Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stochastic Reasoning with Action Probabilistic Logic Programs

    Thumbnail
    View/Open
    Simari_umd_0117E_11685.pdf (3.079Mb)
    No. of downloads: 1177

    Date
    2010
    Author
    Simari, Gerardo Ignacio
    Advisor
    Subrahmanian, Venkatramanan S
    Metadata
    Show full item record
    Abstract
    In the real world, there is a constant need to reason about the behavior of various entities. A soccer goalie could benefit from information available about past penalty kicks by the same player facing him now. National security experts could benefit from the ability to reason about behaviors of terror groups. By applying behavioral models, an organization may get a better understanding about how best to target their efforts and achieve their goals. In this thesis, we propose action probabilistic logic (or ap-) programs, a formalism designed for reasoning about the probability of events whose inter-dependencies are unknown. We investigate how to use ap-programs to reason in the kinds of scenarios described above. Our approach is based on probabilistic logic programming, a well known formalism for reasoning under uncertainty, which has been shown to be highly flexible since it allows imprecise probabilities to be specified in the form of intervals that convey the inherent uncertainty in the knowledge. Furthermore, no independence assumptions are made, in contrast to many of the probabilistic reasoning formalisms that have been proposed. Up to now, all work in probabilistic logic programming has focused on the problem of entailment, i.e., verifying if a given formula follows from the available knowledge. In this thesis, we argue that other problems also need to be solved for this kind of reasoning. The three main problems we address are: Computing most probable worlds: what is the most likely set of actions given the current state of affairs?; answering abductive queries: how can we effect changes in the environment in order to evoke certain desired actions?; and Reasoning about promises: given the importance of promises and how they are fulfilled, how can we incorporate quantitative knowledge about promise fulfillment in ap-programs? We address different variants of these problems, propose exact and heuristic algorithms to scalably solve them, present empirical evaluations of their performance, and discuss their application in real world scenarios.
    URI
    http://hdl.handle.net/1903/11129
    Collections
    • Computer Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility