

model we have and this is what we recommend be used to search for binaries with

masses greater than about 12M�.

In this paper we adopted the preliminary, fiducial EOB model of Ref. [54],

because it is the EOB model currently available in LAL and it is used for searches

by Initial LIGO. For completeness, here we quantify the closeness between the EOB

model used in this paper and a most recent improved version of the EOB model [156]

(which is similar to the one of Ref. [155]). The latter was calibrated to longer

and more accurate numerical waveforms generated by the Caltech/Cornell pseudo-

spectral code [180]. Reference [156] found that the faithfulness of the improved EOB

model to these highly accurate numerical waveforms is better than 0.999. In Table

3.4, we show both the faithfulness and the effectualness of the EOB model [54] to

the improved EOB model [156] using noise spectral densities of Initial LIGO, as well

as the bias in the parameters M and ν when achieving the effectualness. The search

for effectualness in this test is done continuously in the parameter space, instead
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Table 3.4: Effectualness and faithfulness of the EOB fiducial model [54] used in
this paper (and currently employed by Initial LIGO) to the most recently improved
EOB model [156]. We also show the bias in the parameters M and ν when achieving
the effectualness. For each pair, the top number is Initial LIGO while the bottom
number is Advanced LIGO. The sign of the bias is such that in all cases the fiducial
EOB templates slightly overestimate the total mass M and underestimate the mass
ratio ν of the improved EOB signal.

Effectualness ∆M/M ∆ν/ν Faithfulness

(1.4, 1.4)M� 0.999 0.98% -1.63% 0.992
0.999 0.98% -1.63% 0.995

(1.38, 1.42)M� 0.999 0.96% -1.60% 0.992
0.999 0.89% -1.49% 0.995

(5, 5)M� 0.997 1.32% -2.12% 0.973
0.999 2.06% -3.47% 0.976

(4.8, 5.2)M� 0.999 2.42% -4.08% 0.973
0.999 2.11% -3.54% 0.976

(10, 10)M� 0.999 2.70% -4.62% 0.974
0.999 2.59% -4.39% 0.962

(9.5, 10.5)M� 0.998 1.40% -1.94% 0.974
0.997 2.67% -4.54% 0.964

(15, 15)M� 0.995 4.80% -9.98% 0.987
0.999 2.49% -4.23% 0.973

(25, 25)M� 0.995 4.95% -12.6% 0.982
0.994 3.00% -5.56% 0.985

of using a template bank. Although there is some systematic trend in the numbers

due to the difference in the EOB models, the main result is that the faithfulness

and the effectualness are always better than 0.97 and 0.995, respectively. Assuming

the numerical waveforms of Ref. [156] are exact, the EOB model of Ref. [54] used

in this paper is accurate for detection purpose with a loss of event rates of ∼ 10%,

and may cause ∼ 10% bias in estimating the mass parameters.

In this study we considered PN waveforms in the so-called restricted PN ap-
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proximation. Restricted waveforms contain only the second harmonic of the orbital

frequency. Inclusion of other harmonics is necessary, especially when a binary is

arbitrarily oriented with respect to a detector and the component masses are dis-

similar. Recent studies [166, 167] have shown the tremendous advantage of including

these other harmonics in the GW templates. Therefore, it is necessary that a future

effort undertakes a study similar to this, but includes all the amplitude corrections.

Furthermore, Ref. [157] has shown that by supplementing the PN results by the

available test particle results up to 5.5PN improves the match between the EOB

models and numerical relativity simulations. This can be expected to lead to fur-

ther improvements in the results obtained here in the future.
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Chapter 4

Higher-order spin effects in the amplitude and phase of

gravitational waveforms emitted by inspiralling compact

binaries: Ready-to-use gravitational waveforms

Authors: K.G. Arun, Alessandra Buonanno, Guillaume Faye and

Evan Ochsner1

Abstract: We provide ready-to-use time-domain gravitational waveforms for spinning compact bi-

naries with precession effects through 1.5PN order in amplitude and compute their mode decompo-

sition using spin-weighted −2 spherical harmonics. In the presence of precession, the gravitational-

wave modes (`,m) contain harmonics originating from combinations of the orbital frequency and

precession frequencies. We find that the gravitational radiation from binary systems with large

mass asymmetry and large inclination angle can be distributed among several modes. For example,

during the last stages of inspiral, for some maximally spinning configurations, the amplitude of

the (2, 0) and (2, 1) modes can be comparable to the amplitude of the (2, 2) mode. If the mass

ratio is not too extreme, the ` = 3 and ` = 4 modes are generally one or two orders of magnitude

smaller than the ` = 2 modes. Restricting ourselves to spinning, non-precessing compact binaries,

we apply the stationary-phase approximation and derive the frequency-domain gravitational wave-

1Originally published as Phys. Rev. D 79 104023 (2009)
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forms including spin-orbit and spin(1)-spin(2) effects through 1.5PN and 2PN order respectively in

amplitude, and 2.5PN order in phase. Since spin effects in the amplitude through 2PN order affect

only the first and second harmonics of the orbital phase, they do not extend the mass reach of

gravitational-wave detectors. However, they can interfere with other harmonics and lower or raise

the signal-to-noise ratio depending on the spin orientation. These ready-to-use waveforms could

be employed in the data-analysis of the spinning, inspiralling binaries as well as in comparison

studies at the interface between analytical and numerical relativity.
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4.1 Introduction

Coalescing compact binaries made of neutron stars and/or black holes can

produce gravitational waves (GW) strong enough to be detected by ground-based

interferometers, such as LIGO [181], Virgo [182] and GEO [183], operating in the

frequency range 10–104 Hz. Moreover, supermassive BH binaries could be observed

at lower frequencies 10−5–10−1 Hz and up to cosmological distances by the proposed

laser space-based antenna LISA [184]. For detection purposes, matched filtering is

applied to noisy data in order to extract any signals that match members of the

template bank [185, 186, 187].

Gravitational waves produced during the long inspiral phase can accurately

be modeled by the post-Newtonian (PN) approximation to general relativity [188].

As the BHs approach each other and their velocities increase, the PN expansion is

expected to become less and less reliable. Late in the evolution, non-perturbative

information contained in NR simulations and PN-resummed methods [40], as well as

perturbation theory need to be taken into account in building analytical templates

for inspiral, merger, and ringdown. In this chapter we shall limit the discussion to

the inspiral phase of coalescing BHs.

In constructing templates for detecting inspiralling signals, it is recommended

to account for all physical effects which contribute significantly to the gravitational

waveform. Those produced by the spins of the binary constituents are among the

most important ones, especially for asymmetric compact binaries [189], such as

NS-BH binaries [190], and BH-BH binaries with component masses (m1,m2) ∈
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[5, 15]M� × [1, 5]M�. For detecting such systems, one may be able to employ phe-

nomenological methods which capture the essential features of spinning, precessing

waveforms [59]. However, parameter extraction [89, 90, 191] would warrant the in-

clusion of as much information about the spins of the binaries as possible, so that

one should employ physical templates [192, 193, 78] at the highest PN order for this

purpose.

For non-spinning compact binaries, the GW phase evolution has been com-

puted through 3.5PN order [194, 195, 196, 24, 197] and the h+ and h× polarizations

are available through 3PN order [198, 199, 200, 201, 27]. For spinning, precessing bi-

naries, the GW phase evolution is known through 2.5PN order [85, 86] for spin-orbit

couplings, and through 2PN order [202] for spin-spin couplings (spin(1)-spin(1) and

spin(2)-spin(2) contributions have been obtained in Refs. [87, 88]). Spin-orbit and

spin(1)-spin(2) effects in the h+ and h× polarizations were computed through 1.5PN

and 2PN order, respectively, in Refs. [83, 84]. 2 More recently, the spin(1)-spin(2)

contributions at 3PN order in the conservative two-body dynamics were found em-

ploying either effective-field theory techniques [204, 205, 206, 207] or the Hamiltonian

formalism of Arnowitt, Deser and Misner [208, 209, 210]. Now, spin(1)-spin(1) and

spin(2)-spin(2) effects at 3PN order in the conservative two-body dynamics are also

available [211]. For including those higher-order spin effects in the GW phase evo-

lution and polarizations, the results [211, 206, 207, 208, 210] need to be extended

to the non-conservative dynamics, notably to the GW energy flux.

2Note that spin-orbit effects through 2PN order in the h+ and h× polarizations were calcu-
lated in Ref. [203]. However, Ref. [86] pointed out that a few multipole moments were computed
incorrectly there.
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The importance of using templates that have amplitude corrections beyond

the leading PN order (henceforth referred to as Newtonian approximation 3) was

emphasized by different authors in the context of ground-based [212, 213, 214, 116]

and space-based detectors [215, 216, 217, 218, 219, 220, 221], both for detection

and parameter estimation. So far, the effect of spins and precession on parameter

estimation was studied in Refs. [222, 223, 224, 191], but those studies were limited

to non-spinning and Newtonian GW polarizations [198, 199, 200].

In this chapter we provide ready-to-use h+ and h× polarizations in time domain

for spinning, precessing binaries through 1.5PN order. The actual computation of

the gravitational waveform hij through 1.5PN order was done by Kidder [83], as

well as Will and Wiseman [84], but the ready-to-use h+ and h× polarizations at

1.5PN order were only written explicitly for strictly circular orbits for which spins

are aligned with the orbital angular momentum. Recently, Ref. [225] has obtained

the time-domain GW polarizations for generic orbits through 1.5PN order in the

binary’s comoving frame. The h+ and h× polarizations derived in the present paper

for spinning, precessing binaries through 1.5PN order reduces to that of Refs. [84, 83]

in the aligned case except for a few typographical errors which we correct.

In view of future studies at the interface between analytical and numerical

relativity [48, 226, 227, 228, 229, 230, 231, 62, 60, 61, 63, 232] we decompose the

time-domain h+ and h× polarizations in spin-weighted −2 spherical harmonics and

compute the modes, h`m, to 1.5PN order. We then consider spinning, non-precessing

3Note that the leading PN order in the polarization amplitude is proportional to 1/c4 when one
turns the fundamental constants on. However, being the leading term in a PN expansion, it is has
become common to call it Newtonian.
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binaries for which we derive the Fourier domain representation of the generated

gravitational waveform within the stationary phase approximation. We provide

a very compact way of writing the Fourier transforms of h+ and h× which can

readily be used for data analysis, for comparisons with numerical simulations, or

for building analytical frequency-domain templates including inspiral, merger and

ringdown [233, 234]. The impact of spinning, precessing waveforms for parameter

estimation will be investigated in a future paper.

The remainder of the paper is organized in the following way. In Sec. 4.2 we

draw the source and detector frames, and introduce conventions and notations. In

Sec. 4.3 we provide ready-to-use h+ and h× polarizations in time domain for nearly

circular orbits. The polarization modes h`m with respect to the spin-weighted −2

spherical harmonics are derived in Sec. 4.4. The features of the modes when spins

are present is then discussed in Sec. 4.5. Section 4.6 focuses on spinning, non-

precessing binaries. We compute there the Fourier domain waveforms with spin

effects through 2PN order in the amplitude and 2.5PN order in the phase before

discussing the main features caused by higher harmonics. Finally, we summarize in

Sec. 4.7 our main conclusions. Appendices A and B present the GW polarizations

and modes for precessing binaries on nearly circular orbits through 1.5PN order

for generic inclination angles, whereas Appendix C shows the PN coefficients of

the center-of-mass energy and radiative energy flux for non-precessing, spinning

binaries. Appendix D gives explicitly the frequency domain amplitude coefficients

with non-spin terms to 2.5PN and spin terms to 2PN order.
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4.2 Source frame, polarization and parameter conventions

To obtain the GW polarizations, it is useful to express the gravitational strain

tensor, hij, in an appropriate source frame. Next, one specifies an orthonormal

polarization triad composed of the direction of propagation N̂ and two polarization

vectors P̂ and Q̂ which are used to construct the GW polarizations from the strain

tensor [5]:

h+ =
1

2
(P i P j −QiQj)hij , (4.1)

h× =
1

2
(P iQj +Qi P j)hij . (4.2)

The gravitational strain measured by a detector is then given by

hstrain(t) = F+ h+(t) + F× h×(t) , (4.3)

where F+ and F× are the antenna response functions that describe the detector’s

sensitivity to the two different polarizations. For laser interferometers with arms at

a right angle, such as the LIGO and Virgo detectors, the antenna response functions

for a GW coming from the sky location (θ̄, φ̄) in the spherical coordinate grid built

from the arm basis, with polarization angle ψ̄, are [5]

F+ =
1

2
(1 + cos2 θ̄) cos 2φ̄ cos 2ψ̄ − cos θ̄ sin 2φ̄ sin 2ψ̄ , (4.4)

F× =
1

2
(1 + cos2 θ̄) cos 2φ̄ sin 2ψ̄ + cos θ̄ sin 2φ̄ cos 2ψ̄ . (4.5)
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Note that the strain measured in a given instrument, hstrain(t), is the same regardless

of convention, whereas the wave polarizations depend on the choice of polarization

vectors. Different choices of P̂ and Q̂ give different polarizations, but there is a

compensating rotation of the polarization angle ψ̄ so that hstrain(t) is unchanged4.

Here, we follow the convention of Refs. [84, 199], in which

P̂ =
N̂× J0

|N̂× J0|
, Q̂ = N̂× P̂ , (4.6)

where J0 is the unit vector along the initial total angular momentum of the binary.

In the absence of precession, the Newtonian orbital angular momentum LN = µr×v

(with r, v, and µ being the binary separation vector, velocity, and reduced mass,

respectively) is parallel to J0. In this case, P̂ coincides with the ascending node

where the orbital separation vector crosses the plane of the sky from below. In the

presence of precession, P̂ is still defined as N̂× J0/|N̂× J0|, but it is not in general

the point where the orbital separation vector ascends through the plane of the sky5.

For our source frame, we construct an adapted orthonormal basis (x̂, ŷ, ẑ) (see

Fig. 4.1). We take the z-axis to be along J0 and the direction of GW propagation,

N̂, to lie in the x–z plane, tilted by an angle θ from the z-axis towards the x-axis.

We describe the direction of the Newtonian orbital angular momentum with the

4This can be seen explicitly from the relation linking hstrain(t) to the complex polarization h(t)
introduced in Eq. (4.40): hstrain = <

[
h e2iΨ̄(e2iφ̄ cos4(θ̄/2) + e−2iφ̄ sin4(θ̄/2))

]
. The reader can

easily check the equivalence with Eqs. (4.3), (4.4) and (4.5).
5Note that Ref. [83] chooses polarization vectors rotated by π/2 relative to ours. This results in

an overall sign difference from our polarizations, as can be seen by making the substitutions P̂→ Q̂
and Q̂ → −P̂, or by noting that GWs are spin-2 objects and flip sign under a π/2 rotation. As
mentioned, the polarization angle of this convention is then rotated by π/2 relative to ours. This
flips the sign of the antenna response functions as well, and so the same strain (4.3) is measured
by either convention.
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spherical coordinate angles (ι, α), where ι denotes the angle between the orbital

angular momentum and the z-axis while α is the angle between the x-axis and the

projection of the orbital angular momentum onto the x–y plane. For precessing

binaries, as these angles vary in time, one must solve the precession equations to

find their evolution. Notice that this source frame is the same as used in Ref. [83],

and depicted in Fig. 2 of that paper.

We also find it useful to define basis vectors for the instantaneous orbital plane.

These vectors have an implicit time dependence through the angles (ι, α), and rotate

about L̂N as it precesses. Here are their components in the (x̂, ŷ, ẑ) source basis:

x̂L =
J0 × L̂N

|J0 × L̂N|
= (− sinα , cosα , 0 ) , (4.7)

ŷL = L̂N × x̂L = (− cos ι cosα ,− cos ι sinα , sin ι ) . (4.8)

As an initial condition, we take the orbital separation vector n̂ to lie along x̂L at

initial time, i.e., n̂(t = 0) = x̂L(t = 0). Then, we define the phase Φ(t) to be the

cumulative angle between x̂L(t) and n̂(t).

n̂(t) = x̂L(t) cos Φ(t) + ŷL(t) sin Φ(t) , (4.9)

λ̂(t) = −x̂L(t) sin Φ(t) + ŷL(t) cos Φ(t) . (4.10)

We thus see that the phase Φ(t) measures how n̂ has rotated relative to the vector

x̂L. However, for a precessing binary, x̂L is itself rotating about L̂N. This means

that the total rotation of n̂ about L̂N can be decomposed as a rotation of n̂ in the
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Figure 4.1: We show (i) our source frame defined by the orthonormal basis (x̂, ŷ, ẑ),
(ii) the instantaneous orbital plane which is described by the orthonormal basis

(x̂L, ŷL, L̂N), (iii) the polarization triad (N̂, P̂, Q̂), and (iv) the direction of the total
angular momentum at initial time J0. Dashed lines show projections into the x–y
plane.

comoving basis parametrized by Φ(t) times a rotation parametrized by a precession

phase due to the movement of the orbital plane itself. In the non-precessing case

we have J0 || L̂N and Φ(t) is expected to become the standard orbital phase whose

time derivative is the orbital frequency. However, when J0 || L̂N holds, we cannot

define Φ = 0 for n̂ = J0 × L̂N/|J0 × L̂N|, and we set Φ = 0 at the ascending node

N̂× L̂N = P̂, where the orbital separation crosses the plane of the sky from below.

Now, Φ = 0 at the ascending node is achieved for x̂L = n̂ and P̂ = n̂, hence α = π,

so that the non-precessing regime is reached in the limit where ι = 0 and α = π for

all time. This is applicable when the spins of the bodies are aligned or anti-aligned

with the orbital angular momentum (or in the non-spinning limit). The waveforms

are then greatly simplified.
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We define the following mass parameters

M = m1 +m2 , (4.11)

ν =
m1m2

(m1 +m2)2
, (4.12)

M = M ν3/5 , (4.13)

δ =
m1 −m2

m1 +m2

, (4.14)

ν =
1

4
(1− δ2). (4.15)

They are the total mass M , the symmetric mass ratio ν, the fractional mass dif-

ference δ, the chirp mass M. The symmetric mass ratio is bounded according to

0 < ν ≤ 1/4 and the fractional mass difference satisfies −1 < δ < 1.

The spin of a rotating compact body is of the order S ∼ ml vspin with

l ∼ Gm/c2. If the compact body is maximally rotating, then vspin ∼ c and

S ∼ χGm2/c. In words, from the PN point of view, the spin is formally of or-

der 0.5PN. By contrast, if the compact body is slowly rotating, then vspin � c, and

the spin is formally of higher PN order, S ∼ χGm2 vspin/c
2 ∼ 1/c2. Throughout

the paper, we use geometrical units where G = c = 1. Henceforth, we shall work

with the spin vectors normalized by the component masses as

χn =
Sn
m2
n

, n = 1, 2 , (4.16)

so that |χn| ≤ 1 for objects that obey the Kerr bound on rotational angular mo-

mentum. We also define symmetric and anti-symmetric spin combinations as in
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Ref. [84],

χs =
1

2
(χ1 + χ2) , (4.17)

χa =
1

2
(χ1 − χ2) . (4.18)

4.3 Ready-to-use gravitational-wave polarizations for pre-

cessing binaries on circular orbits through 1.5PN order:

Small inclination angles

The expression of the strain tensor hij for generic orbits through 1.5PN order

was derived in Refs. [194, 84] and is given by Eq. (6.11) of Ref. [84]. In this section

we compute ready-to-use polarizations in time domain through 1.5PN order within

the adiabatic regime where the binary inspiral is modeled as a quasi-stationary se-

quence of orbits assumed to be nearly circular. By nearly circular, we essentially

mean an orbit that would be exactly circular, with separation vector r0 of constant

radius r0, in the absence of spins and gravitational radiation. The perturbation of

the separation δr of such a motion is assumed to remain small with respect to r0 on

timescales on which the radiation-reaction effects can be neglected. This can only

happen when the precession angles are at most of the same order of magnitude as

the relative corrections induced by the spins in the dynamical quantities. Now, the

evolution of δr is governed by the radial part of the 1.5PN perturbation of the force

per mass unit given in Eq. (2.1) of Ref. [83]. It turns out that this perturbation

depends on the spin exclusively through the two projections (Sn · L̂N) with n = 1, 2
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which are almost constant apart from remainders that will contribute at higher or-

ders in our weak precession hypothesis. In order to write the equation for δr, we

project the relative acceleration a in the basis {n̂, λ̂, L̂N}. For the sake of conve-

nience, we introduce an “orbital”-like frequency ωorb, defined as ωorb = (v · λ̂)/r.

The closure relation yields the following decomposition for v and a:

v = ṙn̂ + ωorbrλ̂ ,

a = (r̈ − rω2
orb)n̂ + (rω̇orb + 2ṙωorb)λ̂− rωorb

(
λ̂ · dL̂N

dt

)
L̂N , (4.19)

with ṙ ≡ dr/dt. Splitting a into an unperturbed part a0 plus a perturbation δa

and using the equations of motion, we find finally that δr satisfies the equation δr̈+

ω2
0δr = const. where ω0 is the constant angular frequency of the background motion.

A particular solution is given by a constant perturbation, δr = const., whereas the

homogeneous solution satisfies an harmonic oscillator equation independent of the

spin.

By making the particular choice of a zero homogeneous solution, we can always

eliminate the oscillations of r that are not directly linked to the non-zero spins of

the BHs. Based on these observations, we shall define precisely a nearly circular

motion to be a perturbed circular motion whose homogeneous radial perturbation

solution (δr)hom is zero, as it would be for an exactly circular motion6. Assuming

such a dynamics for our binary system implies that both δr and r = r0 + δr must

be constant, provided we neglect higher order spin terms and radiative effects. We

6Though this type of motion can exist and is more general than the spin-aligned or anti-aligned
case, it does not necessarily represent yet the most likely evolution to be observed.
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can generalize nearly circular motions to the case where spin precession angles are

arbitrary in the absence of spin-spin interactions. This is achieved by introducing

the concept of spherical motion defined as a motion having a constant separation r.

It immediately follows from Eq. (4.19) that the full (conservative) acceleration is still

of the form −ω2
orbrn. Moreover, when radiation-reaction effects are neglected, the

orbital frequency computed from the 1.5PN equations of motion keeps being almost

constant [202, 83], even for precession angles that are no longer small. This can be

seen [85] by noticing that the only possible non-constant terms in ωorb at the 1.5PN

order come from the leading spin contribution of the equations of motion, and thus,

are of the form (Sn·L̂N). Their time derivative reads (dL̂N/dt·Sn)+(L̂N·dSn/dt). The

first term is zero due to the precession equation dSn/dt = Ωn×Sn, while the second

term is a higher order correction quadratic in spins because of the approximate

conservation of L̂N . The treatment of the spin-spin dynamics is more delicate. A

possible way to proceed consists in averaging the time dependent spin contributions

in ωorb over one orbital period [83, 235].

Introducing the invariant velocity,

v ≡ (Mωorb)1/3 , (4.20)

we reduce Eq. (6.11) of Ref. [84] to nearly circular orbits and expand it in powers

of v with the help of the relativistic extension of Kepler’s law linking ωorb and M/r
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provided by Eq. (7.1) of Ref. [84]. Schematically, we obtain

hij =
2M ν v2

DL

[
Qij + P1/2Qij v +

(
P1Qij + P1QSO

ij

)
v2

+
(

P3/2Qij + P3/2Qtail
ij + P3/2QSO

ij

)
v3
]

TT
, (4.21)

where SO indicates the spin-orbit terms; the tail integral P3/2Qtail
ij given by Eq. (6.11e)

of Ref. [84] reads

P3/2Qtail
ij = 4

[
π(λ̂iλ̂j − n̂in̂j) + 12 ln

(
v

v0

)
λ̂(in̂j)

]
TT

, (4.22)

v0 being an arbitrary numerical constant reflecting the freedom in the choice of the

radiative time origin. The symbol TT on the square bracket indicates the transverse

trace-free projection in the plane orthogonal to the direction N̂ of the observer. We

remind the reader that the non-spinning contributions to Eq. (4.21) are known

through 3PN order [201, 27].

Apart from the spins, there are four vectors that appear in the expressions for

the PnQij’s in Eq. (4.21). In the source frame constructed in Sec. 4.3, they have the

following (x, y, z) components

n̂ = (− sinα cos Φ− cos ι cosα sin Φ , cosα cos Φ− cos ι sinα sin Φ , sin ι sin Φ) ,

(4.23)

λ̂ = (sinα sin Φ− cos ι cosα cos Φ , − cosα sin Φ− cos ι sinα cos Φ , sin ι cos Φ) ,

(4.24)
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N̂ = (sin θ , 0 , cos θ) , (4.25)

L̂N = (sin ι cosα , sin ι sinα , cos ι) , (4.26)

where Φ is the phase defined in Eq. (4.9) that measures how n̂ has rotated relative to

the vector x̂L. As x̂L is itself rotating about L̂N for a precessing binary, the orbital

frequency, or the total angular velocity of n̂ about L̂N, is the angular velocity of

the motion of the binary within its instantaneous orbital plane, plus a precession

velocity due to the movement of the orbital plane itself. To derive the relationship

between the phase Φ(t) and the orbital phase (or carrier phase), we compute the

derivative of n̂(t) by means of Eqs. (4.7), (4.9), obtaining

dn̂

dt
=

(
dΦ

dt
+ cos ι

dα

dt

)
λ̂ +

(
dι

dt
sin Φ− sin ι cos Φ

dα

dt

)
L̂N . (4.27)

By imposing L̂N = n̂×v/|n̂×v| = n̂×dn̂/dt/|n̂×dn̂/dt|, and using Eq. (4.23) as well

as Eq. (4.26), we find that the term proportional to L̂N in Eq. (4.27) must be zero.

Thus, we have dn̂/dt = ṙr/r2 + ṙ/r ≡ (v · λ̂)λ̂, where v · λ̂ is the orbital frequency

ωorb defined before Eq. (4.19), which may be now interpreted as the angular velocity

with which n̂ rotates about L̂N. Identification with Eq. (4.27) leads to the relation

ωorb = Φ̇ + cos ι α̇ ; (4.28)
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the phase Φ(t) being simply the integral

Φ(t) =

∫ t

0

[ωorb(t′)− cos ι(t′) α̇(t′)] dt′ . (4.29)

Due to the freedom in the choice of the time origin by the radiative observer, hij

depends on an undetermined time scale or, equivalently, on an arbitrary reference

orbital frequency ω0. The constant ω0 is actually associated to the presence of

gravitational-wave tails and appears solely in logarithms of the form ln(ωorb/ω0).

Such contributions may be absorbed in the orbital phase by a redefinition of Φ

into a shifted phase Ψ [198]. Through 1.5PN order in the shift, we can pose Ψ =

Φ − 2v3 ln(ωorb/ω0). By plugging Eqs. (4.23)–(4.26) into Eq. (4.21), taking the

combinations given in Eq. (4.1), and collecting terms by powers in v, we obtain the

waveform polarizations

h+,× =
2M ν v2

DL

[
H

(0)
+,× +H

(1/2)
+,× +H

(1/2,SO)
+,× +H

(1)
+,× +H

(1,SO)
+,× +H

(3/2)
+,× +H

(3/2,SO)
+,×

]
.

(4.30)

The Newtonian, 0.5PN and 1PN order terms were already computed explicitly in

Refs. [83, 84] [see in particular Eqs. (B2), (B3) of Ref. [83]], but as a series expansion

of M/r rather than v. Let us list for the reader convenience a few typographical

errors we found there. In Eq. (4.9d) of Ref. [83], the factor of (1/6)(149 − 6ν) has

to be replaced with (1/6)(149−36ν); in Eq. (B2c) Q+ must be changed to −Q+; in

Eq. (B3c) the right parenthesis is missing in the expression (cos2 i sin2 α + cos2 α);

at last, in Eq. (B3j) c d should be read as −c d. In Ref. [84], Eq. (F14b) must be
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multiplied by 3ν; in Eq. (F20) −3ν has to be replaced with +3ν; there should be

an overall minus sign in front of Eq. (F25c). If we re-expand Kidder’s polarizations

in v, and correct all the previous typos, we obtain complete agreement with both

results through 1PN order7.

The lengthy expression for the GW polarizations can be reduced to a much

more compact form by noticing (see also Sec. IVD in Ref. [83]) that in the limit

S � L the angle ι can be considered a 0.5PN order correction. This can be seen

from

sin ι =
|J0 × L|
J0 L

, (4.31)

if we neglect radiation reaction effects, i.e., we assume J0 = J, and use J = L+S1+S2

and Sn = O(1/c). We may then replace sin ι and cos ι in h+,× with their Taylor

series expansions in ι,

sin ι = ι− ι3

6
+O(ι5) , (4.32)

cos ι = 1− ι2

2
+O(ι4) . (4.33)

However, the assumption S � L becomes less and less reliable for smaller mass ratio

binaries. In fact, as a first approximation, we have Sn/L = (mn/M)2 χn v/ν with

v = (GMωorb/c
3)1/3. Thus, even if Sn ∼ O(1/c), L can become comparable to Sn

when ν is sufficiently small. Moreover, we have assumed J0 = J in Eq. (4.31), but

7It is also worth noting that Ref. [83] sets the origin of phase to be at a point referred to as
the ascending node and defined to be the point where the orbital separation crosses the x–y plane.
This is in fact the same as our phase origin, x̂L = J0× L̂N/|J0× L̂N|, but to reduce the possibility
of confusion, we do not call this point the ascending node. We reserve this term to mean the point
where the separation vector crosses the plane of the sky from below.
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the latter is not exact when radiation reaction is included, and it can be strongly

violated in presence of transitional precession [236]. For these reasons, though we

have decided to list in this section the GW polarizations expanded in ι, we display

in Appendix A the full expressions for generic inclination angles. For the ι-expanded

polarizations, we find

H
(0)
+ = −

(
cθ

2 + 1

)
cos 2(α + Ψ) , (4.34a)

H
(1/2)
+ = v δ sθ

[(
cθ

2

8
+

5

8

)
cos(α + Ψ)− 9

8

(
cθ

2 + 1

)
cos 3(α + Ψ)

]
, (4.34b)

H
(1)
+ = v2

[(
− cθ

4

3
+

3cθ
2

2
+

19

6
+

(
cθ

4 +
11cθ

2

6
− 19

6

)
ν

)
cos 2(α + Ψ)

+
4

3

(
1− cθ4

)(
3ν − 1

)
cos 4(α + Ψ)

]
, (4.34c)

H
(3/2)
+ = v3

[
δ sθ

(
cθ

4

192
− 5cθ

2

16
− 19

64
+

(
− cθ

4

96
− cθ

2

8
+

49

96

)
ν

)
cos(α + Ψ)

− 2π(cθ
2 + 1) cos 2(α + Ψ) + δ sθ

((
− 81cθ

4

128
+

45cθ
2

16
+

657

128

)
+

(
81cθ

4

64
+

9cθ
2

8
− 225

64

)
ν

)
cos 3(α + Ψ)

+ δ sθ
625

384

(
1− cθ4

)(
2ν − 1

)
cos 5(α + Ψ)

]
, (4.34d)

H
(1/2,SO)
+ = −2ι cθsθ cos(α + 2Ψ) , (4.34e)

H
(1,SO)
+ = v2

[(
cθ

(
χxa + δχxs

)
− sθ

(
χza + δχzs

))
cos(α + Ψ)− cθ

(
χya + δχys

)
sin(α + Ψ)

]

+ v ι δ cθ

[
1

4
sθ

2 cos Ψ−
(
cθ

2

8
+

5

8

)
cos(2α + Ψ) +

(
− 9

8
+

27cθ
2

8

)
cos(2α + 3Ψ)

]

+ ι2

[
− 3

2
sθ

2 cos 2Ψ +
1

2
(cθ

2 + 1) cos 2(α + Ψ)

]
, (4.34f)
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H
(3/2,SO)
+ = v3

[
sθ cθ

(
2δ χxa + (2− ν)χxs

)
+

(
4

3
(1 + cθ

2) δ χza

+
4

3

(
(1 + cθ

2) + ν (1− 5cθ
2)

)
χzs − sθ cθ

(
2δ χxa + (2 + 7ν)χxs

))
cos 2(α + Ψ)

− sθ cθ
(

2δ χya + (2− ν)χys

)
sin 2(α + Ψ)

]

+ v2ι sθ

[
cθ

(
− cθ2 + 4 +

(
3cθ

2 +
2

3

)
ν

)
cos(α + 2Ψ)

+ cθ

(
− cθ

2

3
− 1 +

(
cθ

2 + 3

)
ν

)
cos(3α + 2Ψ) + c3

θ

(
16

3
− 16ν

)
cos(3α + 4Ψ)

− (χya + δχys) sin Ψ

]
+ v ι2sθ δ

[(
− 3cθ

2

16
+

9

16

)
cos(α−Ψ)

−
(

11cθ
2

32
+

23

32

)
cos(α + Ψ) +

27

32

(
cθ

2 + 1

)
cos 3(α + Ψ)

− 1

32
(cθ

2 + 1) cos(3α + Ψ) +

(
− 45

32
+

135cθ
2

32

)
cos(α + 3Ψ)

]

+ ι3cθsθ

[
1

2
cos(α− 2Ψ) +

5

6
cos(α + 2Ψ)

]
(4.34g)

H
(0)
× = −2cθ sin 2(α + Ψ) , (4.35a)

H
(1/2)
× = v δ cθsθ

[
− 9

4
sin 3(α + Ψ) +

3

4
sin(α + Ψ)

]
, (4.35b)

H
(1)
× = v2cθ

[(
− 4cθ

2

3
+

17

3
+

(
− 13

3
+ 4cθ

2

)
ν

)
sin 2(α + Ψ)

+ sθ
2

(
− 8

3
+ 8ν

)
sin 4(α + Ψ)

]
, (4.35c)

H
(3/2)
× = v3cθ

[
δ sθ

((
− 21

32
+

5cθ
2

96

)
+

(
− 5cθ

2

48
+

23

48

)
ν

)
sin(α + Ψ)

− 4π sin 2(α + Ψ) + δ sθ

((
− 135cθ

2

64
+

603

64

)
+
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(
− 171

32
+

135cθ
2

32

)
ν

)
sin 3(α + Ψ) + δ sθ

(
625

192
(2ν − 1) sθ

2

)
sin 5(α + Ψ)

]
,

(4.35d)

H
(1/2,SO)
× = −2ι sθ sin(α + 2Ψ) , (4.35e)

H
(1,SO)
× = v2

[
(χya + δχys) cos(α + Ψ) + cθ

(
cθ(χ

x
a + δχxs)− sθ (χza + δχzs)

)
sin(α + Ψ)

]

+ ι v δ

[
sθ

2 sin Ψ−
(
cθ

2

2
+

1

4

)
sin(2α + Ψ) +

(
− 9

4
+

9cθ
2

2

)
sin(2α + 3Ψ)

]

+ ι2 cθ sin 2(α + Ψ) , (4.35f)

H
(3/2,SO)
× = v3

[
sθ

(
2δχya + (2− ν)χys

)(
1 + cos 2(α + Ψ)

)

+

(
8

3
cθ δ χ

z
a + cθ

(
8

3
− (

4

3
+ 4c2

θ)ν

)
χzs

− sθ
(

2δ χxa +

(
2 + (3 + 4cθ

2)ν

)
χxs

))
sin 2(α + Ψ)

]

+ ι v2 sθ

[(
cθ (χxa + δχxs)− sθ(χza + δχzs)

)
sin Ψ

+

((
− 3cθ

2 + 6

)
+

(
− 16

3
+ 9cθ

2

)
ν

)
sin(α + 2Ψ)

+

(
−
(
cθ

2 +
1

3

)
+

(
3cθ

2 + 1

)
ν

)
sin(3α + 2Ψ)

+

((
− 8

3
+ 8cθ

2

)
+

(
− 24cθ

2 + 8

)
ν

)
sin(3α + 4Ψ)

]

+ ι2v δ cθsθ

[
3

8
sin(α−Ψ)− 17

16
sin(α + Ψ) +

27

16
sin 3(α + Ψ)

− 1

16
sin(3α + Ψ) +

45

16
sin(α + 3Ψ)

]

+ ι3

[
1

2
sθ sin(α− 2Ψ) +

5

6
sθ sin(α + 2Ψ)

]
, (4.35g)

where sθ and cθ are shorthand notations for sin θ and cos θ respectively. In Sec. 4.4
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(see Fig. 4.2), we shall discuss typical variations of the inclination angle ι depending

on spin orientations and binary mass ratios. Note that whereas the terms of H
(1,SO)
+,×

linear in χn depend on the first harmonic of the orbital frequency, those of H
(3/2,SO)
+,×

depend on its zeroth and second harmonic, and so do the terms of H
(2,SS)
+,× quadratic

in the spin components, although we do not use them here. We include these 2PN SS

polarization corrections when constructing frequency-domain waveforms for binaries

having their spins aligned or anti-aligned with the orbital angular momentum in

Sec. 4.6. The harmonic dependence of the polarization corrections produced by the

spins can be understood from the explicit expression for hij shown in Eqs. (4.9c) and

(4.9d) of Ref. [83] or Eqs. (F15a)-(F15c) of Ref. [84]. The 1PN SO contributions

are proportional to the components of the orbital separation vector, n̂, which are

themselves proportional to sin Φ and cos Φ, so that H
(1,SO)
+,× depend on the first

harmonic of the orbital phase. Next, the 1.5PN SO and 2PN SS contributions are

proportional to products of the orbital separation or instantaneous velocity unit

vectors, n̂ or λ̂, and to products of sin Φ or cos Φ. These can be re-expressed in

terms of sin 2Φ, cos 2Φ or constant quantities independent of Φ, so that H
(3/2,SO)
+,× and

H
(2,SS)
+,× depend on the zeroth and second harmonics of the orbital phase. Because

the expressions for hij in Refs. [83, 84] are expanded in (M/r), while we use an

expansion in v = (Mωorb)1/3, one has to convert from one expansion to the other

by using Eqs. (7.1) and (F20) of Ref. [84]. In doing so, the v-expansion gains

additional 1.5PN SO and 2PN SS corrections proportional to the Newtonian order

term depending on the second harmonic of the orbital phase. The 1PN SO term is

left unchanged.
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Ready-to-use time-domain GW polarizations for spinning, precessing binaries

through 1.5PN order in phase and amplitude can be obtained by solving numerically

the following equations: (i) The spin precession equations [85, 86]

dS1

dt
= Ω1 × S1 , (4.36a)

dS2

dt
= Ω2 × S2 , (4.36b)

where at 1.5PN order

Ω1,2 = ω
5/3
orb

(
3

4
+
ν

2
∓ 3

4
δ

)
L̂N ; (4.37)

(ii) The evolution equation for the Newtonian angular momentum

˙̂
LN = −v

ν
(Ṡ1 + Ṡ2) ; (4.38)

(iii) The equation for the orbital frequency

ω̇orb

ω2
orb

=
96

5
ν v5

{
1−

(
743

336
+

11

4
ν

)
v2

+

[(
19

3
ν − 113

12

)
χs · L̂N −

113

12
δχa · L̂N

]
v3 + 4πv3

}
. (4.39)

Integrating ωorb yields the orbital phase Φorb(t) ≡
∫ t

0
ωorb(t′)dt′. The GW polariza-

tions (4.30) through 1.5PN order in phase and amplitude are computed by solving

numerically Eqs. (4.29), (4.36), (4.38), and (4.39). In order to compute the GW
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polarizations (4.30) through 1.5PN order in amplitude, but at the highest available

PN order in phase, one should replace Eqs. (4.36), (4.38) with Eq. (7.5) in Ref. [86]

and Eq. (32) in Ref. [48], respectively.

4.4 Gravitational-wave modes for precessing binaries on nearly

circular orbits through 1.5PN order: Small inclination

angles

Due to the spin-2 nature of GWs, it is convenient to decompose the waveform

components in the dyad {(P̂ + iQ̂)/
√

2, (P̂− iQ̂)/
√

2} with respect to an orthonor-

mal basis of spin ±2 functions that are defined on the 2-sphere and belong to an

irreducible representation of SO(3). Most commonly, the complex polarization

h = hjk
P j − iQj

√
2

P k − iQk

√
2

= h+ − ih× , (4.40)

is expanded into the set of spin-weighted −2 spherical harmonics. Like the standard

spherical harmonics, these functions of the two angles of spherical coordinates are

labeled by a pair of integers, say (`,m), with ` ≥ 2 and m ≤ |`|. The spin-weighted

−s spherical harmonics associated to any such pair are given by 8 [237]

−sY
`m(θ, φ) = (−1)s

√
2`+ 1

4π
d`sm(θ) eimφ , (4.41)

8Our definition of −sY
`m(θ, φ) differs from that of Ref. [237] by a factor (−1)m so that

0Y
`m(θ, φ) coincides with the most broadly used definition of Y `m(θ, φ); for the d-matrix d`m′m(θ),

we adopt the same convention as Landau-Lifshitz [238].
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with

d`sm(θ) =

min(`+m,`−s)∑
k=max(0,m−s)

(−1)k

k!

√
(`+m)!(`−m)!(`+ s)!(`− s)!

(k −m+ s)!(`+m− k)!(`− k − s)!

×
(

cos
θ

2

)2`+m−2k−s(
sin

θ

2

)2k−m+s

, (4.42)

and the orthogonality relation holds

∫
dΩ −sY

`m(θ, φ) −sY
`′m′∗(θ, φ) = δ``

′
δmm

′
, (4.43)

where dΩ = sin θ dθ dφ denotes the element of solid angle and δ``
′

is the Kronecker

symbol. The integration is performed over the unit sphere, so that 0 ≤ θ ≤ π and

0 ≤ φ ≤ 2π. The mode expansion of the complex polarization (4.40) is then of the

form

h(θ, φ) =
+∞∑
`=2

∑̀
m=−`

h`m −2Y
`m(θ, φ) . (4.44)

The GW modes h`m are extracted using the orthogonality property (4.43) by means

of the surface integral

h`m =

∫
dΩh(θ, φ) −2Y

`m∗(θ, φ) , (4.45)

where the star on the spin-weighted −2 harmonic indicates the complex conjugation.

Therefore, the calculation of h`m requires the knowledge of the polarizations h+ and

h× for an arbitrary value of the azimuthal angle φ of the direction N̂. In Sec. 4.3 we

have computed h+ and h× only for φ = 0; however, a specific choice of the x-axis

175



orientation cannot be responsible for any information loss. Thus, we must be able

to recover h(θ, φ) from the expression of h(θ, 0) alone.

The quantity h at a given point depends on a number of parameters, such as ι

or the spin variables, and can actually be regarded as a function of θ, φ as well as a

function of the whole set of parameters that possess a geometrical character. More

precisely, we may write h(θ, φ) = h(θ, φ, ι, α,Φ, χxn, χ
y
n, χ

z
n). Let us now introduce

the projection basis (x̂′, ŷ′, ẑ′ = ẑ) obtained by applying a rotation of angle φ about

the z-axis on the vectors of the original basis (x̂, ŷ, ẑ). Let us also associate to each

variable of h a primed counterpart, which is defined in the same way as the unprimed

variable but refers to the new basis rather than the original one. For instance, α′

denotes the azimuthal angle of the orbital angular momentum measured from the

fixed vector x̂′ instead of x̂. In particular, we have θ′ = θ, φ′ = 0, ι′ = ι, α′ = α−φ.

The phase Φ, defined as the angle (L̂N × ẑ, n̂) = (L̂N × ẑ′, n̂), is not affected by the

transformation: Φ′ = Φ. The x′ and y′ spin components can be obtained from the

2-dimensional formula for a passive rotation of angle φ, that is

χ′
x
n = χxn cosφ+ χyn sinφ , (4.46)

χ′
y
n = −χxn sinφ+ χyn cosφ , (4.47)

while the third component is left unchanged. With our conventions, the polariza-

tion vectors in the new basis remain equal to P̂ and Q̂ respectively. Therefore, the

complex polarization is identical to that of the old frame. Moreover, by construc-

tion of the primed variables, the functional dependence of h is the same as before,
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meaning that h = h(θ, φ, ι, α,Φ, χxn, χ
y
n, χ

z
n) = h(θ′, φ′, ι′, α′,Φ′, χ′xn, χ

′y
n, χ

′z
n). Hence

the important relation

h ≡ h(θ, φ, ι, α,Φ, χxn, χ
y
n, χ

z
n)

= h(θ, 0, ι, α− φ,Φ, cosφχxn + sinφχyn,− sinφχxn + cosφχyn, χ
z
n) , (4.48)

where the function h(θ, 0, ι, α, χxn, χ
y
n, χ

z
n) is given by Eqs. (4.34), (4.35) for the ι-

expanded expressions or by Eqs. (A.2), (A.3) for the full ones.

At 1.5PN order, the GW polarizations decompose into a sum of 3 terms,

h0(θ, ι, α,Φ) +
∑

n=1,2 χn.hn(θ, ι, α,Φ), which shows that h may be written as

h0(θ, ι, α− φ,Φ) +
∑
n=1,2

[
eiφζ∗nkn(θ, ι, α− φ,Φ)

+ e−iφζnk
∗
n(θ, ι, α− φ,Φ) + χznh

z
n(θ, ι, α− φ,Φ)

]
, (4.49)

with ζn = (χxn+iχyn)/
√

2 and kn = (hxn+ihyn)/
√

2. Each mode h`m splits accordingly

into 7 contributions: the spin-free term and 6 terms proportional to each of the

spin variable components. These contributions are parametrized by a vector weight

m′ = −1, 0, 1, as well as the body label n = 1, 2 of the spins; n = 0 refers to

quantities entering the spin-free part of h for which we also set m′ = 0. As a result,

for precessing binaries, the integral to compute h`m takes the form:

h`m =
1∑

m′=−1

2∑
n=1

Xm′,n

∫
dΩKm′,n(θ, ι, α− φ,Φ)ei(−m

′−m)φ
−2Y

`m∗(θ, 0) , (4.50)
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where X0,0 = 1, X0,n′ = χzn′ (for n′ = 1, 2), X−1,n′ = ζ∗n′ , X1,n′ = ζn′ , K0,0 = h0,

K0,n′ = hzn′ , K−1,n′ = kn′ and K1,n′ = k∗n′ . By means of the change of variable

φ → φ + α, we are able to factor out a complex exponential e−i(m+m′)α which

contain all the dependence in α. Let us now focus henceforth on the case where the

waveform has been expanded in powers of ι. As we shall explicitly see below, [see

Eq. (4.56)], the h`m’s are then made of: (i) a spin-free piece proportional to e−imα,

(ii) two spin pieces proportional to e−i(m−1)α and to ζ∗1 or ζ∗2 respectively, (iii) two

spin pieces proportional to e−i(m+1)α and to ζ1 or ζ2 respectively, (iv) two spin pieces

proportional to e−imα and to χz1 or χz2 respectively. In contrast to what happens in

the non-spinning case, h`m is not in general proportional to e−imΦ except for the

terms that are free of ι, since both n̂ and λ̂ reduce to trigonometric functions of

Φ + α as ι → 0. The contributions to the polarization modes that are linear in ι

involve couplings of the type e−i(m+m′)(Φ+α) cos Φ or e−i(m+m′)(Φ+α) sin Φ because the

terms of first order in ι entering n̂ and λ̂ can only be linear combinations of ι cos Φ

or ι sin Φ (or equivalently ιe±iΦ). Couplings like e−i(m+m′)(Φ+α) cosa Φ sinb Φ, with

a, b ∈ N, arise at higher orders making the dependence in Φ more complicated. A

close inspection to the results below [see Eqs. (4.56a)–(4.56r) with Ψ→ Φ] confirm

these expectations. Beware that our mode normalization is tuned to factor out the

exponential factors e−imα.

The structure of the modes is much more complicated for precessing binaries

than for non-precessing binaries. When the orbital angular momentum is aligned

with the total angular momentum (ι = 0, α = π), note that a rotation by φ about

the z-axis produces an offset in the orbital phase angle, so that
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h(θ, φ,Φ) = h(θ, 0,Φ− φ) . (4.51)

This ensures that only terms proportional to e−imΦ contribute to the integral over

φ to compute h`m. In the precessing case, a rotation by φ produces an offset in

the α angle, and so terms with different powers of e−iΦ can contribute to the same

h`m mode. As we will see below, these terms with different powers of e−iΦ inter-

fere to produce rather complicated modulations to the modes on the orbital time

scale. Since the precessional motion is typically much slower than the orbital mo-

tion (several orbital cycles are completed in any precessional cycle for the systems

we consider), it may be surprising that the relatively slow precessional motion can

produce such rapid oscillations in the modes. This is simply a breakdown of the

nice structure (i.e. that h`m ∝ e−imΦ) of the h`m modes in the precessing case. Note

however, that what is actually observed are the gravitational wave polarizations.

In the polarizations, precessional effects are indeed on a slower time scale than the

orbital motion. They modulate the “envelope” of the waveform, rather than create

orbital timescale interference.

A useful property of h coming from the arbitrariness of the body labeling is that

it must be invariant in the exchange of particles 1 and 2: m1 ↔ m2, χ1 ↔ χ2, n→

−n, v→ −v. Under this transformation, the direction of the angular momentum L̂

remains invariant hence λ→ −λ. The orbital frequency ωorb = (v ·λ) is unchanged

as well as the direction of the total angular momentum, due to its structure and

parity. Therefore, the phase Φ becomes (x̂L,−n̂) = Φ +π whereas the angles α and
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ι are unaffected. This yields the relation

h(θ, φ, ι, α,Φ, χx1 , χ
x
2 , χ

y
1, χ

y
2, χ

z
1, χ

z
2) = [h(θ, φ, ι, α,Φ + π, χx2 , χ

x
1 , χ

y
2, χ

y
1, χ

z
2, χ

z
1)]δ→−δ .

(4.52)

The previous identity may be supplemented by another one which originates from

the classical parity invariance of physics: for any given time instant t, the waveform

resulting from the stress-energy tensor parametrized by the world-lines xn and the

spins χn must have the same value at point x as the waveform resulting from −xn

and +χn at point −x. Taking into account the transformation of the polarization

vectors under parity, this means for the function h:

h(θ, φ, ι, α,Φ, χxn, χ
y
n, χ

z
n) = h

∗
(π − θ, φ+ π, ι, α,Φ + π, χxn, χ

y
n, χ

z
n) . (4.53)

The above formula allows us to express the modes h`m in terms of the modes h`−m

by performing the change of variable θ → π−θ and φ→ φ+π in Eq. (4.45). The first

factor of the integrand can be then rewritten as h
∗
(θ, φ, ι, α,Φ + π, χxn, χ

y
n, χ

z
n) mak-

ing use of Eq. (4.53). The second factor −2Y
`m∗(π−θ, φ+π) may be transformed by

means of two important symmetry properties of the spin-weighted spherical harmon-

ics: −2Y
`m(π−θ, φ+π) = (−1)`+2Y

`m(θ, φ) and +2Y
`m(θ, φ) = (−1)m−2Y

`−m∗(θ, φ),

which leads to the new expression (−1)m+`
−2Y

`−m(θ, φ) for this factor. As a conse-

quence, the link between h`m(Φ) ≡
∫
dΩh(θ, φ, ι, α,Φ, χxn, χ

y
n, χ

z
n) −2Y

`m∗(θ, φ) and
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h`−m(Φ) is given by

h`m(Φ) = (−1)m+`

∫
dΩh

∗
(θ, φ, ι, α,Φ + π, χxn, χ

y
n, χ

z
n) −2Y

`−m(θ, φ)

= (−1)`+mh∗`−m(Φ + π) (4.54)

The explicit expressions for the modes h`m are obtained by inserting Eq. (4.48) into

the surface integral (4.43). We normalize them in such a way that the leading order

mode starts with coefficient 1. Posing

h`m = −(2Mνv2)

DL

√
16π

5
e−im(Ψ+α) ĥ`m , (4.55)

and expanding in the inclination angle ι, we arrive at 9

ĥ22 = 1 +
1

3
eiΨδvι+ v2

{
1

42
(−107 + 55ν)− 1

2
ei(α+Ψ)

[
χxa − iχya + δ(χxs − iχys)

]}
− ι2

2
+ v3

[
2π − 4δχza

3
+

4

3
(−1 + ν)χzs

]
+O

(
1

c4

)
, (4.56a)

ĥ21 = −δv
3

+ e−iΨι+
v2

2
(χza + δχzs) + δ ι2 v

(
5

12
− 1

4
e2iΨ

)
+ v3

{
− ei(α+Ψ)

[
δ (χxa − iχya) +

(
1− ν

2

)
(χxs − iχys)

]
+ e−i(α+Ψ)

[
δ(χxa + iχya) +

(
1 +

5

6
ν

)
(χxs + iχys)

]
+

δ

84
(17− 20ν)

}
+ v2ι

{
e−iΨ

42
(−107 + 55ν) +

1

4

(
χxa − iχya + δ(χxs − iχys)

)
eiα
(
− 1 + e2iΨ

)}
+
ι3

4

(
− 5

3
e−iΨ − e3iΨ

)
+O

(
1

c4

)
, (4.56b)

9In the case of spins aligned or anti-aligned with the Newtonian angular momentum, the modes
(2, 2), (2, 1) and (3, 2) were also computed in Ref. [232]. We fully agree with their results.
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ĥ20 =
1

2

√
3

2

{
v2

3

[
− ei(α+Ψ)

(
χxa − iχya + δ(χxs − iχys)

)
+ e−i(α+Ψ)

(
χxa + iχya + δ(χxs + iχys)

)]
+

4i

3
v ι δ sin Ψ + 2ι2 cos 2Ψ

− 4i

3
v2ι sin Ψ(χza + δχzs)

}
+O

(
1

c4

)
, (4.56c)

ĥ33 = −3

4

√
15

14

{
δv + v3

[
2δ(−2 + ν) +

16

9
ei(α+Ψ)ν(χxs − iχys)

]
− 4

9
eiΨιv2(−1 + 3ν) +

δvι2

4

(
− 3 +

e2iΨ

9

)}
+O

(
1

c4

)
, (4.56d)

ĥ32 = −9

8

√
5

7

[
8

27
v2(−1 + 3ν) + δvι

(
e−iΨ − eiΨ

27

)
− 32

27
v3νχzs

]
+O

(
1

c4

)
,

(4.56e)

ĥ31 = − 1

12
√

14

{
δv + v3

[
− 2

3
δ(4 + ν)− 16e−i(α+Ψ)ν(χxs + iχys)

]
+ 20v2ι(−1 + 3ν)e−iΨ +

δvι2

2

(
− 11

2
+

135

2
e−2iΨ − 3e2iΨ

)}
+O

(
1

c4

)
,

(4.56f)

ĥ30 = − 1

2
√

42
δvι cos Ψ +O

(
1

c4

)
, (4.56g)

ĥ44 =
8

9

√
5

7
v2(1− 3ν) +O

(
1

c4

)
, (4.56h)

ĥ43 =
8

9

√
10

7

[
81

320
v3δ(−1 + 2ν) + v2ι(1− 3ν)

(
e−iΨ − eiΨ

16

)]
+O

(
1

c4

)
, (4.56i)

ĥ42 =

√
5

63
v2(1− 3ν) +O

(
1

c4

)
, (4.56j)

ĥ41 =
1

21

√
5

2

[
δv3

20
(−1 + 2ν) + v2ι(1− 3ν)e−iΨ

]
+O

(
1

c4

)
, (4.56k)

ĥ40 = O
(

1

c4

)
, (4.56l)

ĥ55 = − 625

96
√

66
δv3(1− 2ν) +O

(
1

c4

)
, (4.56m)

ĥ54 = O
(

1

c4

)
, (4.56n)
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ĥ53 = − 9

32

√
3

110
v3δ(1− 2ν) +O

(
1

c4

)
, (4.56o)

ĥ52 = O
(

1

c4

)
, (4.56p)

ĥ51 = − 1

288
√

385
δv3(1− 2ν) +O

(
1

c4

)
, (4.56q)

ĥ50 = O
(

1

c4

)
. (4.56r)

In Appendix B we display the modes h22, h33, and h21 for generic inclination angle

ι. The modes ĥ`m for m < 0 are derived from Eq. (4.56) by means of the relation

ĥ`−m(Φ) = (−1)`ĥ∗`m(Φ+π). The non-precessing expressions are obtained by setting

ι = 0 and α = π. Notice that when h`m(Φ) does not depend on Φ, we have simply

ĥ`−m = (−1)`ĥ∗`m. For comparison with the modes of Refs. [201, 27] in the non-

spinning case, it is important to be aware that the origin of the azimuthal angle

there differs from ours by −π/2, which produces an extra factor (−i)m (respectively

im) with respect to us in the modes (respectively in the spin-weighted spherical

harmonics).

Finally, let us emphasize that the (`,m) modes defined by Eq. (4.44) depend

on the particular choice of the source frame. In fact, they are functions of the spin

and angular momentum components with respect to the (x̂, ŷ, ẑ) basis introduced

in Sec. 4.2. As there is no canonical way to fix the reference frame for precessing

binaries because of the secular but perpetual variation of the direction J/|J|, it is

important to be able to relate the ĥ`m’s given in Eq. (4.56) to the polarization modes

h′`m computed in another frame with different polarization vectors. Under a passive
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rotation

Ri
j(A,B,Γ) =


cosA − sinA 0

sinA cosA 0

0 0 1




cosB 0 sinB

0 1 0

− sinB 0 cosB




cos Γ − sin Γ 0

sin Γ cos Γ 0

0 0 1

 ,

the (`,m) modes transform in the same way as they would in the case of a stan-

dard spherical harmonics decomposition [239, 240]. In fact, the spin-weighted −2

spherical harmonics are precisely devised to ensure this property for the modes of a

spin-weighted −2 object [237]. The law of transformation for the h`m’s is given by

h′`m(Φ′, α′, ι′, χ′x
′

n , χ
′y′
n , χ

′z′
n ) =

∑̀
m=−`

D∗`mm′(A,B,Γ)h`m(Φ, α, ι, χxn, χ
y
n, χ

z
n) , (4.57)

where the primed quantities refer to the new frame and where D`
m′m is the unitary

Wigner matrix [237]

D`
m′m(A,B,Γ) = (−1)m

′

√
4π

2`+ 1
−m′Y

`m(B,A) eim
′Γ (4.58)

with the convention of Landau-Lifshitz [238]. The new angles read

ι′ = arccos
[

cosB cos ι− cos(Γ + α) sinB sin ι
]
, (4.59a)

α′ = arccos cosα′

= arccos
cosA

[
cos ι sinB + cosB cos(Γ + α) sin ι

]
− sinA sin ι sin(Γ + α)√

1−
(

cosB cos ι− cos(Γ + α) sinB sin ι
)2
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if cos ι sinA sinB + sin ι
[

cosB cos(Γ + α) sinA+ cosA sin(Γ + α)
]
≥ 0 ,

(4.59b)

α′ = 2π − arccos cosα′ otherwise , (4.59c)

Φ′ = arccos cos Φ′

= arccos

[(
cosB cos Φ sin ι− sinB sin Γ (cos ι cos Φ sinα + cosα sin Φ)+

cos Γ sinB (cos ι cosα cos Φ− sinα sin Φ)

)
/

√
1−

(
cosB cos ι− cos(Γ + α) sinB sin ι

)2
]

if cos Φ sinB sin(Γ + α) + (cos ι cos(Γ + α) sinB + cosB sin ι) sin Φ ≥ 0 ,

(4.59d)

Φ′ = 2π − arccos cos Φ′ otherwise . (4.59e)

When the direction of the total angular momentum used to built the new frame

coincides with that of J0, which results in the equality ẑ′ = ẑ, the Euler angle B

vanishes. Then, it can be checked from Eqs. (4.59d) and (4.59e) that Φ′ = Φ as

expected.

4.5 Features of gravitational-wave modes for precessing bi-

naries on nearly circular orbits

We now study how spin effects change the waveform modes for generic precess-

ing binaries. We consider two maximally spinning configurations with mass ratios

1:1 and 4:1. We label the spin configurations with the angles {θ1, φ1, θ2, φ2}, where
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Figure 4.2: The left panel shows the inclination angle of the orbital angular momen-
tum relative to the total angular momentum, ι, as a function of 2MΦ̇ for binaries
with mass ratios 1:1 and 4:1, having initial spin orientations relative to the or-
bital angular momentum: SpinA = {θ1 = π/2, φ1 = 0, θ2 = π/2, φ2 = π/2} and
SpinB = {θ1 = π/6, φ1 = π/4, θ2 = π/6, φ2 = π}. The right panel compares the
modulus of h22 for the two precessing spin configurations with the non-spinning,
aligned and anti-aligned cases for equal masses. The computations use waveforms
accurate to 1.5PN in amplitude and phase evolved with the precession equations at
1.5PN order [see Eqs. (4.29), (4.36), (4.38), and (4.39)]. Note that these plots (and
those of Figs. 3 and 4) begin at 2M Φ̇ = 0.02 which is approximately where the
dominant second harmonic from a binary of total mass 16M� enters the LIGO band
at 40 Hz and where the second harmonic from a binary of total mass 6.5× 106M�
enters the LISA band at 10−4 Hz.
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{θi, φi} describe the orientation of the spin vector of the ith body relative to the or-

bital angular momentum in the initial configuration, which we take to be a circular

orbit with Mωorb = 0.001. We use the full expressions for the h`m’s (i.e., the ex-

pressions that have not been expanded in ι) as given in Appendix B and normalized

following Eq. (4.55), but we replace Ψ with Φ.

After evolving through 1.5PN order all dynamical quantities they depend on

[see Eqs. (4.29), (4.36), (4.38), and (4.39)], we compute the modulus — more often

referred to as the absolute value — of a sample of modes. Considering the compli-

cated structure of the h`m’s, their qualitative behavior in the presence of spins is

discussed here in terms of the ι-expanded formulae (4.56). Let us focus on two spin

configurations. The configuration SpinA = {π/2, 0, π/2, π/2} has both spin vectors

in the orbital plane, meaning a relatively large inclination angle. The configuration

SpinB = {π/6, π/4, π/6, π} has a smaller component of total spin transverse to the

orbital angular momentum, hence a smaller inclination angle. In Figs. 4.3 and 4.4

we plot the amplitude of the ĥ`m over the frequency range 2M Φ̇ = 0.02–0.15, the

upper frequency being reached roughly 2 cycles before merger, for an equal-mass,

non-spinning binary [63]. For a binary of total mass 16M�, the dominant second

harmonic varies over the frequency range 40–300 Hz. For a 6.5 × 106M� binary,

this range is shifted to 10−4–7.5× 10−4 Hz.

The left panel of Fig. 4.2 shows the inclination angle ι as a function of the

dimensionless frequency 2M Φ̇. We see that the inclinations are much larger in the

case of 4:1 mass-ratio than for equal masses. Moreover, the inclination increases

monotonically in the equal-mass case, whereas the 4:1 mass ratio exhibits nutation,
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since the inclination oscillates, but grows on average. These observations can be

explained as follows. At early times, when the binary has a large orbital separation,

we have |L| � |S|, where S = S1 + S2 is the total spin, so that J = L + S and L

are nearly aligned. Radiation reaction causes |L| to decrease, making J move away

from L and toward S. This is why the inclination angle, ι, grows on average as the

frequency increases. The absence of oscillations for the inclination angle ι in the

equal-mass case can be explained by the fact that we are evolving the dynamics,

in particular the precession equations (4.36), through 1.5PN order, i.e., we are ne-

glecting spin-spin effects. Due to the equality Ω1 = Ω2 at this accuracy level, the

precession equations simplify then to a single equation of the form dS/dt = Ω× S.

In the absence of radiation reaction, S precesses around a fixed direction with a

constant frequency, and the inclination is constant (apart from the increase pro-

duced by radiation reaction). For unequal masses this symmetry does not exist,

with the consequence that one must solve two coupled equations for S1, S2 instead

of a single equation for S. The motion of the spin vectors is thus more compli-

cated. Schematically, they rotate about a fixed direction while also bobbing up and

down [241].

The right panel of Fig. 4.2 plots, for the case of equal masses, the absolute

value of the h22 mode normalized to its Newtonian order expression, ĥ22, for both

precessing spin configurations as well as the non-spinning, aligned and anti-aligned

cases. One interesting feature is that the aligned and anti-aligned cases do not

bound the absolute value of the modes for generic spin configurations. This and

other features of the plot can be understood from the ι expansion (4.56a) of ĥ22,
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which contains four spin corrections. The first correction, −ι2/2, is zero for the

aligned and anti-aligned cases, while it decreases the absolute value of the ĥ22 mode

for all other spin configurations. If ι is comparable to 1 radian, it can be a significant

correction. The second correction, (1/3)eiΨδvι, vanishes for equal masses. For

unequal masses, it interferes with the non-spinning terms and, because it has a

different dependence on the orbital phase, produces oscillations in the absolute value

of ĥ22. Next, the 1PN order spin correction, −(v2/2)ei(α+Ψ)[χxa − iχya + δ(χxs − iχys)],

generates oscillations that depend on the spin vector components transverse to the

total angular momentum. Finally, the 1.5PN order spin correction, v3[−4δχza/3 +

(4/3)(−1 + ν)χzs], lowers (raises) the absolute value of ĥ22 for spins aligned (anti-

aligned) with the total angular momentum. It is solely responsible for the spread

between the aligned and anti-aligned cases, as the other corrections all vanish then.

A similar analysis can be applied to understand the behavior of the other

modes. As an illustration, we plot in Fig. 4.3 all of the ` = 2 modes for mass ratios

1:1 and 4:1. The ĥ21 mode (4.56b) is zero for non-spinning equal mass binaries.

However, it contains several spin corrections and can have significant amplitude for

precessing binaries, particularly for large ι. It can exhibit complicated modulation,

as its different spin corrections interfere with one another. The ĥ20 mode (4.56c) also

has several spin corrections, most notably 2 ι2 cos Ψ. This correction is responsible

for the large oscillations in the absolute value of ĥ20. Note that in the late stages

of the inspiral evolution for the 4:1 mass-ratio case, where ι ∼ 1 radian, these

oscillations in the absolute value of ĥ20 peak near the absolute value of ĥ22. The other

spin corrections in ĥ20 are responsible for the further modulations of the absolute
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Figure 4.3: We plot the modulus of the ` = 2 modes for mass ratios 1:1 (left panel)
and 4:1 (right panel) with the spin configurations described in Fig. 4.2. The compu-
tations use waveforms accurate to 1.5PN order in amplitude and phase evolved with
precession equations at 1.5PN order. The dashed lines are the larger ι configuration
(SpinA) and the solid lines are the smaller ι configuration (SpinB). We see that
as ι increases, the modulus of ĥ22 decreases while the modulus of the other ` = 2
modes increases. This effect becomes more pronounced when the mass ratio is more
extreme.
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Figure 4.4: We plot the modulus of the ` = 3 modes (left panel) and ` = 4 modes
(right panel) for equal masses with the spin configurations described in Fig. 4.2.
The computations use waveforms accurate to 1.5PN order in both amplitude and
phase evolved by means of the 1.5PN precession equations. The dashed lines refer
to the larger ι configuration (SpinA), the solid lines to the smaller iota configuration
(SpinB). We see a redistribution of power among the modes similar to Fig. 4.3. As
ι increases, the largest modes for the non-precessing cases (|ĥ32| and |ĥ44|) become
smaller, while the other modes become larger.

value.

Figure 4.4 plots the absolute value of the ` = 3 and ` = 4 modes for equal

masses. Note that these modes are about two orders of magnitude smaller than the

` = 2 modes. This remains true in the non-spinning case for the mass ratios we

consider. In the case of non-spinning, equal mass binaries, for ` = 3 only the ĥ32

mode (4.56e) is non-zero. The 1.5PN order spin correction decreases (increases) this

mode’s absolute value if the spins are aligned (anti-aligned) with the total angular

momentum, in a similar way as in the ĥ22 mode. For unequal masses, the ĥ32 mode

(4.56e) also has an interference term proportional to ι. The other ` = 3 modes are

non-zero for generic precessing binaries, and generally have larger absolute values
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for larger inclinations. In the left panel of Fig. 4.4, we indeed observe that |ĥ33|,

|ĥ31|, and |ĥ30| are greater for the configuration SpinA than for SpinB. For ` = 4,

only the ĥ44 and ĥ42 modes (4.56h), (4.56j) are non-zero for non-spinning, equal-

mass binaries, with ĥ44 being the largest. Though the ι-expanded form of the ĥ44,

ĥ42 and ĥ40 modes in Eq. (4.56) do not have any spin corrections through O(1/c3),

we do see spin effects in all of the ` = 4 modes when we plot the full expressions

accurate through v3. The v2 and v3 coefficients in the full expressions for the ĥ44, ĥ42

and ĥ40 modes depend on the inclination ι but not on the spin vector components

and this dependence is such that if we treat ι as a 1/c correction by performing a

Taylor expansion in powers of ι, then the spin terms are proportional to v2 ι2, v3 ι

and higher order in ι. They are thus considered as higher order corrections in the

ι expansion, though they are present when we expand only in powers of v. None

of the ` = 4 modes contain any spin corrections proportional to the spin vector

components through order v3. Those corrections would appear only at higher order

in v.

While we have plotted the ` = 3 and ` = 4 modes solely for equal masses, we

have also studied these modes for 4:1 mass-ratio binaries. We find that they are

affected by the change of mass ratio in much the same way as the ` = 2 modes: the

redistribution of signal among the ` = 3 and ` = 4 modes is more pronounced for

asymmetric binaries than for equal mass binaries. However, even for 4:1 binaries

with large ι (SpinA) spin configuration, all of the ` = 3 and ` = 4 modes are still one

or two orders of magnitude smaller than ĥ22, whereas the ĥ21 and ĥ20 modes can be

comparable to ĥ22. The reason is essentially that ĥ21 and ĥ20 have ι corrections at
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leading order in v, while ι corrections to the ` = 3 and ` = 4 modes all appear at

higher order, and so they do not have as strong an effect as for ĥ21 and ĥ20.

By examining the absolute values of the ĥ`m modes for precessing binaries,

we see that they can be significantly altered by the motion of the orbital plane

relative to the frame used to perform the mode decomposition and the signal may

be redistributed among the modes as observed in Ref. [240]. This suggests that all

modes, not just the dominant ones for non-spinning binaries, are needed to accu-

rately describe the waveforms emitted from precessing binary systems, especially for

asymmetric binaries and binaries with large inclinations where this redistribution of

signal among the modes is most dramatic.

Let us close this section with a few comments about the applicability of the

full and ι-expanded expressions for the modes and the possibility of combining them

with higher order non-spinning corrections. We find that the absolute values of the

full and ι-expanded ĥ`m modes are often quite close to each other for relatively small

ι. For inclinations less than half a radian (30◦), the difference in |ĥ22| is typically

of a few percent. For ι comparable to or larger than a radian (60◦), significant

differences between the full and ι-expanded modes develop and the absolute values

may differ by ∼ 10–100% when ι ≥ 1 radian. Nonetheless, the ι-expanded modes

are very useful in understanding the qualitative behavior of precessing binaries, even

for inclinations ∼ 1 radian, albeit they should not be used for precise quantitative

studies of binaries with large inclination angles.

In Refs. [201, 27], expressions of the modes are given to 3PN order for non-

spinning binaries. We have compared their absolute values to that of the corre-
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sponding quantities truncated at 1.5PN order, which has shown us that they typ-

ically differ by ∼ 1–10%. For example, the absolute value of the 1.5PN and 3PN

order h22 modes for equal-mass binaries differ by less than 1% at 2M Φ̇ = 0.01 and

by about 3% at 2M Φ̇ = 0.05 or 2M Φ̇ = 0.12. The other modes typically have a

larger difference. The 1.5PN order and highest known order absolute values for h32,

h44 and h42 differ by about 5–15% over this same frequency range for equal mass

binaries. For 4:1 mass ratio binaries, the differences in absolute value are similar.

Known higher-order non-spinning terms can actually be included in the am-

plitude if enough care is taken. In the non-precessing case, the modes h`m are

proportional to e−imΨ, as in the non-spinning case, because n̂ and λ̂ appearing in

the strain tensor hij are trigonometric functions of the orbital phase Φ. In construct-

ing the h`m’s from hij, they generate an exponential dependence on multiples of Φ.

However, for the case of a precessing binary with small ι, n̂ and λ̂ are trigonometric

functions of Φ + α. Thus, the h`m’s contain then all of the non-spinning terms,

but with the substitution Ψ → Ψ + α. The situation is different for the general

precessing case. The vectors n̂ and λ̂ depend on Φ, α, and ι, and the resulting

h`m have a complicated dependence on all three of these quantities that cannot be

simply related to the non-spinning case. These considerations show that it is only

for binaries with a small inclination (or no inclination) that we can readily construct

the h`m’s with spin effects up to 1.5PN order and non-spinning corrections up to

3PN order. For spins (anti-)aligned it is trivial to add the higher-order non-spinning

corrections of Refs. [201, 27] to the h`m given in Eq. (4.56). For precessing binaries

with small inclinations, they can be added to our expressions in Eq. (4.56) with
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the substitution Ψ → Ψ + α. For general precessing binaries, it is not so simple

to include higher-order non-spinning corrections to the full expressions for the h`m

given in Appendix B. To do this properly, we would need the spin terms at the same

order as the non-spinning terms and repeat the derivation of the h`m to a higher

order.

4.6 Ready-to-use frequency-domain templates for spinning,

non-precessing binaries

4.6.1 Gravitational-wave polarizations in time domain

In the non-precessing case, the orbital angular momentum points in a fixed

direction which we take to be the z-axis (see Fig. 4.1) and the spins are either

aligned or anti-aligned with it. The basis vectors of the orbital plane, x̂L(t) and

ŷL(t), are constant in time. They can be freely chosen to be any pair of orthogonal

unit vectors in the x–y plane. Here, following the convention of Ref. [199], we

choose x̂L = P̂ = N̂× L̂N/|N̂× L̂N|, so that the phase is zero at the ascending

node (where the orbital separation vector crosses the plane of the sky from below).

This is equivalent to setting ι = 0 and α = π in Eqs. (4.30), (A.2), and (A.3).

Note also that since the orbital plane remains fixed, the phase Φ defined through

Eq. (4.28) coincides with the standard definition of the orbital phase, that is

ωorb = Φ̇ . (4.60)
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In the non-precessing case, the vectors in terms of which the GW polarizations are

expressed originally take the simpler form

n̂ = (sin Φ , − cos Φ , 0) , (4.61)

λ̂ = (cos Φ , sin Φ , 0) , (4.62)

N̂ = (sin θ , 0 , cos θ) , (4.63)

L̂N = (0 , 0 , 1) . (4.64)

By plugging the expressions (4.61)–(4.64) into Eq. (4.21) and taking the combina-

tions given in Eq. (4.1), we obtain an equation similar to Eq. (4.30). The spin-

dependent 1PN, 1.5PN and 2PN order polarization coefficients read

H
(1,SO)
+ = v2sθ cos Ψ

[
χa · L̂N + δχs · L̂N

]
, (4.65a)

H
(3/2,SO)
+ = v3 cos 2Ψ

4

3

[
(1 + c2

θ)
(
χs · L̂N + δχa · L̂N

)
+ ν (1− 5c2

θ) χs · L̂N

]
,

(4.65b)

H
(2,SS)
+ = −v4 2 ν (1 + c2

θ)
(
χ2
s − χ2

a

)
cos 2Ψ , (4.65c)

H
(1,SO)
× = v2sθ cθ sin Ψ

[
χa · L̂N + δχs · L̂N

]
, (4.65d)

H
(3/2,SO)
× = v3 sin 2Ψ

4

3
cθ

[
2
(
χs · L̂N + δχa · L̂N

)
− ν (1 + 3c2

θ) χs · L̂N

]
, (4.65e)

H
(2,SS)
× = −v4 4 ν cθ

(
χ2
s − χ2

a

)
sin 2Ψ , (4.65f)
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where SS labels the spin(1)-spin(2) contributions10. In the equations above, we use

the shorthand cθ = cos θ and sθ = sin θ. Note also that the phase Ψ is the shifted

orbital phase that relates to Φ at our accuracy level as

Ψ = Φ− 2 v3
(

1− ν

2
v2
)

ln

(
ωorb

ω0

)
, (4.65g)

where ω0 can be chosen arbitrarily. Expressed in terms of the orbital phase Φ, the

GW polarizations would contain terms logarithmic in ωorb, arising from the propa-

gation of the tails. However, introducing the phase (4.65g), they are all absorbed

(up to the 2.5PN order we are considering) into the phase variable [199].

The spin-dependent polarizations (4.65a)–(4.65f) were derived in Ref. [84] [see

Eqs. (F24a)–(F25c) in that paper], although the 1.5PN and 2PN order cross polar-

izations had an erroneous sign, which is corrected here.

4.6.2 Spin-orbit effects at 1.5PN order and spin-spin effects

at 2PN order in the frequency-domain gravitational-

wave amplitude

Writing h(t) = h+ F+ + h× F× and collecting terms by PN order and by sines

or cosines of harmonics of the orbital frequency, we can write the time-domain strain

10We remind that spin(1)-spin(1) and spin(2)-spin(2) effects in the waveform polarizations are
currently unknown.
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in the compact form:

h(t) =
2M ν

DL

5∑
n=0

7∑
k=1

V 2+n
k

[
α

(n)
k cos(kΨ(t)) + β

(n)
k sin(kΨ(t))

]
+O(v8) ,

=
2M ν

DL

5∑
n=0

7∑
k=1

V 2+n
k

[
α

(n)
k cos(kΨ(t)) + β

(n)
k cos(kΨ(t)− π

2
)
]

+O(v8) ,

(4.66)

where n/2 is the PN order and k labels the harmonics of the orbital phase. The PN

expansion parameter is defined as V = (2πMF )1/3, with F = ωorb/(2π). We shall

denote the GW frequency by f . For the kth harmonic, we have then the relation

f = fk ≡ kF , so that

Vk =

(
2 πM

fk
k

)1/3

. (4.67)

Given a function of the form h(t) = A(t) cosφ(t), where φ(t) is a monotonically

increasing function satisfying dlnA(t)/dt � dφ(t)/dt, we can compute its Fourier

transform by applying the SPA:

h̃(f) ' 1

2
A(t(f))

√
2 π

φ̈(t(f))
ei(2π f t(f)−φ(t(f))−π/4) , (4.68)

t(f) being defined here for each frequency f as the value of t for which (dφ/dt)(t) =

2πf . In a similar manner, we apply the SPA to each term in the sum of Eq. (4.66).

Moreover, for each harmonic of the orbital phase, we expand the factor inversely

proportional to the second time derivative of the orbital phase entering Eq. (4.68)
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in a PN series of the form

√
2π

k φ̈
=

(
k
dF

dt

)−1/2

=

√
5π

k 48 ν
M V

−11/2
k

×
[
1 + S2 V

2
k + S3 V

3
k + S4 V

4
k + S5 V

5
k +O(V 6

k )
]
, (4.69)

with

S2 =
743

672
+

11

8
ν ,

S3 = −2π +

(
113

24
− 19

6
ν

)
χs · L̂N +

113

24
δχa · L̂N ,

S4 =
7266251

8128512
+

18913

16128
ν +

1379

1152
ν2

− ν

(
721

96

((
χs · L̂N

)2

−
(
χa · L̂N

)2
)
− 247

96

(
χ2
s − χ2

a

))
,

S5 = π

(
−4757

1344
+

57

16
ν

)
. (4.70)

The expansion (4.69) without spin corrections in the amplitude was first given in

Ref. [116]. We have added to it the leading order SO corrections through 1.5PN

order and the spin(1)-spin(2) SS corrections appearing at 2PN order. In principle,

SO corrections at 2.5PN order and spin(1)-spin(1), spin(2)-spin(2) SS corrections

at 2PN arising from the spin contribution to the orbital frequency are also present.

However, when calculating spin terms in the frequency-domain amplitude, we ne-

glect them because they have not been calculated yet beyond the 1.5PN order in

the time domain amplitude. The spin contribution at 2PN and 2.5PN order to the

Fourier domain amplitude is not complete unless we take both into account.
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Defining the frequency-dependent SPA phase as

ΨSPA(f) = 2π f t(f)−Ψ(f) , (4.71)

the frequency domain waveform with amplitude corrections containing SO effects

through 1.5PN order and spin(1)-spin(2) effects through 2PN order is

h̃(f) =
M ν

DL

5∑
n=0

7∑
k=1

V 2+n
k

(
k
dF

dt

)−1/2

×
(
α

(n)
k ei (2π f t(F )−kΨ(F )−π/4) + β

(n)
k ei(2π f t(F )−(kΨ(F )−π/2)−π/4)

)
,

=
M ν

DL

5∑
n=0

7∑
k=1

V
n− 7

2
k

√
5π

k 48 ν
M
(
1 + S2 V

2
k + S3 V

3
k + S4 V

4
k + S5 V

5
k

)
×(α

(n)
k + ei π/2 β

(n)
k )ei (kΨSPA(f/k)−π/4) ,

=
M2

DL

√
5π ν

48

5∑
n=0

7∑
k=1

V
n− 7

2
k C(n)

k ei (kΨSPA(f/k)−π/4) . (4.72)

with

C(n)
k =

1√
k

(
α

(n)
k + i β

(n)
k

)
+

n∑
m=2

Sm√
k

(
α

(n−m)
k + i β

(n−m)
k

)
, (4.73)

where the index n denotes the PN order and the index k the harmonics. Explicit

expressions for the C(n)
k can be found in Appendix D. The non-spinning terms in the

amplitude agree with Ref. [214], although we have written them in a different, more

explicit manner. Notice that recently the non-spinning amplitude corrections were

calculated through 3PN order [27], but in this paper we restricted the computation

to 2.5PN order.
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4.6.3 Spin-orbit effects at 2.5PN order in the frequency-

domain gravitational-wave phase

For matched filtering, it is best to know the GW phasing at the highest PN

order. We now derive the SO contributions to the SPA phase through 2.5PN and

the SS contributions (including spin(1)-spin(1) and spin(2)-spin(2) contributions)

to the SPA phase through 2PN order.

The PN expansion of the SPA phase ΨSPA(F ) can be obtained from the PN

expansions of the binary center-of-mass energy, E, and GW flux, F , via the energy

balance equation

−dE
dt

= F . (4.74)

Using dΨ/dt = 2 π F = v3/M , we can re-write the energy balance equation as the

differential equations

dt = −dE
dv

1

F
dv , (4.75)

and

dΨ = −dE
dv

1

F
v3

M
dv . (4.76)

The quantities E and F are known as power series in v = (2πM F )1/3. The non-

spinning terms in the expansions of E and F have been calculated by Refs. [242,

243, 244, 245, 56, 85], while the spin contributions to these quantities through 2.5PN

order were derived by Refs. [83, 84, 235, 24, 197, 86]. The center-of-mass energy
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and the flux read

E(v) = ENewt v
2

(
1 +

6∑
i=2

Eiv
i

)
, (4.77)

F(v) = FNewt v
10

(
1 +

7∑
i=2

Fiv
i

)
, (4.78)

where the coefficients Ei and Fi are explicitly given in Appendix C. By inserting

Eqs. (4.77), (4.78) into Eqs. (4.75), (4.76), we obtain rational function approxima-

tions to the integrands. We then find the Taylor series of the rational functions and

integrate up to some reference frequency, often chosen to be the time of coalescence,

when the orbital frequency formally diverges. Thus, we obtain PN approximations

of the form

t(v) = tc −
∫ v

vc

ENewt

FNewt

(
2v−9 +

7∑
j=2

tj v
j−9

)
, (4.79)

Ψ(v) = Ψc −
1

M

∫ v

vc

ENewt

FNewt

(
2v−6 +

7∑
j=2

tj v
j−6

)
,

(4.80)

where the tj coefficients are linear combinations of products of the Ei and Fi. Plug-

ging Eqs. (4.79), (4.80) into Eq. (4.71), we obtain the following expression for the

SPA phase through 2.5PN order 11

ΨSPA(F ) = 2π F tc −Ψc +
3

256
(2πMF )−5/3

{
1 +

(
3715

756
+

55

9
ν

)
(2πMF )2/3

11The non-spinning terms in the SPA phase through 3.5PN order can be found in Ref. [246].
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+ (4 β − 16π) (2πMF )

(
15293365

508032
+

27145

504
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ν2 − 10σ

)
×

(2πMF )4/3 +

(
38645

756
π − 65

9
π ν − γ
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(1 + 3 log(v))× (2πMF )5/3

}
,

(4.81)

where the 1.5PN SO phase corrections are contained in β, the 2PN SS corrections

are contained in σ, and the 2.5PN SO corrections are contained in γ. Note that

β and the spin(1)-spin(2) contributions to σ were previously known [89, 90], while

we have calculated the spin(1)-spin(1) and spin(2)-spin(2) contributions to σ and

the 2.5PN SO corrections to the SPA phase using the results for the center-of-mass

energy and GW flux of Refs. [235, 86, 85, 88]. Explicitly, these corrections are

β =

(
113

12
− 19

3
ν

)
χs · L̂N +

113

12
δχa · L̂N , (4.82)

σ = ν

{
721

48

[(
χs · L̂N

)2

−
(
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]
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48
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a
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+ (1− 2ν)

{
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]
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[
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48

(
χs · L̂N

) (
χa · L̂N

)
− 233

48
χs · χa

]
, (4.83)

γ =

(
−732985

2268
+

24260

81
ν +

340

9
ν2

)
χs · L̂N

−
(

732985

2268
+

140

9
ν

)
δχa · L̂N . (4.84)

We note that these expressions are only valid when both component spins are

aligned or anti-aligned with the orbital angular momentum. The spin(1)-spin(1)

and spin(2)-spin(2) contributions to σ were also derived in Refs. [87, 88] and we

found full agreement with them.
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4.6.4 Features of frequency-domain non-precessing waveforms

with higher harmonics

We now discuss some interesting features of the spinning, non-precessing wave-

forms derived in Sec. 4.6.2. Several papers have studied the effect of higher harmon-

ics in the amplitude corrections of non-spinning binaries observable by ground- and

space-based detectors [214, 116, 218, 219, 220, 247].

One important feature of the amplitude-corrected waveforms is that higher

harmonics can increase the mass reach of a detector [218]. This is because high-mass

binaries whose dominant second harmonic is not in the detector’s sensitive band

can have higher harmonics in band and therefore become visible to the detector.

A closer look at Eq. (4.73) and Appendix D shows that spin corrections through

2PN order appear only in the first and second harmonics. In particular, the only

SPA amplitude coefficients with spin dependence are C(2)
1 , C(3)

2 and C(4)
2 given in

Appendix D. Thus, in the non-precessing case spin corrections through 2PN order

in the waveform amplitude do not affect the mass reach of the detector, and only

affect binaries whose second harmonic appears in band.

Another important feature of the amplitude-corrected waveforms is that the

next-to-leading-order correction to the dominant second harmonic has the opposite

sign from the leading order term, and thus decreases the strength of the second

harmonic. For binaries where the second harmonic is in the sensitive band, this

effect tends to decrease the signal to noise ratio (SNR) [214, 218, 220]. As we shall

study in detail in this section, the spin corrections to the second harmonic can either

204



Figure 4.5: We compare the power spectra computed with the Newtonian amplitude
waveform (red dashed line) and the 2.5PN waveform with 1.5PN SO and 2PN SS
effects included (blue, continuous line). In the left panel we consider a typical source
for LISA, a binary with total mass (106 + 105)M�, and spins maximal and aligned
with the orbital angular momentum. In the right panel we consider a typical source
for Advanced LIGO, a binary of total mass (30+30)M� with spins χ1 = 1, χ2 = 0.5
aligned with the orbital angular momentum. Note that the kth harmonic ends at
k FLSO, and these frequencies are marked by the vertical dashed lines on the graph.
The spectrum of the 2.5PN waveform is much simpler in the equal-mass case than
unequal mass case because in the former case all non-spinning odd harmonics are
suppressed.

raise or lower the SNR depending on the spin orientations.

We define the power spectrum, P (f), as

P (f) =
|h̃(f)|2

Sn(f)
, (4.85)

and the optimal SNR, ρ, as

ρ2 = 4

∫ 7FLSO

fs

|h̃(f)|2

Sn(f)
df , (4.86)

where fs is the low frequency seismic cutoff of the detector, and the upper frequency
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cutoff is taken to be the highest harmonic of the orbital frequency at the last stable

orbit (LSO) which for simplicity we choose to be the LSO of a test particle in

Schwarzschild,

FLSO =
1

2π63/2M
. (4.87)

Note that the kth harmonic ends at kFLSO as enforced by a step function θ(kFLSO−f)

[see Eqs. (D.1)–(D.21) in Appendix D]. In Eqs. (4.85), (4.86), we denote with Sn(f)

the noise power spectral density of the detector. For Advanced LIGO, we take the

spectral density to be Eq. (4.3) of Ref. [116] and fix fs = 20 Hz. For LISA, we use

the so-called effective non-sky-averaged spectral density given in Eqs. (2.28)–(2.32)

of Ref. [248]. We do not consider the orbital motion of the LISA spacecraft [249]

and consider only the single detector configuration 12. In the presence of higher

harmonics, the lower and upper cut-off frequencies are chosen following Sec. IIIA

of Ref. [218]. For LISA we assume an observation time of one year, and the orbital

frequency at the beginning of observation to be Eq. (3.3) of Ref. [218]. As explained

in Ref. [218], this can be implemented by multiplying the kth harmonic by the

step function θ(f − kFin) where Fin is the orbital frequency at the beginning of

observation. Finally, because of the 60◦ angle between LISA’s arms, we use h̃(f)→

(
√

3/2) h̃(f) in Eqs. (4.85), (4.86) in the case of LISA.

All tables and figures in this section, refer to a binary with orbital angular

momentum inclined relative to the line of sight by θ = π/3, sky location θ̄ = φ̄ =

π/6 and polarization angle ψ̄ = π/4 [see Eqs. (4.4), (4.5)]. We have verified, by

12It should be noted that in our model, though we do not perform an average over the antenna
pattern functions, we do not account for the orbital motion of LISA either. In this sense, our
model falls in between the pattern averaged and non-pattern averaged cases described in Ref. [248]
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considering random values for the four angles, that the qualitative trends reported

in this section are generic and do not depend on the specific values of them (see a

detailed discussion at the end of this section). Regardless of the PN order of the

amplitude, all waveforms use the SPA phase with non-spinning terms up to 3.5PN

order [246], and spin terms up to 2.5PN order, as given in Eqs. (4.81)–(4.84). In

the case of Advanced LIGO (LISA) we consider binaries at a distance of 100 Mpc

(3 Gpc). Moreover, all masses and distances refer to the redshifted quantities.

The effect of amplitude corrections can be seen in Fig. 4.5. The Newtonian

waveform’s power spectrum is simply proportional to f−7/3/Sn(f). The higher har-

monics present in the 2.5PN waveform create oscillations in the power spectrum.

The higher-order corrections to the second harmonic tend to decrease the power

spectrum, because they have the opposite sign of the leading-order term. Notice

that although the higher harmonics extend the observable frequency band signifi-

cantly, the power beyond the cutoff of the second harmonic, being at a higher PN

order, is suppressed by one or several orders of magnitude. These features explain

why the SNR listed in Tables 4.1, 4.2 tends to decrease as the PN order increases

for the range of masses we consider. For equal-mass binaries, all non-spinning odd

harmonic corrections are suppressed because the latter are proportional to δ which

is zero for equal masses [see Eqs. (D.1)–(D.21) in Appendix D]. This is not true of

spin-dependent amplitude corrections. For example, the first harmonic has a spin

dependent amplitude correction at 1PN order which does not vanish for equal mass

systems unless spins are equal and aligned with one another [see Eq. (4.65a)].

Tables 4.1, 4.2 show the SNR for the case of maximal spins both aligned or
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Figure 4.6: For a binary of total mass (30 + 30)M� with spins χ1 = 1, χ2 = 0.5
aligned with the orbital angular momentum (the same binary of the right panel
of Fig. 4.5), we show the power spectra up to 2FLSO. We plot the power spec-
trum for the waveform through 2.5 PN order with no spin corrections (cyan solid
line) and with SO corrections through 1.5PN (that is, 1PN and 1.5PN) and SS
corrections at 2PN order (dark blue solid line). We also plot power spectra for
the waveform with Newtonian amplitude (red dashed line), Newtonian amplitude
plus the 1PN SO correction (black dotted line), Newtonian amplitude plus SO ef-
fects through 1.5PN (green,dot dashed line), and Newtonian amplitude plus SO
corrections through 1.5PN and the 2PN SS correction (magenta, double-dot-dashed
line). The 1.5PN SO and 2PN SS effects raise and lower the power in the dominant
harmonic while the 1PN SO effect merely changes the modulation pattern up to
its cutoff frequency of FLSO. Vertical dashed lines mark the frequencies FLSO and
2FLSO.
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anti-aligned with the orbital angular momentum. From the bottom three rows of

Tables 4.1, 4.2, we see that, depending on the spin orientation, the 2.5PN ampli-

tude corrections with spins can have SNR ∼ 10% higher or lower than the 2.5PN

amplitude corrections without spins. We caution that this ∼ 10% change in the

SNR from spin corrections is only meant as a bound on spin effects for spinning,

non-precessing binaries. As we have seen in Sec. 4.5, the affect of spin corrections

on precessing binaries is not bounded by the cases of maximal spins aligned and

anti-aligned with the orbital angular momentum.

Advanced LIGO SNR
(50 + 5)M� (30 + 30)M�

(1, 1) (−1,−1) (1, 1) (−1,−1)

Newt 76.4 76.4 131.1 131.1
0.5PN 84.9 82.3 131.1 131.1
1PN 74.2 71.9 116.9 115.8
1PN + 1PN SO 74.1 72.1 116.9 115.8
1.5PN 69.2 67.6 116.9 115.8
1.5PN + 1.5PN SO 79.7 58.1 134.2 98.8
2PN + 1.5PN SO 75.8 55.1 123.1 88.3
2PN + 1.5PN SO + 2PN SS 75.3 54.7 120.3 85.6
2.5PN 64.0 62.6 106.3 105.3
2.5PN + 1.5PN SO 74.2 53.6 123.5 88.5
2.5PN + 1.5PN SO + 2PN SS 73.7 53.2 120.6 85.8

Table 4.1: For several binary configurations observable by Advanced LIGO we list
the SNR as the PN order of the amplitude corrections is varied. In each column
we show the component spins (χ1 · L̂N,χ2 · L̂N). We include all non-spinning, SO
and SS corrections up to the orders given in the first column. For example, 2.5PN
+ 1.5PN SO + 2PN SS means we include non-spinning amplitude corrections from
Newtonian to 2.5PN order, 1PN and 1.5PN SO corrections, and the 2PN SS cor-
rection. Regardless of the PN order of the amplitude, we always use the SPA phase
with non-spinning terms up to 3.5PN order, and spin terms up to 2.5PN order, as
given in Eqs. (4.81)–(4.84). The binary is at a distance of 100 Mpc with orbital
angular momentum inclined relative to the line of sight by θ = π/3, sky location
θ̄ = φ̄ = π/6 and polarization angle ψ̄ = π/4 [see Eqs. (4.4),(4.5)].
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LISA SNR
(2× 106 + 104)M� (106 + 106)M�
(1, 1) (−1,−1) (1, 1) (−1,−1)

Newt 382.6 382.6 2764.3 2764.3
0.5PN 598.5 598.6 2764.3 2764.3
1PN 620.2 621.5 2510.0 2469.7
1PN + 1PN SO 620.0 621.7 2510.0 2469.7
1.5PN 512.3 517.0 2510.0 2469.7
1.5PN + 1.5PN SO 551.8 484.2 2876.0 2118.2
2PN + 1.5PN SO 523.6 457.5 2608.5 1870.5
2PN + 1.5PN SO + 2PN SS 523.4 457.4 2546.7 1814.7
2.5PN 479.4 481.2 2280.3 2242.0
2.5PN + 1.5PN SO 516.4 451.6 2639.2 1901.9
2.5PN + 1.5PN SO + 2PN SS 516.3 451.6 2578.2 1847.5

Table 4.2: For several binary configurations observable by LISA we list the SNR
as the PN order of the amplitude corrections is varied. In each column we show
the component spins (χ1 · L̂N,χ2 · L̂N). We include all non-spinning, SO and SS
corrections up to the orders given in the first column. Regardless of the PN order of
the amplitude, we always use the SPA phase with non-spinning terms up to 3.5PN
order, and spin terms up to 2.5PN order, as given in Eqs. (4.81)–(4.84). The binary
is at a distance of 3 Gpc with the same orientation as in Table 4.1. The binary
masses and distances refer to the redshifted quantities.

Quite interestingly, the 1.5PN SO and 2PN SS corrections are far more im-

portant than the 1PN SO correction in terms of their effect on the power spectrum

and the SNR. Notice that in Tables 4.1, 4.2 the 1PN SO term always has little

or no effect, while the 1.5PN SO term changes the SNR by ∼ 10%, and the 2PN

SS term changes the SNR for the equal-mass binary. The reason the 1PN SO term

is less important is that the 1.5PN SO and 2PN SS terms are corrections to the

second harmonic, so they increase or decrease the power in the dominant term. On

the other hand, the 1PN SO term is a correction to the first harmonic. Thus, it is

merely a perturbation to the dominant signal, and only in the lowest part of the

spectrum where the first harmonic is observable. This is illustrated in Fig. 4.6, where
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we plot the power spectrum as a function of frequency (up to 2FLSO) for different

spin contributions for the (30 + 30)M� binary system. We see that the 1.5PN SO

and 2PN SS corrections add or subtract their power coherently with the dominant

second harmonic. Their net effect is to shift the power spectrum of the full waveform

upward without changing its shape. On the other hand, the 1PN SO correction,

which is proportional to the (sine or cosine of) half the dominant harmonic, simply

changes the modulation pattern of the full waveform up to FLSO (37 Hz). It should

however be noted that the structures in the power spectra could be more compli-

cated for asymmetric systems where the non-spinning terms proportional to cos Ψ

and sin Ψ are not suppressed.

Advanced LIGO SNR
(60 + 40)M�

(1,−1) (0.8,−0.8) (0.5,−0.5) (0.2,−0.2)

2.5PN 81.0 80.5 80.8 81.8
2.5PN + 1.5PN SO 84.4 83.3 82.5 82.5
2.5PN + 1.5PN SO + 2PN SS 86.7 84.8 83.0 82.6

Table 4.3: For a typical binary observable by Advanced LIGO, we compare the
SNR obtained using the 2.5PN amplitude corrected waveform without spin effects,
with spin-orbit effects, and with spin-orbit and spin-spin effects. In each column
we show the component spins (χ1 · L̂N,χ2 · L̂N). In all cases we use the SPA phase
with non-spinning terms up to 3.5PN order, and spin terms up to 2.5PN order, as
given in Eqs. (4.81)–(4.84). The binary is at a distance of 100 Mpc with the same
orientation as in Table 4.1.

The 1.5PN SO term is typically the most important of the spin terms. This

term is linearly proportional to the spins of the two bodies, as can be seen in

Eq. (D.8). If the spins are aligned with the orbital angular momentum it increases

the SNR. If the spin terms are anti-aligned with the orbital angular momentum it
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decreases the SNR. If one spin is aligned with L̂N and the other anti-aligned, the

body with the greater spin Si = m2
i χi, which is typically the larger body, dominates.

Thus, the large body dictates whether the SO effect increases or decreases the SNR,

unless the spin of the smaller body is much greater than the spin of the large body.

This is illustrated in Table 4.4, where the mass ratio m1 : m2 = 10 : 1. The spin

of the larger body is aligned with L̂N and tends to increase the SNR while the spin

of the smaller body is anti-aligned with L̂N and tends to decrease the SNR. For a

spin ratio χ1 : χ2 = 1 : 1 there is a large increase in SNR due the larger BH. For a

spin ratio 1:10, the larger BH still dominates and we get a small increase in SNR.

For the spin ratios of 1:100 and 1:1000, the smaller BH is now able to overcome the

larger BH and produce a net decrease in the SNR.

LISA SNR
(106 + 105)M�

(1,−1) (0.1,−1) (0.01,−1) (0.001,−1)

2.5PN 2538.7 2570.4 2522.2 2572.4
2.5PN + 1.5PN SO 2917.5 2583.8 2500.6 2546.7
2.5PN + 1.5PN SO + 2PN SS 2938.5 2585.8 2500.8 2546.7

Table 4.4: For a typical binary observable by LISA, we compare the SNR obtained
using the 2.5PN waveform without spin effects, with spin-orbit effects, and with
spin-orbit and spin-spin effects. In each column we show the component spins
(χ1 · L̂N,χ2 · L̂N). In all cases we use the SPA phase with non-spinning terms up
to 3.5PN order, and spin terms up to 2.5PN order, as given in Eqs. (4.81)–(4.84).
The binary is at a distance of 3 Gpc with the same orientation as in Table 4.1. The
binary masses and distances refer to the redshifted quantities.

The 2PN SS term decreases the power spectrum and SNR when the component

spins are aligned with one another, and increases the power spectrum and SNR when

they are anti-aligned with one another. The 2PN SS term has a greater effect on
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the SNR and power spectrum than the 1PN SO term, but is less important than

the 1.5PN SO term. This is because it is suppressed relative to the 1.5PN SO term

by a factor of v/c and it is quadratic in the spins and proportional to the symmetric

mass-ratio ν. Thus, the 2PN SS term are most important for binaries with two large

component spins and comparable masses. From Tables 4.1, 4.3, we can see that the

2PN SS term has little or no effect on binaries with a mass ratio greater than 10:1.

In Tables 4.1, 4.2, for the columns with equal masses and spins aligned with one

another, the 2PN SS term decreases the SNR by a few percent. For the binary in

Table 4.3, we see that the 2PN SS term increases the SNR by an amount comparable

to the SO terms when the spins are maximal. As we decrease the spin magnitude,

the SS effect is suppressed faster than the SO effect because it is quadratic in the

spins while the SO effect is linear.

Before ending this section we study how different values of the source position

and inclination angle can affect the SNR trends shown in Table 4.1. For (5+50)M�

and (30+30)M� systems we calculated the SNRs at different PN orders in amplitude

for various random realizations of θ̄, φ̄, ψ̄ and θ and for the spinning and non-spinning

cases. For the spinning cases, when all the known spin effects are included at different

PN orders, the trends across different orders remains the same for all the random

realizations except between the Newtonian and 0.5PN order. Though on most of

the occasions, the SNR increases from Newtonian to 0.5PN order, there are cases

when it decreases, albeit slightly. All these cases where the SNR decreases have

inclination angle θ very close to zero or π. For these cases, the third harmonic, which

is proportional to sin θ, is largely suppressed and the spin-dependent interference
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accounts for the small drop in SNR. This drop is observed for systems for which

χ1 = χ2 = −1 whereas the non-spinning and χ1 = χ2 = 1 cases consistently showed

the increase in SNR between Newtonian and 0.5PN order. To further assert this,

we fix the inclination angle to a value very close to zero and π and randomly varied

the other three angles. We find that for all the realizations the SNR decreases in

going from Newtonian to 0.5PN order. In brief, the trends shown in Table 4.1 is

quite general except for inclination angles close to zero or π. We however note that

the trends of Table 4.1 need not be same for much higher masses when the leading

harmonic approaches the lower cut-off frequency of the detector (2FLSO ' fs). We

have not done a thorough analysis for the whole mass range.

4.7 Conclusions

The ongoing search for GWs from compact binaries with the network of inter-

ferometers LIGO, Virgo and GEO, and the work at the interface between analytical

and numerical relativity aimed at providing accurate templates for the search, has

made it urgent to include higher-order PN effects in the theoretical predictions of

the waveforms. This paper is a step forward in this direction.

We provided ready-to-use time-domain waveforms for spinning, precessing bi-

naries moving on nearly circular orbits through 1.5PN order and decompose those

waveforms in spin-weighted −2 spherical harmonics [see Appendices A and B]. Ne-

glecting radiation-reaction effects and assuming S � L, we found that the inclina-

tion angle ι between the total angular momentum and the Newtonian orbital angular
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momentum (see Fig. 4.1) is a 0.5PN correction. Motivated by this, we expanded the

GW polarizations and spin-weighted spherical harmonic modes in a Taylor series in

ι [see Eqs. (4.34), (4.35) and Eqs. (4.56a)–(4.56r)]. Their expressions become much

simpler and allow one to extract interesting physical features of the gravitational

waves from precessing binaries.

We found that, in contrast to what happens in the non-spinning case, the h`m’s

are not in general proportional to e−imΨ. They also depend on the angles ι and α,

where ι is the inclination angle of the Newtonian orbital momentum relative to the

total angular momentum and α is the angle between the x-axis and the projection

of the Newtonian orbital angular momentum onto the x–y plane (see Fig. 4.1). For

example, the terms independent of ι are proportional to e−im(Ψ+α), the terms that

are linear in ι are proportional to e−i(m+m′)(Ψ+α) cos Ψ or e−i(m+m′)(Ψ+α) sin Ψ, while

higher-order contributions in ι involve terms of the form e−i(m+m′)(Ψ+α) cosa Ψ sinb Ψ,

where a, b ∈ N and m′ ∈ −1, 0, 1. In the presence of precession, the angles ι and

α vary in time and the different harmonics present in each of the modes interfere,

causing a strong modulation of the mode amplitudes. We also found that, in contrast

to what happens in the non-spinning case, the signal can be largely distributed

among modes (`,m) other than the (2, 2) mode. With our choice of the source frame,

when spins are maximal and the binary system has significant mass asymmetry

and/or a large inclination angle, we found that the amplitude of the (2, 0) and (2, 1)

modes can be comparable to the amplitude of the (2, 2) mode, especially during

the last stages of inspiral. For the mass ratios we considered, we found that the

` = 3 and ` = 4 modes are generally one or two orders of magnitude smaller
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than the ` = 2 modes. These results are summarized in Figs. 4.2, 4.3 and 4.4,

for binaries with mass ratio 1:1 and 4:1, and for two maximal spin configurations

having a small or large inclination angle ι. The ready-to-use time-domain waveforms

for spinning, precessing binaries can be employed for accurate comparisons with

numerical simulations of binary BHs [250, 251, 252, 253, 254, 231, 240] and for

designing time-domain [228, 62, 61, 63] analytical templates.

Restricting ourselves to spinning, non-precessing binaries, we computed ready-

to-use frequency-domain waveforms in the stationary-phase approximation. We de-

rived 1PN and 1.5PN order spin-orbit effects, and 2PN order spin-spin (spin(1)-

spin(2) only) effects in the frequency-domain GW amplitude [see Eq. (4.73), and

Eqs.(D.1)–(D.21) in Appendix D]. We also calculated the 2PN spin-spin (including

spin(1)-spin(1) and spin(2)-spin(2) effects), and the 2.5PN order spin-orbit effects

in the frequency-domain GW phase [see Eqs. (4.81), (4.84) and (4.83)]. For the 2PN

spin-spin terms, we found agreement with Refs. [87, 88]. We wrote the frequency-

domain waveforms in a rather compact way, so that they can be easily used for data

analysis and for building analytical frequency-domain [233, 234] templates.

In the non-precessing case, we found that, through 2PN order, spin effects

in the amplitude affect only the PN corrections to the first and second harmonics.

Thus, through 2PN order, spin effects do not yet extend the mass reach of GW

detectors. However, as seen in Figs. 4.5, 4.6, they can interfere with other harmonics

and, depending on the spin orientation, lower or raise the signal-to-noise ratio of

ground-based (see Tables 4.1, 4.3) and space-based detectors (see Tables 4.2, 4.4).

We also expect that those spin terms will help in localizing the binary source in

216



the sky. We leave to a future publication the use of the waveforms derived in this

paper to extend parameter-estimation predictions [246, 212, 248, 213, 214, 116, 215,

216, 217, 218, 219, 220, 222, 223, 224, 191, 221] of ground-based and space-based

detectors to spinning, precessing binaries.

Finally, we notice that the gravitational polarizations computed in this paper

do not include the modification of the orbital phase evolution at the relative 2.5PN

order induced by the flow of energy into the black hole horizons as explicitly com-

puted in Ref. [255]. As summarized in Table IV of Ref. [255], this effect can cause

a variation of the number of GW cycles at the Schwarzschild ISCO of 3%–24% de-

pending on the binary mass ratio. We postpone to a future publication the inclusion

of those effects.
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Chapter 5

Testing gravitational-wave searches with numerical

relativity waveforms: Results from the first Numerical

INJection Analysis (NINJA) project

Authors: Benjamin Aylott et al1

Abstract: The Numerical INJection Analysis (NINJA) project is a collaborative effort between

members of the numerical relativity and gravitational-wave data analysis communities. The pur-

pose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using

numerically generated waveforms and to foster closer collaboration between the numerical rela-

tivity and data analysis communities. We describe the results of the first NINJA analysis which

focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity

groups contributed numerical data which were used to generate a set of gravitational-wave sig-

nals. These signals were injected into a simulated data set, designed to mimic the response of

the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using

search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches

and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We

report the efficiency of these search methods in detecting the numerical waveforms and measuring

1Excerpt from the original article Class. Quant. Grav. 26 165008 (2009). The author of this
thesis is principally responsible for the material in Sec. 5.2.3 of this chapter.
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their parameters. We describe preliminary comparisons between the different search methods and

suggest improvements for future NINJA analyses.
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5.1 Introduction

Binary systems of compact objects, i.e., black holes and neutron stars, are

among the most important objects for testing general relativity and studying its

astrophysical implications [256]. The general solution of the binary problem in

Newtonian gravity is given by the Keplerian orbits. In general relativity, the Keple-

rian orbits for a bound system decay due to the emission of gravitational radiation,

leading eventually to the merger of the two compact objects and to a single final

remnant [8, 15, 257]. The decay of the orbits is due to the emission of gravita-

tional waves and these waves carry important information about the dynamics of

the binary system. In particular, the waves produced during the merger phase con-

tain important non-perturbative general relativistic effects potentially observable by

gravitational-wave detectors. Gravitational waves could be detectable by the cur-

rent generation of gravitational wave detectors such as LIGO and Virgo [258, 259],

and detection is very likely with future generations of these detectors.

Two important advances have occurred in recent years that have brought us

closer to the goal of observing and interpreting gravitational waves from coalesc-

ing compact objects. The first is the successful construction and operation of a

world-wide network of large interferometric GW detectors; these include the three

LIGO detectors in the United States, Virgo in Italy, TAMA in Japan [260] and the

GEO600 detector in Germany [261]. The TAMA detector was the first interferomet-

ric detector to achieve its design goals, and it collected science data between 1999

and 2003 [260]. The LIGO detectors started observations in 2002 [121]. From 2005
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to 2007 these detectors operated at design sensitivity collecting more than a year of

coincident data from the three LIGO detectors; these observations are referred to as

S5 [262]. The Virgo detector is also close to achieving its design goals and collected

six months of data coincident with the last six months of the LIGO S5 run (referred

to as VSR1) [263]. The GEO600 detector has been operating since 2002 in coinci-

dence with the LIGO instruments [261]. The two 4km LIGO detectors are currently

being upgraded to improve their sensitivity by a factor of 2–3 (Enhanced LIGO [264])

and will resume observations in 2009. Upgrades to the Virgo detectors to yield com-

parable sensitivity to Enhanced LIGO are proceeding on a similar schedule. During

this time, the GEO600 and the LIGO Hanford 2km detector continue to make best-

effort observations (called “astro-watch”) to capture any possible strong events, such

as a galactic supernova. Following the Enhanced LIGO and Virgo observations, the

Advanced LIGO [265] and Virgo [266] upgrades will improve detector sensitivities

by a factor of ∼ 10 above the Initial LIGO detectors; these upgrades are expected

to be complete by 2014. There are also plans to build a second-generation cryogenic

detector in Japan known as LCGT [267]. Searching data from these detectors for

weak gravitational wave signals over a vast parameter space is a challenging task.

The gravitational-wave community has invested significant resources in this effort.

A number of searches on S5/VSR1 data for un-modelled bursts and binary coales-

cence are in progress and many results, including those from previous science runs,

have already been reported [268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278].

The second important advance has been the impressive success of numerical

relativity in simulating the merger phase of BBH coalescence. The first break-
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throughs occurred in 2005 with simulations by Pretorius [279], closely followed by

the independent Goddard and Brownsville (now at RIT) results [143, 144]. Since

then, a number of numerical relativity groups around the world have successfully

evolved various configurations starting from the inspiral phase all the way through

the merger to the final remnant black hole (for recent overviews on the field see

e.g. [146, 280, 281]). This has led to important new physical insights in BBH merg-

ers. These include the prediction of large recoil velocities produced by asymmetric

emission of gravitational radiation during the merger process [282, 283, 284, 285,

286, 287, 288, 289, 290, 291, 292, 293, 49, 294, 295, 296, 297, 298, 299] and the pre-

diction of the parameters of the remnant Kerr hole for a wide class of initial states

[300, 284, 301, 302, 303, 304, 305, 306, 305, 307, 308, 309, 310, 311, 312]. Since the

inspiral, merger and coalescence of black holes are also among the most important

targets of GW detectors, we expect that the detailed information provided by nu-

merical simulations can be used to increase the reach and to quantify the efficacy

of data analysis pipelines. Indeed the driving motivation of research on numerical

simulations of black-hole binaries over the last few decades has been their use in

GW observations.

Thus far, most searches for gravitational waves from BBH mergers have relied

on post-Newtonian results, which are valid when the black holes are sufficiently far

apart. Within its range of validity, post-Newtonian theory provides a convenient

analytic description of the expected signals produced by binary systems. The nu-

merical relativity results, on the other hand, have not yet been synthesised into an

analytic model for the merger phase covering a broad range of parameters, i.e., a
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wide range of mass ratios, spins and if necessary, eccentricity; there has however

been significant progress for the non-spinning case [313, 302, 105, 147, 54, 145, 314,

151, 152, 153, 315, 148]. Similarly, despite significant progress, there is not yet a

complete detailed description over the full parameter space of how post-Newtonian

and numerical simulations are to be matched with each other. On the data analysis

side, many pipelines, especially ones that rely on a detailed model for the signal

waveform, have made a number of choices based on post-Newtonian results, and it

is important to verify that these choices are sufficiently robust. More generally, it

is necessary to quantify the performance of these data analysis pipelines for both

detection and parameter estimation. This is critical for setting astrophysical upper

limits in case no detection has been made, for following up interesting detection

candidates, and of course for interpreting direct detections. Work on this to date

has primarily used post-Newtonian waveforms. Numerical relativity now provides

an important avenue for extending this to the merger phase.

There are significant challenges to be overcome before numerical relativity

results can be fully exploited in data-analysis pipelines. The NINJA project was

started in the spring of 2008 with the aim of addressing these challenges and fostering

close collaboration between numerical relativists and data analysts. Participation

in NINJA is open to all scientists interested in numerical simulations and GW data

analysis. NINJA is the first project of its kind that attempts to form a close work-

ing collaboration between the numerical relativity and data analysis communities.

Several decisions were made that restrict the scope of the results reported here:

we consider only BBH simulations and have not used results from supernova sim-
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ulations or simulations containing neutron stars; the waveform data comes purely

from numerical simulations and we do not attempt to extend numerical data using

post-Newtonian waveforms; the NINJA data set is constructed using Gaussian noise

to model the response of the Initial LIGO and Virgo detectors – no attempt has

been made to include non-Gaussian noise transients found in real detector data.

The comparisons and conclusions reported here are thus necessarily limited, and

in many cases are only the first steps towards fully understanding the sensitivity

of data-analysis pipelines to black hole signals. Further studies are needed regard-

ing the accuracy and comparison of numerical waveforms, and of how systematic

errors in these waveforms can affect parameter estimation. Some analyses of nu-

merical waveforms with regard to gravitational-wave detection have already been

performed [316, 317, 147, 148], accuracy standards have been developed for use

of numerical waveforms in data analysis [140] and a detailed comparison of some

of the waveforms used in the NINJA project was performed in the related Samurai

project [318]. We expect that subsequent NINJA analyses will build on these results

to address these issues.

Despite the limited scope of the first NINJA project, we are able to draw the

following broad conclusions from this work. Our first conclusion is that the current

data analysis pipelines used to search LIGO, Virgo and GEO600 data for black

hole coalescence are able to detect numerical waveforms injected into the NINJA

data set at the expected sensitivities. Indeed, several of these pipelines are able to

detect signals that lie outside the parameter space that they target. This is a non-

trivial statement since most detectability estimates to date for these sources have
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relied on post-Newtonian waveforms, which are valid only when the black holes are

sufficiently far apart. For many of these pipelines, this is the first time they have

been tested against numerical waveforms. It should be noted, however, that the

NINJA data set does not contain non-stationary noise transients so more work is

needed to understand how detection performance is affected by the noise artifacts

seen in real GW detector data. Our second conclusion is that significant work is

required to understand and improve the measurement of signal parameters. For

instance, among the pipelines used in this first NINJA analysis only the Markov-

chain Monte-Carlo algorithm attempted to estimate the spins of the individual black

holes, and the estimation of the component masses by the detection pipelines is

poor in most cases. Improvement in this area will be crucial for bridging the gap

between gravitational wave observations and astrophysics. NINJA has proven to be

extremely valuable at framing the questions that need to be answered.

5.2 Search pipelines using modelled waveforms

When the waveform of the target signal is known, matched filtering is the

optimal search technique for recovering signals buried in stationary noise [319, 320].

This section describes the results of filtering the NINJA data with matched-filter

based analysis pipelines. Results are given for waveforms that span only the inspiral

signal, the ringdown alone, and the full inspiral, merger and ringdown. Although

the morphologies of these waveforms differ, the underlying analysis techniques are

similar in all cases. All the contributions in this section use a pipeline developed
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by the LSC and Virgo Collaboration to search for gravitational waves from binary

neutron stars and black holes in a network of detectors [321, 272]. We first describe

the features of this pipeline common to all the contributed matched-filter analyses

before presenting the results of searching the NINJA data using different matched-

filter templates.

The LSC-Virgo search pipeline performs a series of hierarchical operations in

order to search for real signals buried in the detector noise: Given a desired search

parameter space and waveform model, a “bank” of templates is created to cover the

parameter space such that the fractional loss in signal-to-noise ratio (SNR) between

any signal and the nearest template is less than a specified value (typically 3%).

All the NINJA inspiral searches use a non-spinning template bank parametrised by

the two component masses of the binary [322, 323, 179]. It has been found that

inspiral searches for spinning binaries using waveforms which neglect the effect of

spin are reasonably effective in most cases [321, 324]. Ringdown searches use a two

parameter template bank parametrised by the frequency and quality factor of the

signal constructed to cover the desired range of mass and spin [325]. Data from each

of the detectors is separately match filtered against this bank of waveforms [101, 325]

and a “trigger” is produced whenever the SNR exceeds the desired threshold. All

the analyses used a threshold of 5.5. A test is then performed which discards triggers

which do not have coincident parameters in two or more detectors (time and masses

for inspiral searches, and time, mass and spin for ringdown searches) [326, 327].

These coincident triggers provide the GW candidates for the ringdown analysis.

The triggers are ranked by a detection statistic ρc constructed from the SNRs of the
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N ≥ 2 individual triggers in a coincidence by ρc = (
∑N

i=1 ρ
2
i )

1/2. Coincident inspiral

triggers are subject to a second stage of filtering in which “signal-based vetoes” are

also calculated, which aim to separate true signals from noise fluctuations. These

include the χ2 [328] and r2 [329] tests. Signal-based vetoes could also be employed

for ringdown searches, but at present they are not implemented in the pipeline. For

each trigger, we construct an effective SNR ρeff , which combines the matched-filter

SNR and the value of the χ2 signal based veto [328]. Explicitly, the effective SNR

is defined as [321, 272]

ρ2
eff = ρ2/

√(
χ2

DOF

)(
1 +

ρ2

250

)
. (5.1)

where DOF signifies the number of degrees of freedom in the χ2 test. For signals

of moderate SNR, which are a good match to the template waveform, the expected

value of the χ2 is unity per degree of freedom and consequently the effective SNR

is approximately equal to the SNR. Non-stationarities in the data typically have

large values of χ2 and consequently the effective SNR is significantly lower than

the SNR. A second test is then performed to discard coincidences in which signal-

based vetoes reduce the number of triggers to less than two. These coincidences

provide the candidate gravitational wave signals for the inspiral-based pipelines and

they are ranked by the combined effective SNR ρeff = (
∑N

i=1 ρ
2
eff i)

1/2. To evaluate

the sensitivity of the analyses, we compare the list of GW candidates generated by

filtering the NINJA data to the parameters of the inject numerical relativity signals.

Six groups contributed matched-filter results to this analysis and the results
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can be roughly divided into three categories based on the waveform templates used:

(i) searches based on the stationary-phase approximation to the inspiral signal,

which are designed to capture various stages of the inspiral, merger and ring-

down, (ii) searches which use waveforms designed to model the full inspiral-merger-

ringdown signal, (iii) searches using ringdown-only waveforms obtained from black

hole perturbation theory. Within these categories, different parameter choices were

made in order to investigate the ability of the pipeline to detect the numerical rela-

tivity simulations. Each of these three approaches is described independently in the

following sections.

5.2.1 Stationary phase inspiral templates

The workhorse template of the LSC-Virgo search pipeline is based on the

stationary-phase approximation to the Fourier transform of the non-spinning post-

Newtonian inspiral [133, 101]. This waveform (referred to as SPA or TaylorF2) has

been used in the search for binary neutron stars [269, 270, 272, 268], sub-solar mass

black holes [271, 272, 268] and stellar mass black holes [268]. The TaylorF2 waveform

is parametrised by the binary’s component masses m1 and m2 (or equivalently the

total mass M = m1 + m2 and the symmetric mass ratio η = m1m2/M
2) and an

upper frequency cutoff fc. Amplitude evolution is modelled to leading order and

phase evolution is modelled to a specified post-Newtonian order. In this section

we investigate the performance of TaylorF2-based searches on the three simulated

LIGO detectors. Results which include the simulated Virgo detector are described in
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the next section. Several analyses were performed which test the ability of TaylorF2

waveforms to detect numerical relativity signals. The analyses differed in the way

the TaylorF2 waveforms or the template bank were constructed. The results of these

searches are summarised in Table 5.1, each column giving the results from a different

search with a summary of the chosen parameters. We first describe the parameters

varied between these analyses and then present a more detailed discussion of the

results.

All TaylorF2 NINJA analyses used restricted templates (i.e. the amplitude is

calculated to leading order), however the phase was calculated to various different

post-Newtonian orders [330]. Phases were computed to either two [331, 332] or

three point five post-Newtonian order [176, 333, 32] since these are, respectively,

the order currently used in LSC-Virgo searches [268] and the highest order at which

post-Newtonian corrections are known. After choosing a post-Newtonian order,

one chooses a region of mass-parameter space to cover with the template bank.

Figure 5.1 shows the boundaries of the template banks used in the analyses. One

search used the range used by the LSC-Virgo “low-mass” search [268] (m1,m2 ≥

1M�,M ≤ 35M�) and all other searches used templates with total masses in the

range 20M� ≤ M ≤ 90M�. These boundaries were chosen since there were no

signals in the NINJA data with mass smaller than 36M� and there is little, if any,

inspiral power in the sensitive band of the NINJA data for signals with M & 100M�.

The standard LSC-Virgo template bank generation code [323] restricts template

generation to signals with η ≤ 0.25, since it is not possible to invert M and η to

obtain real-valued component masses for η > 0.25. All but one of the searches
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enforced this constraint, with the 0.03 ≤ η ≤ 0.25 for the low-mass CBC search

and 0.1 ≤ η ≤ 0.25 for the other “physical-η” searches. It is, however, possible

to generate TaylorF2 waveforms with “unphysical” values of η > 0.25. In two

separate studies using Goddard and Pretorius waveforms [147], and Caltech-Cornell

waveforms [148] it was observed that match between numerical signals and TaylorF2

templates could be increased by relaxing the condition η ≤ 0.25. One NINJA

contribution uses a template bank with 0.1 ≤ η ≤ 1.0 to explore this.

Finally, it is necessary to specify a cutoff frequency at which to terminate

the TaylorF2 waveform. In the LSC-Virgo analyses, this is chosen to be the ISCO

frequency for a test mass in a Schwarzschild spacetime

fISCO =
c3

6
√

6πGM
. (5.2)

This cutoff was chosen as the point beyond which the TaylorF2 waveforms diverge

significantly from the true evolution of the binary [330]. More recently, compar-

isons with numerical relativity waveforms have shown that extending the waveforms

up to higher frequencies improves the sensitivity of TaylorF2 templates to higher

mass signals [147, 148]. The NINJA TaylorF2 analyses use templates terminated at

the ISCO frequency and two additional cut-off frequencies: the effective ringdown

(ERD) frequency and a weighted ringdown ending (WRD) frequency. The ERD

frequency was obtained by comparing post-Newtonian models to the Pretorius and

Goddard waveforms [147]. The ERD almost coincides with the fundamental quasi-

normal mode frequency of the black hole formed by the merger of an equal-mass
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Analysis (1) (2) (3) (4) (5) (6)

Freq. Cutoff ISCO ISCO ERD ERD WRD WRD

PN Order 2 PN 2 PN 2 PN 3.5 PN 3.5 PN 3.5 PN

Total Mass M� 2–35 20–90 20–90 20–90 20–90 20–90

η range 0.03–0.25 0.10–0.25 0.10–0.25 0.10–0.25 0.10–0.25 0.10–1

Found Sin-
gle
(H1, H2,
L1)

69, 66, 75 72, 43, 66 83, 51, 81 91, 56, 87 90, 55, 88 90, 56, 88

Found
Coincidence

49 59 79 82 82 84

Found Sec-
ond
Coincidence

48 59 77 81 81 81

Table 5.1: Results of inspiral searches using TaylorF2 templates. There
were 126 injections performed into the data. The table above shows the number
of injections which were recovered from the three simulated LIGO detectors (H1,
H2 and L1) using various different waveform families, termination frequencies fISCO,
fERD and fWRD (as described in the text), and post-Newtonian orders.

non-spinning black-hole binary. The WRD frequency lies between ISCO and ERD,

and was obtained by comparing TaylorF2 waveforms to the Caltech-Cornell numer-

ical signals [148].

The results of these searches are reported in Table 5.1. The principal result

is the number of injected signals detected by the search. For simplicity, we define

a detected signal as one for which there is a candidate GW signal observed within

50 ms of the coalescence time of the injection, determined by the maximum GW

strain of the injected signal. We do not impose any additional threshold on the

measured SNR or effective SNR of the candidate. For a single detector, this will
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Figure 5.1: Boundaries of the template banks used in inspiral searches as a
function of total mass M and symmetric mass ratio η. The crosses show the location
of the injections in the NINJA data set. The numbers in the legend correspond to
entries in table 5.1. Bank 6 extends in a rectangle up to η = 1.00, as indicated
by the arrows. NP is the bank used in the Neyman-Pearson analysis described in
Section 5.2.2.

lead to a small number of falsely identified injections, but for coincidence results the

false alarm rate is so low that we can be confident that the triggers are associated

with the injection. We now describe these results in the order that they appear in

Table 5.1.

Search (1) used second order post-Newtonian templates terminated at fISCO

with a maximum mass of M ≤ 35M�. Despite the fact that no NINJA injections

had a mass within the range of this search, a significant number of signals were still

recovered in coincidence both before and after signal consistency tests. Although

the templates are not a particularly good match to the injected signals, they are

still similar enough to produce triggers at the time of the injections. Search (2)

changed the boundary of the template bank to 20M� ≤ M ≤ 90M�, but left all
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other parameters unchanged. The number of detected signals increases significantly

as more signals now lie within the mass range searched.

Search (3) extended the upper cutoff frequency of the waveforms to fERD.

The number of signals detected increased from 59 to 77, as expected since these

waveforms can detect some of the power contained in the late inspiral or early

merger part of the signal [147, 148]. Search (4) extends the post-Newtonian order

to 3.5 PN, slightly increasing the number of detected signals to 81. With the limited

number of simulations performed in this first NINJA analysis, it is difficult to draw

a strong conclusion, although there does seem to be evidence that the higher post-

Newtonian order waveforms perform better, consistent with previous comparisons

of post-Newtonian and numerical relativity waveforms [147, 177, 334, 315, 148].

Search (5) uses an upper-frequency cutoff of fWRD for the templates. The number

of injections found in coincidence for this search is the same as the search using 3.5

order templates with a cutoff of fERD, although there are slight differences in the

number of found injections at the single detector level.

Search (6) extends the template bank of search (5) to unphysical values of

the symmetric mass ratio. Extending the bank to η ≤ 1 increases the number of

templates in the bank by a factor of ∼ 2. The original and modified template banks

are shown in Figure 5.2. With the extended template bank the number of injections

found in coincidence remains the same as search (5) after signal-based vetoes are

applied. However, many of the injections are recovered at a higher SNR, particular

the low-mass signals, as shown in Figure 5.2. Some injections show a reduction in

SNR; more work is needed to understand this effect.
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Figure 5.2: Results from the extended template bank. Left: The template
bank generated by the LSC-Virgo search pipeline (circles) and the bank obtained by
extending to η ≤ 1.00 (crosses). In this figure the bank is parametrised by τ0 and τ3

which are related to the binary masses by τ0 = 5M/(256ηv8
0) and τ3 = πM/(8ηv5

0),
where v0 = (πMf0)1/3 is a fiducial velocity parameter corresponding to a fiducial
frequency f0 = 40.0Hz. Right: The signal-to-noise (SNR) ratio at which NINJA
injections were recovered using the η ≤ 0.25 bank (squares) and the η ≤ 1 extended
bank (circles) in the Hanford detectors, given by ρ = (ρ2

H1 +ρ2
H2)1/2. The SNR of the

signal recovered using the extended bank shows with significant (> 10%) increases
over the standard bank for certain injections.

Finally, we note that the majority of signals passed the χ2 signal-based veto

with the thresholds used in the LSC-Virgo pipeline. The last two lines of Table 5.1

show the number of recovered signals before and after these signal-based vetoes

are performed. The post-Newtonian templates and numerical relativity signals are

similar enough that virtually all of the injected signals survive the signal based

vetoes.

To illustrate the results of these analyses in more detail, Figure 5.3 shows

which signals were detected and which were missed by the 3.5 order post-Newtonian

TaylorF2 templates terminated at fERD, as a function of injected total mass and

effective distance of the binary (a measure of the amplitude of the signal in the
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detector), defined by [101]

Deff = d

/√
F 2

+(1 + cos2 ι)2/4 + F 2
× cos2 ι , (5.3)

where d is the luminosity distance of the binary.

One signal, with total mass of 110M� and effective distance ∼ 200 Mpc, was

missed while others with similar parameters were found. This signal was one of the

Princeton waveforms for which the maximum amplitude occurs at the start of the

waveform rather than at coalescence2, rendering our simple coincidence test invalid.

The injection finding algorithm compares the peak time to the trigger time and,

even though triggers are found at the time of the simulation, there are no triggers

within the 50 ms window used to locate detected signals.

Figure 5.4 shows the accuracy with which the total mass and coalescence

time of the binary are recovered when using the 3.5 post-Newtonian order Tay-

lor F2 templates. The total mass fraction difference is computed as (Minjected −

Mdetected)/Minjected. For lower mass signals, the end time is recovered reasonably

accurately, with accuracy decreasing for the high mass systems. The total mass re-

covery is poor for the majority of signals, with good parameter estimation for only

a few of the lowest mass simulations.

2That the maximum occurs at the start of the waveform is in part an “artifact” of the double-
time integration from the Newman-Penrose scalar ψ4 to the metric perturbation h, and in part a
coordinate artifact. The two integration constants were chosen to remove a constant and linear-
in-time piece for h, however, there is still a non-negligible quadratic component; we suspect this is
purely gauge, though lacking a better understanding of this it was not removed from the waveform.

235



Figure 5.3: Found and missed injections using TaylorF2 templates termi-
nated at ERD, plotted as a function of the injected effective distance in Hanford
(left) and Livingston (right) and the total mass of the injection. Since the LIGO
Observatories are not exactly aligned, the effective distance of a signal can differ,
depending on the sky location of the signal. The vertical bars mark the limits of the
template bank used in the search. For the lower masses, we see that the majority
of the closer injections are found in coincidence in all three of the detectors. There
is then a band of injections which are found only in two detectors – H1 and L1 and
not the less sensitive H2 detector. For higher masses, the results are less meaningful
as the template bank was only taken to a total mass of 90M�.

Figure 5.4: Parameter accuracy using TaylorF2 templates terminated at
ERD.Left: Accuracy with which the total mass is recovered. The template bank
covers the region 20M� ≤M ≤ 90M�, hence the mass of injections with M > 90M�
are always underestimated. Even within the region covered by the bank, the Tay-
lorF2 templates systematically underestimate the mass of the injected signals and
the total mass is recovered accurately only for a few injections. The vast majority of
recovered signals have an error of 40% or greater. Right: Accuracy of determining
the coalescence time of the injections. The end time is not recovered accurately, the
timing error can become as large as 50ms, the limits of the injection window.
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5.2.2 Four-detector inspiral search

The inspiral analysis described in Section 5.2.1 considered data from the three

simulated LIGO detectors. We now extend the analysis to include data from the

simulated Virgo detector. In addition, we impose an alternative criterion, based

on the Neyman-Pearson formalism [320], to determine those injections which were

detected by the pipeline. In the previous section an injection was classified as found

by the search if a GW candidate existed within 50 ms of the peak time of the

numerical data. Here, we consider a signal to be found is there is an associated

candidate whose significance exceeds a predetermined threshold. Specifically, we

require the candidate to have a significance greater than any candidate arising due

to noise alone. This allows us to probe in more detail the effect of signal-based vetoes

and the efficaciousness of the effective SNR statistic in analysis of the NINJA data.

Data from all four simulated NINJA detectors was analysed using the CBC

pipeline as described in column (1) of Table 5.1. In addition, a second analysis

was performed with that the template bank extended to cover the region from

2M� ≤M ≤ 100M�, with all other parameters unchanged. The search can therefore

be though of as the simplest extension of the standard LSC-Virgo “low mass” CBC

search [268]. The boundary of the template bank used is shown in Figure 5.1.

In this analysis, we choose a detection statistic and claim that a GW can-

didate is present if the value of this statistic exceeds a predetermined threshold.

All candidates are considered detections. The threshold is chosen so that the false

alarm probability—the probability that a noise event will be mistaken for a real
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signal—is tolerable. The efficiency of this method depends on how close the chosen

statistic is to the optimal detection statistic. It is well known that the matched

filter SNR is the optimal statistic for known signals in a single detector if the noise

is stationary [319, 320]. For a network of detectors containing stationary noise, the

optimal statistic is the coherent signal-to-noise ratio ρcoherent [335]. At the time of

this analysis, calculation of ρcoherent was not available in the CBC pipeline, so we in-

stead compute a combined SNR from the i detectors, ρc = (
∑N

i=1 ρ
2
i )

1/2, as a simple

alternative. In the presence of non-Gaussian noise, the effective SNR, described in

Section 5.2, has shown to be an effective detection statistic [272]. In this analysis,

we also consider the combined effective SNR ρeff = (
∑N

i=1 ρ
2
eff i)

1/2.

We investigate three choices of detection statistic: (i) the combined matched

filter SNR of coincident candidates before signal-based vetoes are applied (ρfirst
c ),

(ii) the combined matched filter signal-to-noise ratio after the χ2 signal-based veto

has been applied applied to coincidences (ρsecond
c ), (iii) the combined effective SNR

(ρsecond
eff ). This statistic is only available after the second coincidence stage, since it

is a function of matched filter SNR and the χ2 statistic for a candidate. To set a

threshold for each statistic we choose the highest value of that statistic NINJA data

containing only noise. To do this, we discard all triggers within 5 s of an injected

signal; the remaining triggers will be due to the simulated noise alone (we note

that this approach is not possible in real data where the locations of the signals

are unknown). This crude method of background estimation should provide us

with consistent criteria for elimination of spurious detections. Therefore, we mark

an injection as found only if it resulted in a trigger with statistic higher then any
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Bank mass range 2M� ≤M ≤ 35M� 2M� ≤M ≤ 100M�

Statistic Statistic Found Statistic Found
Threshold Injections Threshold Injections

ρfirst
c 9.18 73 9.8 91
ρsecond

c 9.18 69 9.8 93
ρsecond

eff 10.05 27 10.05 85

Table 5.2: Number of injections found as determined by the Neyman-
Pearson criteria for different choices of detection statistic Λ and threshold Λ∗.
The mass range of the template bank is shown in the first row, all other parameters
of the search as the same as those described in column (1) of Table 5.1.

background trigger found in the data.

Table 5.2 shows the threshold and the number of triggers found for each choice

of statistic. It is interesting to compare the results for the low-mass search when we

threshold on ρsecond
c , rather than using a 50 ms time window to determine detected

signals. When using the time-window method, the number of injections found by the

low-mass search is 51, but this increases to 69 when using the threshold method.

Since all the injected signals lie outside the boundary of the low-mass bank, the

coalescence time of the signals will be poorly estimated. This will result in triggers

outside the 50 ms window, which are nevertheless are loud enough to lie above the

background.

Signal-based vetoes are applied at the second stage of the inspiral pipeline and

are used to compute ρeff . By comparing the number of triggers found before and

after signal-based vetoes are applied, we can evaluate their effect on the sensitivity

of the search. Note that we observe the same threshold for both ρfirst
c and ρsecond

c .

However, the number of detected signals in the low-mass search is reduced by 4 as
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the χ2 veto has removed triggers where the templates are not a good match for the

signals. More intriguing is a slight increase in the number of detected signals after

the χ2 veto in the bank with the extended mass range (from 91 to 93). Additional

investigations revealed that, despite having fewer triggers in each detector after the

χ2 test has been applied, the total number of coincident triggers actually increases.

This is due to the fact that the signal-based vetoes cause the time of the signal to

be measured more accurately in the detectors; more triggers therefore survive the

coincidence test. We do not observe this in the case of the low mass search.

Finally, we turn our attention to the effective SNR statistic, defined in equa-

tion (5.1). Since the NINJA detector noise is stationary and Gaussian, the expected

value of the χ2 is one per degree of freedom. Therefore, we do not expect that the

effective SNR will be useful in reducing the significance of loud background triggers.

This is borne out by the fact that the statistic threshold actually increases slightly

when using effective SNR. For the low mass search the number of signals found by

thresholding on ρeff is significantly less than when using the combined SNR statistic.

This is to be expected as the simulated signals do not match well with the templates.

Although the low mass templates produce candidates, these will have large values

of χ2 since signal and template do not match well. Thus, the effective SNR will be

smaller than the original SNR and fewer signals will be recovered above the thresh-

old. This effect is less significant for the second search with a larger mass range

as the templates provide a better match to the simulated signals. Since effective

SNR has been a powerful statistic in real detector data, this highlights the need for

further NINJA studies using data containing non-stationary noise transients.
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5.2.3 Inspiral-merger-ringdown templates

The calculation of the full binary binary black hole coalescence waveform ac-

cessible to ground-based detectors requires numerical methods. At the moment, it is

not possible to accurately model a coalescing binary over hundreds of orbits due to

the computational cost of evolutions. Furthermore, it is not necessary to model the

entire waveform, since post-Newtonian gives a valid description of the system when

the black holes are sufficiently separated. During their final orbits before merger

the black holes’ velocities increase and the post-Newtonian expansion becomes less

reliable. At this stage the non-perturbative information contained in numerical sim-

ulations is required. A successful approach has been to combine analytical and

numerical results to obtain full waveform templates. Two different families of such

waveforms have been used to analyse the NINJA data: the EOB [336, 141, 337, 57]

and phenomenological [105, 314] models.

By combining together results from post-Newtonian theory and perturbation

theory, the EOB model [336, 141] predicts the full inspiral, merger and ringdown

waveform. More recently, the non-spinning EOB model has been further improved

by calibrating it to NR results, achieving high overlaps without the need to maximise

the intrinsic mass parameters of the binary [313, 147, 54, 151, 152, 153, 315]. The

LSC Algorithm Library (LAL) [338] contains two implementations of the effective

one body template: one (called EOB) which only evolves the waveform to the light-

ring frequency

fLR =
c3

3
√

3πGM
, (5.4)
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and a second (called EOBNR) which implements the full EOB waveform described

in [54]. This template which was constructed to match the NASA-Goddard binary

black hole simulations with mass ratios m1:m2 = 1:1, 3:2, 2:1 and 4:1, however

LAL waveforms do not yet implement higher harmonics of the signal. Both of these

implementations were used to search for black hole binary signals in NINJA data.

Another approach for constructing the full waveform is to “stitch” together

the results of post-Newtonian and numerical relativity calculations. The model

presented in [105, 314, 339] consists of matching the post-Newtonian and numerical

waveforms in an appropriate matching regime (where both are sufficiently accurate)

to obtain a “hybrid” waveform. This hybrid is then fit by a phenomenological

model in the frequency domain determined entirely by the physical parameters of

the system. This procedure has been carried out for non-spinning black holes and a

two-dimensional template family of waveforms that attempts to model the inspiral,

merger and ringdown stages for non-spinning binary black holes has been obtained.

Each waveform is parametrised by the physical parameters of the system, i.e., the

masses m1 and m2 of the black holes.

Since the EOBNR and phenomenological models provide complete waveforms,

the search was performed to higher masses (200M� and 160M� respectively) than

for inspiral only searches. In principle, the search could be extended to even higher

masses, but technical issues with the current waveform generation procedures pre-

vent this. The minimum component mass was also increased, in an effort to reduce

the size of the template bank by limiting the number of highly asymmetric signals.

Finally, the template bank for all these searches was constructed using the standard

242



Template EOB EOBNR Phenom

Freq. Cutoff Light ring Full waveform Full waveform

Filter Start Freq. 40 Hz 30 Hz 30 Hz

Component Mass M� 10-60 15-160 20-80

Total Mass M� 20-90 30-200 40-160

Minimal Match 0.97 0.99 0.99

Found Single (H1, H2, L1, V1) 91, 64, 82, - 97, 68, 92, 102 92, 61, 87, -

Found Coincidence (LIGO, LV) 83, - 88, 106 81, -

Found Second Coincidence (LIGO, LV) 80, - 85, 102 80, -

Table 5.3: Results of the search for NINJA signals using IMR template
banks. There were 126 injections performed into the analysed data. The signal-
based vetoes have little influence in the rejection of triggers, confirming their effi-
ciency in separating inspiral-like signals from other kind of glitches.

second order post-Newtonian metric, and hexagonal placement algorithm [179]. At

high masses, the parameter space metric for the full waveforms will differ signifi-

cantly from the standard second-order post-Newtonian metric. However, the current

template bank placement suffices for detection purposes, although probably not for

good parameter estimation.

The parameters of the NINJA analyses using the EOB, EOBNR and phe-

nomenological waveforms are also given in Table 5.3. Again, the primary result is

the number of GW candidates found to be coincident with an injected signal. For

the EOB model truncated at light ring, the parameters were chosen to match the

TaylorF2 analyses described in Section 5.2.1. Therefore, it is unsurprising that the

results are very similar to the TaylorF2 search extended to ERD (the fourth column

of Table 5.1). Further details of the EOB search, and a comparison to TaylorF2

results are available in The EOBNR results show some improvement for detecting
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Figure 5.5: Found and missed injections for the EOBNR and Phenomeno-
logical templates. The figures shows found and missed injections as a function of
the injected effective distance in Hanford and the total mass. Left: Results for the
EOBNR search. Right: Results for the search with phenomenological waveforms.
The vertical bars mark the limits of the template bank used in the search.

the numerical relativity signals over the usual post-Newtonian or EOB waveforms.

For the phenomenological waveforms, time windows of 120ms in single detector and

80ms in coincidence have been used to associate triggers to injections. These pa-

rameters differ from those employed in other searches to compensate for a relatively

large observed error in the estimation of the coalescence time. By comparing the

results with the standard post-Newtonian analyses presented in Section 5.2.1, we

conclude that in the present case the phenomenological waveforms [105, 314] do

not seem to provide a clear benefit over the usual post-Newtonian waveforms ex-

tended to higher cutoff frequency and/or to unphysical regions of the parameter

space [147, 148]. For an extended description of the search with phenomenological

waveforms see [340]. In all cases, the signal-based vetoes have little influence in

the rejection of triggers, confirming their efficiency in separating inspiral-like signals

from other kind of glitches.
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Plots of found and missed injections for the searches are shown in Figure 5.5.

For the most part, simulated signals in the mass range covered by the template

banks are well recovered. Some of the missed signals at lower distance correspond

to waveforms from simulations of spinning black holes. Since all searches make use

of non-spinning waveforms this drop is expected. Finally, we turn to parameter

estimation. Figures 5.6 and 5.7 show the parameter recovery accuracies for the

EOBNR and phenomenological searches respectively. In both cases, the accuracy

of recovering the total mass of the simulations is greatly improved over TaylorF2

waveforms shown in Figure 5.4. This is likely related to the increased mass range of

the searches, as well as the use of full waveforms. The timing accuracy for EOBNR

is comparable with the TaylorF2 results, while for the phenomenological waveforms,

the known timing bias affects the results.

Both the EOBNR and phenomenological models will be improved in the

future. Further accurate EOBNR models have already appeared in the litera-

ture [54, 151, 152, 153, 315] since the time the EOBNR model used in this analysis

was implemented, and extensions to include spin and eccentricity are under devel-

opment. There are a number of obvious improvements in the phenomenological

waveforms that can be made: Calculating the parameter space metric for the phe-

nomenological waveforms would enable the use of an optimal template bank and

allow for improved coincidence algorithms. The construction of the phenomenolog-

ical waveform model can itself be significantly improved by extending the fitting to

higher mass ratios and spins, quantifying the error on the phenomenological param-

eters, matching to post-Newtonian theory as early as possible and including higher
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Figure 5.6: Parameter accuracy for EOBNR templates. Left: Accuracy
with which the total mass is recovered. The template bank covers the region
30M� ≤ M ≤ 200M�, hence the mass of injections with M > 200M� are al-
ways underestimated. Most of the injections with total mass less than 200 M� were
recovered with a mass accurate within to a few tens of percent, demonstrating that
the EOBNR templates are more faithful to the injected signal than the TaylorF2
templates shown in Figure 5.4. Higher mass injections are necessarily recovered
with underestimated total mass, because the template bank did not cover the entire
simulation region. Right: Accuracy of determining the coalescence time of the in-
jections. The end time for injections with total mass less than 200 M� was typically
recovered to within a few milliseconds. The end time for injections with total mass
above 200 M� (outside the range of the template bank) was typically recovered to
within 10 or 20 milliseconds.

Figure 5.7: Parameter accuracy for phenomenological templates. Left: Ac-
curacy with which the total mass is recovered. The total mass is typically recovered
within 20%, for signals within the template space. For higher mass injections, there
is an inevitable underestimation of the mass due to the limited reach of the template
bank. Right: Accuracy of determining the coalescence time of the injections. The
timing plot shows the systematic offset discussed in the text.
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order modes in the waveform. The results of the NINJA analysis also demonstrate

a clear need to improve accuracy in measuring the end time of the signal. This is

not straightforward, however, since there is no clear definition of the time of merger

for the phenomenological waveforms or the numerical signals [318]. Work on the

improvements to both the EOBNR and phenomenological searches are being made,

and will be applied in and guided by future NINJA projects.

5.2.4 Ringdown templates

As described in section 5.2, ringdown templates can be computed using black

hole perturbation theory and so matched filtering can be used to search for these sig-

nals. Ringdown templates are exponentially damped sinusoids parametrised by the

ringdown frequency f and quality factor Q. The LSC ringdown search pipeline [327]

has been used to filter the NINJA data against a bank of ringdown templates with

frequencies between 50 Hz and 2 kHz, and quality factors between 2 and 20. The

bank had a maximum mismatch of 3% and contained 583 templates. A lower-

frequency cutoff of 45 Hz was applied when filtering the NINJA data generated

with the LIGO noise curves and 35 Hz for data with the Virgo noise curve. The

goals of these analyses were to ascertain the detectability of the injected numerical

waveforms using ringdown templates at single and coincident detector levels and

the accuracy with which the final black hole parameters can be estimated. The

current searches use single-mode templates. The waveforms described in this paper

are known to contain higher order multipoles. The potential effects of ignoring these
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in the search are discussed in Ref. [341] (see in particular Fig. 8 in there).

An injection is defined as found if a set of coincident triggers lies within 10 ms

of the peak time of the injection (as specified in the contributed numerical data). If

more than one set of coincident triggers satisfies this criterion, that with the largest

value of
∑

i ρ
2
i is selected, where ρi is the signal to noise ratio in the ith detector. Of

the 126 injections made into the three simulated LIGO detectors, 45 were found in

triple coincidence, 24 in H1 and L1 (only), and 7 in H1 and H2 (only). Figure 5.8

shows the distribution of found and missed injections for this analysis. The ringdown

frequency and quality is computed via the Echeverria formulae [342]:

f =
1

2π

c3

GM

[
1− 0.63 (1− a)

3
10

]
(5.5)

Q = 2 (1− a)−
9
20 . (5.6)

More recent and accurate fits for a variety of modes are listed in the Appendices

of Ref. [178]. The final black hole mass M and spin a can be computed from the

component masses and spins of the numerical simulation, as described in [54] and

[343], respectively. See also Refs. [302, 344] for a discussion and comparison of

different numerical techniques to perform the necessary fits.

As expected, we see that in general, the closest injections (measured by effec-

tive distance Deff), defined in equation 5.3) were found in triple coincidence, those

with a large Livingston effective distance were found in H1 and H2 only, while those

with a large Hanford effective distance were not found in H2, and the furthest in-

jections were missed in at least two detectors. The plots show that there are three
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Figure 5.8: Distribution of injections found and missed by the ringdown
pipeline. The left figure shows the effective distance of the injected signal in the
LIGO Hanford Observatory as a function of the predicted ringdown frequency. The
right figure shows the effective distance of the injected signal in the LIGO Livingston
Observatory as a function of the total initial mass of the signal. The figures show
signals found in triple coincidence (blue crosses), in double coincidence in H1H2
(green stars), in double coincidence in H1L1 (cyan stars), and missed (red circles).

missed injections which, given their frequencies and effective distances, we would

have expected to find. However, all three of these are (non-spinning) injections with

mass ratio of 4:1, and thus the energy emitted in the ringdown is less than would be

emitted by a binary of the same total mass but with a mass ratio of 1 [302]. This is

not taken into account in the calculation of effective distance.

Equations (5.5) and (5.6) can be inverted to calculate M and a from the

template parameters f and Q of a given GW candidate. Figure 5.9 shows the

accuracy with which the ringdown search measures the mass and peak time of the

injected signals. Given that mass is radiated during the ringdown phase (the exact

amount depends on the initial mass ratio) one would expect the measured mass to

underestimate the mass of the signal, and hence the data points would lie below the

diagonal. However, the recovered frequency is systematically underestimated due
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Figure 5.9: Accuracy of measuring the ringdown parameters. The left figure
shows the detected ringdown mass versus total injected mass for all found injections.
The right figure shows the difference between the time of injected waveform peak
amplitude and the start time of the ringdown as found by the search.

to the presence of the preceding inspiral, leading to an overestimation of the mass.

The peak time of the signal is measured with similar accuracies to the coalescence

time measured by the TaylorF2 templates described in Section 5.2.1. The three data

points with a large time difference and masses lying in the range 80 and 110 M�

are part of the PU_T52W non-spinning, equal mass group where the peak amplitude

occurred early in the waveform (i.e prior to the merger).

5.3 Conclusions

The NINJA project was conceived as a first step towards a long-term collabora-

tion between numerical relativists and data analysts with the goal of using numerical

waveforms to enhance searches for gravitational waves. NINJA is unique in that it

focused on running existing GW search algorithms on data containing waveforms

obtained from numerical simulations. Since this constitutes the first such analysis,
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the scope of the project was deliberately kept somewhat modest: restrictions were

placed on the number of waveforms to be submitted by each numerical group, no

attempt was made to include transient noise sources in the data and only a limited

number of simulated signals were produced for the data analysis. This helped to

encourage significant involvement from both the numerical relativity and data anal-

ysis communities, with ten numerical relativity groups providing waveforms and

data-analysis contributions from nine different groups.

Communication between the data analysis and numerical communities has

been smooth and fluent during the course of the NINJA project. The format de-

scribed in [345] provided a good starting point from which to interchange data

between the communities. As the project was being developed, several improve-

ments were made to the format, which we expect will continue evolving as more

experience is gained with a broader family of waveforms, including those containing

matter.

The limited number of signals in the NINJA data makes it dangerous to draw

strong conclusions from the comparison of different waveform families and differ-

ent search methods. Overall, it is clear that many of the data analysis methods

were capable of detecting a significant fraction of the simulated waveforms. This

is immediately significant as several of the analyses performed are routinely used

in searches of the LIGO and Virgo data. However, since the NINJA data set did

not include the type of non-Gaussian transients seen in real GW detector data, it

is difficult to translate the efficiencies observed here into statements about LIGO or

Virgo sensitivity.
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NINJA has demonstrated that more work is required to measure the param-

eters of signals in detector data. Parameter estimation is poor for most pipelines,

and several methods tend to associate a candidate event to that part of the wave-

form which lies in the most sensitive band of the detector. For example, in a search

with inspiral only templates, the ringdown of a high mass black hole which occurs

at around 100 Hz might be picked up. This will lead to poor estimation of both

the binary’s mass and coalescence time. Similarly, the un-modelled burst searches

will correctly identify the signal but, without knowing which part of the coalescence

it corresponds to, have difficulty providing accurate parameters. There is some ev-

idence that using full inspiral-merger-ringdown waveform templates alleviates this

problem, as well as evidence that estimation of the sky location of the signal is

largely independent of the mismatches between simulated and template waveform.

These are all issues which warrant further investigation.

We hope that this work will provide a foundation for future analyses, and plans

are envisioned to continue and extend the NINJA project. Several suggestions have

been made to broaden this work and make it more systematic: in addition to ex-

panding the parameter space explored by numerical simulations, two crucial steps

will be to construct hybrid analytic-numerical waveforms (which will allow a lower

range of masses to be injected) and to consider data containing non-stationary noise.

It would also be natural to include other waveform families, such as supernovae or

binary mergers comprising one or two neutron stars. Subsequent NINJA projects

could provide a noise-free data set for tuning parameter estimation and measurement

pipelines and release “training” and “challenge” data sets, as has proven success-
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ful in the Mock LISA Data Challenges [346, 347], in which the parameters of the

waveforms are known and unknown to the analysts, respectively. The numerical

data sets may also be useful for efforts aimed at using the best-available waveforms

to explore and develop LISA data analysis approaches and in evaluating parame-

ter estimation accuracy for LISA. These efforts, as carried out by the Mock LISA

Data Challenge Task Force and the LISA Parameter Estimation Task Force, are

summarised in Ref. [348, 349].

However future analyses progress, it is clear that a significant amount remains

to be learned from collaborations between the numerical relativity and gravitational-

wave data analysis communities.

253



Chapter 6

Improvements in parameter estimation of gravitational

wave signals in ground-based detectors with

amplitude-corrected inspiral-merger-ringdown waveforms

6.1 Introduction

If a gravitational wave is detected by ground-based laser interferometers such

as LIGO or Virgo (or by any other experiment), it will be a very exciting confir-

mation of the predictions of general relativity. Beyond simply confirming this basic

prediction, one would also like to extract as much scientific information as possible.

To do this, one must determine the parameters which characterize the waveform

as accurately as possible. This includes parameters describing the source, such as

the masses, spins, location and orientation of the source. One could potentially

deduce a wealth of astrophysical information from these source parameters, partic-

ularly if many detections are made. For example, one might learn how common

compact binaries are and how they are distributed in space, if they are likely to be

higher or lower mass, have large or small spins, and whether they form in galaxies

or globular clusters. One could also extract information of a more cosmological

or theoretical nature. For example, if an electromagnetic counterpart to a binary

coalescence is observed along with a gravitational wave signal, one would have inde-
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pendent measurements of the redshift and the luminosity distance [115, 5, 350, 351].

This would allow one to measure the rate of expansion of the Universe and Hub-

ble’s constant rather precisely [7]. One could also parametrize the effects alternative

theories of gravity would have on the waveform and attempt to measure these pa-

rameters to test general relativity and constrain alternative theories, as studied in

Refs. [110, 352, 111, 353, 354], for example.

So far, very many studies have been done on the parameter estimation capa-

bilities of current and future GW detectors (a sample of these studies were listed

in Sec. 2.3.3). Most of these studies have used restricted, adiabatic PN waveforms.

A few notable exceptions for ground-based detectors are Ref. [116], which used

amplitude-corrected PN waveforms of inspiralling binaries with spin-corrections in

the phase (but not the amplitude), Ref. [117], which used so-called phenomenolog-

ical (restricted) IMR waveforms, and for space-based detectors Ref. [118], which

used EOB IMR waveforms with and without amplitude corrections. Such improved

waveform models (relative to the restricted PN waveforms) have the potential to

improve parameter estimation capabilities and will likely be employed in future

searches and parameter extraction methods for gravitational wave detectors, so it is

important to understand just what effect these improved waveform models will have.

In the context of advanced ground-based detectors, Ref. [116] found that a single

detector using amplitude-corrected PN waveforms could estimate the mass and spin

parameters, the time of coalescence and the binary inclination with good accuracy.

These errors were significantly better than when using restricted PN waveforms,

especially for large total mass and for asymmetric binaries. In the context of initial
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and advanced ground-based detectors, Ref. [117] found that the phenomenological

waveforms gave improvements in parameter estimation relative to PN waveforms

due to the inclusion of a merger-ringdown signal. This improvement was greatest

for masses & 100M�. This study was limited to mass ratios in the range 1:1 -

4:1, because NR simulations were not available to calibrate the phenomenological

waveforms outside this range, and consequently the phenomenological waveforms

become unreliable at more extreme mass ratios. In the context of the space-based

LISA, Ref. [118] found that both the merger-ringdown and amplitude corrections

could offer improvements to parameter estimation. The merger-ringdown was found

to be especially important for determining the sky position of the source. This work

considered mass ratios 1:1 - 10:1, although it did not attempt to estimate the mass

ratio, but treated it as though it were known exactly.

In this work, we would like to confirm and build upon these results by studying

the parameter estimation capabilities of EOB IMR waveforms with (and without)

amplitude corrections. One improvement is that we will not assume the mass ratio is

known or restrict ourselves to comparable masses. In this work, we will consider mass

ratios as extreme as ν = 0.04 (roughly a 23:1 component mass ratio). Unfortunately,

due to concerns over the accuracy and robustness of our results, we find it necessary

to restrict ourselves to total mass ≤ 100M� and a single initial LIGO detector (but

in the future we plan to extend our results to total mass & 100M� and a network of

advanced detectors, where we expect the merger-ringdown and amplitude corrections

to have the most significant impact). One positive note is that our extreme mass

ratio results are just as robust as our comparable mass results, so we cover some
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new ground relative to the works mentioned above.

The rest of this chapter is organized as follows: in Sec. 6.2, we will review

the methods used in this study, including the waveforms and how the errors can

be estimated using the Fisher matrix formalism and how we have implemented

the waveforms and Fisher matrix calculation. In Sec. 6.3, we explain some of the

difficulties faced in performing these Fisher matrix calculations accurately, and the

many tests we have done to check the robustness of our results. In Sec. 6.4, we

present the main results of this chapter and plot parameter errors as we vary the

total mass, symmetric mass ratio and binary inclination. In Sec. 6.5, we summarize

our results.

6.2 Methods

6.2.1 Waveform models

For this study, we use the EOB model described in Sec. 2.2.2. This will

include a restricted version, which is a Newtonian amplitude waveform in which only

the (2,±2) mode is present, and an amplitude-corrected version, which is a 0.5PN

amplitude in which the (2,±2), (3,±3), (2,±1) and (3,±1) modes are present.

In either case, the dynamical variables are evolved in the same way, according to

Eqs. (2.69)-(2.72). The only difference is which set of harmonic modes the orbital

phase Φ and frequency ωorb are plugged into. The ringdown attachment procedure

is the same for all modes, as outlined in Sec. 2.2.2.3, and is always done at the same

orbital frequency, the ωmatch of Eq. (2.89). The polarizations are obtained from the
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Figure 6.1: We plot restricted (or, equivalently amplitude-corrected with ι = 0)
and amplitude-corrected EOB waveforms for several choices of ι for an M = 40M�,
ν = 0.09 binary in the time-domain (left panel) and frequency-domain (right panel).

modes with Eq. (2.53), and the strain measured by a detector, h(t) is then

h(t) = F+ h+(t) + F× h×(t) , (6.1)

where the antenna pattern functions F+ and F× are functions of the sky position

(θ, φ) and polarization angle ψ of the source relative to the detector. Recall that for

an interferometer with right angle arms, the antenna functions are given by

F+(θ, φ, ψ) =
1

2

(
1 + cos2 θ

)
cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ ,

F×(θ, φ, ψ) =
1

2

(
1 + cos2 θ

)
cos 2φ sin 2ψ + cos θ cos 2φ sin 2ψ . (6.2)

In Fig. 6.1, we plot the restricted waveform and the amplitude-corrected

waveform (for a few different binary inclinations ι) for a binary with total mass

M = 40M� and symmetric mass ratio ν = 0.09 in the time-domain and frequency-

domain. Note that the 1st and 3rd harmonics (the modes with m = ±1 , 3 respec-
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tively) modulate the waveform in the time-domain. In the frequency-domain, the

different harmonics interfere with one another (mostly destructively), and the 3rd

harmonic extends the frequency band of the signal relative to the restricted wave-

form. The odd harmonics are all proportional to sin ι and δ = (m1 − m2)/M , so

their effect is most noticeable for large inclinations and extreme mass ratios.

6.2.1.1 Restricted waveform

For the restricted waveform, the GW polarizations for a non-spinning binary

are given by

h+(t) = −2M ν v2

DL

(
1 + cos2 ι

)
cos 2Φ(t) ,

h×(t) = −2M ν v2

DL

2 cos ι sin 2Φ(t) , (6.3)

where M = m1 +m2 is the total mass, ν = m1m2/M
2 is the symmetric mass ratio,

Φ(t) is the binary orbital phase, v = (M ωorb)1/3 is a PN expansion parameter,

DL = D (1 + z) is the redshifted distance, and ι is the inclination angle between

the binary’s orbital angular momentum, L and the direction of propagation, N̂, or

cos ι = N̂ · L̂. It is common to define the effective distance as

Deff =
DL√

F 2
+ (1 + cos2 ι)2 + F 2

× 4 cos2 ι
. (6.4)

For restricted waveforms, any binary at an arbitrary sky location with an arbitrary

orientation is equivalent to one which is optimally located (directly overhead) and
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optimally oriented (“face-on”) at distance Deff . In addition, one can define an angle

ϕ0 = tan−1

(
F× 2 cos ι

F+ (1 + cos2 ι)

)
, (6.5)

which can be absorbed into the orbital phase and thus simplify the waveform

h(t) = −2M ν v2

Deff

[cosϕ0 cos 2Φ(t− tref) + sinϕ0 sin 2Φ(t− tref)]

= −2M ν v2

Deff

cos [2Φ(t− tref)− ϕ0] . (6.6)

Therefore, the restricted waveform can be described in terms of 5 parameters: Two

mass parameters, one parameter for the overall amplitude or effective distance,

and two parameters which specify a reference time of the waveform, and the phase

at that reference time. However, as noted in Refs. [89, 119], in a Fisher matrix

calculation, the amplitude (or Deff) parameter does not correlate with the others,

which are determined from the waveform phasing. Therefore, the Fisher matrix is

block-diagonal, and one finds that the fractional error on the amplitude (or Deff)

of the restricted waveform is simply the inverse of the SNR, 1/ρ. Therefore, for

the purposes of the Fisher matrix calculation, the parameter set for the restricted

waveform is

{Mc, ν, tref , φref} , (6.7)

where Mc = M ν3/5 is the so-called “chirp mass” (this mass parameter can be

determined more precisely than other mass parameters because the phase of the

frequency-domain waveform ∝ M−5/3
c at leading-order), tref is the time at which
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the waveform reaches some reference point, and φref = 2 Φ(tref) is the GW phase at

the reference point.

6.2.1.2 Amplitude-corrected waveform

Once amplitude corrections are added to the restricted waveform, it is no

longer true that any arbitrarily oriented binary is equivalent to an optimally lo-

cated and oriented binary at distance Deff . The amplitude-corrected waveform has

the same dependence on the sky position and polarization angle as the restricted

waveform. However, the amplitude corrections have a different dependence on the

binary inclination from the leading order amplitude term. In fact, the 1st and 3rd

harmonics of the orbital phase that appear at 0.5PN order (and all odd harmonics)

are proportional to sin ι, and so vanish when ι = 0. The 0.5PN order amplitude

strain is given as

h(t) = −2M ν v2

DL

{
F+

[ (
1 + c2

ι

)
cos 2Φ(t) (6.8)

+ v δ sι

(
5

8
+

1

8
c2
ι

)
cos Φ(t)− v δ sι

(
9

8
+

9

8
c2
ι

)
cos 3Φ(t)

]
+ F×

[
2cι sin 2Φ(t) +

3

4
v δ sι cι sin Φ(t)− 9

4
v δ sι cι sin 3Φ(t)

]}
,

where δ = (m1 − m2)/M =
√

(1− 4 ν) and cι and sι are shorthand for cos ι and

sin ι respectively.

Note that a binary for which ι 6= 0 is not equivalent to any optimally oriented

(ι = 0) binary, because the former contains three harmonics, while the latter will
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have only the 2nd harmonic present. With this more complicated structure, one

cannot absorb everything into a single overall amplitude parameter and phase offset.

Our amplitude-corrected waveform has 9 physically meaningful parameters,

{Mc, ν, tref , φref , ι, DL, θ, φ, ψ} . (6.9)

In principle, a single detector could measure ι, because the harmonic content of the

waveform will vary as ι varies, but in practice it is poorly determined because of

degeneracies with other angular parameters. Note that the strain depends on the

sky position and polarization angle only through the antenna pattern functions, so

that one can immediately reduce the number of parameters by one

{Mc, ν, tref , φref , ι, DL, F+, F×} . (6.10)

Furthermore, one can map F+, F× and DL onto an overall amplitude and angle

giving the ratio of antenna pattern functions,

A = sign(F+)

√
F 2

+ + F 2
×

DL

, (6.11)

α = tan−1

(
F×
F+

)
. (6.12)

These parameters may be thought of as the “antenna amplitude” and “antenna

angle”, respectively. Thus, we can reduce the total number of parameters to seven,
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i.e.

{Mc, ν, tref , φref , ι,A, α} . (6.13)

Therefore, in terms of these seven parameters, the amplitude-corrected strain is

h(t) = −2Mc ν
2/5 v2A

{
cosα

[ (
1 + c2

ι

)
cos 2Φ(t) (6.14)

+ v δ sι

(
5

8
+

1

8
c2
ι

)
cos Φ(t)− v δ sι

(
9

8
+

9

8
c2
ι

)
cos 3Φ(t)

]
+ sinα

[
2cι sin 2Φ(t) +

3

4
v δ sι cι sin Φ(t)− 9

4
v δ sι cι sin 3Φ(t)

]}
,

where for brevity we use δ =
√

1− 4 ν.

6.2.2 Choice of reference point

For the waveform parameters tref and φref , one is free to choose any reference

point in the waveform one wants, such as the “time of arrival” when the waveform

enters the band of the detector, the time it reaches a certain frequency, or the

time when the waveform reaches its peak amplitude. However, by far the most

common choice has been the time at which the frequency formally diverges in the

PN adiabatic approximation, which is called the “time of coalescence”1. The vast

majority of Fisher matrix studies have also used SPA (TaylorF2) waveforms. The

only exceptions of which I am aware are Ref. [117], which used phenomenological

waveforms (frequency-domain IMR waveforms which are an extension of the SPA

waveform) and Ref. [118], which used EOB IMR waveforms similar to the model used

1This is something of an abuse of the language, as the frequency does not become infinite when
the two bodies coalesce.
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here but with a merger-ringdown generated using the so-called “implicit rotating

source” model (also ν was assumed to be known exactly and not included as a

parameter in the Fisher matrix) in the context of LISA.

For all of the studies with SPA waveforms (and also the phenomenological

waveforms of Ref. [117]), the frequency-domain phase takes the form of Eq. (3.18)

only if the reference point is the “time of coalescence”. If the reference point occurs

at any other frequency, one must subtract the phase evaluated at the reference point,

Ψ(f)→ Ψ(f)−Ψ(fref) . (6.15)

However, these phase terms evaluated at fref have been largely ignored and rarely

if ever appear in formulas for the SPA phase in the literature. This may partly

explain why nearly every Fisher matrix study has used the “time of coalescence”

as the reference point. The choice of reference point does more than simplify the

SPA phase, however. The time and phase can be measured more precisely at some

reference points than others. For example, Ref. [355] showed that the “time of

coalescence” can be measured more precisely than the time of arrival. To understand

intuitively why this is, note that the frequency changes slowly early on and rises

much faster at the end. Therefore, the waveform is at approximately the arrival

frequency for a relatively long time, but chirps up to its final frequency in a much

shorter time. Later, Ref. [356] showed that an even better estimation can be obtained

by choosing the time at which the waveform frequency reaches the most sensitive

frequency of the detector. While a clever choice of reference point can improve the
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precision with which the reference time and phase are measured, the errors on the

other parameters should be the same for any reference point (as we will see, this is

one way to test the robustness of Fisher matrix results).

For EOB waveforms, the frequency never diverges, so there is no such thing as

the “time of coalescence” in the sense of the PN adiabatic waveforms and one must

choose another reference point. Since EOB waveforms are generated by numerically

integrating a set of evolution equations, we can directly control the phase only at

the start of the evolution. Therefore, a convenient choice would be to choose the

reference time as the start of the evolution. However, as we have already noted,

this will give larger errors on the reference time and phase than a later reference

point. More importantly, as we will see in Sec. 6.3, the Fisher matrix results for

this reference point are not very robust for high masses. One could also choose a

particular frequency as the reference point, as in Ref. [356], but again we find our

results are not very robust. Lastly, one could choose some physical feature of the

waveform, such as the peak of the waveform amplitude, as was done with the EOB

waveforms of Ref. [118]. For a coalescing waveform the peak of the waveform is

quite close to the peak of the radiated energy and also the formation of a common

apparent horizon in NR simulations, and so it is a very natural definition of “time of

coalescence”. In a private communication, the primary author of Ref. [118] explained

the peak was chosen as the reference point both because it is a real, physically

observable feature of the waveform and because the Fisher matrix errors were more

robust with this choice of reference point. Indeed, as we will see in Sec. 6.3, we also

find this reference point to be more robust than others.
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6.2.3 Computing the Fisher matrix

To compute the Fisher matrix, one must first compute the parameter deriva-

tives of the waveform,

hi(t) ≡
∂h(λ, t)

∂λi
= lim

δλi→0

h(λi + δλi, t)− h(λi − δλi, t)
2 δλi

(6.16)

for each parameter λi. Then, the Fisher matrix is constructed by computing the

inner products of the parameter derivatives,

Γij = (hi|hj) . (6.17)

Here “( | )” is the inner product of Eq. (2.103). Now, formally this inner product is

an integral over the infinite frequency range [0,∞), but in practice we can compute

it over a finite range. First of all, real ground-based interferometers have a “seismic

wall” at some frequency flow and below that frequency Sn(f) is very large and

any contribution to the inner product would be negligible. At the upper end, the

waveform may end at some frequency. For example, PN waveforms, which assume

an adiabatic inspiral, are typically cut at the frequency of the ISCO for a test

particle orbiting a Schwarzschild black hole, since inside the ISCO there are no

circular orbits, and the adiabatic assumption breaks down. For EOB and other

IMR waveforms, the waveform extends past the ISCO and reaches the ringdown.

The ringdown will peak at the frequency of the dominant QNM and then decay as

a Lorentzian at higher frequencies. Therefore, one could cut IMR waveforms at, say
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twice the frequency of the (2, 2, 0) QNM mode to capture all of the non-negligible

signal. Alternatively, note that any interferometer will produce discretely sampled

data, and so it cannot resolve any signal at frequencies higher than the Nyquist

frequency (half the sampling frequency) and so the Nyquist frequency could always

be used as the upper frequency cutoff. Therefore, we will compute the Fisher matrix

elements as the integral

Γij = 4 Re

[∫ fcut

flow

h̃i(f) h̃∗j(f)

Sn(f)
df

]
, (6.18)

where flow is the low frequency seismic cutoff of the interferometer, and fcut can be

the ISCO frequency, twice the (2, 2, 0) QNM frequency, or the Nyquist frequency.

6.2.4 Implementations

To integrate Hamilton’s equations, we use an adaptive step size fourth-order

Runge-Kutta routine adapted from the functions odeint, rkck and rkqs from

Ref. [357]. With this routine, one specifies an accuracy goal, ε. At each step,

one estimates the error on each of the variables, requires that each is within the

accuracy goal, and adjusts the step size appropriately to try to reach this goal. This

can be either an absolute accuracy or a fractional accuracy. We enforce a fractional

accuracy on r, pr and pφ, but an absolute accuracy on φ. The Runge-Kutta inte-

gration routine provides us with a time series for φ and the other variables sampled

at uneven times. We use a cubic spline interpolation routine based on the functions

spline and splint from Ref. [357]. This routine fits a cubic polynomial between
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adjacent raw data points for φ, and the fitted polynomial is evaluated at each de-

sired sample point, φ(k∆t), where ∆t is the sampling interval, and k is an integer

labeling each sample. To get the time series for ωorb(k∆t), we take the derivative

of the fitted polynomial and evaluate it at each sample. One could also obtain ωorb

by storing the right hand side of Hamilton’s equation for dφ/dt at each step of the

Runge-Kutta routine, and interpolating that data directly. The two methods agree

very well.

The parameter derivatives are computed by finite difference in the time do-

main. Fourier transforms of the waveform and parameter derivatives are computed

using the routines of the “fastest Fourier transforms in the West” (FFTW) pack-

age [358, 359], which is very widely used and tested. We have checked the FFTW

routines by comparing with Mathematica and find agreement to within machine

precision (fractional errors ' 10−16). We have also checked that the parameter

derivative and Fourier transform operations commute. That is, one can compute

the finite difference in the time domain and then Fourier transform the difference, or

one can take the finite difference between two Fourier transformed waveforms. The

two approaches give identical parameter derivative spectra, Fisher matrices and pa-

rameter errors to within machine precision. Taking the finite difference in the time

domain is slightly faster, as one computes a single Fourier transform of the finite

difference, rather than Fourier transforming two perturbed waveforms.
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The inner products of the Fisher matrix are all computed as finite sums

(hi|hj) =

∫ fcut

flow

h̃i(f) h̃∗j(f)

Sn(f)
df =

fcut/∆f∑
k=flow/∆f

h̃i(k∆f) h̃∗j(k∆f)

Sn(k∆f)
∆f , (6.19)

where the frequency step size ∆f is determined by the length of the time domain

waveform. The time series of the waveform and its derivatives are padded with

zeroes to a power of 2, so the fast Fourier transform routines are as efficient as

possible. We have changed the amount of padding to change the step size ∆f , and

find that the finite sum of Eq. (6.19) is consistent for different ∆f .

Once the Fisher matrix is computed, we invert it to obtain the covariance

matrix using the matrix inversion routine of the Newmat package [360]. This routine

has been checked against the Mathematica matrix inversion routine, and the results

agree to within machine precision.

6.3 Difficulties of the Fisher matrix with time-domain wave-

forms

As noted in Ref. [119], there are several potential pitfalls with the Fisher

matrix formalism. First of all, the result is derived under the assumption of sta-

tionary Gaussian noise, while real interferometer data can have non-stationary, non-

Gaussian “glitches”. Second, (first generation) ground-based interferometers expect

to make detections at SNR ∼ 10, and it is not clear that this qualifies as the limit of

“high SNR”. These two points are fundamental limitations of the Fisher matrix, and
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there is nothing we can do within the Fisher matrix formalism to remedy them. We

simply have to consider our results to be rough estimates of the expected parameter

errors. If a more accurate result is needed, we must resort to more sophisticated

methods, such as including higher order corrections to the parameter space prob-

ability density or performing MCMC studies. Furthermore, we can use the Fisher

matrix in situations where the SNR is larger, to alleviate the second concern. It

is likely that the Advanced LIGO and Virgo detectors will make many detections

at SNR ∼ 10, although they may also make some detections at SNR ∼ 100. Fur-

thermore, the proposed third generation Einstein telescope (ET) would likely make

many detections at SNR & 100, and so the Fisher matrix would be better suited to

studies of these advanced detectors. These advanced detectors will have sensitivity

down to lower frequencies, potentially down to 10 Hz for Advanced LIGO and Virgo

and perhaps even down to 1 Hz for ET, and so the waveforms will be much longer

for these instruments. Unfortunately, at the present time we have some difficulty

getting robust Fisher matrix results for these longer waveforms, so we will focus

primarily on initial LIGO, although in the future we hope to obtain results for the

advanced detectors.

Another issue is the possibility of an “ill-conditioned” Fisher matrix, which

means that the ratio of the largest and smallest eigenvalues of the matrix is quite

large. As pointed out in Refs. [115, 119], if the ratio of the largest to smallest

eigenvalues of the Fisher matrix is κ, and the Fisher matrix elements are computed

to within some numerical error δΓ, then the error on the covariance matrix can be

magnified by κ. That is, δΣ ≤ κ δΓ. This is an upper bound for the error on Σ, and
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we may not hit this bound in practice. However, since the ratio of eigenvalues for

the Fisher matrices in this study are typically & 1012, even if we are several orders of

magnitude away from this upper bound, we will still lose several digits of precision.

This is a reason for concern and we must take care to compute the Fisher matrix

accurately and check the result for robustness.

An effort has been made to understand and test the precision of each step of

the Fisher matrix calculation. As already noted, we have tested our C++ matrix

inversion and fast Fourier transform routines by comparing them with Mathematica

routines. Both of the C++ routines agree with their Mathematica counterparts to

within machine precision. We have also tested the robustness of computing the

inner product as a finite sum by changing the frequency step size (via the amount

of zero-padding of the time-domain waveforms). While the results do not agree

down to the level of machine precision, the parameter errors (i.e. the results after

the matrix inversion) typically vary by less than a few percent. We consider this

adequate, since we only trust the Fisher matrix results to the level of about one

significant digit due to their fundamental limitations (non-Gaussianities and low

SNR). Furthermore, we have tested all of these routines by computing the Fisher

matrix with SPA waveforms with analytic parameter derivatives and comparing the

results against published results such as Refs. [89, 90, 111]. In all cases, we can

reproduce the published results to the number of significant digits provided in those

papers. Furthermore, we have compared against the same references using SPA

waveforms with derivatives computed by finite difference. We are able to reproduce

the published results to within 1% for a range of parameter step sizes spanning
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many orders of magnitude. Therefore, we are confident that the matrix inversion,

fast Fourier transform, inner product and finite difference routines are sufficiently

precise and robust.

However, while we find that the finite difference routine is quite robust when

used on SPA waveforms, this is not the case for our time-domain EOB waveforms.

Actually, for the EOB waveforms, the finite difference is still robust for the param-

eters tref , φref , ι, A and α for step sizes spanning many orders of magnitude. It is

only the mass parameters Mc and ν which are less robust. Therefore, one must

take care to check that the mass parameter derivatives have “converged”, i.e. that

the final results do not vary much as the finite difference step size is changed.

The difficulty with taking the mass parameter derivatives does not lie with the

finite difference routine itself, but rather with the fact that our time-domain EOB

waveforms are computed by numerically solving evolution equations, while the SPA

waveforms are given by an analytic formula. This means our time-domain EOB

waveforms will have some numerical error associated with them that is not present

in the SPA waveforms. Let us take the finite difference between two perturbed

waveforms, h(λi± δλi, t) with numerical errors δh±(t) respectively. Then, our finite

difference parameter derivative

hi(t) ≡
∂h(λ, t)

∂λi
' (h(λi + δλi, t) + δh+(t))− (h(λi − δλi, t) + δh−(t))

2 δλi
(6.20)

will have an error (δh+(t)− δh−(t)) / (2 δλi) resulting from the numerical error in

our numerically-computed waveforms. Note this is in addition to the error from
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Figure 6.2: We plot the absolute difference in orbital phase for different choices
of the integration accuracy goal, |Φ(ε1, t) − Φ(ε2, t)| for an M = 80M�, ν = 0.16
binary. We compare ε1 = 10−8, ε2 = 10−10 (red curve) and ε1 = 10−13, ε2 = 10−14

(blue curve). The right panel is a zoom on the end of the left panel. We see that
the difference in phase (and thus the waveform error) rises at late times.

approximating a derivative (a limit as the step size goes to zero) by a finite difference.

This numerical error term, (δh+(t)− δh−(t)) / (2 δλi) does not exist for SPA

waveforms. Furthermore, for the parameters tref , φref , ι, A and α of our EOB wave-

form this error term will be zero. The reason is that these are extrinsic parameters

which describe the position, orientation and reference point of our waveform. They

will not affect the evolution of our binary. We simply numerically solve our evolu-

tion equations once to get the orbital phase Φ(t) and frequency ωorb(t) and plug the

same time series into waveforms of Eq. (6.14) or Eq. (6.6) with different extrinsic

parameters. Therefore, the two perturbed waveforms will have the same numerical

errors and they will cancel, δh+(t) = δh−(t). If we perturb the mass parameters, the

two perturbed waveforms will have different evolutions, so when they are computed

they will have different numerical errors, δh+(t) 6= δh−(t). The numerical errors do

not cancel and in fact get magnified by a factor (2 δλi)
−1

.
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We do have some control over the numerical error associated with the waveform

generation through the accuracy goal, ε, of the Runge-Kutta integration routine. To

generate waveforms for matched filtering templates, it should be sufficient to choose

an accuracy goal of, say ε ∼ O (10−8). With this choice, the routine can take rather

large steps over most of the waveform, and take smaller steps over the more delicate

end of the waveform. For this accuracy goal, the waveforms considered here can

typically be generated in a few seconds. However, since the numerical error on the

derivatives can be ∼ (δλi)
−1

larger than the numerical error on the waveforms, we

must enforce a higher precision. For all of the Fisher matrix calculations presented

here, we will use ε = 10−14 as our accuracy goal. This is a rather lofty goal, as it

is approaching the machine precision. To try and reach this goal, the Runge-Kutta

routine will typically take many more steps than for ε = 10−8. For the waveforms

considered here, it can take tens of minutes to generate a waveform. In Figs 6.2

and 6.3, we check whether the orbital phase and frequency are really accurate to

within the accuracy goal by comparing the time series for different ε. We see that

the difference is comparable to the accuracy goal for most of the evolution, but that

the difference rises rather sharply at the end and becomes larger than the accuracy

goal. We typically find that our Fisher matrix results are less robust for higher

masses than lower masses. This may be at least partially explained by the rise

in numerical error at the end of the waveforms, as this part of the waveform will

be at frequencies where the detectors have little sensitivity for low masses, but it

will dominate the observable portion of higher mass signals. Note that because our

Runge-Kutta integration routine uses adaptive step sizes, it will produce time series
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Figure 6.3: We plot the absolute difference in orbital frequency for different choices
of the integration accuracy goal, |ωorb(ε1, t)−ωorb(ε2, t)| for an M = 80M�, ν = 0.16
binary. We compare ε1 = 10−8, ε2 = 10−10 (red curve) and ε1 = 10−13, ε2 = 10−14

(blue curve). The right panel is a zoom on the end of the left panel. We see that
the difference in omega (and thus the waveform error) rises at late times.

at irregular intervals which will be different for different ε. So, we must compare

the orbital phase and frequency after we have used the cubic spline interpolation

routine to produce evenly sampled time series. This means that Figs 6.2 and 6.3 are

a measure of the combined numerical error from the Runge-Kutta integrator and

the spline interpolation. It is not clear if the rising numerical error at the end of the

waveform is a failure of one or both of these routines. This is worth investigating in

the future, possibly by using a fixed step size integration routine, as in Ref. [118],

to disentangle the errors from the integrator and the interpolator.

Now, since the derivative is a limit as the step size approaches zero, a finite

difference will approximate the derivative most accurately when the step size δλi

is small. However, the numerical error in the waveforms creates a numerical error

in the derivatives which scales as the inverse of the step size and so becomes larger

for smaller step sizes. Therefore, one must choose step sizes which are neither too
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large nor too small so that both types of errors are manageable. Generally, we try

varying both mass parameter step sizes δMc and δν over a range ∼ 10−4−10−10 and

compare the parameter errors for hundreds of pairs of step sizes in this range. If we

see a flat region in the δMc–δν plane, this suggests that the parameter derivatives

have “converged”, and the result is likely to be trustworthy. If we get convergent

results for multiple reference points, we also check that the mass errors agree for

different reference points. In Fig. 6.4, we show examples of our “convergence tests”

when the reference point is at the start of the evolution. We show plots only for

the error on Mc, but we also check the same plots for other parameters and they

typically converge (or not) in the same regions. It is clear that the parameter errors

converge for the two lower mass binaries but not the highest mass binary. We find

this is a general trend when aligning at the beginning of the evolution: It exhibits

good convergence for low mass binaries, but poorer convergence as the total mass

increases. In Fig. 6.5, we plot the convergence tests when the reference point is the

peak of the waveform for the poorly converging binary in the right panel of Fig. 6.4.

We perform the inner product integrals of Eq. (6.19) up to the ISCO frequency,

twice the ringdown frequency or the Nyquist frequency.

When applicable, we also compare to Fisher matrix errors for 3.5PN SPA

waveforms. If we integrate the inner product integrals of Eq. (6.19) up to the Nyquist

or twice the ringdown frequency, we do not expect EOB waveforms to agree with

the SPA results2. However, if we integrate only up to the ISCO frequency, then

2Except possibly for lower masses when the merger-ringdown signal is at high frequencies where
the interferometers have very little sensitivity.
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Figure 6.4: Fractional error on Mc as a function of mass parameter step sizes for
a binary with total mass M = 20M� (left), M = 60M� (center) and M = 80M�
(right). In all cases, ν = 0.16, the SNR = 10 in initial LIGO, the upper limit of
the inner product frequency integrals is the ISCO and the reference point is the
start of the evolution at 25 Hz. The lower mass systems (20M� and 60M�) exhibit
convergence

the EOB and SPA results should be closer together. They need not be exactly the

same, of course, because they are two different waveform models. Furthermore, the

SPA waveforms assume adiabaticity throughout the evolution, so it is always exactly

true that h̃SPA ∝ f−7/6. For EOB waveforms, which do not assume adiabaticity, at

early times this f−7/6 power law is true to a very good approximation, but the slope

starts to deviate from this even before the ISCO. Therefore, even when integrating

only up to the ISCO, we expect the difference between the SPA and EOB results to

grow as the total mass is increased, and the non-adiabatic portion falls in the most

sensitive band of the interferometers.

Another potential danger of using time-domain waveforms comes from sharp

“edges” or “kinks” in the time-domain waveform. It is a well-known result that if

one Fourier transforms a time series which abruptly starts or ends, this will create

unphysical noise in the frequency-domain spectrum. This issue is discussed in detail

in Ref. [361], and the authors suggest applying a tapering function to the beginning

and end of time-domain inspiral waveforms. The idea is that if the beginning (end) of
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Figure 6.5: Fractional error onMc as a function of mass parameter step sizes for an
M = 80M�, ν = 0.16 binary with SNR = 10 in initial LIGO with the reference point
as the peak waveform amplitude. The upper limit of the inner product frequency
integrals is the ISCO (left), twice the (2, 2, 0) ringdown frequency (center) or the
Nyquist frequency (right). All three frequency cutoffs exhibit convergence, and the
last two are consistent with one another and have smaller errors than the first, as
expected.

a time-domain waveforms has an “edge” from an abrupt start (stop), one multiplies

the beginning (end) of the waveform by a smooth function which varies between 0

and 1 in some finite interval. This ensures the waveform does not abruptly start or

stop, but smoothly increases from zero to full strength over the finite interval. For

inspiral-only time-domain waveforms, it is appropriate to taper both the beginning

and end of the waveform. However, the end of our EOB IMR waveforms are naturally

tapered, because they decay exponentially as a superposition of damped sinusoidal

QNMs. Therefore, we taper only the beginning with Eq. (7) of Ref. [361] as our

tapering function, and the interval is defined as the first N local maxima of the

waveform. In this work, we choose N = 10, and we have checked that the results

are robust for other choices of N .

Quite similar to the “edges” from an abrupt start or stop, we may also en-

counter “kinks” that arise from the discreteness of our time series. Let us suppose

that we choose our reference point as the start of evolution, and we want to compute

theMc derivative, so we evolve the perturbed inspiral waveforms hinsp
± (Mc±δMc, t).
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Now, to each of these waveforms we attach a ringdown waveform at the ωmatch of

Eq. (2.89). However, because the waveforms are discretely sampled, we will not

have a sample at precisely this ωmatch, but rather at nearby frequencies ω±match, and

it will generally be true that ω+
match 6= ω−match. The two perturbed waveforms will of

course have some difference in their ringdown waveforms, since they have slightly

different mass parameters. However, the difference in their matching points will cre-

ate an extra, unphysical difference between them that is really a type of numerical

error. This numerical error in the perturbed waveforms arising from attaching the

ringdown at a slightly incorrect matching point is not so large. However, taking the

finite difference leads to an error in the parameter derivative which is magnified by a

factor (2 δλi)
−1

. For even modest differences in the matching point, this can create

a huge error in the parameter derivatives. In some instances, the time series of the

Mc derivative will be quite smooth throughout the inspiral, and then the amplitude

will suddenly jump several orders of magnitude at the ringdown attachment point.

This creates a “kink” in the waveform, and much like an edge at the beginning/end

of the waveform, this will create unphysical noise in the parameter derivative’s fre-

quency spectrum. For large kinks, this noise will be found over the entire frequency

range and can completely ruin the parameter derivative spectra.

Fortunately, we have found a procedure to alleviate this problem. First, we

generate the dynamical variables Φ(t) and ωorb(t) for each of our perturbed wave-

forms. Next, we use a root-finding routine (based on the routine zbrent from

Ref. [357]) to find precisely the time at which the orbital frequency reaches ωmatch

for each perturbed waveform. Generally, this time will lie some δt± from the nearest
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discrete sample. Then, we use our cubic spline interpolation routine to resample the

dynamical variables so that they will have a sample at precisely the matching point,

Φ(t) −→ Φ(t+ δt±) , (6.21)

ωorb(t) −→ ωorb(t+ δt±) . (6.22)

We now generate our perturbed waveforms from the time-shifted dynamical variables

as usual. By construction, the two waveforms will attach their ringdown at exactly

the same point, so we will not have a kink in the finite difference at the ringdown

attachment.

Now, just as we took care to ensure the two perturbed waveforms each have

a sample at exactly their ringdown attachment point, we will use essentially the

same technique to ensure they have a sample at exactly their reference point before

taking the finite difference. This is important because the parameter derivatives are

supposed to be taken while the other parameters (including tref and Φref) are held

fixed. So, we need to ensure the two perturbed waveforms are properly aligned at

the reference point. Therefore, we use our root-finding routine to find tref , which will

generally lie some δτ± from the nearest sample. Then, we use our spline interpolation

routine to resample the waveform time series3, so that they have a sample at precisely

the reference point,

h(t) −→ h(t+ τ±) . (6.23)

3Strictly speaking, we actually resample time series of the waveform amplitude and complex
argument, |(h+ − i h×)(t)| and Arg [(h+ − i h×)(t)]
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After performing this time shift, we also apply a constant phase shift to ensure

that we have the proper orbital phase at the matching point, Φ(tref) = φref/2.

This method of ensuring proper alignment of perturbed waveforms at the ringdown

attachment and reference point (via two time shifts and a phase shift) could be used

for any choice of the reference point. For the results of the next section, we will use

this technique with the reference point chosen as the peak waveform amplitude.

We have taken great care to compute Fisher matrix results which are as ac-

curate as possible by sanity checking every piece of code, enforcing a high precision

in solving the evolution equations and resampling waveforms twice to ensure proper

alignment of the perturbed waveforms used in finite differences. Even so, a loss of

precision and unreliable results are still an ever-present threat. Recall that we use

mass parameter step sizes δλi ∼ 10−4 − 10−10, which can lead to numerical errors

in the mass parameter derivatives of order ∼ (δλi)−1, and that inverting the Fisher

matrix to obtain the covariance matrix can amplify numerical errors by up to the

ratio of largest to smallest eigenvalues, κ & 1012. So, even though we enforce an

accuracy of ε ∼ 10−14 in evolving the waveforms, this could potentially lead to an

error in our covariance matrix of

δΣ ∼ ε
(
δλi
)−1

κ ∼ 10−16 − 10−22 . (6.24)

Although this is an upper bound, and not a guarantee of the actual amount of error,

the potential for loss of precision is quite alarming. Therefore, we will apply the

Fisher matrix to EOB waveforms only in regimes where the results are robust.
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6.4 Results

We would like to use our Fisher matrix formalism in the context of advanced

ground-based detectors, such as Advanced LIGO and Virgo or ET. These detectors

are expected to have low-frequency seismic cutoffs of 10 Hz or even 1 Hz. Note that

because the amplitude-corrected waveforms contain a third harmonic of the orbital

frequency, to use the Fisher matrix for these instruments we must start evolving

the EOB waveforms at an orbital frequency below one third of the seismic cutoff to

capture all of the in-band signal. This would mean starting the evolution at orbital

frequencies of ∼ 3 Hz or ∼ 0.3 Hz for the advanced detectors and generating very

long waveforms. Unfortunately, at the present time we are unable to get robust

results when starting at such low frequencies. We either do not find a flat region

of convergence for a wide range of parameter step sizes, or else low mass EOB

waveforms integrated up to the ISCO give parameter errors an order of magnitude

better than the 3.5PN SPA result. It is possible this last feature may be a real

result, but it would be rather surprising, and we will not trust it unless it is verified

by other methods.

We would also like to apply the formalism to high mass binaries. For high

mass binaries, both the merger-ringdown and the extra frequency band provided by

the third harmonic would lie in the sensitive band of the detectors, and so these

binaries should have the greatest improvement in parameter estimation from both

the merger-ringdown and the higher harmonics. Unfortunately, at the present time

our results become less robust as we go to higher masses.
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Because of these concerns over the robustness of results, we will restrict our

discussion to initial LIGO and to binaries which merge in the detector bandwidth

but have total masses M ≤ 100M�. We will plot the parameter errors for four

different types of waveforms:

• Restricted inspiral-only (R-I): Denoted by a dashed red line in all plots.

This is the Newtonian-amplitude restricted TaylorF2 (SPA) waveform with

3.5PN phasing described in Sec. 3.3.6. These waveforms and their param-

eter derivatives are computed analytically. The inner product integrals are

performed up to the Schwarzschild ISCO frequency.

• Restricted IMR (R-IMR): Denoted by a dashed blue line in all plots. This

is the Newtonian-amplitude restricted EOB waveform described in Sec. 6.2.1.1.

The inner product integrals are performed up to twice the frequency of the

(2, 2, 0) QNM, so that the full IMR signal contributes to the Fisher matrix.

• Amplitude-corrected inspiral-only (A-I): Denoted by a solid red line in

all plots. This is the Newtonian-amplitude restricted EOB waveform described

in Sec. 6.2.1.2. Note that we generate the full IMR waveform, but the inner

product integrals are performed only up to the Schwarzschild ISCO frequency,

so that only the inspiral portion contributes to the Fisher matrix.

• Amplitude-corrected IMR (A-IMR): Denoted by a solid blue line in all

plots. This is the Newtonian-amplitude restricted EOB waveform described

in Sec. 6.2.1.2. The inner product integrals are performed up to twice the
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frequency of the (2, 2, 0) QNM, so that the full IMR signal contributes to the

Fisher matrix.

In the next subsections, we will plot the parameter errors of the Fisher ma-

trix formalism for each of these types of waveforms as the total mass (Sec. 6.4.1),

symmetric mass ratio (Sec. 6.4.2) and binary inclination to line of sight (Sec. 6.4.3)

are varied in the context of initial LIGO. By comparing the various curves, we will

understand how much the inclusion of amplitude corrections and merger-ringdown

can improve the parameter estimation. In an attempt to get more robust results, we

have averaged the parameter errors over many different Mc and ν finite difference

step sizes. To do this, for each data point we first compute the errors for several

hundred choices of step sizes and plot the parameter errors as in Figs. 6.4-6.5. Then,

we attempt to identify a “region of convergence” in these plots and lay out a finer

grid of ∼ 100 step size pairs in this region of convergence. Each parameter error

reported in the plots below is the mean value in this region of convergence, with er-

ror bars determined by the minimum and maximum parameter error in this region.

Note that these error bars are a measure of the numerical error which arises from

taking a finite difference of numerically-computed time-domain waveforms. They do

not account for other potential errors, such as non-Gaussian detector noise and low

SNR. The plots for the R-I waveforms do not have these error bars, as the parameter

derivatives are taken analytically.

For all of the results presented here, we assume the binary has sky location

and polarization angles of θ = φ = ψ = π/4. By comparing parameter errors for
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90 different configurations chosen uniformly in the sky and in the angle ψ, we have

verified that the resulting parameter errors have very little variation for different

choices of these angles (except the errors on A and α, but these parameters are very

poorly determined anyway). We will choose a binary inclination of ι = π/3 in all

cases, except in Sec. 6.4.3, where we vary the inclination. All of the comparisons

are done at a fixed SNR = 10. This means that when we vary M , we are in effect

comparing distant high mass binaries to closer low mass binaries (and similarly for

the comparisons varying ν and ι). Now, one might argue that it would be more

appropriate to do these comparisons at a fixed distance. However, we feel that fixed

SNR is appropriate, especially for initial LIGO, because one is most likely to make

most detections near the detection threshold (which is roughly SNR ∼ 10). So,

if a low mass (or asymmetric or edge-on) binary is detected it will likely be at a

closer distance than a detected high mass (or symmetric or face-on) binary, and the

fixed SNR comparison takes this into account. At any rate, the parameter errors

produced by the Fisher matrix scale as the inverse of SNR, so one could rescale the

results if one knows the ratio of SNRs for two configurations.

6.4.1 Varying total mass

We now consider the parameter errors as a function of total mass, and the im-

provements provided by the merger-ringdown and amplitude corrections. In Fig. 6.6,

we vary the total mass over the range (20− 100)M� and display the errors onMc,

ν and tref for the various waveform models. Plots for a highly asymmetric system
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with ν = 0.05 (or approximately an 18:1 component mass ratio) are in the left col-

umn, while plots for a nearly symmetric system with ν = 0.24 (or approximately

a 1.5:1 component mass ratio) are in the right column. Note that the inspiral-only

waveforms are only plotted up to a total mass 60M�, which corresponds to an ISCO

frequency of ' 73 Hz. At higher masses, there is almost no inspiral signal in band

and the R-I parameter errors become extremely large, while the A-I results become

erratic and untrustworthy.

For the amplitude-corrected waveform models, we find that φref , A and α are

very poorly determined in all cases, and in effect cannot be measured by a single

detector. The binary inclination ι is very poorly determined for all total masses in

the ν = 0.24 case, while for the ν = 0.05 case we have ∆ι ' 0.45±0.1 radians across

the total mass range, whether including the full IMR signal or cutting at the ISCO.

To get a sense of the importance of merger-ringdown, one should compare the

red and blue curves with the same dashing pattern in each panel of Fig. 6.6. Merger-

ringdown provides more improvement to parameter accuracy for higher total mass

binaries, which should not be surprising, as the merger-ringdown will be closer to the

peak sensitivity and contribute a greater portion of the observed signal for higher

masses. Comparing the left and right columns, we see that the merger-ringdown

provides a greater improvement to the mass parameter errors for symmetric binaries

than asymmetric ones. This is also quite reasonable, as the amplitude of the ring-

down waveform is greater for symmetric binaries than for asymmetric ones. In the

first two rows of the left column, the A-I (solid red) and A-IMR (solid blue) curves

are quite close together, which illustrates that including the merger-ringdown does
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Figure 6.6: We plot the fractional error on Mc (top row), the fractional error
on ν (center row) and the error on tref (bottom row) as the total mass is varied
for symmetric mass ratio ν = 0.05 (left column) and ν = 0.24 (right column) for
waveform models R-I (dashed red), R-IMR (dashed blue), A-I (solid red) and A-IMR
(solid blue).
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very little to improve the estimation of these parameters for the amplitude-corrected

waveforms. Contrast this with the right column, where these same two curves differ

by a factor two in ∆Mc and a factor three in ∆ν at 60M�. The merger-ringdown

seems to provide a significant improvement to the timing accuracy regardless of the

total mass or mass ratio. The A-IMR and R-IMR models (blue curves) have a tim-

ing accuracy tref ' 1 ms across a wide range of total mass and mass ratio, while the

A-I model (solid red) has timing accuracies tref ' 2−10 ms and the timing accuracy

for the R-I model rises very rapidly with the total mass, approaching ∼ 100 ms at

60M�. Note that the R-I (i.e. the SPA waveform) uses the “time of coalescence”

as tref , while all the other models use the peak of the waveform amplitude. In all

cases, we find the timing accuracy is significantly better when the reference point is

the peak of the amplitude than when it is the “time of coalescence”.

To understand the importance of amplitude corrections, one should compare

solid and dashed curves of the same color in each plot. We note that the amplitude

corrections significantly improve all of the parameter errors for the inspiral-only

waveform models in all cases. However, note that we are comparing SPA waveforms

with analytic derivatives to EOB waveforms with finite difference derivatives, so

this comparison is potentially more error-prone than the others. In the case of the

IMR waveforms, from the first row of Fig. 6.6, we see that the amplitude corrections

improve the error on Mc by a factor ∼ 2 across a range of total masses and mass

ratios. From the second row, we see that the amplitude corrections improve the

error on ν at low and intermediate masses, but that at high masses there is little if

any improvement. Again, the effect is reasonably similar for the highly asymmetric
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and nearly symmetric binaries. From the last row, we see the effect of amplitude

corrections on the timing accuracy. Note that amplitude corrections do not signifi-

cantly improve ∆tref for IMR waveforms. Furthermore, the A-I model (which uses

the same definition of tref but does not include merger-ringdown) has ∆tref a factor

of a few larger than the A-IMR and R-IMR models. This suggests that the inclu-

sion of merger-ringdown is much more important than the inclusion of amplitude

corrections for obtaining a good timing accuracy.

Now, a word about how our results compare to those of Ref. [117]. To make

a direct comparison, one should compare the right column of our Fig. 6.6 to Fig. 7

of Ref. [117]. The authors of Ref. [117] consider three different mass ratios, (ν =

0.25, 0.2222, 0.16), but their results are quite similar for any of these mass ratios. In

Ref. [117], the dashed curves represent 3.5PN SPA waveforms (the same model as our

dashed red curves) and the solid lines represent phenomenological IMR waveforms,

which were fit to restricted amplitude hybrid waveforms and are rather analogous

to our R-IMR (dashed blue) model. Reassuringly, our 3.5PN SPA results agree with

theirs.

Comparing their phenomenological errors to our R-IMR errors, the errors on

Mc and ν are rather consistent (the log scale of Ref. [117] makes a precise comparison

difficult, but the mass parameter errors seem to agree to within a factor of 2 or

better) up to total mass ∼ 60M�. However, our mass errors stay rather constant

beyond this up to total masses of 100M�, while the mass errors in Ref. [117] rise

rather sharply, reaching ∆Mc, ∆ν ' 50% at M = 100M�. It is known that

the EOB and phenomenological waveform models considered here and in Ref. [117]
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have some differences, particularly in the merger-ringdown (with the EOB generally

having a larger amplitude during merger-ringdown). It is possible that this extra

power in the EOB merger-ringdown accounts for the improved parameter estimation

at higher masses, although MCMC studies (or other more sophisticated tests) should

be done to confirm this result.

As for the timing accuracy, we note that our R-IMR model uses the peak of the

waveform amplitude as tref , while the phenomenological IMR model of Ref. [117] uses

the “time of coalescence” in the adiabatic PN sense. Therefore, we do not necessarily

expect consistency in ∆tref . At a total mass of 20M�, the ∆tref of Ref. [117] seems

to be rather consistent with our result. However, our timing accuracy is quite flat,

and we have ∆tref ' 1 ms all the way out to 100M�, while in Ref. [117] ∆tref rises

with the total mass, reaching ∆tref ' 50 ms or so at 100M�. Since we have noted

that the merger-ringdown seems to play an important role in determining the timing

accuracy, the improved timing accuracy of the EOB model may be partly due to

the excess power in the merger-ringdown. However, it seems very likely that part

or all of the improvement in timing accuracy comes from the definition of tref , as

we have found the peak of waveform amplitude can be measured significantly more

accurately than the “time of coalescence” even for low total mass and asymmetric

binaries. Once again, MCMC studies would be useful to confirm our results.
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6.4.2 Varying mass ratio

We now consider the parameter errors as a function of symmetric mass ν, and

the improvements provided by the merger-ringdown and amplitude corrections. In

Fig. 6.7, we vary ν over the range 0.04− 0.24 and display the errors onMc, ν and ι

for the various waveform models. Plots for a lower mass binary (M = 20M�) are in

the left column, while plots for a higher mass binary (M = 40M�) are in the right

column.

We once again find that φref , A and α are very poorly determined. The error

on tref is nearly constant as ν is varied, and the values of ∆tref here are consistent

with the values at 20M� and 40M� in the bottom row of Fig. 6.6.

The plots of Fig. 6.7 exhibit some of the same basic trends on the importance

of merger-ringdown and amplitude corrections as the plots of Fig. 6.6. The errors

on the mass parameters are roughly an order of magnitude larger for the higher

mass binary of the right column than for the lower mass binary of the left column,

although both exhibit similar trends as the mass ratio is varied. For the binaries

considered here, we find that typically the amplitude corrections provide a greater

improvement to the mass parameter errors than is provided by the merger-ringdown.

This can be seen because the errors on the A-I (solid red) model typically lie below

the errors of the R-IMR (dashed blue) model. The only exception is at ν = 0.24,

where the opposite is true for the errors on ν, and the errors onMc are comparable

for the higher mass binary of the right column. This trend is consistent with Fig. 6.6,

where we observed that merger-ringdown improved the mass parameter errors for
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Figure 6.7: We plot the fractional error on Mc (top row), the fractional error on ν
(center row) and the error on ι (bottom row) as ν is varied for total mass M = 20M�
(left column) and M = 40M� (right column) for waveform models R-I (dashed red),
R-IMR (dashed blue), A-I (solid red) and A-IMR (solid blue).
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symmetric binaries, but gave very little improvement to highly asymmetric binaries.

The bottom row of Fig. 6.7 displays the error on the binary inclination ι.

Note that it contains curves for the A-IMR and A-I models, but not R-IMR and

R-I, because ι is not a parameter of the restricted waveform, but is instead absorbed

into an overall amplitude. Recall that in Sec. 6.4.1, we did not plot the error on ι,

but noted that it was quite large for the ν = 0.24 binary, and we had ∆ι ∼ 0.5 rad

for the ν = 0.05 binary. In either case, this error was reasonably flat as the total

mass was varied. We see a similar trend in the bottom row of Fig. 6.7. We again

find ∆ι ∼ 0.5 for ν = 0.04, and ∆ι rises as ν increases, especially as we approach

ν = 0.25. The errors are rather similar in the left and right columns, although they

are slightly larger for the higher mass system of the right column. One interesting

feature is that the merger-ringdown does very little to improve the estimation of

ι. This means that the information about the inclination as primarily accumulated

during the inspiral. For either total mass, the red and blue curves are quite close to

each other throughout the plot, separating a bit at the symmetric mass ratio end.

In the right column, we see a large separation between the curves at ν = 0.24, but

this is a bit misleading, because we have ∆ι ∼ 2 or 3.5 radians, so ι (which has the

range [0, π]) is really essentially undetermined in either case. We can determine ι

to a higher precision for asymmetric binaries because the different harmonics of the

orbital frequency have a different dependence on ι. From Eq. (6.14), we see the odd

harmonics which appear in the 0.5PN amplitude are ∝ δ =
√

1− 4 ν, and so they

will be most significant for asymmetric binaries.
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6.4.3 Varying binary inclination

We now consider the parameter errors as a function of binary inclination to line

of sight ι, and the improvements provided by the merger-ringdown and amplitude

corrections. In Fig. 6.8, we vary ι over the range 0 − π for a binary with ν = 0.09

and M = 20M� (left column) or M = 60M� (right column) and display the errors

on Mc, ν and ι for the amplitude-corrected waveform models A-IMR (blue curve)

and A-I (red curve). For the restricted waveform models R-IMR and R-I, changing

ι would simply change the effective distance. For our comparisons at fixed SNR,

this would have no effect on the parameter errors.

Note that the plots in this section do not contain error bars, because we did

not perform the same averaging over mass parameter step sizes as in the previous

two subsections. We consider this reasonable because here we are fixing the masses

and varying an extrinsic parameter. Therefore, if a certain pair of step sizes works

well for one value of ι, we expect them to work well for all values of ι. So, we simply

identified a single point in the center of our “region of convergence” and used those

step sizes in all cases. In Fig. 6.8, the plots take much finer steps along the x-axis

than the other figures and the fact that we get smooth curves suggests that this

approach has worked.

In the first two rows of Fig. 6.8, we plot the errors onMc and ν, respectively.

Note that (for fixed SNR) these parameters are best determined for “edge-on” bina-

ries, for which ι ' π/2. These parameter errors are relatively flat across a wide range

of values of ι, with the errors first rising slowly as one moves away from ι = π/2,
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Figure 6.8: We plot the fractional error on Mc (top row), the fractional error on ν
(center row) and the error on ι (bottom row) as ι is varied for symmetric mass ratio
ν = 0.09 and total mass M = 20M� (left column) and M = 60M� (right column)
for waveform models A-I (solid red) and A-IMR (solid blue).
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but then rising sharply as one approaches ι → 0, π. From Eq. (6.14), we see that

this happens because the amplitude corrections are ∝ sin ι, and so they vanish when

ι = 0, π and one loses the information contained in the amplitude corrections. For

both plots, we see that the merger-ringdown provides some improvement to the mass

parameter errors, and that this level of improvement does not depend very strongly

on the binary inclination.

In the bottom row of Fig. 6.8, we plot the error on ι. These plots exhibit

the opposite behavior from the other two rows. First of all, in either column the

inclusion of merger-ringdown has essentially no effect on the determination of ι

(consistent with what we found in Fig. 6.7). More interestingly, we find ι is best

determined when the binary is “face-on” (ι ' 0, π), and the error rises sharply as one

approaches “edge-on” (ι → π/2). If the binary is nearly edge-on, ι will essentially

be undetermined, but if it is nearly face-on, it will be rather well-determined, as

even a single detector can measure it to within a few tenths of a radian according

to these results. This may seem counter-intuitive, because we have noted that the

amplitude corrections are ∝ sin ι and thus vanish in the face-on case. However, it

may be that their absence is precisely what allows for the precise determination.

From Eq.( 6.14), we see that if a detection is made in which the odd harmonics are

not present (or are negligibly small), this means either ι = 0, π or ν = 0.25 (or both).

So long as ν is determined to within an error that excludes ν = 0.25 (which is the

case in Fig. 6.8), then this gives a rather tight constraint on the value of ι. On the

other hand, if we do measure non-negligible odd harmonics, then the form of those

odd harmonics depends on δ =
√

1− 4 ν, ι and also the antenna pattern functions
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F+ and F×, and so ι could be poorly determined due to correlations with other

parameters. In any case, this general trend on ∆ι appears for many different binary

configurations, and so it seems to be a real feature in estimating the parameters of

an amplitude-corrected waveform.

6.5 Conclusions and future work

We have investigated how accurately the parameters of a gravitational wave

could be measured by using the Fisher matrix formalism with EOB waveforms. In

particular, we have attempted to understand what improvements could be obtained

by using waveforms with amplitude corrections and/or merger-ringdown. We have

restricted ourselves to a single initial LIGO detector and binaries with a total mass

≤ 100M�. This was necessary because we find that the Fisher matrix formalism is

quite susceptible to numerical errors which arise from taking the finite difference of

numerically-computed time-domain waveforms.

We find that the inclusion of merger-ringdown can significantly improve the

mass parameter errors for binaries with large total mass and comparable component

masses, which is in qualitative agreement with Ref. [117]. However, we find signif-

icant quantitative differences from Ref. [117] in the estimation of mass parameters

for total masses in the range M ∼ (50 − 100)M�. It is possible that differences in

the waveform models could account for this difference, but MCMC studies would be

useful to confirm our results. Unlike Ref. [117], we also considered very asymmetric

binaries and we find that the merger-ringdown is far less important in determining
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the mass parameters of these binaries. We do find that merger-ringdown is quite

important in improving the timing accuracy for any mass ratio and any total mass

in the range M = (20−100)M�, in qualitative agreement with Refs. [117, 118]. For

most of the binaries we have studied, the time of the peak waveform amplitude can

be measured to within ' 1 ms, and we find that it can always be measured more

accurately than the “time of coalescence” that is used as a reference time for PN

waveforms. The merger-ringdown does not seem to be important in determining

the binary inclination, with IMR and inspiral-only amplitude-corrected waveforms

giving essentially the same error on ι.

We find that amplitude corrections provide a significant improvement to the

error onMc for a wide range of total masses and mass ratios. We find that amplitude

corrections provide an improvement to the error on ν for lower total mass (. 50M�),

but that as one goes to higher mass, restricted and amplitude-corrected EOB IMR

waveforms have similar errors on ν. This does not agree with Ref. [116], which found

that the improvement on the errors of mass parametersMc and δ =
√

1− 4 ν from

amplitude corrections rises dramatically as the total mass is increased. Since we use

different waveform models from Ref. [116], there could be differences in our results,

but our result seems to be rather counterintuitive. More sophisticated studies such

as MCMC methods could be used to resolve this issue.

We find that the mass parameter errors of amplitude-corrected waveforms do

not depend very strongly on the binary inclination, so long as ι 6= 0, π, in which case

the amplitude-corrections vanish and the mass parameter errors increase. We find

that the binary inclination can be measured most precisely (errors of ∆ι ' 0.1−0.2
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rad for a single detector) for binaries which are “face-on” (ι ' 0, π) but that ι

cannot be accurately determined if the binary is “edge-on” (ι ' π/2).

We have also seen that there are significant difficulties in applying the Fisher

matrix formalism to EOB waveforms (and generally to numerically-computed time-

domain waveforms). The Fisher matrix is known to have potential pitfalls in that

it assumes Gaussian detector noise and high SNR signals and inverting the Fisher

matrix can cause a loss of precision, but it has been widely used (with analytic,

frequency-domain SPA waveforms) for parameter estimation studies because it is

simple to implement and computationally inexpensive. However, because one must

generate waveforms at a very high precision, take care in how the parameter deriva-

tives are calculated, perform the calculation many times to ensure robustness, and

still be cautious about the possibility of large numerical errors, the Fisher matrix

may be of limited use with EOB waveforms. It is still computationally cheaper than

MCMC methods (but not so dramatically as with SPA waveforms), but the MCMC

results will be much more reliable.
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Chapter 7

Preliminary results from the search for high mass compact

binary coalescences in LIGO’s fifth science run

7.1 Introduction

In this thesis we have presented analytic waveforms to describe the radiation

emitted by compact binary coalescences and applied them to test the robustness

of the PN formalism, study how spins affect the waveforms, test whether they can

recover NR waveforms in simulated noise, and study how well we might be able to

extract the parameters of a detected signal. Now, we culminate these efforts by

using the waveforms to search for true gravitational wave signals in real data.

We will analyze the data taken during LIGO’s S5 science run and use the

EOB IMR waveforms presented in Sec. 2.2.2 as matched filter templates to search for

coalescing compact binaries with a total mass 25M� ≤M ≤ 100M� and component

masses 1M� ≤ m1,m2 ≤ 99M�. This search effort is notable in that it is the first

to use waveforms which model the entire coalescence through inspiral, merger and

ringdown. For the mass range considered here, the merger occurs in the most

sensitive band of the LIGO detectors, and so it is crucial to model the merger-

ringdown portion of the signal rather than just the inspiral.

The LIGO S5 data was taken between November 4, 2005 and September 30,
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2007 and includes more than one year worth of triple-coincident data with the three

interferometers operating at or near their design sensitivity. Starting May 18, 2007

the Virgo detector started taking its first science data (VSR1) and the LSC and

Virgo collaborations agreed to share data and operate a joint four-detector network.

Results from “low mass” searches for signals with total mass 2M� ≤ M ≤ 35M�

have been published for the LIGO-only S5 data [96, 97], and for joint S5/VSR1

LIGO and Virgo data [98]. They did not make a detection, but set upper limits on

the rate of coalescences in their mass range. This effort, dubbed the “high mass”

search, will search the entire LIGO S5 data for gravitational wave signals, but will

not analyze any Virgo data. This is because the Virgo detector had excessive noise

at low frequencies during VSR1, which greatly limits its sensitivity to high mass

signals. Since the LSC and Virgo collaborations have agreed to share data, and

since Virgo collaboration members have contributed to the data analysis, this is a

joint LIGO-Virgo search effort.

This search is the result of a collaborative effort by many people. The author

of this thesis has contributed to that effort by implementing the EOB waveforms into

the LAL code, running the search on a portion of the data, tuning the χ2 veto, sanity

checking parts of the code, helping to review the search methods and results, and

helping to write up the results for publication. We emphasize that the results here

are preliminary, as the search methods and results have not completed an internal

review. The final results should appear in the near future in a publication for which

the author of the present thesis, Chad Hanna (Caltech) and Craig Robinson (Cardiff

University) will be the corresponding authors for the LSC and Virgo collaborations.
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7.1.1 Motivation to search for high mass binary black holes

While there is direct observational evidence for neutron star binaries, which

are a source for the low mass searches, the populations—and even the existence—

of sources for the high mass searches are rather uncertain. Black holes have been

observed in X-ray binaries and typically have masses . 20M� [362, 363], although

a recent observation suggests a BH with mass & 24 M� [364]. This suggests the

BH-BH binaries which form as the end product of a binary star system would likely

have total masses . 40M�.

However, other scenarios have been suggested to which could lead to more

massive BH-BH binaries. For example, a number of studies have suggested the

possibility of forming BH-BH binaries through dynamical capture in dense stellar

environments such as globular clusters [17, 18, 365, 366, 367, 368]. Mass segregation

would cause the most massive black holes to sink to the center of a cluster, so that

if a binary forms near the center, it may favor the larger black holes. Also, as

suggested in Ref. [17], in many of these mergers, the remnant black hole will not

receive a large enough kick to be ejected from the cluster. Therefore, it could remain

in the center to form an ever-larger black hole through additional coalescences. This

could lead to binaries with larger total masses.

It has been suggested that a somewhat larger class of black holes with masses

in the range ∼ (50− 500)M�, dubbed intermediate-mass black holes (IMBHs) may

exist, perhaps forming through several mergers of stellar-scale (M . 20M�) black

holes in globular clusters. Observational evidence supporting the existence of these
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objects is still under debate (see reviews in Refs. [369, 370] for additional details),

although Ref. [371] represents a possible recent detection of an IMBH. If they do

exist, IMBHs could capture other IMBHs or stellar-scale BHs to form binaries with

total masses ∼ (100 − 1000)M� [372, 373, 374, 375] which could potentially be

observable by ground-based detectors or LISA.

Therefore, it is worthwhile to search for compact binaries with as large a

mass as possible. Since this is the first search effort to use IMR template waveforms

calibrated to numerical relativity, we had some concerns (such as template placement

and the performance of signal-based vetoes) about using these templates for total

mass ≥ 100M�. However, as we will see in the next section, there are “ringdown”

search efforts which will cover higher mass binaries. For these reasons, we define the

range of our search as a total mass 25M� ≤ M ≤ 100M� and component masses

1M� ≤ m1,m2 ≤ 99M�.

7.1.2 Numerical relativity breakthrough

Numerically solving for the inspiral, merger and ringdown of two black holes

in full general relativity without resorting to perturbative or approximate methods

has proven to be an exceptionally difficult problem. Hahn and Lindquist first tried

to simulate two colliding black holes more than four decades ago [376]. It was not

until 2005 that the final few orbits, merger and ringdown were successfully simulated

by Pretorius [279]. This was quickly followed by successful simulations from other

groups using different methods [143, 144]. Now, there are many groups which are
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able to produce NR simulations which continue to become more accurate, longer

and span a greater portion of the parameter space (see, e.g. [146, 280, 281, 377]

for recent overviews on the field, and Sec. 2 of [104] for a compact summary).

These NR simulations have facilitated the development of analytic waveforms which

model the full inspiral, merger and ringdown waveforms. This includes the EOB

waveforms, which we have already discussed in detail in Ch. 2, and also the so-called

phenomenological IMR waveforms which we discuss below. This search effort will

use both families of IMR waveforms.

7.1.3 IMR waveforms calibrated to numerical relativity

The high mass search uses EOB waveforms as matched filter templates to

search for gravitational radiation from compact binary coalescences. As explained

in Sec. 7.2.9, we also need waveforms to inject into the data and attempt to recover

them via matched filtering to test the detection efficiency of our search pipeline,

and we use EOB waveforms for this purpose as well. These EOB waveforms were

described in detail in Sec. 2.2.2, and the equations needed to generate the particular

EOB model used in this search were given in Sec. 2.2.2.5. However, the EOB for-

malism is not the only one which can be used to generate analytic IMR waveforms.

Another approach, proposed in Ref. [105], can be used to generate so-called phe-

nomenological IMR waveforms. While we do not use these waveforms as matched

filters, we do inject them into the data and attempt to recover them with EOB

templates. This serves as a useful sanity check that our templates can recover sig-
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nals which are not exactly identical to the templates, because the EOB (and the

phenomenological) IMR waveforms will not exactly match a true IMR signal from

a binary black hole coalescence. We now give a brief description of the phenomeno-

logical IMR waveforms.

Because of computational expense, NR simulations can only feasibly simulate

the last orbits before merger, currently roughly ≤ 30 GW cycles. However, longer

IMR signals can be created by stitching PN adiabatic inspiral waveforms together

with NR simulations of the last few orbits, merger and ringdown. These stitched-

together waveforms are referred to as hybrid waveforms. Note that they are not

analytic, as the last portion is an NR waveform. Therefore, we cannot generate

them for an arbitrary mass ratio, but only for the mass ratios which have been

simulated. The phenomenological approach first creates these hybrid waveforms,

and then fits a purely-analytical ansatz waveform to the hybrid waveforms. Once

they are fit to the hybrid waveforms, these analytical phenomenological waveforms

can be evaluated for any mass parameters, to effectively interpolate between the

available hybrid waveforms.

To construct the hybrid waveforms, the 3.5PN order TaylorT1 approximant

was used to generate the PN inspiral waveforms, which were matched to NR wave-

forms produced using the BAM NR code [378]. Then, an ansatz of the form

h̃(f) ≡ Aeff e
iΨeff(f)
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Aeff(f) ≡ C


(f/fmerg)−7/6 if f < fmerg

(f/fmerg)−2/3 if fmerg ≤ f < fring

wL(f, fring, σ) if fring ≤ f < fcut,

Ψeff(f) ≡ 1

η

7∑
k=0

(xk ν
2 + yk ν + zk) (πMf)(k−5)/3 + 2πft0 + ϕ0

(7.1)

is fit to the hybrid waveforms, where C is a numerical waveform amplitude constant

which depends on the location and orientation of the binary as well as the mass

parameters, L(f, fring, σ) is a Lorentzian function that has a width σ, and that is

centered around the frequency fring. The parameter w is chosen so that Aeff(f) is

continuous across the “transition” frequency fring. The parameter fmerg is another

transition frequency at which the power-law changes from f−7/6 to f−2/3 to mark the

end of the adaibatic inspiral and the beginning of the merger. The phenomenological

parameters µj ≡ {fmerg, fring, σ, fcut} are given in terms of the mass parameters of

the binary as: πMµj = aj ν
2 + bj ν + cj. The coefficients aj, bj, cj, j = 0...3 and

xk, yk, zk, k = 0, 2, 3, 4, 6, 7 are chosen to maximize the overlap between the hybrid

waveforms and the ansatz phenomenological waveforms. They are tabulated in

Table I of [339]. The phenomenological waveforms are generated in the Fourier

domain but can be converted to time domain for injections by means of an inverse

Fourier transform.

We note that this approach is in a sense an evolution of the BCV phenomeno-

logical waveforms of Ref. [379]. Those BCV waveforms assumed an ansatz frequency-
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domain waveform based on the SPA, but with undetermined phase coefficients which

were allowed to vary freely. The reasoning was that the PN formalism gave an in-

complete picture of the waveform, and that allowing the coefficients to vary freely

could effectively mimic higher-order corrections and other unknown physical effects.

For the phenomenological waveforms used here, we again have an ansatz frequency-

domain waveform based on the SPA with undetermined parameters, this time in

the amplitude as well as the phase. However, instead of allowing the undetermined

coefficients to take any value, we now use the insights of numerical relativity to

fix them to values which make the ansatz waveform match the NR simulations as

closely as possible.

It is worth mentioning that there are some limitations in using the phenomeno-

logical IMR waveforms in the search. Those waveforms were built by matching them

against NR simulations with mass ratios between 1:1 and 4:1, and the phenomeno-

logical coefficients that are fixed through this matching do not reduce to the PN

coefficients at low frequencies. If we attempt to push the waveforms to very extreme

mass ratios, they will produce very unrealistic waveforms. Said another way, the

phenomenological IMR waveforms interpolate between NR simulations quite effec-

tively, but one should be careful about using them to extrapolate very far beyond the

parameter space of the simulations. For this reason, we will only use phenomeno-

logical IMR waveforms with component mass ratios less than or equal to 10:1. In

addition, the choice of the time interval for matching PN and NR waveforms is

somewhat ad hoc, being chosen so as to maximize the fit of PN and NR waveforms.

Finally, restricted (Newtonian-order amplitude) PN waveforms were used to con-
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struct the hybrid waveforms and the amplitude of the NR waveforms was scaled

to match the PN waveforms. This creates a systematic bias of ∼ 10% in the phe-

nomenological waveforms. However, improved phenomenological IMR waveforms

which address these issues have already been constructed [380].

7.1.4 Other search efforts for inspiralling binary black holes

in LIGO and Virgo

There have been previous search efforts to detect binary black holes in earlier

LIGO data sets which covered a portion of the parameter space searched here, none

of which made a successful detection. First, the S2 data set, which contained ∼ 386

hours of data, was searched for binaries with a total mass in the range (3− 20)M�.

This search had sensitivity out to a distance of about 1 Mpc and the results are

reported in Ref. [381]. The results of a search of S3 and S4 data are reported in

Ref. [382]. S3 consisted of ∼ 788 hours of data and was searched with templates

up to a total mass of 40M�, while S4 consisted of ∼ 576 hours of data and was

searched with templates up to total mass 80M�. These S2, S3 and S4 search efforts

used the so-called BCV phenomenological waveforms proposed in Ref. [379]. These

waveforms take the form of the (non-spinning) TaylorF2 (or SPA) PN waveforms,

except that coefficients appearing in the complex phase of the frequency-domain

waveforms are not assumed to take the values predicted by PN theory, but are

allowed to vary as free parameters. In addition, another search was performed on

the S3 data which used inspiral waveforms with spin effects [59] and component
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masses in the range m1 = [1, 3]M� and m2 = [12, 20]M� with the results reported

in Ref. [383].

Besides these inspiral searches, there has also been an effort to detect ringdown

waveforms. For binaries with total masses & 100M�, little if any of the inspiral

signal will be inband and the ringdown will dominate the observable signal. A

ringdown search was performed on the S4 data to search for the remnant of binaries

with total mass in the range (85− 390)M� [327, 384].

Lastly, the low mass search of the LIGO S5 and Virgo VSR1 data reported

in Refs. [96, 97, 98] searched for binaries with a total mass up to 35M�, and so

overlaps with the low mass end of this search.

7.2 The data analysis pipeline

The method to analyze the interferometer data to search for signals, estimate

background rates and set an upper limit in the absence of a detection is referred to

as a data analysis pipeline. The search pipeline used for the S5 high mass search

described here is the same pipeline used for the S5 low mass (M = (2 − 35)M�)

search efforts described in Refs. [96, 97, 98], except for the choice of template and

injection waveforms, the way in which the χ2 signal-based veto is applied, and the

way in which the upper limit on the event rate is reported. We now describe the

various steps of this data analysis pipeline.
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7.2.1 Data selection and data quality vetoes

If the Fabry-Perot cavities which make up the the interferometer arms and

the power recycling cavity are near resonance, then the signal at the dark port (the

photosensor monitoring the signal leaving the beam splitter) will respond linearly to

displacements of the mirrors, and the whole system will be stable. When this hap-

pens, the interferometer is said to be “in lock” and data can be taken. If the optical

cavities are away from resonance, the system will generally not be stable against

mirror displacements, high quality data cannot be taken, and the interferometer is

said to be “out of lock”.

The three LIGO interferometers did not operate continuously during the S5

science run. The interferometers would often lose lock due to earthquakes, passing

trains or airplanes, and many other types of environmental disturbances. From time

to time they were also intentionally taken out of lock to perform maintenance and

tuning. Data from the interferometers is recorded when the instrument is in a stable

lock. This is referred to as science mode, and the times when the data are recorded

are referred to as science time. Not all science time is created equally. In some

cases, even though the interferometer is locked, there may be excessive noise. If this

noise is likely to cause an excessive number of triggers, or excessively loud triggers,

one may not want to analyze the data at all, or one may want to exclude it from

the upper limit calculation, but still search it to be sure an exceptional detection

candidate is not missed. To partition the science times into categories of various

quality, a set of data quality (DQ) flags have been created.

310



The most basic DQ flags are denoted category 1. These simply flag all times

during which the interferometers are not in science mode. Any time with a cate-

gory 1 flag will not be analyzed. The remaining DQ flags are defined by monitoring

auxiliary channels to identify times which are likely to have significant environmen-

tal noise. For example, an accelerometer is placed near each of the mirrors in the

interferometer to monitor local vibrations. One could flag all times when the ac-

celerometer readings are above a certain level, and in this way veto times when

there is elevated seismic activity. Hundreds of such DQ flags monitoring hundreds

of auxiliary channels have been defined in this way and are grouped into categories

2, 3 and 4.

While data with a category 1 flag is never analyzed, the remaining DQ vetoes

are actually applied downstream in the pipeline. That is, data which has a DQ flag

other than category 1 will proceed through the pipeline and be matched filtered

to produce a list of triggers. However, a “DQ veto” will be applied to the list of

triggers, and those which occur during flagged times will be excluded from the final

list. This is done downstream (rather than at the beginning of the pipeline) so that

the effectiveness of various DQ flags can be evaluated and so the DQ flags can be

assigned to the appropriate category. In essence, one wants to apply DQ vetoes

which will remove many loud noise triggers while vetoing as little time as possible

to retain as much high quality data as possible. Category 2 DQ flags are those

which veto the greatest number of loud triggers while vetoing the least amount of

science time. The origin of noise sources and their coupling to the signal at the

dark port are typically well understood for category 2 flags. Category 3 DQ flags
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veto fewer loud triggers and/or veto more science time than category 2. The origins

of this noise and its correlation to the signal at the dark port is typically less well

understood. Triggers with category 2 or 3 flags are vetoed and not considered as

detection candidates, nor used in setting upper limits. Category 4 DQ flags typically

veto more science time and/or have weaker correlation to the signal at the dark port.

Triggers with a category 4 flag are not considered when setting upper limits, but

are checked as viable detection candidates.

7.2.2 Template bank generation

It would be impossible to filter with a template for each point in the contin-

uum of parameter space, so one must choose a finite number of templates which

adequately cover the parameter space. Typically, one chooses a mismatch MM and

requires that the normalized inner product between any two adjacent templates h1

and h2 satisfy (h1|h2) ≥ 1−MM, so that the loss of SNR (and thus the decrease in

maximum observable distance) for a signal that falls between templates will be no

more than MM. Since the event rate scales as the observable volume, which scales

as the cubic of the observable distance, the loss in event rate due to the discreteness

of the template bank will be 1 − (1 −MM)3. A common choice of mismatch (and

the value used in this search) is MM = 3%, so that the loss of event rate will be less

than 10%.

The template placement algorithm used in the LAL code is described in detail

in Ref. [100]. As we will see, it is possible to maximize analytically over the extrinsic
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Figure 7.1: A typical template bank in the m1-m2 plane covering the region M =
(25− 100)M� with component mass (1− 99)M� for a 2048 s stretch of LIGO data.

parameters tref and φref , so that we do not have to create templates with different

values of these parameters. We simply need to lay out templates in the 2-D space of

mass parameters. In the LAL code, this is done in terms of so-called “chirp time”

parameters defined as

τ0 =
5

256 π ν flow

(πM flow)−5/3 τ3 =
1

8 ν flow

(πM flow)−2/3 , (7.2)

where flow is the low-frequency cutoff of the interferometer. While the placement is

computed in terms of the chirp time parameters, there is a one-to-one mapping with

other pairs of mass parameters, such as (m1,m2), (M, ν), etc. Table 7.2.2 plots a

typical template bank used in this search in the m1-m2 plane.

The high mass search places templates according to an analytic metric on the

parameter space derived for 2PN order TaylorF2 (SPA) waveforms, as described
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Figure 7.2: EOB waveforms are injected into data and recovered with EOB tem-
plates placed according to a 2PN order SPA waveform metric. The cyan squares
at the top of the plot represent the total mass of the template waveforms. If the
EOB signals (denoted by red and green points) fall at masses between templates,
the overlap will drop. The vertical line at 100M� represents the upper total mass
boundary of this search.

in Refs. [385, 322, 100]. This metric quantifies the “distance”, or mismatch, be-

tween template waveforms with different mass parameters. Templates are placed

until, according to the metric, any point in the mass range of the search will be

within MM of at least one template. Although the metric is derived for 2PN or-

der SPA waveforms, while in this search we use EOB templates, we find that it

does approximate the distance between EOB signals well for low masses. As one

approaches the high mass end of our search (M ∼ 100M�), however, the 2PN SPA

metric underestimates the distance between EOB waveforms somewhat and places

fewer templates than are needed. In Fig. 7.2, we test the template placement by

injecting many EOB signals and computing their overlap with the template bank.

We see that the overlap drops below our goal of 97% at the high mass end, but
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Detector Bank N̄ σ

H1 First Bank 1568.4 201.6
H1 Second Bank 404.8 395.5
H2 First Bank 1315.1 88.7
H2 Second Bank 208.1 241.4
L1 First Bank 1963.3 305.9
L1 Second Bank 709.7 468.6

Table 7.1: The choice of templates depends on the time-dependent PSD of the
detectors. This table outlines the average number of templates required in the first
and second bank stages as well as the standard deviation.

we still have overlaps ≥ 95% for the entire mass range. We consider this adequate

for this first search effort with IMR templates, but in the future the placement of

IMR templates should be improved. Because the distance between waveforms is

defined by a noise-weighted inner product, if the instrument noise changes, this will

affect template placement. Therefore, we compute a template bank for every 2048

s of data. In Table 7.2.2, we give the standard deviation and average number of

templates per 2048 s chunk for each interferometer for both first- and second-stage

filtering (explained in Sec. 7.2.6).

7.2.3 Filtering the data

For each interferometer, we filter the data against each template in our bank

and produce a list of triggers for which the SNR exceeds some predetermined thresh-

old (chosen as ρ ≥ 5.5 in this search). In Eqs. (2.103)-(2.104) of Ch. 2, we saw how

the SNR could be defined in terms of a real-valued inner product. It turns out

that one can maximize over the extrinsic parameters tref and φref by defining a
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complex-valued inner product

z(t) = 〈s|h〉 (t) ≡ 4

∫ ∞
0

s̃(f) h̃∗(f)

Sn(f)
e2π i f t df , (7.3)

where we have used angular brackets to distinguish this inner product from the real-

valued inner product of Eq. (2.103). Then, changing φref will simply cause a rotation

of the complex argument of z(t). So, |z(t) will be the value of the (complex- or real-

valued) inner product maximized over φref . Therefore, we simply find the time tref

which maximizes |z(t)| to perform the maximization over the extrinsic parameters.

Thus, we define the SNR (maximized over tref and φref) as

ρ =
|z(t)|
σ

=
| 〈s|h〉 (t)|√

(h|h)
. (7.4)

Now, if a certain template crosses the SNR threshold at a certain time, many other

nearby times and nearby parameter values will also produce a trigger above thresh-

old. Therefore, clustering over time and parameters is done to find local maxima

in the set of triggers, and reduce them to a manageable number. A more detailed

description of the implementation of matched filtering in LAL can be found in

Refs. [101, 94].

7.2.4 The χ2 consistency test

To help distinguish between obvious background noise events and viable de-

tection candidates, signal-based vetoes are used to eliminate or decrease the ranking
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of triggers which are likely to be caused by background noise. The most important

of these is the χ2 consistency test, which determines the goodness-of-fit between

signal and template. In this test, each template is broken into p (in this search

we use p = 10) non-overlapping frequency bands, h̃(f) =
∑p

i ũi(f), such that each

one contributes an equal portion to the signal strength, (ui|uj) = δij σ
2/p (δij is

the Kronecker-delta). We matched filter against each of the ũi(f) to find their

contribution to the SNR,

ρi(t) =

√
p√

(h|h)
〈s|ui〉 (t) . (7.5)

Then, we define

χ2 =

p∑
i=1

∣∣∣∣ρ(t)

p
− ρi(t)

∣∣∣∣2 . (7.6)

Note that because it depends on the complex inner product with real and imaginary

parts, this χ2 will have N = 2(p− 1) degrees of freedom. If the power of the signal

in each frequency band is close to that of the template, the signal is consistent with

the template and χ2 will be small. If χ2 is large, it means the power of the signal

is distributed differently in frequency from the template and the trigger is likely to

be noise. See Ref. [102] for details about the χ2 consistency test.

In this search, the χ2 value is used to re-weight the SNR of an event to create

an improved detection statistic known as effective SNR and defined as

ρeff =
ρ

[(1 + ρ2/C)(χ2/N)]1/4
, (7.7)
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Figure 7.3: Plots of χ2 vs SNR with EOB inspiral-only template and injected wave-
forms (left panel) and with EOB template and injected waveforms (right panel). In
either case, background triggers (generated with time slides) are denoted with black
markers, while triggers from injected waveforms are denoted with red markers. We
see that the full IMR signal has a better separation of background from injections.

where N = 2(p − 1) = 18 is the number of degrees of freedom, and C = 50 is a

tunable parameter.

7.2.5 Coincidence test

Once we have a list of triggers for each interferometer, those lists of triggers

are compared to identify coincident events. If two or more instruments have triggers

at nearly the same time (within some tolerance to account for the light travel time

between sites and errors on the reference time) and have similar mass parameters,

then they are counted as a coincidence. The same metric used to place templates

is also used to determine if the triggers from two different interferometers are suffi-

ciently close in time and masses to be considered a coincident event. As we noted,

this metric was derived for 2PN SPA waveforms, while we are using EOB template

waveforms. For this reason, the coincidence window is chosen to be looser than for
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previous search efforts. The coincidence window seems to work well. For example,

simulated waveforms injected into multiple detectors can be recovered as coincident

events. However, this could be improved in the future with the use of an IMR met-

ric. For our list of coincident events, we add the effective SNR from the triggers in

each interferometer in quadrature to compute a combined effective SNR,

ρeff,c =

√∑
i

ρ2
eff,i . (7.8)

7.2.6 Hierarchical filtering and coincidence

Now, it turns it is rather computationally expensive to compute the χ2 value

of a trigger. For example, note that we must determine the frequency bands which

contribute 1/p to the total SNR, break our template waveform into p sub-templates,

and then filter the data against each sub-template. For this reason, we employ

a hierarchical pipeline which performs the filtering and coincidence test twice so

that the χ2 is computed only for the subset of templates which produce coincident

triggers.

In the first stage of the hierarchical pipeline, one performs the filtering as

described in Sec. 7.2.3 for each interferometer using the full template bank computed

according to Sec. 7.2.2. Using this list of triggers from each interferometer, one

makes a list of all coincident events. Then, one makes a second-stage template

bank for each interferometer which includes only the templates that appear in the

coincident event list. The data is filtered a second time using the second-stage
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template bank, and this time the χ2 is also computed for every template and the

effective SNR is tabulated. Then, a coincidence test is performed a second time

and the combined effective SNR of each coincident event is recorded. Note that

this hierarchical approach is applied only to reduce the number of times χ2 must

be computed to speed up the analysis. In Table 7.2.2, we show the average number

of templates for each interferometer and stage of the hierarchical pipeline. Note

that the first stage has thousands of templates, while the second stage is reduced to

hundreds of templates.

7.2.7 How to estimate the background

To understand how likely a coincident event is to be a true gravitational wave,

we need to understand how likely it is to have random, coincident noise fluctuations

create a coincident event of the same “loudness” (e.g. the same combined effective

SNR). To this end, we perform a series of “time slides” — we shift the data streams

from interferometers at different sites relative to one another by 5 second increments.

Then, the time-shifted data is run through exactly the same hierarchical filtering

and coincidence pipeline as the unshifted, or so-called “zero lag” data. Because 5

seconds is much greater than the light travel time between LIGO sites (∼ 10 ms), any

coincident events found in the time-shifted data must be caused by random noise

triggers. 100 such times slides are performed, and this gives us 100 independent

background trials, as we do not expect any correlations in noise between the widely

separated LIGO sites.
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Now, because H1 and H2 are co-located, we expect them to have correlated

noise from local environmental disturbances. Therefore, this time slide procedure

will not accurately model the coincident event rate for the detector pair H1H2. In

fact, for this search we do not have a reliable way of estimating the H1H2 background

rate, and so we do not consider events which are coincident in only H1 and H2.

The time slide procedure does allow us to estimate the background rate for all

other interferometer combinations. Note that for the H1H2L1 triple coincident

background we slide H1 and H2 together relative to L1. During times when all

three interferometers are operating, we do not consider events which coincident in

H2L1, because of H2 has a trigger from a true signal, the more sensitive H1 should

also have a trigger. We do, however, consider H2L1 coincident events if H1 is not

operating.

7.2.8 How to rank events

The ranking of events which emerge from the hierarchical pipeline will depend

on how loud the signals are (SNR) and also on the goodness of fit (χ2) which are

encoded in the effective SNR formula of Eq. (7.7). Since we require coincidence

between multiple detectors, it is natural to rank coincident events according to

the combined effective SNR of Eq. (7.8). However, while it is relatively common

for two interferometers to experience random noise triggers at coincident times,

it is much rarer to have three interferometers experience coincident random noise

triggers. Therefore, if we have a triple-coincident candidate event and a double-
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coincident candidate event with the same effective SNR, the triple-coincident event

will have a much lower background rate and is the more interesting event. In

addition, we find that noise fluctuations tend to match some templates much more

frequently than others. In particular, templates with a high total mass have a much

higher background trigger rate than low total mass templates. Therefore, if we

have a low mass candidate event and a high mass candidate event with the same

combined effective SNR, the low mass candidate will be more interesting due its

lower background rate.

To take these issues into account, we will not use the combined effective SNR

as our final ranking statistic, but will rather define a false alarm rate for the event.

This false alarm rate will depend on the set of interferometers that were operating,

the set of interferometers which had a coincident trigger and the masses of the

template waveforms. The mass dependence of the false alarm rate is addressed by

partitioning the candidate events into three total mass bins with boundaries [25, 50),

[50, 85), [85, 100]. We also divide the list of candidates according to coincidence type.

These are “H1H2L1 triggers in H1H2L1 time”, “H1L1 triggers in H1H2L1 time”,

“H1L1 triggers in H1L1 time” and “H2L1 triggers in H2L1 time”. The first set of

interferometer abbreviations denotes which ones had a coincident trigger, while the

second denotes which ones were operating. Note that H2L1 and H1H2 triggers in

H1H2L1 time are excluded because the former should have an H1 trigger for a real

event, and we cannot estimate the background of the latter.

For the candidate events in each of these categories defined by a total mass

range and coincident type, we compare the combined effective SNR of the candidate
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to the combined effective SNRs of the background events (produced by time slides)

in this category and count the number of background events which match or exceed

the combined effective SNR of the candidate. To compare events across different

categories, we divide the number of louder background events by some standard unit

of time (such as a year). In this way, we assign a false alarm rate to each candidate

coincident event. We define our ranking statistic as the inverse false alarm rate

(IFAR), ξ−1 (the IFAR is used as the ranking statistic rather than the false alarm

rate so that a higher value means a more interesting signal, corresponding to the

intuitive notion of “loudness” of an event).

7.2.9 Assessing detection efficiency with injections

To gauge the detection efficiency of our search pipeline, we inject many simu-

lated waveforms into the data and attempt to detect them with our search pipeline.

By “inject”, we mean that we record the data time series from each detector and

use software to add to it the time series of a gravitational wave (with a time, am-

plitude and phasing in each detector that is consistent with a certain sky location

and orientation). We then analyze this data with the same pipeline used to do the

actual search and to estimate background via time slides. To measure the detection

efficiency, we consider an injection found if it has a lower false alarm rate (or higher

IFAR) than the loudest event of our search.

Recall that we estimate the noise PSD of the interferometers in 2048 s blocks.

Now, if we injected many loud signals into these blocks, the excess power from the
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Figure 7.4: A plot of horizon distance as a function of the total mass of the system for
the H1, H2 and L1 detectors (red, blue and green lines respectively). The upper lines
are for systems with equal component masses. The lower lines are for asymmetric
systems with component masses (1,Mtotal − 1)M�.

injections would significantly alter the noise curve of the instrument. It has been

found that we can inject ∼ 1 waveform per 2048 s block without ruining the

computation of the PSD, so this limits somewhat the number of injections we can

perform into our data. However, we can get more injection trials by injecting a set of

waveforms into the data and analyzing it, then repeating this procedure with another

set of injections with different parameters at different times. In this search we

perform 10 such injection runs, which allows us to analyze ∼ 106 injected waveforms.

For seven of these runs, we injected EOB waveforms over the whole mass range of

the search (total mass (25− 100)M� and component masses (1− 99)M�). For the

other three sets, we injected phenomenological IMR waveforms, but we restricted

their range so that the ratio of component masses is never greater than 10:1. As
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explained above, this was done because the phenomenological IMR waveforms were

found to be unrealistic for more extreme mass ratios. For all of these injection sets,

the waveforms were injected at physical distances between 1− 750 Mpc uniform in

the logarithm of distance and with a random, uniform distribution of sky location

and binary inclination. They were intended to be injected with a random, uniform

distribution in the polarization angle ψ as well, but due to a software bug discovered

during the review of this search, in the results reported here all injections were made

with ψ = 0. Preliminary investigations suggest that this will not significantly affect

the results of this search, but a rerun of the search with the bug fixed is underway

and nearly completed. The final published results will use the correct distribution

of injections to analyze the data.

In Fig. 7.4, we plot the horizon distance for the injected waveforms, which is

the maximum effective distance (or the physical distance for an optimally located

and oriented binary) to which we find injections. The upper curves plot the horizon

distance for equal mass binaries as a function of total mass. The lower curves plot

the horizon distance for the most asymmetric binary at a given total mass, the

pair (1,M − 1)M�. For a given total mass, the equal mass binaries have a greater

amplitude than the asymmetric binaries, and so can be detected out to much greater

distances.
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7.2.10 Tuning the search pipeline

Before we perform our final analysis, we would like to ensure that we have

not made any mistakes and that we are satisfied with the signal-based vetoes and

detection statistics we have defined. Therefore, we will allow ourselves to look at

data from timeslides and injections, but we will not allow ourselves to look at the

“zero lag” data that will be used to set our upper limit. Looking at the zero lag

data would unblind the search effort, and if we tune the search pipeline according

to this data, we could introduce bias. We do, however, set aside 10% of the zero

lag data, called “playground data” which we are allowed to analyze along with

the injections and time slides to attempt to optimize the signal-based vetoes and

detection statistics in our pipeline. To avoid bias, this playground data is not used

in setting an event rate upper limit. However, if we find a very credible detection

candidate in the playground data, we will still allow ourselves to claim a detection.

Much of our “tuning” efforts focused on the χ2 consistency test. There were

previous attempts to perform the S5 high mass analysis using 3PN order EOB

inspiral-only template waveforms. However, it was found that the χ2 test performed

very poorly in this case. Note the left panel of Fig. 7.5, where we plot the distribution

of time slide triggers (black) and EOB inspiral-only injections recovered with EOB

inspiral-only templates (red). Note that the two distributions are right on top of

one another, so the χ2 is a poor discriminator of signal from background. The cyan

line represents a proposed χ2 cut which would retain all but a few injections if these

inspiral-only waveforms were to be used as detection templates. Note that a wide
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Figure 7.5: Plots of detection efficiency (weighted by the signal distance cubed)
versus the “magic number” appearing in the effective SNR definition of Eq. (7.7) for
H1 (left panel) and L1 (right panel) during a subset of the S5 data. The horizontal
red line is the efficiency when defining ρeff = ρ/χ. There is a clear trend that smaller
values of C give a greater detection efficiency, and C = 50 was found to be the best
value over all interferometers and all data considered.

majority of background events would pass this cut.

In the early part of 2008, the EOB waveforms described in Sec. 2.2.2, were

implemented into the LAL code by the author of this thesis along with Yi Pan and

B.S. Sathyaprakash. It became quite clear that the χ2 consistency test performed

much better with full EOB waveforms than with inspiral-only EOB waveforms. We

see this in the right panel, which is the same as the left panel, except that the red

denotes EOB injections recovered with EOB templates. We obtain a much better

separation of signal and background making the χ2 much more useful. Furthermore,

it was decided not to use perform a hard cut on the χ2 veto (meaning that a trigger

would either pass the veto and be retained or fail it and be discarded), but rather

to use the χ2 consistency test to re-weight the significance of an event by defining

an effective SNR which depends on χ2. Therefore, all triggers would be retained,

but their ranking would increase or decrease depending on their χ2 value.
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We attempted to further optimize the effectiveness of the χ2 by tuning the

definition of the effective SNR. Notice that the effective SNR formula of Eq. (7.7)

has a free parameter, C, which is colloquially referred to as the “magic number”.

Each value of ρeff labels a certain contour in the ρ-χ2 plane (these contours move

towards the lower right corner of Fig. 7.3 as ρeff increases). Now, in essence, one

wants to choose a value of C so that the contours of constant ρeff conform to the lower

right edge of the black distribution as closely as possible. Then, the contour which

passes through the loudest background event will have as many injected signals

as possible lying at higher ρeff , and so this will maximize the detection efficiency.

All other things being equal, we would rather tune our ρeff definition to find low

SNR signals rather than high SNR signals. This is because there will be many

more low SNR (i.e. large distance) signals than high SNR (i.e. small distance)

signals (assuming the signals are distributed roughly uniform in volume) and also

because the low SNR signals will be more difficult to detect. For this reason, in

optimizing the value of C in the ρeff definition, we count the fraction of injections

with ρeff larger than the loudest background event, and we weight each injection by

its distance cubed (to account for the fact that there will be more signals at larger

distances in a uniform-in-volume distribution).

The three corresponding authors for the search computed ρ and χ2 for the in-

jections and time slides of the final 6 calendar months (months 19-24) and performed

a study of how many injections (weight by their distance cubed) had a greater ρeff

than the background as the value of C was varied. We plotted these results for each

interferometer and each two-month pair. The results for H1 and L1 in months 19-20
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(which were analyzed by the author of this thesis) are plotted in Fig. 7.5. Across

all months and all interferometers, there was a clear trend that smaller values of C

gave higher efficiencies. Based on these plots, we chose C = 50, which gave a high

efficiency in all cases.

In addition to the χ2 veto, we also considered a so-called effective distance

cut. Two interferometers at widely separate locations (such as H1 and L1) can

measure very different effective distances for the same source, because that source

will be located and oriented differently relative to each interferometer. However,

because the H1 and H2 interferometers are co-located, they should measure the

same effective distance to a source. Therefore, for coincident events which include

H1 and H2 triggers, we could require that they report the same effective distance to

within some tolerance and veto the event if they do not. However, we found that H1

and H2 would often recover injections with quite different effective distances (due

to differences in the template mass parameters for each interferometer). Therefore,

even if the tolerance was set quite loose (& 50% difference in effective distance), this

test would veto a significant number of injections. Setting a very loose tolerance

also limited the ability to veto background triggers. So, it was decided not to use

an effective distance cut in this search.

7.2.11 Setting upper limits on coalescence rates

If a successful detection is not made, then we use the non-playground zero lag

data to set an upper limit on the event rate of compact binary coalescences using
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the approach of Ref. [103]. To do this, we rank all coincident events by IFAR, ξ−1,

according to the procedure in Sec. 7.2.8 and identify the loudest event with false

alarm rate ξ∗, i.e. IFAR ξ−1
∗ . Then, with a knowledge of the detection efficiency

above the loudest event and the relative likelihood the loudest event was caused

by a background noise trigger, one can compute a Bayesian posterior probability

distribution for the rate of compact binary coalescences. Then, one integrates this

distribution over all possible rates (starting at a rate of 0) up to a value R where

one reaches a certain confidence level, which we choose to be 90% in this search.

This amounts to making the statement “if the event rate were greater than R, there

is a 90% chance it would produce a trigger louder than ξ∗. Since we did not observe

such a trigger, we conclude with 90% confidence that the event rate must be less

than R.”

In this search, we bin the mass plane into a discrete set of (m1,m2) mass pair

bins and compute an event rate upper limit for each mass pair. To do this, we first

define for each mass pair a detection efficiency

εi(ξ∗,x,m1,m2) =
Nf (ξ∗,x,m1,m2)

Nt(x,m1,m2)
, (7.9)

where ξ∗ denotes the loudest event, x = {D, θ, φ, ι, ψ} denotes the physical location

and orientation of the source binary, Nf is the number of found injections in the

mass pair bin at that location and orientation, Nt is the total number of such

injections, and i labels the coincidence-type (e.g. which detectors were operating

and which had a trigger). Computing an efficiency for each coincidence-type is
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necessary because our ranking statistic is IFAR, which depends on the background

rate of that particular coincidence-type. With this efficiency, one integrates over

space and orientation angles to obtain an observed volume,

Vi(ξ∗,m1,m2) =

∫
dx εi(ξ∗,x,m1,m2) . (7.10)

with units of Mpc3. We can get an estimate of the uncertainty on this volume by

varying the boundaries of the mass pair bins, recomputing the observed volume, and

taking the variance of such values. Therefore, we define an error on the observed

volume

σi(ξ∗,m1,m2)2 = Vi(ξ∗,m1,m2)2 −
(
Vi(ξ∗,m1,m2)

)2

, (7.11)

where an overbar is used to denote the average observed volume of the mass bin as

the boundaries are varied. Then, in our notation, Eq. (24) of Ref. [103] gives the

Bayesian posterior probability distribution for the event rate for our mass pair

pi(R|m1,m2) = pi(R|k, V T ,Λ) (7.12)

=
V T

1 + Λ

[
1

(1 +RV T/k)k+1
+
RV TΛ(1 + 1/k)

(1 +RV T/k)k+2

]
,

V T = ¯Vi(ξ∗,m1,m2)Ti, (7.13)

k =

[ ¯Vi(ξ∗,m1,m2)

σi(ξ∗,m1,m2)

]2

, (7.14)

Λ = −d ln [Vi(ξ∗,m1,m2)]

dξ∗
, (7.15)

where Λ quantifies the relative likelihood of the loudest event being a true signal
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versus a background trigger and the factor k comes from assuming a γ-distribution

for the posterior probability, we again refer the reader to Ref. [103] for more details.

The pi posterior probabilities could be used to determine an upper limit for

each mass pair based on observations of one coincident type. We can obtain a

posterior probability for all of the observation time by taking the product of the

individual posterior probabilities

p(R|m1,m2) =
∏
i

pi(R|k, Vi(ξ∗,m1,m2)T,Λ) . (7.16)

Then, we perform the integral

0.9 =

∫ R

0

p(R
′|m1,m2) dR

′
(7.17)

to find our 90% confidence upper limit, R, on the rate of binary coalescences with

masses (m1,m2).

7.3 Preliminary search results

The LIGO interferometers took a full year of triple-coincident data, but some of

this data ends up being DQ vetoed. The amount of data remaining after category 3

vetoes (i.e. the data searched for detection candidates) is shown in Table 7.2 for each

class of coincident time. The S5 data was partitioned into 12 segments which each

correspond to roughly two calendar months. Each two-month period was assigned

to a different data analyst, who was charged with running the search pipeline to
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Detectors Live time (yr)

H2L1 0.06
H1L1 0.10
H1H2L1 0.62
H1H2 0.00

Table 7.2: The amount of analyzed time surviving the pipeline after category 3
vetoes were applied. Notice that H1H2 times were not analyzed due to the inability
to properly estimate the background for co-located detectors.

analyze that two-month period (I analyzed the data from months 19-20). For each

two-month period, we rank the events according to their IFAR relative to the data

of that two-month period, computed within the mass bin and coincident-type of

the event as described in Sec. 7.2.8. The reason the false alarm rate of an event

is computed using only the data of a two-month period (rather than the full two

calendar years) is to account (in a rather crude way) for different background rates

during different portions of S5. For example, the interferometers typically had lower

background rates towards the end of S5 compared to the beginning of S5. After each

two-month pair has been analyzed, we pool all of the data together to produce a list

of the top overall detection candidates and an upper limit based on all of the data.

7.3.1 Detection candidates

Each coincident event is assigned a false alarm rate by comparing it to the

distribution of background events within its own mass bin, coincidence type and

two-month period. Because the ranking of each event is normalized as a rate per

some common unit of time (typically years or seconds), the false alarm rate, or equiv-
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alently IFAR, serves as a universal ranking of the coincident events that transcends

their categories. Therefore, we all coincident events across categories to study their

distribution and produce an overall list of the loudest events.

In Fig. 7.6, we plot a cumulative histogram of the IFAR of coincident events

combined over all categories, except for the set of interferometers which were op-

erating. Said another way, the left panel of Fig. 7.6 is the IFAR histogram of all

triple- and/or double-coincident events which occurred when H1, H2 and L1 were

all operating, from all mass bins and all two-month periods. The center and right

panels of Fig. 7.6 are the IFAR histograms of all double-coincident events when

their respective pairs of interferometers were operating from all mass bins and all

two-month periods. The shaded regions represent standard deviations from the ex-

pected background. These plots show that we had two triggers in triple-coincident

time with IFARs which significantly above the expectation, and one trigger in H2L1

time significantly above the expectation. These three triggers are in fact the three

loudest events of our search. In Table 7.3, we give some information on the ten

overall loudest triggers in our search. We now discuss the three loudest events in a

bit more detail.

7.3.1.1 The loudest event

The loudest event of this search, which was a triple-coincident event at GPS

time 825664840.1523, was more significant than any of the 100 background trials

performed during the two month period in the triple-coincident H1H2L1 time. Be-
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Figure 7.6: The combined IFAR for events ranked in all 12 time periods broken
up by the three detector time categories H1H2L1, H1L1, H2L1. The dashed black
lines are the expected number of events from background and the shaded regions
represent one standard deviation from this expectation. The solid black lines repre-
sent the foreground measurement. There is approximately a factor of 10 times more
H1H2L1 observation time than H2L1 or H1L1 time. Therefore, deviations from the
expectation in the H1H2L1 time category are more significant in terms of IFAR than
the other categories. There are three events that stand out above the background.
Two of these events occur in H1H2L1 time (shown in the left figure). One event
occurs in H2L1 time (shown in the right figure).

cause it is louder than all of our background, we cannot assign it a definite false

alarm rate, but we can say that this event should occur no more often than once

every 4 years (which is the amount of background time we obtain from time slides

for this trigger’s category).

The event was found in all three detectors H1, H2, and L1 with SNR only

slightly above threshold 5.60, 6.17 and 5.55 respectively. The masses were consistent

between the detectors. It is relatively common to get a triple-coincident event in

which the SNR is just slightly above threshold in each interferometer. In H1 and L1,

the χ2 of this event was highly consistent with background trials. However, it had an

unusually low χ2 value (0.1 per degree of freedom) in H2 which is quite uncommon.

We note that a χ2 value of less than 0.1 per degree of freedom is no more consistent

with signal than with noise (even if the template and signal are identical, one would

expect a χ2 ∼ 1 per degree of freedom due to the presence of noise) and that this
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fact is borne out by our simulations. No background trials out of ∼ 300, 000 had

such a low χ2 value nor did any of the ∼ 106 simulated signals. So, this event is

unlike the background distribution, but also unlike the simulated signals. Therefore,

we do not claim this event is a plausible gravitational wave candidate.

7.3.1.2 The second loudest event

The second loudest event of this search, which was a triple-coincident event

at GPS time 848905672.3369, was also louder than any of the time slide trials in its

category. Again, we cannot assign it a definite false alarm rate, but we can claim it

is rarer than the amount of background time we have in its category, two years in

this case.

This event was a loud glitch in H1 with a moderate response in H2 coincident

with some excess noise in L1. The ratio of SNR measured in H1 and H2 should be

equal to the ratio of the sensitivities of H1 and H2 at the time of the event (which

should be roughly a factor of 2). The SNR in H2 is too low for this, which makes

the event unlikely to be a true signal. The H1 χ2, although better than most of

the time slide trials, still does not lie within the signal distribution. We therefore

conclude that this is not a gravitational wave candidate.

7.3.1.3 The third loudest event

The third loudest event of this search, which was at GPS time 842749918.8057,

was found in H2L1 (while H1 was not operating). It was also louder than the

337



time slides. However, there was very little time in this particular category and so

its overall significance is quite low. The L1 SNR and χ2 is consistent with the

background in that instrument. The H2 trigger is just above the SNR threshold of

5.5. We conclude that this event is not a gravitational wave candidate.

7.3.2 Preliminary upper limits on black hole coalescences

Since we have not claimed a detection, we will set an upper limit with 90%

confidence on the compact binary coalescence event rate as a function of component

mass pairs based on our observation of the DQ category 4, non-playground data.

These upper limits, expressed as a rate per volume per time in units Mpc−3 yr−1,

are plotted in the m1-m2 plane in Fig. 7.7. They are also tabulated in Table 7.3.2

as a rate per volume per time and as a rate per blue light luminosity per time

expressed in units L−1
10 yr−1, where L10 is the blue light luminosity of 1010 stars

(note the Milky Way contains 1.7L10). We note that the upper limits are tightest

for binaries with comparable masses which are towards the high total mass end of

our parameter space. This is not surprising, as these waveforms from these binaries

have the largest amplitudes, and are thus observable over the largest volume.

7.4 Conclusions and future improvements

In this chapter we presented preliminary results from the first search to use

IMR waveforms calibrated to numerical relativity simulations to search for gravita-

tional waves from compact binary coalescences with LIGO detectors. This search
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m1 m2 R90% (Mpc−3 yr−1) R90% (L10 yr−1)

5 23 3.2e-06 1.6e-04
5 32 3.6e-06 1.8e-04
5 41 3.2e-06 1.6e-04
5 50 5.1e-06 2.6e-04
5 59 3.6e-06 1.8e-04
5 68 5.5e-06 2.8e-04
5 76 8.5e-06 4.3e-04
5 85 1.2e-05 5.9e-04
5 94 8.5e-05 4.3e-03
14 14 1.6e-06 8.0e-05
14 23 1.5e-06 7.3e-05
14 32 1.3e-06 6.5e-05
14 41 1.0e-06 5.2e-05
14 50 9.9e-07 5.0e-05
14 59 8.4e-07 4.2e-05
14 68 1.0e-06 5.3e-05
14 76 1.0e-06 5.3e-05
14 85 2.9e-06 1.5e-04
23 23 1.3e-06 6.7e-05
23 32 7.3e-07 3.7e-05
23 41 5.1e-07 2.6e-05
23 50 4.8e-07 2.4e-05
23 59 3.1e-07 1.6e-05
23 68 3.1e-07 1.6e-05
23 76 4.2e-07 2.1e-05
32 32 4.8e-07 2.4e-05
32 41 3.4e-07 1.7e-05
32 50 2.8e-07 1.4e-05
32 59 2.8e-07 1.4e-05
32 68 2.0e-07 1.0e-05
41 41 2.1e-07 1.1e-05
41 50 2.0e-07 9.9e-06
41 59 1.6e-07 8.0e-06
50 50 1.1e-07 5.5e-06

Table 7.4: The 90% confidence upper limit on the merger rate as a function of
mass in units of M�. The upper limit is reported in two ways. The third column
represents the rate in units of mergers Mpc−3 yr−1. The fourth column converts this
to units of mergers L−1

10 yr−1 by noting that there are 0.0198 L10 / Mpc3 [109].
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Figure 7.7: The logarithm (base 10) 90% confidence upper limit on merger rate as
a function of component mass in mergers / Mpc3 / yr. Here the upper limit is
represented as a contour plot in order to visualize the variation in the mass plane.
The values are available in table 7.3.2.

targeted binaries with total masses between 25–100 M� and component masses be-

tween 1–99 M� with negligible spins. We analyzed data taken during the LIGO S5

science run, which spanned approximately two years from fall 2005 to fall 2007 and

included a year of triple-coincident data.

We did not detect any plausible gravitational-wave candidates in this search.

However, by estimating our search sensitivity, we were able to constrain the merger

rate of compact binary coalescences in the nearby Universe for all possible compo-

nent mass pairs in our targeted range. For example, we established to 90% confi-

dence that the merger rate of black holes with component masses of (23,23) M� is

less than 1.3× 10−6 Mpc−3 yr−1.

While this search effort is notable in its application of IMR template wave-

forms, there are still a number of limitations to this search which will be addressed
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in the future. Perhaps the most important limitation is that the template wave-

forms neglect the effects of spin. While the statistical distribution of the spins of

black holes in binaries is not well known [19], there are examples of black holes in

X-ray binaries which have been observed to have a large spin [20]. If one or both

of the objects in a binary has a non-negligible spin, this can affect the observed

gravitational waveform in a number of ways. First, it can increase or decrease the

length of the observable signal depending on the orientation(s) of the spin(s). It

will also affect the final spin of the remnant black hole, which will affect the ring-

down waveform. If the spins are not aligned with the orbital angular momentum,

the orbital plane will precess, which will modulate the observed waveform in am-

plitude and phase. At the time this search effort began, analytic IMR waveforms

which included spin effects were not available. However, NR simulations of spinning

binaries have been performed, and both the EOB [65] and phenomenological [386]

waveforms have been improved and calibrated to NR simulations of non-precessing

spinning binaries. Effort is also underway to create analytic IMR waveforms which

are valid for precessing binaries, notably through the NR-AR collaboration [82].

Therefore, future searches will likely use spinning IMR waveforms.

Errors in the waveform amplitudes are another limitation which affects the

reported upper limits, but not our ability to make a detection. Note that the first

EOB and phenomenological waveform models calibrated to NR waveforms focused

on modeling the waveform phase as accurately as possible, and did not attempt

to obtain amplitude agreement to the same high accuracy. In particular, we used

restricted EOB waveforms, and the phenomenological waveforms were calibrated to
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restricted hybrid waveforms. This means that both of our IMR waveform families

can have amplitude errors ∼ 10% (relative to the NR simulations and to each other)

during the inspiral and even larger differences during the merger-ringdown. Since we

filter with normalized templates, this will not affect our ability to make a detection,

but it will introduce a rather large errors into the observable volume and thus the

upper limits, particularly for higher mass systems. The preliminary results presented

here do not attempt to account for or correct this error on the upper limits, but this

issue is currently being addressed within the LSC and Virgo collaborations, and the

final results will properly account for this error. Furthermore, the improved EOB

and phenomenological IMR models in Refs. [65, 386] include amplitude-corrections,

and could be used in future search efforts.
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Chapter 8

Conclusions and future work

In the introductory chapter, we have briefly reviewed some of the basic proper-

ties of gravitational waves and the principles of detecting them. We have described

how analytic template waveforms for one of the most promising types of sources, the

inspiral, merger and ringdown of two compact objects, can be constructed. The PN

formalism can be used to construct waveforms during an adiabatic inspiral, when

the shrinking of the radius caused by the emission of gravitational waves is much

slower than the orbital motion, but this approach becomes inadequate during the

late inspiral as the adiabatic assumption and the low-velocity approximation break

down. We have introduced the EOB formalism, which improves upon the PN for-

malism and provides analytic waveforms through all phases of the coalescence, the

inspiral, merger and ringdown, which have been calibrated to obtain excellent agree-

ment with NR waveforms. We have also explained how spin effects can be included

in PN waveforms and noted some of the consequences these spin effects have on

the waveforms. Lastly, we have introduced some of the basic concepts needed to

apply these analytic waveform models to data analysis tasks, such as using them

as matched filter templates to search for real signals and to estimate the accuracy

with which those signals might be detected. The remaining chapters of this thesis

presented the details of several projects undertaken by the author and collaborators
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which apply these waveforms to various data analysis tasks.

In Ch. 3, we have done a detailed comparison of various types of PN waveforms

and identified the regime in which they are adequate as search templates for realistic

IMR signals. We find them to be adequate below a total mass of ∼ 12M�, while

above that mass we recommend using IMR templates such as the EOB waveforms.

In Ch. 4, we derived ready-to-use expressions for spinning PN waveforms for a

generic spin configuration and presented a detailed study of the spin effects in these

waveforms. One striking feature is that while the (2, 2) harmonic mode is truly the

dominant mode (it is much larger than any of the other modes) for a non-precessing

binary, this is not necessarily the case for a precessing binary. If the precessional

motion is rather large, which occurs for large spins and asymmetric binaries, then

much of the signal formerly contained in the (2, 2) mode is re-distributed among

other modes. In addition, the modes exhibit rapid, complicated oscillations on an

orbital time scale due to the precessional motion. The actual, physically-observable

signal is described by the waveform polarizations, which experience an amplitude

modulation on the slower precessional time scale, rather than the rapid oscillations.

However, for building EOB waveforms and comparing to NR simulations, one typ-

ically uses the harmonic mode decomposition, so when building precessing EOB

models and comparing to precessing NR waveforms, one will likely have to include

a greater number of modes, and ensure that the techniques used are robust against

the more complicated structure of the harmonic modes. The ongoing NR-AR col-

laboration [82] seeks to create precessing IMR template waveforms by comparing to

NR simulations and will have to confront these issues.
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In Ch. 5, we presented the results of the first effort to use EOB waveforms

as matched-filter templates as part of the NINJA project. In this effort, NR wave-

forms were injected into simulated data, and a number of search techniques includ-

ing matched filter searches with inspiral templates, ringdown templates, and IMR

templates as well as unmodelled searches were tasked with attempting to recover

the injections. The EOB matched filter templates performed well in this situation,

recovering a majority of the injected signals and a few more than similar search

efforts. A second NINJA project is underway which will provide a more realistic

challenge with longer injected signals, real detector data, and comparisons of search

techniques at fixed false alarm rates. I will again be part of the effort to search with

EOB templates within this project.

In Ch. 6, we investigated how well the parameters of a true signal might

be recovered the LIGO detectors with EOB templates through the Fisher matrix

formalism. In particular, we sought to understand how merger-ringdown and higher

harmonics of the orbital frequency can improve the estimation of parameters. We

find that both features do provide improvement to the parameter estimation. The

merger-ringdown provides the greatest improvement for binaries with comparable

component masses and high total mass, while the amplitude corrections provide the

greatest improvement for asymmetric binaries and high total mass. These general

trends are in qualitative agreement with other works on the subject, Refs. [116, 117,

118]. We have also discussed in detail the difficulties of using numerically-computed

time-domain waveforms (such as the EOB) within the Fisher matrix formalism.

These difficulties forced us to limit the scope of this project for the time being, as
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we restricted to a single initial LIGO detector and total mass ≤ 100M�, although

we plan to improve upon this study in the future. The difficulties also suggest that

more sophisticated techniques, such as MCMC methods, could be especially useful

in this case.

In Ch. 7, we presented preliminary results from the first effort to use EOB

IMR templates to search for real signals in real interferometer data, the LIGO S5

highmass search. These are not the official results of the search endorsed by the LSC

and Virgo collaborations, because the search is currently undergoing an internal

review, but they illustrate the search techniques used and preliminary observational

results. There were no viable detection candidates in this search, but we set upper

limits on the event rates for binary coalescences as a function of binary mass pairs.

The EOB matched filter templates will be used in future searches, including LIGO’s

S6 data and Virgo’s VSR2 data. This data is currently being taken and analyzed.

For this data, the LIGO interferometers are operating in their so-called “enhanced”

configuration, which includes some improvements to the inteferometer, principally a

more powerful laser. This has improved the detector performance at high frequencies

(which are limited by photon shot noise), but the noise level at lower frequencies

is comparable to S5, and so the LIGO sensitivity to high mass signals during S6 is

rather similar to the sensitivity in S5. However, Virgo data will also be analyzed

during the S6/VSR2 highmass search, which will improve the overall sensitivity

relative to the preliminary S5 search presented here. In the future, LIGO and Virgo

will operate in their “advanced” configurations, which should provide about an order

of magnitude improvement in the sensitivity of each instrument, which will greatly
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improve the chances of a detection.

Going forward, Advanced LIGO and Virgo have been funded and should start

taking data in about five years. The cryogenic LCGT will soon begin construction

as well. Beyond that, the space-based LISA mission will hopefully launch and ob-

serve the gravitational wave spectrum in a new, lower frequency band allowing us

to observe compact binary coalescences of a galactic scale. The third generation ET

is also being designed and promises to take data at an unprecedented sensitivity

in the future. The coming years should prove to be very exciting for gravitational-

wave physics. To fully take advantage of the data these advanced instruments will

collect, it will be important to continually improve the data analysis techniques

needed to analyze their data and inform their design. To this end, improving ana-

lytic waveform models will be very important. This can be done through improved

theoretical techniques and, importantly, comparisons with more accurate, longer and

more numerous NR simulations. In the near term, I will contribute to the NR-AR

collaboration to work towards the goal of creating the first accurate, analytic mod-

els of precessing IMR waveforms. Furthermore, I plan to undertake studies of what

science the advanced detectors will be capable of, and how this will be affected by

design choices. The Fisher matrix, MCMC techniques and studies like the NINJA

project(s) can help address these questions. Lastly, I would like to improve various

aspects of data analysis pipelines to be used during the Advanced LIGO/Virgo era.

This could include filtering with improved waveforms with amplitude-corrections

and spin effects, improving template bank placement and improving signal-based

vetoes.
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Appendix A

Ready-to-use gravitational-wave polarizations for precessing

binaries on nearly circular orbits through 1.5PN order:

generic inclination angles

In Sec. 4.3 we wrote the GW polarizations
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(1/2,SO)
+,×

)
v

+
(
ĥ
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expanded in the inclination angle ι. Here we give the full expressions. The New-

tonian, 0.5PN and 1PN order coefficients were computed explicitly in Ref. [83], the
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( 567cθ
65536

+
243c3θ

131072
+

1215c5θ

131072

)
s5ι

+ ν

[(
5643cθc2θ

4096
+ cθ

( 3195

16384
− 567c4θ

16384

))
sι +

(
− 243cθc2θ

1024

+ cθ

(
− 2259

4096
− 81c4θ

4096

))
s2ι +

(
− 5319cθc2θ

8192
+ cθ

(13833

32768
− 1053c4θ

32768

))
s3ι

+
(513cθ

8192
+

2565c3θ

16384
+

729c5θ

16384

)
s4ι +

(
− 567cθ

32768
− 243c3θ

65536
− 1215c5θ

65536

)
s5ι

]]
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+ cos(2α + Ψ)

[(
319cθc2θ

24576
+ cθ

( 871

4096
+

c4θ

49152

)
+
(933cθ

4096
+

133cθc2θ

1536

)
cι

+
( 625cθ

24576
+

211cθc2θ

4096

)
c2ι −

11cθc3ι

12288
− 7cθc4ι

49152

)
sι −

cθc4θs2ι

12288
+
cθc4θs3ι

32768

+
(
− 45c3θ

16384
− c5θ

16384

)
s4ι +

(
− c3θ

65536
− 5c5θ

65536

)
s5ι + ν

[(
257cθc2θ

12288

+ cθ

(
− 1493

6144
− c4θ

24576

)
+
(
− 1391cθ

6144
+

11

768
cθc2θ

)
cι

+
(
− 49cθ

12288
+

77cθc2θ

2048

)
c2ι +

11cθc3ι

6144
+

7cθc4ι

24576

)
sι +

cθc4θs2ι

6144
− cθc4θs3ι

16384

+
(45c3θ

8192
+

c5θ

8192

)
s4ι +

( c3θ

32768
+

5c5θ

32768

)
s5ι

]]
+ cos(2α−Ψ)

×
[(
− 157cθc2θ

12288
+ cθ

( 9827

49152
+

c4θ

49152

))
sι +

(
− 133cθc2θ

3072

+ cθ

(
− 1405

12288
+

c4θ

12288

))
s2ι +

(
211cθc2θ

8192
+ cθ

( 419

32768
+

c4θ

32768

))
s3ι

+
( 11cθ

24576
+

45c3θ

16384
+

c5θ

16384

)
s4ι +

(
− 7cθ

98304
− c3θ

65536
− 5c5θ

65536

)
s5ι

+ ν

[(
13cθc2θ

6144
+ cθ

(
− 5923

24576
− c4θ

24576

))
sι +

(
− 11cθc2θ

1536
+ cθ

( 701

6144

− c4θ

6144

))
s2ι +

(
77cθc2θ

4096
+ cθ

(
− 35

16384
− c4θ

16384

))
s3ι +

(
− 11cθ

12288

− 45c3θ

8192
− c5θ

8192

)
s4ι +

( 7cθ
49152

+
c3θ

32768
+

5c5θ

32768

)
s5ι

]]
+ cos(Ψ)

×
[(
− 341cθ

8192
+
cθc2θ

8192

)
s2
θsι +

(
− 3411cθ

16384
+

7cθc2θ

16384

)
s2
θs3ι +

( 35cθ
32768

+
21c3θ

32768

)
s2
θs5ι + ν

((
− 43cθ

4096
− cθc2θ

4096

)
s2
θsι +

(
− 429cθ

8192
− 7cθc2θ

8192

)
s2
θs3ι

+
(
− 35cθ

16384
− 21c3θ

16384

)
s2
θs5ι

)]]
, (A.2d)

ĥ
(1,SO)
+ = cos(α + Ψ)

(
χxacθc

2
ι
2
− χzac2

ι
2
sθ

)
+ cos(α−Ψ)

(
χxa

(cθ
2
− cθcι

2

)
− χzasθs2

ι
2

)
− χyacθs2

ι
2

sin(α−Ψ)− χyasθsι sin(Ψ)− χyacθc2
ι
2

sin(α + Ψ) + δ

[
cos(α + Ψ)

×
(
χxscθc

2
ι
2
− χzsc2

ι
2
sθ

)
+ cos(α−Ψ)

(
χxs

(cθ
2
− cθcι

2

)
− χzssθs2

ι
2

)
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− χyscθs2
ι
2

sin(α−Ψ)− χyssθsι sin(Ψ)− χyscθc2
ι
2

sin(α + Ψ)

]
, (A.2e)

ĥ
(3/2,SO)
+ = χxs

(
2cθc

3
ι sθ − νcθc3

ι sθ

)
+ cos(2α + 2Ψ)

[
χzs

[
νc4

ι
2

(
− 5

2
− 7c2θ

2

+
(1

2
+
c2θ

6

)
cι

)
+ c4

ι
2

(
− 3− c2θ +

(
5 +

5c2θ

3

)
cι

)]
+ χxs

(
c4
ι
2

(7s2θ

3

− 10

3
cιs2θ

)
+ νc4

ι
2

(
− 19s2θ

6
− 1

3
cιs2θ

))]
+ χxs cos(3α + 2Ψ)

×
(
ν
(1

2
+
c2θ

6

)
c5
ι
2
s ι

2
+
(

5 +
5c2θ

3

)
c5
ι
2
s ι

2

)
+ χxs cos(3α− 2Ψ)

×
(
ν
(1

2
+
c2θ

6

)
c ι

2
s5
ι
2

+
(

5 +
5c2θ

3

)
c ι

2
s5
ι
2

)
+ cos(α + 2Ψ)

×
[
χxs

[
νc3

ι
2

(
− 17

4
+

79c2θ

12
+
(
− 1

4
+

7c2θ

12

)
cι

)
s ι

2
+ c3

ι
2

(
3

2
− 13c2θ

6

+
(
− 5

2
+

35c2θ

6

)
cι

)
s ι

2

]
+ χzs

(
νc3

ι
2

(
− 7s2θ +

2

3
cιs2θ

)
s ι

2

+ c3
ι
2

(
− 2s2θ +

20

3
cιs2θ

)
s ι

2

)]
+ cos(α− 2Ψ)

[
χxs

[
c ι

2

(
3

2
− 13c2θ

6

+
(5

2
− 35c2θ

6

)
cι

)
s3
ι
2

+ νc ι
2

(
− 17

4
+

79c2θ

12
+
(1

4
− 7c2θ

12

)
cι

)
s3
ι
2

]
+ χzs

(
c ι

2

(
− 2s2θ −

20

3
cιs2θ

)
s3
ι
2

+ νc ι
2

(
− 7s2θ −

2

3
cιs2θ

)
s3
ι
2

)]
+ cos(2α− 2Ψ)

[
χzs

[
ν

(
5

2
+

7c2θ

2
+
(1

2
+
c2θ

6

)
cι

)
s4
ι
2

+

(
3 + c2θ

+
(

5 +
5c2θ

3

)
cι

)
s4
ι
2

]
+ χxs

((
− 7s2θ

3
− 10

3
cιs2θ

)
s4
ι
2

+ ν
(19s2θ

6

− 1

3
cιs2θ

)
s4
ι
2

)]
+ χzs

(
− 3cιs

2
θs

2
ι +

3

2
νcιs

2
θs

2
ι

)
+ χxs cos(3α)

×
(
ν
(
− 3

8
− c2θ

8

)
s3
ι +

(3

4
+
c2θ

4

)
s3
ι

)
+ cos(2Ψ)

(
χxs

(10

3
cθcιsθs

2
ι

+
1

3
νcθcιsθs

2
ι

)
+ χzs

(
5cιs

2
θs

2
ι +

1

2
νcιs

2
θs

2
ι

))
+ cos(2α)

[
χzs

(
ν
(
− 3

4

− c2θ

4

)
cιs

2
ι +

(3

2
+
c2θ

2

)
cιs

2
ι

)
+ χxs

(
− cιs2θs

2
ι +

1

2
νcιs2θs

2
ι

)]
+ cos(α)

[
χxs

(
− 11

16
c2θsι −

3s3
ι

4
− 7

16
c2θs3ι + ν

(11

32
c2θsι +

3s3
ι

8
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+
7

32
c2θs3ι

))
+ χzs

(
1

2
s2θsι −

1

2
s2θs3ι + ν

(
− 1

4
s2θsι +

1

4
s2θs3ι

))]
+ χys

[(
15

8
− 3c2θ

8
+
(9

8
− 5c2θ

8

)
c2ι

)
sι + ν

(
− 15

16
+

3c2θ

16
+
(
− 9

16

+
5c2θ

16

)
c2ι

)
sι

]
sin(α) + χys

(
− 2cθcιsθs

2
ι + νcθcιsθs

2
ι

)
sin(2α)

+ χys

(
ν
(
− 3

8
− c2θ

8

)
s3
ι +

(3

4
+
c2θ

4

)
s3
ι

)
sin(3α) + χys

[
c ι

2

(
5

2
− 11c2θ

6

+
(15

2
− 25c2θ

6

)
cι

)
s3
ι
2

+ νc ι
2

(
1

4
− 31c2θ

12
+
(3

4
− 5c2θ

12

)
cι

)
s3
ι
2

]
sin(α− 2Ψ)

+ χys

((
− 7s2θ

3
− 10

3
cιs2θ

)
s4
ι
2

+ ν
(
− 5s2θ

6
− 1

3
cιs2θ

)
s4
ι
2

)
sin(2α− 2Ψ)

+ χys

(
ν
(1

2
+
c2θ

6

)
c ι

2
s5
ι
2

+
(

5 +
5c2θ

3

)
c ι

2
s5
ι
2

)
sin(3α− 2Ψ)

+ χys

(
− 1

3
cθsθs

2
ι −

11

6
νcθsθs

2
ι

)
sin(2Ψ) + χys

[
νc3

ι
2

(
1

4
− 31c2θ

12
+
(
− 3

4

+
5c2θ

12

)
cι

)
s ι

2
+ c3

ι
2

(
5

2
− 11c2θ

6
+
(
− 15

2
+

25c2θ

6

)
cι

)
s ι

2

]
sin(α + 2Ψ)

+ χys

(
c4
ι
2

(7s2θ

3
− 10

3
cιs2θ

)
+ νc4

ι
2

(5s2θ

6
− 1

3
cιs2θ

))
sin(2α + 2Ψ)

+ χys

(
ν
(1

2
+
c2θ

6

)
c5
ι
2
s ι

2
+
(

5 +
5c2θ

3

)
c5
ι
2
s ι

2

)
sin(3α + 2Ψ)

+ δ

[
2χxacθc

3
ι sθ + cos(2α + 2Ψ)

[
χzac

4
ι
2

(
− 3− c2θ +

(
5 +

5c2θ

3

)
cι

)
+ χxac

4
ι
2

(
7s2θ

3
− 10

3
cιs2θ

)]
+ χxa

(
5 +

5c2θ

3

)
c5
ι
2
s ι

2
cos(3α + 2Ψ)

+ χxa

(
5 +

5c2θ

3

)
c ι

2
s5
ι
2

cos(3α− 2Ψ) + cos(α + 2Ψ)

[
χxac

3
ι
2

(
3

2
− 13c2θ

6

+
(
− 5

2
+

35c2θ

6

)
cι

)
s ι

2
+ χzac

3
ι
2

(
− 2s2θ +

20

3
cιs2θ

)
s ι

2

]
+ cos(α− 2Ψ)

×
[
χxac ι2

(
3

2
− 13c2θ

6
+
(5

2
− 35c2θ

6

)
cι

)
s3
ι
2

+ χzac ι2

(
− 2s2θ −

20

3
cιs2θ

)
s3
ι
2

]
+ cos(2α− 2Ψ)

[
χza

(
3 + c2θ +

(
5 +

5c2θ

3

)
cι

)
s4
ι
2

+ χxa

(
− 7s2θ

3

− 10

3
cιs2θ

)
s4
ι
2

]
− 3χzacιs

2
θs

2
ι + χxa

(3

4
+
c2θ

4

)
cos(3α)s3

ι + cos(2Ψ)
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×
(10

3
χxacθcιsθs

2
ι + 5χzacιs

2
θs

2
ι

)
+ cos(2α)

(
χza

(3

2
+
c2θ

2

)
cιs

2
ι − χxacιs2θs

2
ι

)
+ cos(α)

(
χxa

(
− 11

16
c2θsι −

3s3
ι

4
− 7

16
c2θs3ι

)
+ χza

(1

2
s2θsι −

1

2
s2θs3ι

))
+ χya

(
15

8
− 3c2θ

8
+
(9

8
− 5c2θ

8

)
c2ι

)
sι sin(α)− 2χyacθcιsθs

2
ι sin(2α)

+ χya

(3

4
+
c2θ

4

)
s3
ι sin(3α) + χyac ι2

(
5

2
− 11c2θ

6
+
(15

2
− 25c2θ

6

)
cι

)
s3
ι
2

× sin(α− 2Ψ) + χya

(
− 7s2θ

3
− 10

3
cιs2θ

)
s4
ι
2

sin(2α− 2Ψ)

+ χya

(
5 +

5c2θ

3

)
c ι

2
s5
ι
2

sin(3α− 2Ψ)− 1

3
χyacθsθs

2
ι sin(2Ψ)

+ χyac
3
ι
2

(
5

2
− 11c2θ

6
+
(
− 15

2
+

25c2θ

6

)
cι

)
s ι

2
sin(α + 2Ψ)

+ χyac
4
ι
2

(7s2θ

3
− 10

3
cιs2θ

)
sin(2α + 2Ψ)

+ χya

(
5 +

5c2θ

3

)
c5
ι
2
s ι

2
sin(3α + 2Ψ)

]
, (A.2f)

ĥ
(0)
× = 4c ι

2
sθs

3
ι
2

sin(α− 2Ψ)− 2cθs
4
ι
2

sin(2α− 2Ψ)

− 4c3
ι
2
sθs ι

2
sin(α + 2Ψ)− 2cθc

4
ι
2

sin(2α + 2Ψ) , (A.3a)

ĥ
(1/2)
× = δ

[
− 45

8
c2
ι
2
s2θs

4
ι
2

sin(α− 3Ψ) +
9

2
c2θc ι

2
s5
ι
2

sin(2α− 3Ψ)

+
9

8
s2θs

6
ι
2

sin(3α− 3Ψ) +
(
− 1

64
cθsθ +

43

128
cθcιsθ −

23

128
c2ιs2θ

+
5

256
c3ιs2θ

)
sin(α−Ψ) +

((
− 1− c2θ

4

)
c ι

2
+

1

4
c2θc ι

2
cι

)
× s3

ι
2

sin(2α−Ψ) +
1

8
c2
ι
2
s2θs

4
ι
2

sin(3α−Ψ) +
1

2
s2
θs2ι sin(Ψ)

+
(cθsθ

64
+

43

128
cθcιsθ +

23

128
c2ιs2θ +

5

256
c3ιs2θ
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sin(α + Ψ)

+
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4

)
c3
ι
2
− 1

4
c2θc

3
ι
2
cι

)
s ι

2
sin(2α + Ψ)
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− 1

8
c4
ι
2
s2θs

2
ι
2

sin(3α + Ψ) +
45

8
c4
ι
2
s2θs

2
ι
2

sin(α + 3Ψ)

+
9

2
c2θc

5
ι
2
s ι

2
sin(2α + 3Ψ)− 9

8
c6
ι
2
s2θ sin(3α + 3Ψ)

]
, (A.3b)

ĥ
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× =

(
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ι
2

(
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)
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ι
2

+ c3
ι
2

(
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3
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+
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3
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3
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2
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2
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2
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2
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2
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8
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2
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[
c ι

2
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)
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)
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2
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)
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2
ι
2
s2
θs

6
ι
2

+ 2νcθc
2
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2
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4cθ + 28c3θ

)
c6
ι
2
s2
ι
2

)
sin(2α + 4Ψ) +

(
ν
(
− 8− 24c2θ

)
c7
ι
2
sθs ι

2

+
(8

3
+ 8c2θ

)
c7
ι
2
sθs ι

2

)
sin(3α + 4Ψ)

+
(
− 8

3
cθc

8
ι
2
s2
θ + 8νcθc

8
ι
2
s2
θ

)
sin(4α + 4Ψ) , (A.3c)

ĥ
(3/2)
× = 8πc ι

2
sθs

3
ι
2

sin(α− 2Ψ)− 4πcθs
4
ι
2

sin(2α− 2Ψ)

− 8πc3
ι
2
sθs ι

2
sin(α + 2Ψ)− 4πcθc

4
ι
2

sin(2α + 2Ψ)

+ δ

[(
c4
ι
2

(
− 4375s2θ

384
− 4375s4θ

256

)
s6
ι
2

+ νc4
ι
2

(4375s2θ

192

+
4375s4θ

128

)
s6
ι
2

)
sin(α− 5Ψ) +

(
ν
(
− 625c2θ

48
− 625c4θ

16

)
c3
ι
2
s7
ι
2

+
(625c2θ

96
+

625c4θ

32

)
c3
ι
2
s7
ι
2

)
sin(2α− 5Ψ) +

(
νc2

ι
2

(625s2θ

128

− 5625s4θ

256

)
s8
ι
2

+ c2
ι
2

(
− 625s2θ

256
+

5625s4θ

512

)
s8
ι
2

)
sin(3α− 5Ψ)

+

(
ν
(
− 625

48
− 625c2θ

24

)
c ι

2
s2
θs

9
ι
2

+
(625

96
+

625c2θ

48

)
c ι

2
s2
θs

9
ι
2

)
× sin(4α− 5Ψ) +

(625

192
cθs

3
θs

10
ι
2
− 625

96
νcθs

3
θs

10
ι
2

)
sin(5α− 5Ψ)

+

[
νc2

ι
2

(
− 4923s2θ

512
+ cι

(459s2θ

128
− 2079s4θ

256

)
− 945s4θ

1024

+ c2ι

(567s2θ

512
+

1701s4θ

1024

))
s4
ι
2

+ c2
ι
2

(
22203s2θ

1024
+ c2ι

(
− 567s2θ

1024

− 1701s4θ

2048

)
+

945s4θ

2048
+ cι

(
− 459s2θ

256
+

2079s4θ

512

))
s4
ι
2

]
sin(α− 3Ψ)

+

[
νc ι

2

(
27

16
+

1233c2θ

128
+

27c4θ

128
+
(27

8
+

27c2θ

16
+

27c4θ

16

)
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+
(
− 81c2θ

128
− 243c4θ

128

)
c2ι

)
s5
ι
2

+ c ι
2

(
− 27

32
− 4689c2θ

256
− 27c4θ

256

+
(
− 27

16
− 27c2θ

32
− 27c4θ

32

)
cι +

(81c2θ

256
+

243c4θ

256

)
c2ι

)
s5
ι
2

]
sin(2α− 3Ψ)

+

[
ν

((4761

1024
− 1377c2θ

1024

)
s2θ +

(837

256
− 621c2θ

256

)
cιs2θ +

( 243

1024

− 2187c2θ

1024

)
c2ιs2θ

)
s6
ι
2

+

((
− 11673

2048
+

1377c2θ

2048

)
s2θ +

(
− 837

512

+
621c2θ

512

)
cιs2θ +

(
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2048
+

2187c2θ

2048

)
c2ιs2θ

)
s6
ι
2

]
sin(3α− 3Ψ)

+

[
νc ι

2

((81

32
− 27c2θ

16

)
s2
θ +

(
− 81

32
− 81c2θ

16

)
cιs

2
θ

)
s7
ι
2

+ c ι
2

((
− 81

64
+

27c2θ

32

)
s2
θ +

(81

64
+

81c2θ

32

)
cιs

2
θ

)
s7
ι
2

]
sin(4α− 3Ψ)

+
(81

64
cθc

2
ι
2
s3
θs

8
ι
2
− 81

32
νcθc

2
ι
2
s3
θs

8
ι
2

)
sin(5α− 3Ψ) +

[
683cθsθ
16384

+
( 557

4096
− 11c2θ

12288

)
c2ιs2θ +

(
− 1719

32768
+

91c2θ

32768

)
c3ιs2θ −

cθs3θ

16384

+ cι

(
− 10511cθsθ

49152
+

173cθs3θ

49152

)
+ ν

(
85cθsθ
8192

+
(
− 679

6144
+

11c2θ
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)
c2ιs2θ

+
(
− 201

16384
− 91c2θ

16384

)
c3ιs2θ +

cθs3θ

8192
+ cι

(6031cθsθ
24576

− 173cθs3θ

24576

)
+ c5ι

(
− 7s2θ

49152
− 7s4θ

32768

)
+ c4ι

(
− 37s2θ

24576
+

91s4θ

16384

))
+ c4ι

( 37s2θ

49152
− 91s4θ

32768

)
+ c5ι

( 7s2θ

98304
+

7s4θ

65536

)]
sin(α−Ψ)

+

[
ν

(
19

512
c4θc 3ι

2
+

9

512
c4θc 5ι

2
+ c ι

2

(
− 11

16
− 35c2θ

128
+

79c4θ

1536

+

(
1

32
− 37c2θ

256

)
cι +

(
1

32
+

3c2θ

128

)
c2ι −

1

768
c2θc3ι

)
− 1

512
c4θc 7ι

2

)
s3
ι
2

+

(
−

19c4θc 3ι
2

1024
−

9c4θc 5ι
2

1024
+ c ι

2

(
19

32
− 23c2θ

768
− 79c4θ

3072
+

(
− 1

64
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)
cι +

(
− 1
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− 3c2θ
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)
c2ι +
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1536

)
+
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2
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)
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ι
2

]
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+

[
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(
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(
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256
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)
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(
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+
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)
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− 5s4θ
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)
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ι
2
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ι
2

(
− 29s2θ

512
+ c2ι

( s2θ
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)
+ cι
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+
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)
+
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2
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[
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+
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24

)
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(
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)
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2
θ

)
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2

+ c3
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2
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− c2θ
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)
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+
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2
θ

)
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]
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( 1
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4
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2
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θs

6
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+
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2
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+
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2
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3
ι
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[
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+
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(
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+
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(
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)
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+
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(
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)
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+ cι
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)
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)
+ c5ι

(
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+ c5ι
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+
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)
+ c4ι

(
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+
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[
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ι
2

(
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+
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+
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(
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3
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−
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(
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ι
2

(
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+
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+
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+
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1
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2
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[
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ι
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+
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+
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(
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+
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2
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96
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)
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[
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ι
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(
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)
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(
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[
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(
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+
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+
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+
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2
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[
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(
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(
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)
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(
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(
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[
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ι
2
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− 81
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+
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)
s2
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(
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)
cιs

2
θ

)
s ι

2
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2
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)
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+
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)
cιs

2
θ

)
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2
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8
ι
2
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8
ι
2
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2
ι
2

)
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(
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ι
2

(
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− 4375s4θ
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)
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ι
2
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2
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)
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(
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2
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+
(625c2θ
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+
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)
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ι
2
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ι
2
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2
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)
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2

(
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(
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+
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96
+
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)
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ι
2
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θs ι2

)
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+
(
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cθc
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ι
2
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ι
2
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]
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ĥ
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1

2
+
cι
2

)
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ι
2

+

(
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θ

2
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2
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)
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(
− 1

2
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1

2
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(
χxacθsθsι − χzas2

θsι

)
sin(Ψ)
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(
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θ
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1
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cθsθ −

1

2
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θ

2
− 1

2
c2
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where sX and cX are shorthand for sinX and cosX, respectively, with X = θ, ι, . . . .
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Appendix B

Gravitational-wave modes for precessing binaries on nearly

circular orbits through 1.5PN order: generic inclination

angles

In Sec. 4.4 we wrote the gravitational-wave modes expanded in the inclination

angle ι. Here we give the full expression of the h22, h33 and h21 modes. They read
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Appendix C

Center-of-mass energy and gravitational-wave energy flux

For nearly circular orbits, the center-of-mass energy is known through 2PN or-

der, when spins are present and 3PN order when spins are neglected. The coefficients

entering Eq. (4.77) are [83, 84, 235, 242, 243, 244, 245, 56, 85]
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The GW energy flux is known through 2.5PN order for spin effects [86, 85, 87, 88],

and 3.5PN order when spin effects are absent [197]. The coefficients in Eq. (4.78)

read
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Appendix D

Frequency-domain amplitude corrections

We give here the complex coefficients C(n)
k appearing in the frequency domain

non-precessing waveform (4.72). The lower index in C(n)
k denotes the harmonic of the

orbital phase, and the upper index denotes the (half) PN order. Since the different

harmonics end at different GW frequencies, the kth harmonic ends at k times the

orbital frequency cutoff. Thus, we introduce step functions Θ(k Fcut − f) to ensure

each harmonic ends at its proper frequency. We derive
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1√
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Gravitational radiation from inspiralling compact binaries completed at the
third post-Newtonian order. Phys. Rev. Lett., 93:091101, 2004.

[26] Luc Blanchet, Thibault Damour, Gilles Esposito-Farèse, and Bala R. Iyer.
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B. Brügmann. Inspiral, merger, and ringdown of unequal mass black hole
binaries: A multipolar analysis. Phys. Rev. D, 76(6):064034–+, September
2007.

[227] John G. Baker, James R. van Meter, Sean T. McWilliams, Joan Centrella, and
Bernard J. Kelly. Consistency of post-newtonian waveforms with numerical
relativity. Phys. Rev. Lett., 99:181101, 2007.

[228] Alessandra Buonanno, Yi Pan, John G. Baker, Joan Centrella, Bernard J.
Kelly, Sean T. McWilliams, and James R. van Meter. Approaching faithful
templates for non-spinning binary black holes using the effective-one-body
approach. Phys. Rev. D, 76:104049, 2007.

[229] Mark Hannam, Sascha Husa, Ulrich Sperhake, Bernd Brugmann, and Jose A.
Gonzalez. Where post-newtonian and numerical-relativity waveforms meet.
Phys. Rev. D, 77:044020, 2008.

[230] Michael Boyle et al. High-accuracy comparison of numerical relativity simu-
lations with post-newtonian expansions. Phys. Rev. D, 76:124038, 2007.
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