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In the real world, there is a constant need to reason about the behavior of

various entities. A soccer goalie could benefit from information available about past

penalty kicks by the same player facing him now. National security experts could

benefit from the ability to reason about behaviors of terror groups. By applying

behavioral models, an organization may get a better understanding about how best

to target their efforts and achieve their goals.

In this thesis, we propose action probabilistic logic (or ap-) programs, a formal-

ism designed for reasoning about the probability of events whose inter-dependencies

are unknown. We investigate how to use ap-programs to reason in the kinds of sce-

narios described above. Our approach is based on probabilistic logic programming,

a well known formalism for reasoning under uncertainty, which has been shown to

be highly flexible since it allows imprecise probabilities to be specified in the form

of intervals that convey the inherent uncertainty in the knowledge. Furthermore,

no independence assumptions are made, in contrast to many of the probabilistic

reasoning formalisms that have been proposed. Up to now, all work in probabilis-

tic logic programming has focused on the problem of entailment, i.e., verifying if a



given formula follows from the available knowledge. In this thesis, we argue that

other problems also need to be solved for this kind of reasoning. The three main

problems we address are: Computing most probable worlds: what is the most likely

set of actions given the current state of affairs?; answering abductive queries: how

can we effect changes in the environment in order to evoke certain desired actions?;

and reasoning about promises: given the importance of promises and how they are

fulfilled, how can we incorporate quantitative knowledge about promise fulfillment

in ap-programs?

We address different variants of these problems, propose exact and heuristic al-

gorithms to scalably solve them, present empirical evaluations of their performance,

and discuss their application in real world scenarios.
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Chapter 1

Introduction

In the real world, there is a constant need to reason about other entities of

diverse origin. For example, a goalie in a soccer match wishing to stop a penalty

kick could greatly benefit from information available about past kicks taken by the

same player or team facing him now. In a more complex setting, a World Bank

loan aimed at reducing the cultivation of opium along the Pakistan Afghanistan

border would greatly benefit from a socio-economic-political-religious model of the

behaviors of the tribes in opium producing regions. By building such models and

applying them, the World Bank may get a better understanding about how best to

target their loan dollars in order to better achieve their goals. Likewise, a health

care organization anxious about the spread of diarrhea (or any other disease) in

Kenya might wish to understand socio-economic-cultural-environmental aspects of

Kenyan society that cause the diseases to spread extensively in some parts of the

country and not in others. In almost all cases, the spread of diseases is not due to

biological factors alone, but due to a rash of social behaviors, environmental factors,

and economic and educational aspects of the disease-stricken community.
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In this thesis, we propose action probabilistic logic programs (henceforth many

times referred to as ap-programs), a formalism designed for reasoning about the

probability of certain kinds of events. The main goal is to investigate how we can

make use of ap-programs to reason in the kind of scenarios described above. We

will begin by giving a brief overview of ap-programs in the following section.

1.1 Action Probabilistic Logic Programs

Probabilistic logic programming [NS92, NS91, JHdAa90, DS97, Luk98, LKI99]

is a well known formalism for reasoning in the presence of uncertainty that is based

on probabilistic extensions to classical logic [Nil86, Hai84, FHM90, Hal90]. It has

been shown to be highly flexible, since it allows imprecise probabilities to be specified

in the form of intervals that convey the uncertainty inherent in the knowledge.

Furthermore, it is not necessary to make any assumptions about the knowledge

regarding dependencies among events (or lack thereof), so the (not uncommon)

situation of total ignorance can be modeled adequately; this is in contrast to other

formalisms (such as Bayesian Networks) which require conditional independence

assumptions to be made when constructing the model.

Up to now, all work in probabilistic logic and probabilistic logic programming

has focused on the problem of entailment [Nil86], i.e., given a set of formulas deciding

whether or not a certain logical formula (not in the original set) can be entailed from

the established knowledge base with given probability bounds. The naive approach

to solving this problem can be shown to be exponential in the number of ground

atoms in the domain, since a linear program specifying the constraints placed by

the formulas on every possible world must be built; this has motivated much work

2



A : [L,U ]← C1 ∧ . . . ∧ Cn.

“If the environment in which entity E operates currently satisfies certain

conditions C1 . . .Cn, then the probability that E will take some boolean

combination of actions A is between L and U”.

Figure 1.1: Formal (above) and informal (below) representation of an action prob-
abilistic rule.

to be focused on making these inferences tractable [JHdAa90, FH94]. Even though

entailment plays a very important role in reasoning under uncertainty, we argue that

the problem of finding the most probable worlds (or most probable models), as well

as abductive query answering, are also major parts of this process. In this work, we

present action probabilistic logic programs as a slight variation of the probabilistic

logic programs of [NS92, NS91], in which rules are of the form shown in Figure 1.1

As we will discuss in depth in Chapter 2, these rules have two parts: the “heads”,

which refer to actions taken by the entity being modeled (also referred to as the

adversary), and rule “bodies”, which refer to conditions on the environment 1.

In the following, we will give a brief overview of some of the applications that

have motivated this research, and of some of the work that has already been carried

out towards reaching those goals.

1.2 Applications

We will now present an overview of some of the real world domains in which

reasoning agents (usually people) are interested in associating probabilities to the

actions that can be taken by others, which we will refer to as adversaries, or oppo-

nents. These domains are promises made, sports, and behavior of groups of interest.

1Rule bodies can also contain probabilistic conditions on actions, but we will show in Section 2.3
that we can assume without loss of generality that bodies only refer to the environment.
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1.2.1 Promises

Suppose an agent has access to historic records of how others have fulfilled their

promises. Using this information, it can derive rules of the form shown in Figure 1.1

and use them during negotiations to decide if it is dealing with a trustworthy party

or not, or to perform more complex reasoning such as expected payoff of a given deal.

For instance, suppose a reasoning agent wishes to buy an airline ticket and looks up

information on past performance of different airlines (publicly available information

of this kind can be found at [BTS08]). Upon analyzing this information, it might

conclude the following:

If airline A made a promise to customer C to fly from a certain airport X

in the Northeast to airport Y in the Midwest, departing at time DepTime

that is during the holiday season (assuming the time includes the date

as well) and arriving at time ArrTime, then it is likely that the promise

will be fulfilled with probability between 0.85 and 0.92.

To this end, we will show how the kinds of ap-rules shown in Figure 1.1 can be

extended with a framework designed especially for reasoning about the degree of

fulfillment of promises. This will be the topic of Chapter 8.

1.2.2 Sports

The increasing availability of data and near real-time data analysis capabilities

have made many sports very attractive for this type of reasoning. In particular, in

recent years there has been much work in analyzing certain “well controlled” aspects

of some sports. One of the most studied has been the penalty kick 2 in soccer [CLG02,

2A penalty kick is a type of free kick taken 12 yards from the goal, in which only the kicker and
the goalkeeper from the defending team participate.
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SK09, Rep10, DFE09, BEAR+05, Mos04, FMH99, BFW08, BEA09, Col07]. A well

executed penalty kick by a professional player takes only 0.4 seconds to reach the

goal, giving the goalkeeper very little time to execute his defensive action. It is

widely assumed that by the time the kicker connects with the ball, the goalkeeper

must already have a decision made regarding what to do. Thus, there are two basic

strategies that the goalkeeper can adopt: trying to predict the action based on past

data alone, thus making up his mind beforehand, or also taking into account the

kicker’s actions up to the point in which he connects with the ball. The latter

strategy, though potentially more fruitful, has the added difficulty of having to read

the player’s actions and making a decision in an instant. The importance of a single

goal in a soccer match, as well as the fact that matches can be decided by penalty

kick shootouts in certain tournaments, have made the effort of trying to predict

both the actions of the kicker and the goalkeeper a worthwhile one in the eyes of

many teams.

The work carried out in this area is diverse. A study carried out by Lucozade

and Prozone (see [Rep10] for a report on this study) yielded a fairly complex formula

taking into account characteristics of the player himself as well as his technique. The

formula is said to be useful in deriving the probability of a successful execution; of

course, it can also be used to figure out how to raise such probability by choosing the

right players and/or modifying their technique. There has also been a great deal of

work from the game-theoretic point of view of penalty kicks [CLG02, Col07, BFW08,

SK09] and even from the point of view of norm theory [BEAR+05]. These works

find that success probabilities associated with “mixed strategies” (a game-theoretic

term meaning that actions are taken according to a probability distribution) used

by players are statistically equal. This means that, even though it is unlikely that

5



players are explicitly applying game theory when deciding how to act, it is clear that

they have some sort of “pre-compiled” knowledge equivalent to the game-theoretic

equilibria. Another finding in this sort of analysis is that players who are most

successful truly play randomly, and don’t use their prior executions as part of the

decision of how to act next. Finally, there are also studies on trying to anticipate

the kicker’s actions by observing his behavior up to the point in which the foot

connects with the ball [DFE09]. This work yielded interesting results, such as the

fact that one of the most reliable indicators is the direction in which the planted

foot is pointing. Furthermore, it discovered that certain “distributed movements”

(for instance, combinations of leg and arm movements) are also good sources of

information, giving players and coaches something completely new to focus on.

Clearly, much of the insight yielded by this kind of analyses can be represented

in the form of ap-rules. For instance, the following facts found by the work mentioned

above could be written using the notation shown in Figure 1.1:

• Kickers have a “natural side” of the goal to aim at: left for right-footed, right

for left-footed. The success rate of shots taken to the natural side when the

goalkeeper dives the other way is 95%, while 92% for the unnatural side (i.e.,

missing the goal is somewhat harder when kicking to the natural side).

• When the goalkeeper and the kicker both go to the natural side, the success

rate for the kicker is about 70%, and 58% when the opposite side is chosen.

• Given the information above, the goalkeeper will dive to the natural side of

the kicker (his own right for right-footed, left for left-footed) with a probability

between 60% and 65%. Likewise, the kicker will kick to his natural side with

a similar probability.

6



• Players’ characteristics play a major role. For instance, right-footed players

have a success rate of about 71%, while left-footed ones have around 52%. Sim-

ilarly, strikers and defenders have a probability of 75% and 72%, respectively,

while midfielders have only 61%.

• Much more focused rules are also possible, such as: right-footed strikers or

defenders of age 21 who have played less than 45 minutes in the current match

have a probability of scoring of at least 90%. Another example is that players

who run up from outside of the box who hit the ball with the inside of the foot

and aim at the top-left corner have a probability of scoring of at least 80%.

• Rules designed around specific players are also quite common: “Riquelme

kicks left and high with probability around 60%”, “Crespo, when running long

kicks left (probability 70%), and right when running short (with probability

at least 80%)”, “Ayala, when waiting long and running long, kicks right with

probability at most 75%”, etc. 3

Clearly, this same kind of analysis can be applied to other aspects of soccer, as well

as other sports. For instance, [Mos04] focuses on non-penalty kick plays in soccer,

analyzing the Nash equilibrium of a model that simplifies how players choose to shoot

at the opponent’s goal. In [WW01], the authors analyze actions taken during tennis

serves from a game-theoretic standpoint, in a manner similar to the ones discussed

above for penalty kicks. Also from a game-theoretic standpoint, [ML10] analyzes the

“pass vs. run” play calls in the U.S. National Football League, comparing it to the

classical matching pennies game [Osb03] (since the offense chooses pass or run, and

the defense chooses actions geared towards stopping either passes or runs). Finally,

3It is said that precisely this sort of rules were used in a much discussed penalty shootout in
the 2006 FIFA World Cup Quarterfinals.
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another work [KL09] takes on both the play selection problem in NFL football and

the pitch selection problem by pitchers in U.S. Major League Baseball. The authors

take into account large datasets from these leagues, and conclude that teams many

times do not play according to minimax optimality, and that they could therefore

be studied in order to derive ways in which to exploit their strategies.

1.2.3 Groups of Interest

Finally, we will discuss how action probabilistic logic programs can be applied

in modeling groups of interest (such as terror groups, or groups at risk of engaging in

this sort of activities). In [SMSS07b], we describe how the action probabilistic logic

programming framework can be applied to model the behaviors of various stake-

holders in the Afghan drug economy, deriving probabilistic rules much in the same

way as an expert in any domain could do. In that work, we developed a simple

conceptual map involving several actors in this domain and the relationships among

them that encourage the cultivation of poppies, production and trafficking of drugs,

and corruption in the region, which then allowed us to build preliminary models

of what these actors could do. Though these are interesting applications, a more

in-depth discussion is outside the scope of this thesis.

We have developed approximately 40 ap-programs that are carefully con-

structed models of 40 different groups from around the world. The groups mod-

eled include tribes (e.g., Shinwari, Waziri, Mohmand tribes in along the Pakistan-

Afghanistan border), several terrorist groups (e.g., Hezbollah, Fatah Revolutionary

Council – Abu Nidal Organization, the Kurdish group PKK, and others), as well as

political parties (e.g., Jamaat-i-Ulema Islami, Pakistan People’s Party). For each

of these groups, we identified a small set of actions that the group has taken in the

8



past. For each such action, we tried to find conditions that are good predictors of

when those groups would take those actions, and when they would not. These led

to rules in the ap-program syntax.

The rules themselves have been developed in three ways: by manually having

students (and in the case of about 20 groups, terrorism experts) code them, and by

automatically extracting them from certain data sets. We started with the manual

coding strategy and later transitioned to the use of an automatic extractor that

works on a specialized data set called the “Minorities at Risk Organizational Be-

havior” data set [WAJ+07]. This data set has identified around 150 parameters to

monitor for about 300 groups around the world that are either involved in terrorism

or are at risk of becoming full-fledged terrorist organizations. The 150 attributes

describe aspects of these groups that can change over time, such as whether or not

the group engaged in violent attacks, if financial or military support was received

from foreign governments, and the type of leadership the group has. The data was

easy to divide into outcome conditions, or actions that could be taken by the group

(i.e., bombings, kidnappings, armed attacks, etc.), and environmental conditions

(i.e., the type of leadership, the kind and amount of foreign support, whether the

group has a military wing, etc.). Values for these 150 parameters are available for up

to 20 years per group, though it is less for some groups (e.g., groups that have been

around for a shorter duration). For each group, MAROB provides a table whose

columns correspond to the 150 parameters and the rows correspond to the years.

9



1.3 Automated Extraction of Rules

Action probabilistic logic programs can be either designed by experts or au-

tomatically extracted from data. For the applications discussed above, automatic

extraction is certainly possible as real world data has become more and more avail-

able. For the “groups of interest” application, automated extraction has been ap-

plied thus far to more than 30 groups (such as Hezbollah, FRC-ANO, PKK, Baath

Party, Kurdistan Democratic Party of Iran). The automatic ap-program extraction

(APEX) algorithm requires that we assume that the MAROB columns can be divided

into action parameters (those attributes that will form the heads of the ap-rules)

and environmental parameters (those attributes that will appear in the body of the

rules). The APEX algorithm for extracting ap-rules consists of three main steps:

1. select an action condition (an action parameter with an instantiated value) to

be the head of the rule,

2. fix one environmental condition as part of the body of the rule,

3. add varying combinations of the remaining environmental conditions to the

body to determine if significant correlations exist between the body conditions

and the outcome condition.

We then use the standard measurements of support and confidence from the litera-

ture in order to evaluate potential rule candidates.

The APEX algorithm calculates the difference between the confidence value

produced by an environmental condition and by its negation. If this difference is

above a given threshold, then an ap-rule is extracted. To obtain the probability range

for the extracted rule, we use the confidence value initially obtained, plus/minus the

standard deviation σ of the values involved in its calculation.

10



Algorithm 1: APEX(DB, AC, EC, k, t)

1. set Rules = ∅;
2. for each action ai ∈ AC {
3. set head = ai;
4. for each condition ej ∈ EC {
5. set fixed condition = ej;
6. for each combination, varied condition, of

1, 2, ..., and k of remaining conds. v1, v2, ..., vk ∈ EC
7. set body = fixed condition ∧ varied condition;
8. compute PosConf = Chead ,body;

9. set body = fixed condition ∧ ¬varied condition;
10. compute NegConf = Chead ,body;

11. set prob = |PosConf − NegConf |;
12. if prob >= t
13. add (head : [prob − σ, prob + σ]← body) to Rules
14. }
15. }
16. }
17. Return Rules;

Figure 1.2: The APEX Algorithm.

The complete APEX Algorithm for a database DB with a set of action con-

ditions AC, environmental conditions EC, and confidence difference threshold t is

summarized in Figure 1.2. Note that this algorithm is not a novel one, and simply

performs calculations to capture interesting variations in the data in order to build

rules.

Using this algorithm, we have extracted thousands of ap-rules for Hezbollah.

Some examples of the ap-rules extracted from the data for Hezbollah are given in

Figure 1.3.

1.4 Towards a “Big Picture”

The CARA Architecture. In [SAM+07], we describe how our work fits in the

“big picture” of modeling agent behavior. This general view is captured in the

11



1. (ARMATTACK = 1) : [0.01, 0.79]←
(ORGSUCIMPL = 1) ∧ (STATEVIOLENCE = 1) ∧
(AUTHORG = 0) ∧ (ORGST4 = 1)

Armed attacks are carried out in years in which Lebanon has not come
to agreement with Hezbollah, the state is not using lethal violence against
Hezbollah, Lebanon is not authoritarian, and Hezbollah solicits external sup-
port only as a minor/infrequent strategy.

2. (DSECGOV = 1) : [0.16, 0.84]←
(ORGLOC = 1) ∧ (DIASUP = 0) ∧
(INTERORGCON = 1) ∧ (MILITIAFORM = 2)

Domestic government/state lives and security are targets of terrorism in years
in which Hezbollah is in Lebanon, Hezbollah has not received support from
the Lebanese diaspora, there is inter-organizational conflict, and Hezbollah
has a standing military wing.

3. (KIDNAP = 1) : [0.34, 1.0]←
(ORGLOC = 1) ∧ (ORGDOMGOALS = 2) ∧ (ORGST4 = 1)

Hezbollah carries out kidnappings in years in which Hezbollah is located
in Lebanon, the major goal of Hezbollah is focused on creating or increas-
ing remedial policies, and Hezbollah solicits external support only as a mi-
nor/infrequent strategy.

4. (TLETHCIV = 1) : [0.13, 1.0]← (ORGLOC = 1) ∧ (ORGST3 = 1)
Transnational targets of terrorism are chosen based on ethnicity/ascriptive fea-
ture(s) of individuals in years in which Hezbollah is in Lebanon and Hezbollah
uses electoral politics only as a minor/infrequent strategy.

5. (TTSECGOV = 1) : [0, 0.68]←
(ORGCULTGR = 0) ∧ (INTERORGCON = 1) ∧ (DIASUP = 0)

Transnational government/state lives and security are targets of terrorism
in years in which Hezbollah expresses no cultural grievances, there is inter-
organizational conflict, and Hezbollah has not received support from the
Lebanese diaspora

Figure 1.3: A sample of the rules extracted by APEX from the Hezbollah dataset.
The atoms in the rules are represented as a variable and its value. The English
translation of each rule is also provided.

CARA (Cultural Adversarial Modeling Architecture) for gathering data about dif-

ferent cultural groups, learning the intensity of opinions that those groups have on

various topics, and developing a process that supports building/extracting mod-

els of behavior of those groups and continuously refining those models through
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shared, multi-person, learning experiences. The CARA architecture is supported

via ongoing applications that have been developed, such as tracking tribes along the

Pakistan-Afghanistan border with a view to understanding and eventually reducing

the burgeoning drug trade there, or focusing on politically active minorities at risk

in fragile regions of the world.

The STOP System. Finally, in [SSMS08] we describe the SOMA Terror Organi-

zation Portal (STOP), a facility that national security analysts can use in order to

understand terror threats worldwide. STOP provides a single, Internet or intranet

accessible site within which national security analysts can study certain groups.

Not only does STOP provide tools they might use, it also provides a valuable social

networking capability that allows analysts to often create and expand a network of

experts on a given topic. This tool allows them to leverage this network so that

different points of view can be incorporated into their analytic task before a final

recommendation is made.

To date, STOP allows analysts the ability to examine approximately 36 terror

groups from about ten countries ranging from Morocco all the way to Afghanistan.

Users can see probabilistic rules extracted automatically about these groups (over

14,000 for Hezbollah; over 20,000 for the PKK), browse them, experiment with them,

and mark them as useful or not. They can use these markings to build consensus

(or at least identify different camps) about a given topic, and explore the pros and

cons of alternative views, all without having to move from their desk.
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1.5 Organization of this Thesis

We start off in Chapter 2 by formally presenting the preliminary notions re-

quired in the treatment of action probabilistic logic programs. Since these notions

are the basis of most of the work described in this thesis, this can be considered

to be a basic reference for the rest of the chapters; parts of this chapter first

appeared published in [SSNS06], [KMN+07b], [KMN+07a], [SMSS08], [SMSS10],

[SS10], [SDS10a], and [SDS10b]. Chapter 3 contains further preliminary material

covering the literature that is most relevant to this thesis, and also develops a com-

parison of action probabilistic logic programs with other formalisms for probabilistic

reasoning, as well as an analysis of pros and cons with respect to our own work.

In Chapter 4, we introduce the problem of computing the most probable worlds

(MPW) given an ap-program and the state of the environment. We present and ana-

lyze a naive approach to solving this problem, and show that it is highly intractable

even for a very small input program. This result motivates searching for various

ways in which both exact and approximate answers can be obtained within a rea-

sonable amount of time. We first investigate two techniques for collapsing the set

of variables into a much smaller set by leveraging equivalence classes over the set

of possible worlds that can be obtained from the input program. We prove that

these techniques are correct (sound and complete), and also analyze the computa-

tional cost of the corresponding algorithms, showing that they are in general much

more efficient than the naive approach. However, since these improvements are not

guaranteed in general, we investigate sampling techniques and a heuristic that can

be used to reduce the number of variables of the underlying problems that must

be solved, which also has the added benefit of reducing the number of such prob-

lems. Some basic desirable properties of this technique are shown to hold. Finally,
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we report on experimental results carried out using prototype implementations of

the algorithms described. Parts of the work presented in this chapter were first

published in [SSNS06], [KMN+07b], and [KMN+07a].

In Chapter 5, we introduce a problem related to the MPW problem of Chap-

ter 4, in which we assume that a set of atoms has been provided as part of the

input indicating that these are of interest to the reasoning agent. This information

allows us to define worlds of interest, and the most probable worlds of interest as its

corresponding extension. Algorithms are provided for solving this related problem,

both exactly and approximately, which in comparison to the original problem afford

an exponential speedup due to the extra information provided. To conclude, we

report on an extensive experimental evaluation of these algorithms. Parts of the

work presented in this chapter were first published in [SMSS08] and [SMSS10].

In Chapter 6, we describe our work on a problem that can be considered in

some sense the dual of the most probable world problem, since it focuses on effect-

ing changes in the environment to evoke actions that are desired by the reasoning

agent. We assume that the reasoning agent has the capacity to attempt to make

certain changes in the current state of the environment; given an ap-program, we

are interested in trying to change the environment, subject to some constraints, so

that the probability that the entity being modeled takes some action (or combina-

tion of actions) is maximized. This is called the Basic Abductive Query Answering

Problem (BAQA). We first formally define and study the complexity of BAQA and

several variants of it. We then provide an exact (exponential) algorithm to solve

BAQA, followed by more efficient algorithms for specific subclasses of BAQA. We

also develop appropriate heuristics to solve BAQA efficiently, and report on empir-
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ical evaluations performed over synthetic data. Parts of the work presented in this

chapter were first published in [SS10] and [SDS10b].

In Chapter 7, we tackle an extension of BAQA in which we wish to take into

account how the entity being modeled might react to the changes in the environment

brought about by the reasoning agent’s actions. This is done by extending the work

in Chapter 6 so that state change attempts have associated cost and probability of

success. This is a flexible way to incorporate possible reactions by the adversary;

some state changes may prove to be more costly than others, and there is an inherent

uncertainty in how things might work out when trying to change the current state

of the environment. We first show that an exact solution to this problem is highly

intractable, and then introduce an algorithm based on iterated density estimation of

probability distributions that is shown to work quite well both in terms of scalability

and accuracy. Parts of the work presented in this chapter were first published

in [SDS10a] and [SDS10b].

Finally, Chapter 8 provides an in-depth presentation of a novel framework

which can be used for reasoning about promises made in a multi-agent setting. The

main goal of this chapter is to show one way in which ap-programs can be applied to

specific settings by including information about promises made; it also shows how

reasoning about the actions of others can be done without involving ap-programs

directly. In this chapter, we assume that agents have interacted with one another

and have agreed on a certain set of promises to perform certain actions. The focus

of this framework is then to provide a method by which agents’ actions taken toward

the fulfillment of these promises can be evaluated by the interested parties, so as to

obtain a quantitative measure of how well the promises were fulfilled. We then show

simple methods for how this information can be used to predict future fulfillment
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of promises by using historic records of agents’ behavior regarding fulfillment. This

information can be of great value to agents during the negotiation process (not

modeled here), since measures of trust and reliability are often based on this kind

of data. We show how such predictions can be done first using a simple model

based on aggregation of past information and then by reasoning about linear trends

over time. Finally, we argue that more complex methods are needed if the agent

is required to make more involved decisions. Towards this end, we propose the

application of probabilistic logic programming as an approach to building a model

of the agent of interest with respect to its behavior in fulfilling promises. Parts of

the work presented in this chapter were first published in [SBSK08].
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Chapter 2

Action Probabilistic Logic Programs:

Preliminary Notions

In this chapter, we will introduce the basic notions pertinent to action prob-

abilistic logic programs that will be used in the rest of the thesis. The goal is for

this chapter to be a reference, which is also illustrated with examples to enhance

the presentation.

2.1 Introduction

Action probabilistic logic programs (ap-programs for short) [KMN+07a] are a

class of the extensively studied family of probabilistic logic programs (PLPs) [NS92,

NS93, KIL04]. As we discussed in Chapter 1, ap-programs have been used exten-

sively to model and reason about the behavior of groups and an application for

reasoning about terror groups based on ap-programs has users from over 12 US

government entities [Gil08]. ap-programs use a two sorted logic where there are

“state” predicate symbols and “action” predicate symbols and can be used to repre-

sent behaviors of arbitrary entities (ranging from users of web sites to institutional
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investors in the finance sector to corporate behavior) because they consist of rules

of the form:

“if a conjunction C of atoms is true in a given state S, then entity E

(the entity whose behavior is being modeled) will take action A with a

probability in the interval [L,U ].”

We emphasize that action atoms only represent the fact that an action is taken, and

not the action itself; they are therefore quite different from actions in domains such

as AI planning or reasoning about actions, in which effects, preconditions, and post-

conditions are part of the specification. We assume that effects and preconditions

are generally not known, though later on we show how to represent the information

we may have about them.

In this kind of applications, it is essential to avoid making probabilistic in-

dependence assumptions, since the approach involves finding out what probabilis-

tic relationships exist and then exploit these findings in the forecasting effort.

For instance, Figure 2.1 shows a small set of rules automatically extracted from

data [ACW08] about Hezbollah’s past. Rule 1 says that Hezbollah uses kidnap-

pings as an organizational strategy with probability between 0.5 and 0.56 in years

in which no political support was provided to it by a foreign state (forstpolsup),

and the severity of inter-organizational conflict involving (intersev1) it is at level

“c”. Rules 2 and 3, also about kidnappings, state that this action will be per-

formed with probability between 0.8 and 0.86 in years in which no external support

is solicited by the organization (extsup) and either the organization does not ad-

vocate democratic practices (demorg) or electoral politics is not used as a strategy

(elecpol). Similarly, Rules 4 and 5 refer to the action “civilian targets chosen

based on ethnicity” (tlethciv). The first one states that this action will be taken
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r1. kidnap(1) : [0.50, 0.56]← forstpolsup(0) ∧ intersev1(c).
r2. kidnap(1) : [0.80, 0.86]← extsup(1) ∧ demorg(0).
r3. kidnap(1) : [0.80, 0.86]← extsup(1) ∧ elecpol(0).
r4. tlethciv(1) : [0.49, 0.55]← demorg(1).
r5. tlethciv(1) : [0.71, 0.77]← elecpol(1) ∧ intersev2(c).

Figure 2.1: A small set of rules modeling Hezbollah.

with probability 0.49 to 0.55 in years in which the organization advocates demo-

cratic practices, while the second states that the probability rises to between 0.71

and 0.77 in years in which electoral politics are used as a strategy and the severity

of inter-organizational conflict (with the organization with which the second high-

est level of conflict occurred) was not negligible” (intersev2). ap-programs have

been used extensively by terrorism analysts to make predictions about terror group

actions [Gil08, MMP+08a].

2.2 Syntax and Semantics

Action probabilistic logic programs (ap-programs) are a variant of the prob-

abilistic logic programs introduced in [NS91, NS92]. We will now present the pre-

liminary concepts that will be used throughout this thesis, using the ap-program in

Figure 2.1 as a running example.

We assume the existence of a logical alphabet that consists of a finite set Lcons

of constant symbols, a finite set Lpred of predicate symbols (each with an associated

arity) and an infinite set Lvar of variable symbols: function symbols are not allowed.

Terms, atoms, and literals are defined in the usual way [Llo87]. We assume that Lpred

is partitioned into disjoint sets: Lact of action symbols and Lsta of state symbols.

Thus, if t1, . . . , tn are terms, and p is an n-ary action (resp., state) symbol, then

p(t1, . . . , tn), is called an action (resp., state) atom.
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Definition 1 (Action formula). A (ground) action formula is defined as:

• a (ground) action atom is a (ground) action formula;

• if F and G are (ground) action formulas, then ¬F , F ∧G, and F ∨G are also

(ground) action formulas.

The set of all possible action formulas is denoted by formulas(BLact), where

BLact is the Herbrand base associated with Lact, Lcons, and Lvar.

Definition 2 (ap-formula). If F is an action formula and µ = [α, β] ⊆ [0, 1], then

F : µ is called an annotated action formula (or ap-formula), and µ is called the

ap-annotation of F .

Without loss of generality, throughout this thesis we will assume that F is in

conjunctive normal form (i.e., it is written as a conjunction of disjunctions). Notice

that wffs are annotated with probability intervals rather than point probabilities.

There are three reasons for this:

1. In many cases, we are told that an action formula F is true in state s with some

probability p plus or minus some margin of error e; this naturally translates

into the interval [p− e, p+ e].

2. As shown by [FHM90, NS92], if we do not know the relationship between

events e1, e2, even if we know point probabilities for e1, e2, we can only infer

an interval for the conjunction and disjunction of e1, e2.

3. Interval probabilities generalize point probabilities, so our work is also relevant

to point probabilities.

Definition 3 (World/State). A world is any finite set of ground action atoms. A

state is any finite set of ground state atoms.
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It is assumed that all actions in the world are carried out more or less in parallel and

at once, given the temporal granularity adopted along with the model. Contrary to

(related but essentially different) approaches such as stochastic planning, we are not

concerned here with reasoning about the effects of actions. We now define ap-rules.

Definition 4 (ap-rule). If F is an action formula, B1, . . . , Bn are state atoms, and

µ is an ap-annotation, then F : µ ← B1 ∧ . . . ∧ Bm is called an ap-rule. If this

rule is named r, then Head(r) denotes F : µ and Body(r) denotes B1 ∧ . . . ∧ Bn.

Intuitively, the above ap-rule says that an unnamed entity (e.g., a group g, a

person p etc.) will take action F with probability in the range µ if B1, . . . , Bn are

true in the current state (we will define this term shortly) and if the unnamed entity

will take each action Ai with a probability in the interval µi for 1 ≤ i ≤ n.

Definition 5 (ap-program). An action probabilistic logic program (ap-program for

short) is a finite set of ap-rules. An ap-program Π′ such that Π′ ⊆ Π is called a

subprogram of Π.

Figure 2.1 shows a small portion of an ap-program we derived automatically

to model Hezbollah’s actions. Henceforth, we use Heads(Π) to denote the set of

all annotated formulas appearing in the head of some rule in Π. Given a ground

ap-program Π, we will use sta(Π) (resp., act(Π)) to denote the set of all state (resp.,

action) atoms that appear in Π.

Example 1 (Worlds and states). Coming back to the ap-program in Figure 2.1, the

following are examples of worlds:

{kidnap(1)}, {kidnap(1), tlethciv(1)}, {}
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The following are examples of states:

{forstpolsup(0), elecpol(0)}, {extsup(1), elecpol(1)}, {demorg(1)}.

Finally, we will use the concept of reduction of an ap-program w.r.t. a state:

Definition 6 (Reduction of an ap-program w.r.t. a state). Let Π be an ap-program

and s a state. The reduction of Π w.r.t. s, denoted Πs, is the set {F : µ | s satisfies

Body and F : µ← Body is a ground instance of a rule in Π}. Rules in this set are

said to be relevant in state s.

Note that Πs never has any non-action atoms in it. The following is an example

of a reduction with respect to a state.

Example 2. Let Π be the ap-program from Figure 2.1, and suppose we have the

following state:

s = {forstpolsup(0), intersev1(c), extsup(1), elecpol(0), demorg(0)}

The reduction of Π with respect to state s is:

Πs = {kidnap(1) : [0.50, 0.56], kidnap(1) : [0.80, 0.86]}.

Key differences. The key differences between ap-programs and the PLPs of [NS91,

NS92] are that (i) ap-programs have a bipartite structure (action atoms and state

atoms) and (ii) they allow arbitrary formulas (including ones with negation) in

rule heads ([NS91, NS92] do not). They can easily be extended to include variable

annotations and annotation terms as in [NS91]. Likewise, as in [NS91], they can be

easily extended to allow complex formulas rather than just atoms in rule bodies. We

expand on this topic in Section 3.3. However, the most important difference between
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our approach and [NS91, NS92] is that those papers focus on entailment, while this

thesis focuses on fundamentally different problems.

We use W to denote the set of all possible worlds, and S to denote the set

of all possible states. It is clear what it means for a state to satisfy the body of a

rule [Llo87].

Definition 7 (Satisfaction of a rule body by a state). Let Π be an ap-program and

s a state. We say that s satisfies the body of a rule F : µ← B1 ∧ . . . ∧ Bm if and

only if {B1, . . . , BM} ⊆ s.

Similarly, we define what it means for a world to satisfy a ground action

formula:

Definition 8 (Satisfaction of an action formula by a world). Let F be a ground

action formula and w a world. We say that w satisfies F if and only if:

− if F ≡ a, for some atom a ∈ BLact, then a ∈ w;

− if F ≡ F1 ∧ F2, for action formulas F1, F2 ∈ formulas(BLact), then w satisfies F1

and w satisfies F2;

− if F ≡ F1 ∨ F2, for action formulas F1, F2 ∈ formulas(BLact), then w satisfies F1

or w satisfies F2;

− if F ≡ ¬F ′, for some action formula F ′ ∈ formulas(BLact), then w does not

satisfy F ′.

The semantics of ap-programs uses possible worlds in the spirit of [Hai84,

Nil86, FHM90]. Given an ap-program Π and a state s, we can define a set LC (Π, s)

of linear constraints associated with s. Each world wi expressible in the language

Lact has an associated variable vi denoting the probability that it will actually occur.

LC (Π, s) consists of the following constraints.
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1. For each Head(r) ∈ Πs of the form F : [`, u], LC (Π, s) contains the constraint

` ≤
∑

wi∈W ∧wi|=F vi ≤ u.

2. LC (Π, s) contains the constraint
∑

wi∈W vi = 1.

3. All variables are non-negative.

4. LC (Π, s) contains only the constraints described in 1− 3.

We will provide a more formal model theory for ap-programs in the following chap-

ters; for now we merely provide the definition below. Πs is consistent iff LC (Π, s)

is solvable over R.

Definition 9 (Entailment of an ap-formula by an ap-program). Let Π be an ap-

program, s a state, and F : [`, u] a ground action formula. Πs entails F : [`, u],

denoted Πs |= F : [`, u] iff [`′, u′] ⊆ [`, u] where:

`′ = minimize
∑

wi∈W ∧wi|=F vi subject to LC (Π, s).

u′ = maximize
∑

wi∈W ∧wi|=F vi subject to LC (Π, s).

We will show in Example 6 below an example of both LC (Π, s) and entailment

of an annotated action formula.

Throughout this thesis, we will assume that there is a fixed state s. Hence,

once we are given Π and s, Πs is fixed. We can associate a fixpoint operator TΠs with

Π, s which maps sets of ground ap-annotated wffs to sets of ground ap-annotated

wffs as follows. We first define an intermediate operator UΠs(X).
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1. d: [0.52, 0.82] ← .
2. b ∧ a: [0.55, 0.69] ← d: [0.48, 0.89].

Figure 2.2: A simple example of an ap-program with action atoms in the body of
the rules, which is already reduced with respect to a certain state.

2.3 A Fixpoint Operator

Definition 10. Suppose X is a set of ground ap-wffs. We define UΠs(X) = {F :

µ | F : µ ← A1 : µ1 ∧ · · · ∧ Am : µm is a ground instance of a rule in Πs and for

all 1 ≤ j ≤ m, there is an Aj : ηj ∈ X such that ηj ⊆ µj}.

Intuitively, UΠs(X) contains the heads of all rules in Πs whose bodies are

deemed to be “true” if the ap-wffs in X are true. However, UΠs(X) may not contain

all ground action atoms. This could be because such atoms don’t occur in the head

of a rule —UΠs(X) never contains any action wff that is not in a rule head. The

following is an example of the calculation of UΠs(X).

Example 3. Consider the simple program depicted in Figure 2.2, and let X =

{d : [0 .5 , 0 .55 ]}. In this case, UΠs(X) = {d : [0 .52 , 0 .82 ], b ∧ a : [0 .55 , 0 .69 ]}.

In order to assign a probability interval to each ground action atom, we use

the same procedure followed in [NS91]. We use UΠs(X) to set up a linear program

CONSU(Π, s,X) as follows.

Definition 11. Let Π be an ap-program and s be a state. For each world wi, let

pi be a variable denoting the probability of wi being the “real world”. As each wi

is just an Herbrand interpretation (where action symbols are treated like predicate

symbols), the notion of satisfaction of an action formula F by a world w, denoted

by w 7→ F , is defined in the usual way.
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1. If F : [`, u] ∈ UΠs(X), then ` ≤ Σwi 7→F pi ≤ u is in CONSU(Π, s,X).

2. Σwipi = 1 is in CONSU(Π, s,X).

We refer to these as constraints of type (1) and (2), respectively.

The following is an example of how these constraints look.

Example 4. Let Π be the ap-program from Figure 2.2, and X = {d : [0 .5 , 0 .55 ]}.

The possible worlds are: w0 = ∅, w1 = {d}, w2 = {b}, w3 = {a}, w4 = {d, b},

w5 = {d, a}, w6 = {b, a}, and w7 = {d, b, a}. In this case, the linear program

CONSU(Π, s,X) contains the following constraints:

0.52 ≤ p1 + p4 + p5 + p7 ≤ 0.82

0.55 ≤ p6 + p7 ≤ 0.69

p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 = 1

To find the lower (resp., upper) probability of a ground action atom A, we merely

minimize (resp. maximize) Σwi 7→Api subject to the above constraints. We also do the

same w.r.t. each formula F that occurs in UΠs(X) —this is because this minimiza-

tion and maximization may sharpen the bounds of F . Let `(F ) and u(F ) denote

the results of these minimizations and maximizations, respectively. Our operator

TΠs(X) is then defined as follows.

Definition 12. Suppose Π is an ap-program, s is a state, and X is a set of ground

ap-wffs. Our operator TΠs(X) is then defined to be

{F : [`(F ), u(F )] | (∃µ) F : µ ∈ UΠs(X)}∪

{A : [`(A), u(A)] | A is a ground action atom}.
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Thus, TΠs(X) works in two phases. It first takes each formula F : µ that

occurs in UΠs(X) and finds F : [`(F ), u(F )] and puts this in the result. Once all

such F : [`(F ), u(F )]’s have been put in the result, it tries to infer the probability

bounds of all ground action atoms A from these F : [`(F ), u(F )]’s. The following is

an example of this process.

Example 5. Consider the ap-program presented in Figure 2.2, with the same state

s. For TΠs ↑ 0, we have X = ∅. We first obtain UΠs(∅) = {d : [0 .52 , 0 .82 ]}. Then,

TΠs(∅) = {d : [0 .52 , 0 .82 ], a : [0 , 1 .0 ], b : [0 , 1 .0 ]}.

To obtain TΠs ↑ 1 = TΠs(TΠs ↑ 0), let X = TΠs(∅). Then we have:

UΠs(X) = {d : [0 .52 , 0 .82 ], b ∧ a : [0 .55 , 0 .69 ]}, and

TΠs(X) = {d : [0 .52 , 0 .82 ], b ∧ a : [0 .55 , 0 .69 ]}

∪ {A : [`(A), u(A)] | A is a ground action atom }.

In order to infer the probability bounds for all ground action atoms, we need to

build a linear program using the formulas from UΠs(X) and solve it for each ground

atom by minimizing and maximizing the objective function of the probabilities of the

worlds that satisfy each atom. The possible worlds are: w0 = ∅, w1 = {d}, w2 = {b},

w3 = {a}, w4 = {d, b}, w5 = {d, a}, w6 = {b, a}, and w7 = {d, b, a}. The linear

program then consists of the following constraints:

0.52 ≤ p1 + p4 + p5 + p7 ≤ 0.82

0.55 ≤ p6 + p7 ≤ 0.69

p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 = 1

In order to obtain `(d) and u(d) (that is, bound the probability value for action

atom d), we minimize and then maximize the objective function p1 + p4 + p5 + p6
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subject to the linear program above, obtaining: d : [0 .52 , 0 .82 ]. Similarly, we use

the objective function p3 + p5 + p6 + p7 for atom a, obtaining a : [0 .55 , 1 .0 ], and

p2+p4+p6+p7 for b, obtaining b : [0 .55 , 1 .0 ]. Therefore, we have finished calculating

TΠs ↑ 1, and we have obtained

TΠs(X) = {d : [0 .52 , 0 .82 ], b ∧ a : [0 .55 , 0 .69 ], a : [0 .55 , 1 .0 ], b : [0 .55 , 1 .0 ]}.

Similar computations with X = TΠs(TΠs(∅)) allows us to conclude that TΠs ↑ 2 =

TΠs ↑ 1, which means we reached the fixed point.

Given two sets X1, X2 of ap-wffs, we say that X1 ≤ X2 iff for each F1 : µ1 ∈ X1,

there is an F1 : µ2 ∈ X2 such that µ2 ⊆ µ1. Intuitively, X1 ≤ X2 may be read as “X1

is less precise than X2.” The following straightforward variation of similar results

in [NS91] shows the following results:

Proposition 1. Given an ap-program Π, a state s, and the TΠs operator defined in

Definition 12, the following statements hold:

1. TΠs is monotonic w.r.t. the ≤ ordering.

2. TΠs has a least fixpoint, denoted T ωΠs.

For the sake of simplicity, in the rest of this thesis we will assume that ap-

programs do not have annotated action atoms in the bodies of their rules. Since

we have shown here how to obtain a set of rules with this property by means of a

fixpoint operator, this assumption is without loss of generality.

This concludes the presentation of ap-programs and preliminary notions re-

lated to their syntax and semantics. In the next chapter, we conclude the introduc-
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tory material in this thesis with a discussion of the work in the literature that is

most closely related to the material presented in Chapters 4 to 8.
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Chapter 3

Related Work

In this chapter, we will review the literature that is related to the work devel-

oped in this thesis. In Sections 3.1 and 3.2, we will cover a series of formalisms that

are closely related to action probabilistic logic programs, and will discuss why the

approaches developed in the literature are fundamentally different from the work

presented in later chapters of this thesis. In particular, we will distinguish the

most probable world problem (the subject of Chapters 4 and 5) as a novel approach

to probabilistic reasoning. Section 3.3 will focus on the relationship between ap-

programs and other well-known formalisms for probabilistic reasoning, presenting

examples to support our arguments. Section 3.4 will review the literature on prob-

abilistic abduction, which is closely related to the contents of Chapters 6 and 7.

Finally, in support of the work presented in Chapter 8, Section 3.5 reviews how past

work on reasoning about trust and reliability in autonomous agents relates to our

approach.
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3.1 Probabilistic Logic

The subject of probabilistic logic, also known as probability logic, or logic of

probability has a long history that dates back to the time of Leibniz (late 17th and

early 18th centuries). In his 1984 article [Hai84] (on which we base the discussion

in the first part of this section), Hailperin recounts this history in some detail, and

also discusses the work of many logicians and mathematicians who were involved in

the development of logics of probability that led to the formalisms that have become

conventional today.

3.1.1 From Leibniz to Boole

As stated in [Hai84], Leibniz already envisioned a “new kind of logic” that

would involve degrees of probability. Since the birth of probability theory occurred

during his lifetime, this wasn’t a clear proposal, though it was clear that his vision

was of a means for estimating likelihoods of truth values, and a proof theory that only

led to probability instead of certainty. It wasn’t until the 19th century that modern

logic was developed and it was Boole [Boo54] who first combined the logic of “not”,

“and”, and “or” with probability theory. There were some (perhaps unnecessary)

restrictions to his proposed formalism, since the “or” connective was interpreted as

exclusive (and thus probabilities of disjunctions were the result of adding the proba-

bilities of its disjuncts), and all events represented by propositions were assumed to

be independent (and so probabilities of conjunctions were the product of the proba-

bilities of its conjuncts). This was indeed the first development in probabilistic logic.

Some time later in the 19th century, C.S. Peirce also showed great interest in this

endeavor, but his 1883 treatment of probable inference [Pei83] provides no formal
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discussion of probable inferences. Many-valued logics were developed in the 1920s,

and probability was naturally associated with this new formalism. Reichenbach was

one of the most distinguished proponents of this association [Rei49]; Tarksi, on the

other hand, opposed the extension of many-valued logics to incorporate probability,

and also declared that Reichenbach’s probability logic was not really a multi-valued

logic but a special case of the conventional two-valued logic [Tar36].

3.1.2 More Recent Developments

Hailperin [Hai84] develops a probability logic at the propositional level which

slightly generalizes the idea of truth table. The notion of probability is part of the

semantics, and thus the meaning of probability plays the same role as truth does in

classical logic. This logic is not given syntactically, but rather semantically through

the definition of logical consequence using the notion of probability model. Along the

same vein (and published only two years apart), Nilsson [Nil86] proposes a seman-

tical generalization of logic, in which the truth values of sentences are probability

values. Nilsson’s generalization applies to any logical system for which the consis-

tency of a finite set of sentences can be established. In the same way in which we

do for ap-programs (see Chapter 2), the semantics of this probabilistic logic assigns

probability distributions over the set of possible worlds (i.e., subsets of the Herbrand

base). This article was a pioneer in the development of probabilistic logic in various

ways. First, it proposed a geometric interpretation of the set of linear constraints

induced by the set of sentences and their probabilistic annotations. This interpre-

tation clearly illustrates methods proposed by Nilsson for computing solutions to

the intractable problem of obtaining probability distributions that satisfy the con-

straints. One such method for probabilistic entailment involves approximating the
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vector of variables associated with the query formula by a linear combination of the

rows of the matrix containing the coefficients of possible worlds, depending on the

logical relationship between the formulas in the input set and the query. The other

method proposed by Nilsson consists of computing the distribution that has the

maximum entropy; this approach was later adopted by others for its applications in

probabilistic logic programming, as we discuss in the next section. Other approx-

imation methods are discussed in the paper, though none of them are evaluated

experimentally for accuracy or computational tractability.

The last two decades of the 20th century continued to prove proliferous with

the work of Halpern [Hal90]. This work considers to possibilities for giving semantics

to first-order logics of probability. The first is suitable for “statistical knowledge”

or “chance setups”, and assumes the existence of one world where statements with

respect to individuals are either true or false; therefore, degrees of belief are not

representable. The example used by Halpern to illustrate this semantics is the

sentence “the probability that a randomly chosen bird flies is 0.9”. The other kind

of semantics places probabilities on possible worlds, and therefore chance setups

are not well defined and this is more appropriate for degrees of belief. Related to

the previous example, an example of this semantics is the sentence “the probability

that Tweety (a particular bird) flies is greater than 0.9”. Halpern shows that both

approaches can actually be combined and tackles the problem of providing sound and

complete axioms to characterize probabilistic reasoning in both types of setup. Even

though previous complexity results [AH94] show that a complete axiomatization is

not possible, sound axioms are provided for both semantics that are rich enough to

perform interesting probabilistic reasoning. An interesting parallel is drawn between
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this situation and Gödels incompleteness result for the axiomatization of arithmetic

and Peano’s sound (but incomplete) axioms.

The work of Jaumard et al. [JHdAa90] is very interesting in that it is quite

possibly the first ever to report on actual implementations of probabilistic logic.

The authors consider extensions to Nilsson’s probabilistic logic that involve inter-

vals of probability values, conditional probabilities, and a novel problem involving

the computation of minimal modifications of probabilistic annotations to restore

satisfiability to a set of sentences. The main focus of this work is to propose a col-

umn generation approach which allows to solve exactly all these extensions. Column

generation [GG61, Chv83] is a technique designed to efficiently solve linear programs

(such as the ones that arise in the semantics of ap-programs, as discussed in Chap-

ter 2) with very large numbers of variables by keeping them implicit. It exploits

Duality Theory by mapping variables into constraints and vice versa, and extends

the Revised Simplex Method by determining the entering column by solving an aux-

iliary subproblem (also usually called the oracle, or the column generator). Finding

such a column by enumerating all possibilities is intractable, and this subproblem

depends on the type of problem considered but is usually one of combinatorial pro-

gramming. Solving the subproblem is usually NP-hard; however, it is not necessary

to solve it exactly in each round, as long as negative reduced cost is found. When

heuristics no longer yield such values, an exact algorithm must be used, which is a

weakness of the method. One of the main results of [JHdAa90] is that the pricing

problem (finding the inputs to the oracle) can be reduced to an instance of weighted

MAX-SAT, which implies that PSAT can be solved in polynomial time (via the

ellipsoid method) for those classes of formulas where weighted MAX-SAT can be

solved in polynomial time.
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Another interesting work in probabilistic logic is that of Frisch and Had-

dawy [FH94], which extends Nilsson’s work (discussed above) with conditional prob-

abilities and interval probabilistic annotations, and adopts an inference rule-based

approach to deduction (a completely novel approach at the time). Inference rules

allow proofs to be produced along with explanations of how conclusions were ob-

tained; they also allow the authors to devise an anytime algorithm that computes

increasingly narrow probability intervals for the entailed probabilities, which is the

main focus of this work. One of the main advantages is that this process does not

require finding all truth assignments that are consistent with the given sentences

(an NP-complete problem); also, the approach is quite flexible since rules can be

easily added. The procedure starts with [0, 1] as a current estimate and proceeds by

enumerating all possible proofs given the rules, and intervals are updated by inter-

section (multiple derivation rule); current estimates decrease monotonically and are

thus always correct, allowing a tradeoff between computation time and precision in

the derived probabilities.

Finally, the work of Andersen and Pretolani [AP01] is relevant to our own in

that they aim towards tractable cases of probabilistic satisfiability (PSAT) in CNF

formulas whose clauses are annotated with probabilities. The authors point out

that PSAT is computationally harder than SAT, since it remains difficult for cases

in which SAT is not. Their goal is then to identify easy cases of PSAT, in which

it is possible to give a compact representation of the set of consistent probability

assignments. Two different approaches are taken, based on different representations

of CNF formulas. The first is based on directed hypergraphs; extending an integer

programming formulation of MAX-SAT, it is possible to solve the case in which the

hypergraph has no cycles. If a formula is represented by a hypertree, its associated
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matrix is balanced, which allows to project constraints on an n-dimensional space,

leading to a small linear program. The other approach is based on co-occurrence

graphs, and the authors provide a solution for the case in which the graph is a partial

2-tree. In this case, the main result states that PSAT can be reduced to solving a

system of O(n) equations in O(n) non-negative variables for formulas representable

by partial 2-trees.

In this section, we have presented some of the most important developments

in probabilistic logic, which is the basis of the work developed in this thesis. In the

next section, we will discuss work on probabilistic logic programs and other related

formalisms, and therefore more closely related to our work on action probabilistic

logic programs.

3.2 Probabilistic Logic Programming and Related

Formalisms

In this section, we will discuss the first approaches to probabilistic logic pro-

grams, and then analyze the developments that followed them and how they relate

to the work developed in this thesis.

3.2.1 The Origins of Probabilistic Logic Programming

Probabilistic logic programming, which is the basis of our work, was first in-

troduced by Ng and Subrahmanian in [NS91, NS92]; these two papers addressed the

problem of combining logic programming [Llo87] with probability theory, adopting

semantics in the style of Nilsson and Halpern as discussed above. The authors point

out that all semantics proposed for quantitative logic programming prior to their
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work had been non-probabilistic, of which [vE86] and [Sha83] are examples; this

probabilistic approach aims at developing a probabilistic model theory and fixpoint

theory. Logical treatment of probabilities in logic programming is complicated by

two facts: first, connectives cannot be interpreted truth-functionally, and second,

negation-free definite clause-like sentences can still be (probabilistically) inconsis-

tent. The general form of rules in their formalism is:

F0 : µ0 ← F1 : µ1 ∧ . . . ∧ Fn : µn

where the Fi are basic formulas (conjunctions or disjunctions of atoms) and the µi

are probabilistic annotations in the form of intervals that may contain expressions

with variables. In [NS92], heads of rules are restricted to annotated atoms, where

negation is still supported by means of [0, 0] annotations, but conditional probabili-

ties are not expressible. This formalism is a general logical framework for expressing

probabilistic information, and the authors study its semantics and its relationship

with probability theory, model theory, fixpoint theory, and proof theory. They

also develop a query processing procedure for answering queries about probabilities

of events, which is different from query processing in classical logic programming

since most general unifiers are not always unique and therefore maximally general

unifiers must be computed. In this formalism, atomic formulas assign probability

ranges (intervals) to atoms, and using these functions, a formula function determines

probability ranges for non-atomic formulas by applying ⊕ and ⊗ (ignorance). The

fixpoint operator is then defined on these formula functions.
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3.2.2 Further Developments

Probabilistic logic programming was later studied by several authors: Ngo

and Haddawy [NH95], Lukasiewicz and Kern-Isberner [LKI99], Lakshmanan and

Shiri [LS01], Dekhtyar and Subrahmanian [DS97], Damasio et al. [DPS99], among

others. Ngo and Haddawy [NH95] present a model theory, fixpoint theory, and proof

procedure for conditional probabilistic logic programming. Lukasiewicz and Kern-

Isberner [LKI99] combine probabilistic logic programming (also adopting an explicit

treatment of conditional probabilities) with maximum entropy, as discussed above in

relation to Nilsson’s original proposal. In a closely related work, Lukasiewicz [Luk98]

presents a conditional semantics for probabilistic logic programs where each rule is

interpreted as specifying the conditional probability of the rule head, given the body.

Lakshmanan and Shiri [LS01] developed a semantics for logic programs in which dif-

ferent general axiomatic methods are given to compute probabilities of conjunctions

and disjunctions, and these are used to define a semantics for probabilistic logic pro-

grams. In [DS97], Dekhtyar and Subrahmanian consider different conjunction and

disjunction strategies, originally introduced by Lakshmanan et al. in [LLRS97], and

allow explicit syntax in probabilistic logic programs so that users are able to express

their knowledge of a dependency. Damasio et al. [DPS99] present a well-founded

semantics for annotated logic programs and show how to compute this well-founded

semantics.

Even though there is a rich body of work on probabilistic logic program-

ming, most works to date on this topic have addressed the problem of check-

ing whether a given formula of the form F : [`, u] is entailed by a probabilistic

logic program [NS91, NS92] or is true in a specific model (e.g., the well-founded

model [DPS99]). This usually boils down to finding out if all interpretations that sat-
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isfy the probabilistic logic program assign a probability between ` and u to F . An in-

teresting extension of the concept of probabilistic entailment is proposed in [YLH08],

where the authors propose to go one step further and check to what degree of sat-

isfaction the query is entailed by the program, similar to the novel approach of

Bröcheler et al. [BSS09], who propose to answer entailment queries with histograms

indicating how the density of solutions are distributed in the probabilistic interval.

In contrast, Chapters 4 and 5 in this thesis focus on finding most probable worlds.

This work was motivated by an application that we have developed which tries to

identify the most probable set of actions (such sets of actions correspond to worlds)

that agents might take (strategically, not tactically; see Chapter 1) during a given

real or hypothetic situation. Also quite different from the problems solved in the

literature to date is our work on abductive queries, presented in Chapters 6 and 7.

These queries consist of a condition over action atoms, annotated with a probabilis-

tic interval, along with a set of rules and constraints over how the reasoning agent

can change the environment to have the condition hold.

Our work is closely related to the gp-program paradigm [NS91]. The framework

used here (ap-programs) was first presented in [SSNS06, KMN+07a] and differs from

gp-programs in three ways: (i) ap-programs do not allow extensional predicates

to occur in rule heads, while gp-programs do allow them, (ii) ap-programs allow

arbitrary formulas to occur in rule heads, whereas gp-programs only allow the so-

called “basic formulas” to appear in rule heads. (iii) [NS91] solves the problem of

probabilistic entailment, while we focus on the most probable world problem, and

that of answering abductive queries.

Also related to the MPW problem is work done in obtaining optimal models of

disjunctive logic programs [LSS04]. An optimal model of a disjunctive logic program
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tries to find either a model, a minimal model, or a stable model of the DLP that

maximizes an objective function. The techniques there assume no knowledge of the

objective function (except for monotonicity). In contrast, our techniques use a form

of probabilistic logic program not considered in [LSS04]. Moreover, our techniques

set up a linear program that is associated with an ap-program, while their work has

no such linear program. The complexities associated with finding the most probable

world arise from the linear programming formulation because the linear programs

are exponential in size, containing one variable for each world. This does not occur

in the non-probabilistic framework of [LSS04]. Their work gives sound and complete

ways to find optimal models by doing a generate-and-test of models, along with some

intelligent pruning. Our work focuses directly on how to solve the linear program

to find appropriate worlds. Moreover, our work provides the first heuristic methods

that scales to large scenarios.

Another related effort in the agents world is that of optimal feasible status

sets [SSD05]. Optimal status sets build upon the status set semantics for agent

programs [ESP99]. Status sets are sets of actions that an agent can take in a given

situation. They bear the same relationship to agent programs that models bear

to logic programs. The work on optimal status sets improves upon work such as

that in [LSS04] because it provides a non-ground framework which avoids grounding

out agent programs until it is necessary. This is a big contribution that we would

like to extend to ap-programs as well. However, the work of [SSD05] has the same

differences from the work in this thesis as [LSS04].

Apart from our own, the closest work to solving large linear programs is that

of [JHdAa90] (discussed above) who use column generation methods to solve PSAT,

CONDSAT, and minimal modifications to ensure satisfiability. Even though the re-
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sults shown in that work suggest that the Column Generation method could applied

to our work, it should be noted that the relevant problem (PSAT) that the authors

are solving in this paper only requires solving one linear program, instead of once

for each world as in the case of most probable worlds.

3.3 A Comparison of ap-programs to other Ap-

proaches to Probabilistic Reasoning

As an important note in this chapter on related work, we would like to compare

the power of ap-programs with other formalisms designed for probabilistic reasoning.

First of all, in the following example we show that ap-programs are well-suited for

representing uncertainty at the level of probability distributions.

Example 6 (Multiple probability distributions given LC (Π, s) and entailment).

Consider ap-program Π from Figure 2.1 and state s2 from Figure 6.2. The set of

possible worlds is as follows: w0 = {}, w1 = {kidnap(1)}, w2 = {tlethciv(1)}, and

w3 = {kidnap(1), tlethciv(1)}. Suppose we use pi to denote the variable associated

with the probability of world wi; LC (Π, s2) then consists of the following constraints:

0.5 ≤ p1 + p3 ≤ 0.56

0.49 ≤ p2 + p3 ≤ 0.55

p0 + p1 + p2 + p3 = 1

One possible solution to this set of constraints is p0 = 0, p1 = 0.51, p2 = 0.05, and

p3 = 0.44; another possible distribution is p0 = 0.5, p1 = 0, p2 = 0, and p3 = 0.5;

yet another one is p0 = 0, p1 = 0.45, p2 = 0.11, and p3 = 0.44. Finally, formula

kidnap(1) ∧ tlethciv(1) (satisfied only by world w3) is entailed with probability in
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the interval [0, 0.55], meaning that one cannot assign a probability greater than 0.55

to this formula1.

Note that representing a set of distributions is not possible in many other

approaches to probabilistic reasoning, such as Bayesian networks [Pea88], Poole’s

Independent Choice Logic [Poo97] and related formalisms such as [Poo93b]. How-

ever, this is a key capability for our approach, as we specifically require a formalism

that is not forced to make assumptions about the probabilistic dependence (or in-

dependence) of the events we are reasoning about.

On the other hand, it is certainly possible to extend our approach in such a

way that the key aspects of Bayesian networks and related formalisms are directly

expressible, as was shown in [NS93] when probabilistic logic programs were first

introduced. There are two key extensions that we need to make:

1. Allow annotated action atoms in the bodies of rules: Even though this is an ex-

tension w.r.t. the language introduced here, the original formulation [KMN+07a]

already included this capability, and was not introduced here for the sake of

brevity. Essentially, by means of a simple fixpoint operator, it was shown that

an equivalent program without annotated action atoms in the body of rules

can be obtained.

2. Allow probabilistic annotations to contain variables: The main goal is to allow

probabilistic annotations in the head of rules to depend on those in the body.

Extension 2 is by no means a novel idea. The work of [NS93], on which ap-programs

are directly based, included variables as part of their language. This extension was

1This example shows that, contrary to what one might think, the interval [0, 1] is not necessarily
a solution.
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not included in the present work (also for reasons of space), but can clearly be

incorporated without great effort.

Once our language incorporates Extensions 1 and 2, it is possible to represent

the following capabilities (the following is based on [NS93]):

Independence of events: Suppose we wish to represent the fact that any prob-

ability distribution that is a solution to LC (Π, s) is such that the probability of

action atom a is independent of that of action atom b. The following rule will add

the necessary constraint to the set of solutions:

a ∧ b : [V1 ∗ V2, V1 ∗ V2]← a : [V1, V1], b : [V2, V2]

where V1, V2 are variables that can take values in [0, 1].

Conditional probabilities: We will now see how we can represent the knowledge

that the probability that action atom a is true given that we know that action atom

b is true lies in the interval [p1, p2]. As before, we can constrain all solutions to obey

this relationship by adding the rule:

a ∧ b : [p1 ∗ V, p2 ∗ V ]← b : [V, V ]

where V is a variable in [0, 1]. Similarly, suppose we represent the conditional

probability of action atom a given b with ab. Then, the following rule constrains

the space of solutions to give ab the correct value:

ab : [V2/V1, V2, V1]← a ∧ b : [V2, V2], b : [V1, V1]

where V1, V2 are variables in (0, 1)] and [0, 1], respectively.
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Therefore, even though it is a well known fact that Bayesian networks are

capable of representing any single probability distribution, we have shown here that:

(1) ap-programs are especially useful in cases in which we wish to express uncertainty

about the probability distribution in question, and (2) ap-programs are capable of

representing the basic constructs used in this family of formalisms, and therefore no

expressivity is lost.

3.4 Probabilistic Abduction

In this section, we will discuss the literature that is most relevant to the work

presented in Chapters 6 and 7.

Abduction, both in the classical and probabilistic formulations, is about find-

ing explanations for observations or events. The concept was introduced by the

philosopher Charles S. Peirce (1839-1914) [Pei40] as a third form of reasoning (dis-

tinct from deduction and induction). In its most basic form, abduction states that

“when B is observed, and it is known that A leads to B, then A can be inferred”.

Peirce referred to the observation (B in this case) “surprising”, in the sense that the

observer does not have an explanation for it. Now, the abductive inference should

only be interpreted as a hypothesis, since clearly there could be other explanations

for the observation of B (i.e., that C leads to A as well); this is the well known

fallacy of affirming the consequent. Clearly, it is not necessary for the “observation”

to have actually happened; as we will see, our work fits better within the frame of

hypothetical observations.

In the field of Artificial Intelligence, abduction has been studied as a tool for

non-monotonic reasoning and a complement to deductive approaches (theorem prov-
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ing, etc.). Among others, it has been applied to diagnosis [PR90, CT91, Poo92],

reasoning with non-monotonic logics [EGL97b, EG95], default reasoning [Poo88,

Poo89], probabilistic reasoning [CS90, Pea91, Poo92, Poo93a, Poo93b, BK93, AH98,

Jos08, Jos09], argumentation [KBH02], planning [Esh88, Sha00, dLPdB04], tem-

poral reasoning [Esh88, Sha89] and belief revision [Pag96]; furthermore, it has

been combined quite naturally with different variants of logic programs [BGMP97,

EGL97a, DK02, Poo92, Poo93a, Sha00, KMM00, CMS08, Chr08].

Abductive logic programming refers to any of the many instantiations/extensions

of the general model usually specified in the following manner [DK02]: an abductive

logic programming theory is a triple (P,A, IC), where P is a logic program, A is a

set of ground abducible atoms (that do not occur in the head of a rule in P ), and IC

is a set of classical logic formulas called integrity constraints. Then, an abductive

explanation for a query Q is a set ∆ ⊆ A such that P ∪∆ |= Q, P ∪∆ |= IC, and

P ∪ ∆ is consistent. This is an abstract definition, independent of syntax and se-

mantics; the variations in how such important aspects are defined has lead to many

different models.

The work that is most relevant to ours lies at the intersection of probabilistic

reasoning and logic programming. David Poole et al. worked in combining prob-

abilistic and non-monotonic reasoning, leading to the development of the Theorist

system [PGA87], Probabilistic Horn Abduction [Poo93b, Poo93a], and eventually

the Independent Choice Logic [Poo97]. Similar recent work by Christiansen [Chr08]

addresses the problem of probabilistic abduction with logic programs based on con-

straint handling rules. Though these models are related to our work, they either

make general assumptions of pairwise independence of probabilities of events (such

as in [Poo97] or [Chr08]) or are based on the class of so-called graphical models,
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which includes the well-known Bayesian Networks (BNs) [Pea88]. In BNs, domain

knowledge is represented in a directed acyclic graph in which nodes represent at-

tributes and edges represent direct probabilistic dependence, whereas the lack of an

edge is interpreted as independence. Joint probability distributions can therefore be

obtained from the graph, and abductive reasoning in this domain is carried out by

applying Bayes’s theorem given these joint distributions and a set observations (or

hypothetical events). Another important problem in BNs that is directly related to

abductive inference is that of obtaining the maximum a posteriori probability (usu-

ally abbreviated MAP, and also called most probable explanation, or MPE) [AH98].

The main difference between graphical model-based work and our own is that we

make no assumptions on the dependence or independence of probabilities of events.

While AI planning may seem relevant, there are several differences. First, we

are not assuming knowledge of the effects of actions; second, we assume the existence

of a probabilistic model underlying the behavior of the entity being modeled. In

this framework, we want to find a state such that when the atoms in the state are

added to the ap-program, the resulting combination entails the desired goal with a

given probability. While the italicized component of the previous sentence can be

achieved within planning, it would require a state space that is exponentially larger

than the one we use (in this space, the search space would be the set of all sets of

atoms closed under consequence that are jointly entailed by any subprogram of the

ap-program and any state (under the definition in our approach). This would cause

states to be potentially exponentially bigger than those in this chapter and would

also exponentially increase their number.

To the best of our knowledge, this is the first work that tackles the problem

of abductive reasoning in probabilistic logic programming under no independence
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assumptions, in the tradition of the works of [NS91] and [NS92] for probabilistic logic

programming, and [Hai84], [Nil86], and [FHM90] for probabilistic logic in general.

As we are adopting the class of action probabilistic logic programs, it is natural

to consider abductive reasoning with respect goals instead of observations (as is

done sometimes when the logic programming perspective of abductive inference is

adopted). Hence, we are not looking for the most probable explanation for an

observation, but rather the state of affairs that would explain the truth of a given

goal; furthermore, in order for this state of affairs to be a solution, it is necessary

for it to be attainable from the current one. As we will see, this last constraint adds

a layer of complexity to the problem.

3.5 Reasoning about Promises, Trust, and Repu-

tation in Autonomous Agents

This section presents the literature most relevant to the formalism we present

in Chapter 8 for incorporating into ap-programs the capability of representing knowl-

edge about fulfillment of promises.

3.5.1 Trust and Reputation in “offer, accept, reject” Nego-

tiations

There is extensive past work on developing models of trust in agent systems.

The most relevant perhaps is that of Sierra et al. [SD07a], which presents a model of

decision making based on trust in simple Offer, Accept, Reject negotiations between

autonomous agents. Decision-making in this model integrates the utilitarian, infor-
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mation, and semantic views of the exchange of information, and the authors present

summary measures that generalize trust, reliability, and reputation as an illustration

of the model’s capabilities. However, promises of the kind we discuss in Chapter 8

are not considered. Another important difference with our approach is that these

measures assume the availability of probability distributions that describe the ideal

enactments with respect to a given commitment, expected enactments, a more gen-

eral semantic similarity measure that allows to gauge the similarity between the

commitment and its actual enactment, and a measure of how much uncertainty

we expect to have given a certain commitment. In a related paper by the same

authors [SD07b], the focus is on measuring trust as the foundation for confidence

between agents that sign contracts. Their modeling of trust is based on a condi-

tional probability that describes the probability of observing a certain enactment

given a previously established contract and a context. Every contract execution will

represent a point in this distribution. Information held by agents is updated based

on the passage of time (decay) for information regarding previous enactments, as

well as from perceived preferences, for information regarding how likely other agents

are to accept certain offers. As before, the authors show how different probability

distributions can be used to obtain measures of trust according to different views (as

expected behavior, as expected preferability, and as certainty in contract execution).

The following example illustrates the way trust is modeled in [SD07a, SD07b].

Suppose two agents, s and vs engage in a negotiation which ends in the following

promise made by s to vs: “If it doesn’t rain tomorrow, I will come to the office”. We

model this promise in the content language of [SD07b] as agents s and vs agreeing

on a deal δ = (a, b), where b = ∅ and

a = if noRain(w, tnow + 1) then goToOffice(s, tnow + 1)

49



Where noRain(w, tnow + 1) means that agent w (for weather) will execute the action

no rain tomorrow, and goToOffice(s, tnow +1) means that agent s will go to the office

tomorrow.

For the first measure of trust discussed in [SD07b] (“trust as expected behav-

ior”), we require a distribution of ideal enactments of the contract from the point of

view of agent vs, that is, what vs hopes s will do in this situation. This distribution

involves all possible enactments a′ of the contract; even though the framework allows

for more richness in this consideration, we will adopt a simplified case here. One

such distribution, denoted by P tnow
I (a′ | a) could be:

P tnow
I (noRain(w, tnow + 1) ∧ goToOffice(s, tnow + 1) | a) = 0.40

P tnow
I (rain(w, tnow + 1) ∧ goToOffice(s, tnow + 1) | a) = 0.30

P tnow
I (noRain(w, tnow + 1) ∧ notGoToOffice(s, tnow + 1) | a) = 0

P tnow
I (rain(w, tnow + 1) ∧ notGoToOffice(s, tnow + 1) | a) = 0.30

We also require a distribution that reflects what vs actually expects s to do in this

scenario, that is, what is the probability assigned by vs to each possible enactment

a′ of a. We denote this distribution by P tnow
vs (a′ | a), and one possibility is the

following:

P tnow
vs (noRain(w, tnow + 1) ∧ goToOffice(s, tnow + 1) | a) = 0.40

P tnow
vs (rain(w, tnow + 1) ∧ goToOffice(s, tnow + 1) | a) = 0.15

P tnow
vs (noRain(w, tnow + 1) ∧ notGoToOffice(s, tnow + 1) | a) = 0.05

P tnow
vs (rain(w, tnow + 1) ∧ notGoToOffice(s, tnow + 1) | a) = 0.40

Finally, the measure of trust that vs has in s with respect to this contract is

calculated as the relative entropy between these two probability distributions, which
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is calculated as:

T (vs, s, a) = 1−
∑

a′∈A(a)

P tnow
I (a′ | a) log

(
P tnow
I (a′ | a)

P tnow
vs (a′ | a)

)

In this case, this calculation yields:

T (vs, s, a) = 1−
(

0.40 log

(
0.40

0.40

)
+ 0.30 log

(
0.30

0.15

)
+ 0 + 0.30 log

(
0.40

0.40

))

which reduces to 1− (0 + 0.09 + 0 +−0.03) = 0.94.

The second measure defined in [SD07b] is called trust as expected preferability,

and is based on the definition of a predicate Prefer(a′, a), meaning that an agent

prefers the enactment a′ to the actual agreement a. Then, this predicate is used in

a distribution P tnow(Prefer(a′, a)), and the measure is defined as:

T (vs, s, a) =
∑
b′

P tnow(Prefer(a′, a))P tnow
vs (a′ | a)

The third and last measure proposed is called trust as certainty in contract execution,

and is based on the fact that trust can be thought of as “the lack of expected

uncertainty in those possible executions that are better than the contract specified”.

They define A+(a, κ) = {a′ | P tnow(Prefer(a′, a)) > κ}. The measure is then defined

as follows:

T (vs, s, a) = 1 +
1

A∗

∑
a′∈A+(a,κ)

P tnow
+ (a′ | a) logP tnow

+ (a′ | a)

where P tnow
+ (a′ | a) is the normalization of P tnow

vs (a′ | a) for a′ ∈ A+(a, κ), and A∗ = 1

if |A+(a, κ)| = 1 and log |A+(a, κ)| otherwise.
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Finally, we note that in each case the authors define extensions of these mea-

sures to apply to classes of promises (for instance, promises made by s to be at some

place at some time), and also to measure the overall confidence that an agent has

in another agent.

3.5.2 Other Related Work

The area of trust and reputation in agent systems (which can include both arti-

ficial and human agents), has seen a lot of activity in the last few years. Though not

as closely related to our work as that of Sierra et al. (discussed above), the following

deserves mention. Dellarocas [Del06] provides a recent survey of the area, focusing

on Internet-based mechanisms such as for online auctions, one of the most important

areas of application of work in this area. In [DB07], Dondio and Barrett propose a

generic method of selecting evidence that is recognized as support for trust, attack-

ing one of the basic questions regarding trust. Game-theoretic treatments of this

topic have also been developed, such as in the work of Ely et al. [EFL02]. However,

game-theoretic approaches has been criticized for placing too much importance on

probability while underestimating its cognitive aspects; an example of such criticism

is the work of Falcone and Castelfranchi [FC01]. In this respect, our work takes a

step in this direction by allowing agents to influence the measure of fulfillment ac-

cording to their own preferences (see Chapter 8 for details and examples).

3.6 Reasoning about Adversaries

In this last section, we will briefly discuss how work in adversarial reasoning

is related to this thesis.
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In terms of applications of ap-programs, there is growing need for reasoning

about how diverse cultural, political, industrial and other organizations make deci-

sions. Past work on adversarial reasoning in artificial intelligence has focused primar-

ily on games such as Chess [Hsu02, GAKB02, GMSB10, NLP+10], Bridge [SNT96],

Go [BC01, SHG06], Poker [SL02, BBD+03, GS06], and Checkers [SBB+07], where

the rules of the game are well articulated and where the state is well defined. Rea-

soning about real world adversaries can be viewed as a complex game-tree search

problem [Nau82, Nau83, NLP+10], but it is difficult to know the “rules” of the

game, the state space is huge, and the state is often largely unknown. Often, even

the variables constituting the state are unclear, let alone their values. Past adversar-

ial reasoning work in AI can be a great asset even in real-world cultural reasoning,

but a major problem is to identify the adversary’s objectives and payoffs as well

as the rules that the adversary adheres to, and determine how best to “play” the

adversary given our knowledge of his behavioral rules. In this thesis, we show how

some of these problems can be addressed by applying efficient algorithms for solving

different kinds of problems using action probabilistic logic programs under various

different assumptions.
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Chapter 4

Computing Most Probable Worlds in

Action Probabilistic Logic Programs

Probabilistic logic programs (PLPs) [NS92] have been proposed as a paradigm

for probabilistic logical reasoning with no independence assumptions. PLPs used

a possible worlds model based on prior work by [Hai84], [FHM90], and [Nil86] to

induce a set of probability distributions on a space of possible worlds. Past work on

PLPs [NS91, NS92] focuses on the entailment problem of checking if a PLP entails

that the probability of a given formula lies in a given probability interval.

However, we have recently been developing several applications for cultural

adversarial reasoning [SAM+07, Bha07] where PLPs and their variants are used to

build a model of the behavior of certain socio-cultural-economic groups in different

parts of the world. Our research group has thus far built models of approximately 30

groups around the world including tribes such as the Shinwaris and Waziris, terror

groups like Hezbollah and the PKK, political parties such as the Pakistan People’s

Party and the Harakat-e-Islami as well as nation states. Of course, all these models

only capture a few actions that these entities might take. Such PLPs contain rules

that state things like
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“There is a 50 to 70% probability that group g will take action(s) a when

condition C holds in the current state.”

In such applications, the problem of interest is that of finding the most probable

action (or sets of actions) that the group being modeled might do in a given situation.

This corresponds precisely to the problem of finding a “most probable world” that

is the focus of this chapter.

In Section 4.1, we describe the most probable world (MPW) problem by imme-

diately using the linear programming methods of [NS91, NS92] —these methods are

exponential because the linear programs are exponential in the number of ground

atoms in the language. The novel content of this chapter starts in Section 4.2 where

we present the Head Oriented Processing (HOP) approach; HOP reduces the linear

program for ap-programs, and we show that using HOP, we can often find a much

faster solution to the MPW problem. We define a variant of HOP called SemiHOP

that has slightly different computational properties, but are still guaranteed to find

the most probable world. Thus, we have three exact algorithms to find the most

probable world.

Subsequently, in Section 4.3, we develop a heuristic called the Binary heuristic

that can be applied in conjunction with the Naive, HOP, and SemiHOP algorithms.

The basic idea is that rather than examining all worlds corresponding to the linear

programming variables used by these algorithms, only some fixed number k of worlds

is examined. This leads to a linear program whose number of variables is k. Finally,

Section 4.4 describes a prototype implementation of our ap-program framework and

includes a set of experiments to assess combinations of exact algorithm and the

heuristic. We assess both the efficiency of our algorithms, as well as the accuracy of

the solutions they produce. We show that the SemiHOP algorithm with the binary
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heuristic is quite accurate (at least when only a small number of worlds is involved)

and then show that it scales very well, managing to handle situations with over 1027

worlds in a few minutes.

4.1 Maximally Probable Worlds

We are now ready to introduce the problem of, given an ap-program and a

current state, finding the most probable world. As explained through our Hezbollah

example, we may be interested in knowing what actions a group might take in a

given situation.

Definition 13 (lower/upper probability of a world). Suppose Π is an ap-program

and s is a state. The lower probability, low(wi) of a world wi is defined as: low(wi) =

minimize pi subject to CONSU
(
Π, s, T ωΠs

)
. The upper probability, up(wi) of world

wi is defined as up(wi) = maximize pi subject to CONSU
(
Π, s, T ωΠs

)
.

Thus, the lower probability of a world wi is the lowest probability that that

world can have in any solution to the linear program. Similarly, the upper probabil-

ity for the same world represents the highest probability that that world can have.

It is important to note that for any world w, we cannot exactly determine a point

probability for w. This observation is true even if all rules in Π have a point proba-

bility in the head because our framework does not make any simplifying assumptions

(e.g. independence) about the probability that certain things will happen.

We now present two results that state that checking if the low (resp. up)

probability of a world exceeds a given bound (called the BOUNDED-LOW and

BOUNDED-UP problems respectively) is intractable. The NP-hardness results, in
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both cases, are by reduction from the problem of checking consistency of a general-

ized probabilistic logic program (PLP-CONS), whose proof is given below.

First, we reproduce a result that states that we can be guaranteed a solution

to a linear program where only a number of the variables linear in the number of

constraints are set to a non-zero value. This result was first introduced in [Chv83],

and later used in [FHM90] to show that deciding the validity of a formula in their

logic is NP-Complete.

Lemma 1 ([Chv83, FHM90]). If a system of m linear equalities and/or inequalities

has a nonnegative solution, then it has a nonnegative solution with at most m positive

variables.

We now show that checking consistency of an ap-program is NP-complete.

Proposition 2. The problem of deciding if a probabilistic logic program Π is con-

sistent in a state s is NP-complete.

Proof. Membership in NP: By Lemma 1, we know that if Π is consistent, then there

will be a polynomial number of variables in CONSU
(
Π, s, T ωΠs

)
with non-zero values.

Therefore, this set of values constitutes our witness, whereas the rest of the variables

are implicitly assigned a value of zero.

NP-Hardness: We will perform a reduction of the boolean formula satisfiability prob-

lem (SAT) to checking consistency of Π with respect to a given state s (PLP-CONS).

In order to perform the reduction, we must define a polynomial time computable

function R that maps an arbitrary boolean formula f into an instance of PLP-

CONS such that f is satisfiable if and only if CONSU
(
Π, s, T ωΠs

)
is solvable (note

that CONSU
(
Π, s, T ωΠs

)
is solvable if and only if Π is consistent in state s; this well

known property was proved in [NS92]). The PLP-CONS instance will correspond to

57



a simplified version of the problem, in which only one rule is present, and the upper

and lower probabilities are equal to 1. Define:

R(f) = {f : [1, 1]←}

to be the PLP built from an arbitrary ground formula f . It is clear that this

transformation can be performed in polynomial time. We will now prove that f

is satisfiable if and only if Π is consistent with respect to the empty state, (i.e.,

CONSU(R(f), ∅, T ωΠs) is solvable):

• f is satisfiable⇒ CONSU
(
Π, s, T ωΠs

)
is solvable: By hypothesis, there exists an

assignment of variables in f such that f is true. We use such values to build

a world w such that formula f is satisfied by w. Because the upper and lower

probabilities in the rule are both 1, we can assign 1 to pw, the probability of

world w, whereas every other world receives probability 0. We have therefore

constructed a solution to the constraints that proves that Π is consistent in s.

• CONS
(
Π, s, T ωΠs

)
is solvable ⇒ f is satisfiable: By hypothesis, there exists a

solution to CONS
(
Π, s, T ωΠs

)
that assigns a probability pwi to each world that

satisfies f . Because the set of worlds satisfying f is nonempty, this means it

is possible to find at least one assignment for the variables in f such that f is

satisfied.

We have therefore shown that SAT is polynomial time reducible to checking consis-

tency in PLP, and therefore this problem is NP-hard.

The results above are used in proving the following propositions.
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Proposition 3 (BOUNDED-LOW complexity). Given a ground ap-program Π, a

state s, a world w, and a probability threshold pth, deciding if low(w) ≥ pth is

NP-complete.

Proof. Membership in NP: In the same way membership was shown in Proposition 2,

Lemma 1 tells us that for any “yes” instance of the problem there will be a polyno-

mial number of variables in CONSU
(
Π, s, T ωΠs

)
with non-zero values. Therefore, this

set of values constitutes our witness, whereas the rest of the variables are implicitly

assigned a value of zero.

NP-hardness: We will reduce the PLP-CONS problem to the problem of deciding

if a certain world w is such that low(w) ≥ pth for a certain probability value pth.

Because PLP-CONS was proven to be NP-hard above, this reduction will prove that

BOUNDED-LOW is NP-hard as well.

Given an instance of PLP-CONS consisting of a program Π and a state s, we

build an instance of BOUNDED-LOW, consisting of an ap-program Π′, a state s′,

a world w, and a probability threshold pth in the following manner: program Π′ is

equal to Π and state s′ is equal to s, world w is an arbitrary world, and pth = 0.

We must now show that this transformation yields a reduction by proving that Π is

consistent in state s if and only if low(w) ≥ 0 with respect to Π′ and state s′:

• Π is consistent⇒ low(w) ≥ 0 with respect to Π′ in state s′: If Π is consistent,

this means that CONSU
(
Π, s, T ωΠs

)
is solvable. Therefore, it is clear that any

possible world will receive a probability value greater than or equal to zero.

• low(w) ≥ 0 with respect to Π′ in state s′ ⇒ Π is consistent: If low(w) ≥ 0

with respect to Π′ in state s′, this means that w has received a probability
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value greater than or equal to zero, subject to CONSU
(
Π, s, T ωΠs

)
. This is only

possible if CONSU
(
Π, s, T ωΠs

)
is solvable, which means that Π is consistent.

Note that, whenever Π is inconsistent, the value of low(w) is undefined, for any

possible world w. To complete the proof, we note that the transformation from

a PLP-CONS instance to a BOUNDED-LOW instance can be done in polynomial

time with respect to the size of the ap-program given for PLP-CONS.

Proposition 4 (BOUNDED-UP complexity). Given a ground ap-program Π, a

state s, a world w, and a probability threshold pth, deciding if up(w) ≤ pth is NP-

complete.

Proof. Membership in NP: Analougous to Proposition 3

NP-hardness: This proof is very similar to the one for the NP-hardness of BOUNDED-

LOW (Proposition 3). As before, we will reduce the PLP-CONS problem to the

problem of deciding if a certain world w is such that up(w) ≤ pth for a certain

probability value pth. Because PLP-CONS was proven to be NP-hard above, this

reduction will prove that BOUNDED-UP is NP-hard as well.

Given an instance of PLP-CONS consisting of a program Π and a state s, we

build an instance of BOUNDED-UP, consisting of an ap-program Π′, a state s′, a

world w, and a probability threshold pth in the following manner: program Π′ is

equal to Π and state s′ is equal to s, world w is an arbitrary world, and pth = 1.

We must now show that this transformation yields a reduction by proving that Π is

consistent in state s if and only if up(w) ≤ 1 with respect to Π′ and state s′:

• Π is consistent ⇒ up(w) ≤ 1 with respect to Π′ in state s′: If Π is consistent,

this means that CONSU
(
Π, s, T ωΠs

)
is solvable. Therefore, it is clear that any

possible world will receive a probability value less than or equal to one.
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• up(w) ≤ 1 with respect to Π′ in state s′ ⇒ Π is consistent: If up(w) ≤ 0 with

respect to Π′ in state s′, this means that w has received a probability value

less than or equal to one, subject to CONSU
(
Π, s, T ωΠs

)
. This is only possible

if CONSU
(
Π, s, T ωΠs

)
is solvable, which means that Π is consistent.

Note that, whenever Π is inconsistent, the value of up(w) is undefined, for any

possible world w. To complete the proof, we note that the transformation from a

PLP-CONS instance to a BOUNDED-UP instance can be done in polynomial time

with respect to the size of the ap-program given for PLP-CONS.

We will now present the Most Probable World problem (MPW for short).

The MPW Problem. The most probable world problem (MPW for short) is the

problem where, given an ap-program Π and a state s as input, we are required to

find a world wi where low(wi) is maximal.1

The MPW problem can therefore easily be shown to be in Σp
2; given the NP-

completeness result of simply checking if the lower probability exceeds a threshold,

computing the most probable world is highly intractable. In the next section, we

will present exact algorithms to solve the MPW problem.

4.2 Exact Algorithms for finding a Maximally Pro-

bable World

In this section, we develop algorithms to find the most probable world for a

given ap-program and a current state. As the above results show us, there is no

unique probability associated with a world w; the probability could range anywhere

1A similar MPW-Up Problem can also be defined. The most probable world-up problem
(MPW-Up) is: given an ap-program Π and a state s as input, find a world wi where up(wi) is
maximal. In this thesis, we will mainly address the MPW problem.
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Algorithm 2: NaiveMPW

1. Compute T ωΠs;
2. Best = NIL;
3. Bestval = 0;
4. For each world wi,
5. Compute low(wi) by minimizing pi subject to the set

CONSU
(
Π, s, T ωΠs

)
of constraints.

6. If low(wi) > Bestval then set

Best = wi and Bestval = low(wi);
7. If Best = NIL then

return any world whatsoever

8. else return Best.

Figure 4.1: The Naive algorithm for finding a most probable world.

between low(w) and up(w). Hence, in the rest of this chapter, we will assume the

worst case, i.e. the probability of world w is given by low(w). We will try to find a

world for which low(w) is maximized.

In this section, we study the following problem: given an ap-program Π and

a state s, find a world w such that low(w) is maximized. If we replace low(w) by

up(w), the techniques to find a world w such that up(w) is maximal are similar

(though not all apply directly). There may also be cases in which we are interested

in using some other value (e.g. the average of low(w) and up(w) and so on).

A Naive Algorithm. The naive algorithm to find the most probable world is the

direct implementation of the definition of the problem, and it basically consists of

the steps described in Figure 4.1.

The Naive algorithm does a brute force search after computing T ωΠs . It finds

the low probability for each world and chooses the best one. Clearly, we can use

it to solve the MPW-Up problem by replacing the minimization in Step 2(a) by a

maximization.

There are two key problems with the naive algorithm. The first problem is

that in Step (1), computing T ωΠs is very difficult. When some syntactic restrictions
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are imposed, this problem can be solved without linear programming at all as in

the case when Π is a probabilistic logic program (or p-program as defined in [NS92])

where all heads are atomic.

The second problem is that in Step 2(a), the number of (linear program)

variables in CONSU
(
Π, s, T ωΠs

)
is exponential in the number of ground atoms. When

this number is, say 20, this means that the linear program contains over a million

variables. However, when the number is say 30 or 40 or more, this number is

inordinately large. In this chapter, when we say that we are focusing on lowering

the computation time of our algorithms, we are referring to improving Step 2(a).

In this section, we will present two algorithms, the HOP and the SemiHOP

algorithms, both of which can significantly reduce the number of variables in the

linear program by collapsing multiple linear programming variables into one. They

both stem from the basic idea that when variables always appear in certain groups

in the linear program, these groups can be collapsed into a single variable. As we

will see, the basic idea can lead to great savings, but being too ambitious in trying

to collapse all possible sets can be detrimental to our benefits; this last observation

is the root of the second algorithm.

4.2.1 HOP: Head-Oriented Processing

We can do better than the naive algorithm without losing any precision in the

calculation of a most probable world. In this section we present the HOP algorithm,

prove its correctness, and propose an enhancement that also provably yields a most

probable world.

Given a world w, state s, and an ap-program Π, let Sat(w) = {F |c is a ground

instance of a rule in Πs and Head(c) = F : µ and w |= F}. Intuitively, Sat(w) is
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the set of heads of rules in Πs (without probability annotations) whose heads are

satisfied by w.

Definition 14. Suppose Π is an ap-program, s is a state, and w1, w2 are two worlds.

We say that w1 and w2 are equivalent, denoted w1 ∼ w2, iff Sat(w1) = Sat(w2).

In other words, we say that two worlds are considered equivalent if and only if

the two worlds satisfy the formulas in the heads of exactly the same rules in Πs. It is

easy to see that ∼ is an equivalence relation; we use [wi] to denote the ∼-equivalence

class to which a world wi belongs. The intuition for the HOP algorithm is given in

Example 7.

Example 7. Consider the set CONSU
(
Π, s, T ωΠs

)
of constraints. For example, con-

sider a situation where CONSU
(
Π, s, T ωΠs

)
contains just the three constraints below:

0.7 ≤ p2 + p3 + p5 + p6 + p7 + p8 ≤ 1 (4.1)

0.2 ≤ p5 + p7 + p8 ≤ 0.6 (4.2)

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 = 1 (4.3)

In this case, each time one of the variables p5, p7, or p8 occurs in a constraint, the

other two also occur. Thus, we can replace these by one variable (let’s call it y for

now). In other words, suppose y = p5 + p7 + p8. Thus, the above constraints can be

replaced by the simpler set

0.7 ≤ p2 + p3 + p6 + y ≤ 1

0.2 ≤ y ≤ 0.6

p1 + p2 + p3 + p4 + p6 + y = 1
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The process in the above example leads to a reduction in the size of the set

CONSU
(
Π, s, T ωΠs

)
. Moreover, suppose we minimize y subject to the above con-

straints. In this case, the minimal value is 0.2. As y = p5 +p7 +p8, it is immediately

obvious that the low probability of any of the pi’s is 0. Note that we can also group

p2, p3, and p6 together in the same manner.

We build on top of this intuition. The key insight here is that for any ∼-

equivalence class [wi], the entire summation
∑

wj∈[wi]
pj either appears in its entirety

in a constraint of type (1) in CONSU
(
Π, s, T ωΠs

)
or does not appear at all. This is

what the next result states.

Proposition 5. Suppose Π is an ap-program, s is a state, and [wi] is a ∼-equivalence

class. Then for each constraint c of the form

` ≤
∑
wr|=F

pr ≤ u (4.4)

in CONSU
(
Π, s, T ωΠs

)
, either every variable in the summation

∑
wj∈[wi]

pj appears in

the summation in (4.4) above or no variable in the summation
∑

wj∈[wi]
pj appears

in the summation in (4.4).

Proof. Let c be a constraint of the form (4.4) and suppose for a contradiction that

there exist two variables, px and py such that wx, wy ∈ [wi] and px appears in the

constraint c, while py does not. In this case, wx |= F and wy 6|= F . However, in this

case, wx 6∼ wy, and therefore cannot be in the same equivalence class [wi], yielding

a contradiction.
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Example 8. Here is a toy example of this situation. Suppose Πs consists of the two

very simple rules:

(a ∨ b ∨ c ∨ d) : [0.1, 0.5] ← .

(a ∧ e) : [0.2, 0.5] ← .

Assuming our language contains only the predicate symbols a, b, c, d, e, there are 32

possible worlds. However, what the preceding proposition tells us is that we can

group the worlds into four categories. Those that satisfy both the above head formu-

las (ignoring the probabilities), those that satisfy the first but not the second head

formula, those that satisfy the second but not the first head formula, and those that

satisfy neither. This is shown graphically in Figure 4.2, in which pi is the variable

in the linear program corresponding to world wi. For simplicity, we numbered the

worlds according to the binary representation of the set of atoms. For instance,

world {a, c, d, e} is represented in binary as 10111, and thus corresponds to w23.

Note that only three variables appear in the new linear constraints; this is because it

is not possible to satisfy ¬(a ∨ b ∨ c ∨ d ∨ e) and (a ∧ e) at the same time.

Effectively, what we have done is to modify the number of variables in the

linear program from 2card(Lact) to 2card(Πs) —a saving that can be significant in some

cases (though not always, and in some cases it can actually result in an increase in

size). The number of constraints in the linear program stays the same. Formally

speaking, we define a reduced set of constraints as follows.

Definition 15 (RedCONSU
(
Π, s, T ωΠs

)
). For each equivalence class [wi], the lin-

ear program RedCONSU
(
Π, s, T ωΠs

)
uses a variable p′i to denote the summation of

the probability of each of the worlds in [wi]. For each ap-wff F : [`, u] in T ωΠs,
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C1: 0.1 ≤ p′2 + p′3 ≤ 0.5 

 

 

C2: 0.2 ≤ p′3 ≤ 0.5 

 

 

C3: p′0 + p′1 +  

    p′2 + p′3 = 1 

 

 

 

C1: 0.1 ≤    p2 + p3 + p4 +  

    p5 + p6 + p7 + p8 + p9 +  

p10 + p11 + p12 + p13 + p14 + p15 + 

  p16 + p18 + p20 + p22 + p24 + p26  

+ p28 + p30 +  

p17 + p19 + p21 + p23 + p25 +  

p27 + p29 + p31    ≤ 0.5 

C2: 0.2 ≤  p17 + p19 + p21 + 

  p23 + p25 + p27 + p29 + p31  ≤ 0.5 

C3: p0 + p1 + … + p31 = 1 

 

C1: 0.1 ≤ p′2 + p′3 ≤ 0.5 

 

 

C2: 0.2 ≤ p′3 ≤ 0.5 

 

 

C3: p′0 + p′2 + p′3 = 1 

 

 

 

 

Original linear program 

CONSU(Πs, s, TΠs
ω) 

Reduced linear programs 

RedCONSU(Πs, s, TΠs
ω)     S_RedCONSU(Πs, s, TΠs

ω) 

Figure 4.2: Reducing CONSU
(
Π, s, T ωΠs

)
by grouping variables. The new LPs are

called RedCONSU
(
Π, s, T ωΠs

)
and S RedCONSU

(
Π, s, T ωΠs

)
, as presented in Defini-

tions 15 and 17.

RedCONSU
(
Π, s, T ωΠs

)
contains the constraint:

` ≤
∑

[wi]|=F

p′i ≤ u.

Here, [wi] |= F means that some world in [wi] satisfies F . In addition, the set of

constraints RedCONSU
(
Π, s, T ωΠs

)
contains

∑
[wi]

p′i = 1.

When reasoning about RedCONSU
(
Π, s, T ωΠs

)
, we can do even better than

mentioned above. The result below states that to find the most probable world, we

only need to look at the equivalence classes that are of cardinality 1.

Theorem 1. Suppose Π is an ap-program, s is a state, and wi is a world. If

card([wi]) > 1, then low(wi) = 0.
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Proof. Immediate, by observing that there are no restrictions on the values assigned

to the variables that correspond to worlds in the same ∼-class. If there is more than

one world in a class [wx], there is always a solution that assigns zero to each variable

pi such that wi ∈ [wx], and therefore low(wi) = 0.

Going back to Example 7, we can conclude that low(w5) = low(w7) = low(w8) =

0. As a consequence of this result, we can suggest the Head Oriented Processing

(HOP) algorithm which works as follows. First we present some simple notation.

Let FixedWff (Π, s) = {F | F : µ ∈ UΠs(T
ω
Πs

)}. Given a set X ⊆ FixedWff (Π, s), we

define Formula(X,Π, s) to be

∧
G∈X

G ∧
∧

G′∈FixedWff (Π,s)−X

¬G′.

Here, Formula(X,Π, s) is the formula which says that X consists of all and only

those formulas in FixedWff (Π, s) that are true. Given setsX1, X2 ⊆ FixedWff (Π, s),

we say that X1 ∼ X2 if and only if Formula(X1,Π, s) and Formula(X2,Π, s) are

logically equivalent.

Theorem 2 (correctness of HOP). Algorithm HOP is correct, i.e. it is guaranteed

to return a world whose low probability is greater than or equal to that of any other

world.

Proof. We will prove this property in two stages:

• Soundness: We wish to show that if HOP returns a world wsol, then there is

no other world wi such that low(wi) > low(wsol). Suppose HOP does return

wsol but that there is a world wi such that low(wi) > low(wsol). Clearly, [wi]

and [wsol] must be different ∼-equivalence classes. In this case, step 3 of the
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Algorithm 3: HOP Algorithm.

1. Compute T ωΠs . bestval = 0; best = NIL.

2. Let [X1], . . . , [Xn] be the ∼-equivalence classes defined above for Π, s.

3. For each equivalence class [Xi] do:

(a) If there is exactly one interpretation that satisfies
Formula(Xi,Π, s) then:

i. Minimize p′i subject to RedCONSU
(
Π, s, T ωΠs

)
where [wi] is

the set of worlds satisfying exactly those heads in Xi. Let Val
be the value returned.

ii. If Val > best, then {best = wi; bestval = Val}.

4. If bestval = 0 then return any world whatsoever, otherwise return best.

Figure 4.3: The Head-Oriented Processing (HOP) algorithm.

HOP algorithm will consider both these equivalence classes. As bestval is set

to the highest value of low(wj) for all equivalence classes [wj], it follows that

low(wsol) ≤ low(wi), yielding a contradiction.

• Completeness: We wish to show that if there exists a world wmax such that

low(wmax) ≥ low(wi)∀wi ∈ W , then HOP will return a world wsol such that

low(wsol) = low(wmax). Similar to the case made for soundness, if there exists

a world wmax with the highest possible low value, it is either in the same class

as the world that is returned by the algorithm, or in a different class. In the

former case, the world returned clearly has the same value as wmax; in the

latter, this must also be the case, since otherwise the algorithm would have

selected the variable corresponding to [wmax] instead.

This concludes the proof, and we therefore have that HOP is guaranteed to

return a world whose low probability is greatest.
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Step 3(a) of the HOP algorithm is known as the UNIQUE-SAT problem—it can be

easily implemented via a SAT solver as follows.

1. If
∧
F∈X F ∧

∧
G∈X̄ ¬G is satisfiable (using a SAT solver that finds a satisfying

world w) then

(a) If
∧
F∈X F ∧

∧
G∈X̄ ¬G ∧ (

∨
a∈w ¬a ∨

∨
a′∈w̄ a

′) is satisfiable (using a

SAT solver) then return “two or more” (two or more satisfying worlds

exist) else return “exactly one”

2. else return “none.”

The following example shows how the HOP algorithm would work on the pro-

gram from Example 8.

Example 9. Consider the program from Example 8, and suppose X = {(a ∨ b ∨

c ∨ d ∨ e), (a ∧ e)}. In Step (3a), the algorithm will find that {a, d, e} is a model

of (a ∨ b ∨ c ∨ d ∨ e) ∧ (a ∧ e); afterwards, it will find {a, c, e} to be a model of

(a ∨ b ∨ c ∨ d ∨ e) ∧ (a ∧ e) ∧ ((¬a ∨ ¬d ∨ ¬e) ∨ (b ∨ c)). Thus, X has more than

one model and the algorithm will not consider any of the worlds in the equivalence

class induced by X as a possible solution, which avoids solving the linear program

for those worlds.

The worst-case complexity of HOP is, as its Naive counterpart, exponential.

However, HOP can sometimes (but not always) be preferable to the Naive algorithm.

The number of variables in RedCONSU
(
Π, s, T ωΠs

)
is 2card(Πs), which is much smaller

than the number of variables in CONSU
(
Π, s, T ωΠs

)
when the number of ground rules

whose bodies are satisfied by state s is smaller than the number of ground atoms.

The checks required to find all the equivalence classes [Xi] take time proportional
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to 22∗card(Πs). Lastly, HOP avoids solving the reduced linear program for all the

non-singleton equivalence classes (for instance, in Example 9, the algorithm avoids

solving the LP three times). This last saving, however, comes at the price of solving

SAT twice for each equivalence class and the time required to find the [Xi]’s. We will

now explore a way in which we can trade off computation time against how many

of these savings we obtain, again without giving up obtaining an exact solution.

4.2.2 Enhancing HOP: The SemiHOP Algorithm

A variant of the HOP algorithm, which we call the SemiHOP algorithm, tries

to avoid computing the full equivalence classes. As in the case of HOP, SemiHOP is

also guaranteed to return a most probable world. The SemiHOP algorithm avoids

finding pairs of sets that represent the same equivalence class, and therefore does

not need to compute the checks for logical equivalence of every possible pair, a

computation which can prove to be very expensive.

Proposition 6. Suppose Π is an ap-program, s is a state, and X is a subset of

FixedWff (Π, s). Then there exists a world wi such that {w|w |= Formula(X,Π, s)} ⊆

[wi].

Proof. Immediate from Definition 14.

We now define the concept of a sub-partition.

Definition 16. A sub-partition of the set of worlds of Π w.r.t. s is a partition

W1, . . . ,Wk where:

1.
⋃k
i=1Wi is the entire set of worlds.

2. For each Wi, there is an equivalence class [wi] such that Wi ⊆ [wi].
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Algorithm 4: SemiHOP Algorithm.

1. Compute T ωΠs .

2. bestval = 0; best = NIL.

3. For each set X ⊆ FixedWff (Π, s) do:

(a) If there is exactly one interpretation that satisfies Formula(X,Π, s)
then:

i. Minimize p?i subject to S RedCONSU
(
Π, s, T ωΠs

)
where Wi is

a subpartition of the set of worlds of Π w.r.t. s. Let Val be the
value returned.

ii. If Val > best, then {best = wi; bestval = Val}.

4. If bestval = 0 then return any world whatsoever, otherwise return best.

Figure 4.4: The SemiHOP algorithm.

The following result, which follows immediately from the preceding proposi-

tion, says that we can generate a subpartition by looking at all subsets of the set

FixedWff (Π, s).

Proposition 7. Suppose Π is an ap-program, s is a state, and {X1, . . . , Xk} is the

power set of FixedWff (Π, s). Then the partition W1, . . . ,Wk where Wi = {w | w |=

Formula(Xi,Π, s)} is a sub-partition of the set of worlds of Π w.r.t. s.

Proof. Immediate from Proposition 6.

The intuition behind the SemiHOP algorithm is best presented by going back to

constraints 4.1 and 4.2 given in Example 7. Obviously, we would like to collapse all

three variables p5, p7, p8 into one variable y. However, if we were to just collapse p7, p8

into a single variable y′, we would still reduce the size of the constraints (through the

elimination of one variable), though the reduction would not be maximal (because

we could have eliminated two variables). The SemiHOP algorithm allows us to
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use subsets of equivalence classes instead of full equivalence classes. We define a

semi-reduced set of constraints as follows.

Definition 17 (S RedCONSU
(
Π, s, T ωΠs

)
). Let W1, . . . ,Wk be a subpartition of the

set of worlds for Π and s. For each Wi, S RedCONSU
(
Π, s, T ωΠs

)
uses a variable p?i

to denote the summation of the probability of each of the worlds in Wi. For each

ap-wff F : [`, u] in T ωΠs, S RedCONSU
(
Π, s, T ωΠs

)
contains the constraint:

` ≤
∑
Wi|=F

p?i ≤ u.

Here, Wi |= F implies that some world in Wi satisfies F . In addition, the set of

constraints S RedCONSU
(
Π, s, T ωΠs

)
contains

∑
Wi

p?i = 1

Example 10. Returning to Example 7, S RedCONSU
(
Π, s, T ωΠs

)
could contain the

following constraints: 0.7 ≤ p2 + p3 + p5 + p6 + y′ ≤ 1, 0.2 ≤ p5 + y′ ≤ 0.6, and

p1 + p2 + p3 + p4 + p5 + p6 + y′ = 1 where y′ = p7 + p8.

The pseudo-code for the SemiHOP algorithm is depicted in Figure 4.4. The

following theorem ensures the correctness of this algorithm.

Theorem 3 (correctness of SemiHOP). Algorithm SemiHOP is correct, i.e. it is

guaranteed to return a world whose low probability is greater than or equal to that

of any other world.

Proof. The proof is completely analogous to that of Theorem 2, with the only differ-

ence in this case being that some of the equivalence classes will be partitioned.
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The key advantage of SemiHOP over HOP is that we do not need to con-

struct the set [wi] of worlds, i.e. we do not need to find the equivalence classes [wi].

This is a potentially big saving because there are 2n possible worlds (where n is

the number of ground action atoms) and finding the equivalence classes can be ex-

pensive. However, this advantage comes with a drawback, since the size of the set

S RedCONSU
(
Π, s, T ωΠs

)
can be bigger than the size of the set RedCONSU

(
Π, s, T ωΠs

)
.

It is hard to quantify how much larger S RedCONSU
(
Π, s, T ωΠs

)
is compared to

RedCONSU
(
Π, s, T ωΠs

)
; in general, the more logically equivalent rule heads we have,

the more unnecessary variables will be included in S RedCONSU
(
Π, s, T ωΠs

)
.

4.3 The Binary Heuristic

In this section, we introduce a heuristic called the Binary Heuristic that can

be utilized in conjunction with any of the three exact algorithms described thus

far (Naive, HOP, and SemiHOP) in the chapter. The basic idea behind the Binary

Heuristic is to limit the number of variables in the linear programs associated with

the Naive, HOP, and SemiHOP algorithms to a fixed number k that is chosen by the

user.

Suppose we use VNaive,VHOP, and VSemiHOP to denote the set of variables occur-

ring in the linear programs CONSU
(
Π, s, T ωΠs

)
, RedCONSU

(
Π, s, T ωΠs

)
and

S RedCONSU
(
Π, s, T ωΠs

)
, respectively. Note that all these linear programs contain

two kinds of constraints:

• Interval constraints which have the form ` ≤ pi1 + · · ·+ pim ≤ u and

• A single equality constraint of the form p1 + · · ·+ pn = 1.
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Let VkNaive,VkHOP,VkSemiHOP be some subset of k variables from each of these sets,

respectively. Let CONS be one of CONSU
(
Π, s, T ωΠs

)
, RedCONSU

(
Π, s, T ωΠs

)
, or

S RedCONSU
(
Π, s, T ωΠs

)
. We now construct a linear program CONS′ from CONS

as follows.

• For all constraints of the form

` ≤ pi1 + · · ·+ pim ≤ u

remove all variables in the summation that do not occur in the selected set of

k variables and re-set the lower bound to 0.

• For the one constraint of the form p1 + · · · + pn = 1, remove all variables in

the summation that do not occur in the selected set of k variables and replace

the equality “=” by “≤”.

Example 11. Consider the program from Example 8, and suppose m = 10 and

CONS refers to the constraints associated with the naive algorithm which has 32

worlds altogether. Then, we can select a sample of ten worlds such as

Wm = {w2, w4, w8, w10, w12, w16, w18, w22, w23, w25}

Now, CONS′
(
Π, s, T ωΠs

)
contains the following constraints:

0 ≤ p2 + p4 + p8 + p10 + p12 + p16 + p18 + p22 + p23 + p25 ≤ 0.5

0 ≤ p23 + p25 ≤ 0.5

p2 + p4 + p8 + p10 + p12 + p16 + p18 + p22 + p23 + p25 ≤ 1

Theorem 4. Let Π be an ap-program, m > 0 be an integer, and s be a state.

Then every solution of CONS is also a solution of CONS′ where CONS is one of
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CONSU
(
Π, s, T ωΠs

)
, RedCONSU

(
Π, s, T ωΠs

)
, or S RedCONSU

(
Π, s, T ωΠs

)
and CONS′

is constructed according to the above construction.

Proof. (i) Suppose σ is a solution to CONS. For any interval constraint

` ≤ pi1 + · · ·+ pim ≤ u

deleting some terms from the summation preserves the upper bound and clearly the

summation still is greater than or equal to 0. Hence, σ is a solution to the modified

interval constraint in CONS′. For the equality constraint p1 + . . .+pn = 1, removing

some variables from the summation causes the resulting sum (under the solution σ)

to be less than or equal to 1 and hence the corresponding constraint in CONS′ is

satisfied by σ.

A major problem with the above result is that CONS′ is always satisfiable

because setting all variables to have value 0 is a solution. The binary algorithm

tries to tighten the lower bound in the interval constraints involved so that we have

a set of solutions that more closely mirror the original set. It does this by looking

at each interval constraint in CONS′ and trying to set the lower bound of that

constraint first to `/2 where ` is the lower bound of the corresponding constraint

in CONS. If the resulting set of constraints is satisfiable, it increases it to 3`/4,

otherwise it reduces it to `/4. This is repeated for different interval constraints until

reasonable tightness is achieved. It should be noted that the order in which the

constraints are processed is important - different orders can lead to different CONS′

being generated. The detailed algorithm is shown in Figure 4.5. The algorithm is

called with Π′ = T ωΠs , and CONS equal to one of CONSU , RedCONS, or S RedCONS.
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Algorithm 5: Binary(Π′,m, ε,CONS){
1. CONS′ = new set of linear constraints;

2. Wm = select a set of m worlds in W;

3. for each rule ri in Π {
4. let ri = F : [`, u]← body;
5. add 0 ≤

∑
wi∈Wm ∧wi|=F pi ≤ u to CONS′;

6. }
7. for each constraint ci ∈ CONS′; {
8. let L be the lower bound in ci;
9. let L∗ be ci’s original lower bound in CONS;
10. while not done(CONS′, ci, ε) {
11. L′ = (L∗ + L)/2
12. let c′i be constraint ci with lower bound L′;
13. if solvable((CONS′ − ci) ∪ c′i) {
14. CONS′ = (CONS′ − ci) ∪ c′i; L = L′

15. }
16. else {
17. L∗ = L′;
18. L′ = (L′ − L)/2;
19. if solvable((CONS′ − ci) ∪ c′i) {
20. CONS′ = (CONS′ − ci) ∪ c′i; L = L′

21. }
22. else { L∗ = L′; }
23. }
24. }
25. }
26. add

∑
wi∈Wm

pi ≤ 1 to CONS′;
27. return CONS′;
28. }

Figure 4.5: The Binary Heuristic Algorithm.

The Binary algorithm takes a chance. Rather than use a very crude estimate

of the lower bound in the constraints (such as 0, the starting point), it tries to “pull”

the lower bounds as close to the original lower bounds as possible in the expectation

that the revised linear program is closer in spirit to the original linear program.

Here is an example of this process.

Example 12. Consider the following very simple program:
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a ∧ b : [0.8, 0.9]← .

a ∧ c : [0.2, 0.3]← .

Let W = {w0 = ∅, w1 = {a}, w2 = {b}, w3 = {c}, w4 = {a, b}, w5 = {a, c}, w6 =

{b, c}, w7 = {a, b, c}}, but suppose m = 4 and we select a sample of four worlds

Wm = {w0, w2, w6, w7}. Now, assuming s = ∅, CONS′
(
Π, s, T ωΠs

)
contains the fol-

lowing constraints:

0 ≤ p7 ≤ 0.9

0 ≤ p7 ≤ 0.3

p0 + p2 + p6 + p7 ≤ 1

which is clearly solvable, but yielding the all-zero solution. The binary heuristic will

then modify the first constraint so that its lower bound is 0.4 and, since this new

program is unsolvable, will subsequently adjust it to 0.2. At this point, the program

is now back to being solvable, and one more iteration leaves the lower bound at

(0.4 + 0.2)/2 = 0.3, which results once again in a solvable program. At this point,

we decide to stop, and the final value of the lower bound is thus 0.3. The algorithm

then moves on to the following constraint, and adjusts its lower bound first to 0.1

and then to 0.15, and decides to stop. The final set of constraints is then:

0.3 ≤ p7 ≤ 0.9

0.15 ≤ p7 ≤ 0.3

p0 + p2 + p6 + p7 ≤ 1

4.4 Implementation and Experiments

We have implemented several of the algorithms described above—the Naive, HOP,

SemiHOP, and the binary heuristic algorithms—using approximately 6,000 lines of
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Java code. The binary heuristic algorithm was applied to each set of constraints:

CONSU(Π, s, T ωΠs), RedCONSU(Π, s, T ωΠs), and S RedCONSU(Π, s, T ωΠs); we refer to

these approximations as the Naivebinary, HOPbinary, and SemiHOPbinary algorithms

respectively. Our experiments were performed on a Linux computing cluster com-

prised of 64 8-core, 8-processor nodes with between 10GB and 20GB of RAM.

The linear constraints were solved using the QSopt linear programming solver li-

brary [ACDM09], and the logical formula manipulation code from the COBA belief

revision system and SAT4J satisfaction library were used in the implementation of

the HOP and SemiHOP algorithms.

For each experiment, we randomly generated ap-programs; we held the number

of rules constant at 10, where each rule consisted of an empty body (we assume they

are the rules that are relevant in the state, and after computing the fixpoint). The

rule heads had a number of clauses distributed uniformly between 1 and 5, and a

number of variables per clause also distributed uniformly between 1 and 4 2. The

probability intervals were also generated randomly from the uniform distribution,

making sure that the lower bound was less than or equal to the upper bound. All

random number selection were implemented using the random number generator

provided by Java. The experiments then consisted of the following: (i) generate a

new ap-program and send it to each of the three algorithms, (ii) vary the number of

worlds from 32 to 16,384, performing at least 10 runs for each value and recording the

average time taken by each algorithm, and (iii) measure the quality of SemiHOP and

all algorithms that use the binary heuristic by calculating the average distance from

2The maximum number of clauses and variables per clause parameters were kept relatively low
to simulate the kinds of rules that could be generated by either human experts or machine learning
algorithms such as APEX (see Page 11). In the former case this make sense because human beings
typically can’t reason about formulas that are too complex; in the latter, it is unlikely that more
complex (and useful) formulas could be learned automatically because the data supporting such
rules would become too sparse.

79



the solution found by the exact algorithm. Due to the immense time complexity

of the HOP algorithm, we do not directly compare its performance to the Naive

algorithm or SemiHOP. In the discussion below we use the metric ruledensity =

Lact
card(TωΠs )

to represent the size of the ap-program; this allows for the comparison of

the Naive and HOP and SemiHOP algorithms as the number of worlds increases.

Running time. Figure 4.6 shows the running times for each of the Naive, SemiHOP,

Naivebinary, and SemiHOPbinary algorithms for increasing number of worlds. As ex-

pected, the binary search approximation algorithm is superior to the exact algo-

rithms in terms of computation time, when applied to both the Naive and SemiHOP

constraint sets. With a sample size of 25%, Naivebinary and SemiHOPbinary take only

about 132.6 seconds and 58.19 seconds for instances with 1,024 worlds, whereas the

Naive algorithm requires almost 4 hours (13,636.23 seconds). This result demon-

strates that the Naive algorithm is more or less useless and takes prohibitive amounts

of time, even for small instances. Similarly, the checks for logical equivalence re-

quired to obtain each [wi] for HOP cause the algorithm to consistently require an

exorbitant amount of time; for instances with only 128 worlds, HOP takes 58,064.74

seconds, which is much greater even than the Naive algorithm for 1,024 worlds.

Even when using the binary heuristic to further reduce the number of variables,

HOPbinary still requires a prohibitively large amount of time.

At low rule densities, SemiHOP runs slower than the Naive algorithm; with

10 rules, SemiHOP uses 18.75 seconds and 122.44 seconds for 128 worlds, while the

Naive algorithm only requires 1.79 seconds and 19.99 seconds respectively. How-

ever, SemiHOP vastly outperforms Naive for problems with higher densities—358.3

seconds versus 13,636.23 seconds for 1,024 worlds—which more accurately reflect

real-world problems in which the number of possible worlds is far greater than the
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Figure 4.6: Running time of the algorithms for increasing number of worlds.
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Figure 4.7: Running time of Naivebinary and SemiHOPbinary for large number of
worlds.

number of ap-rules. Because the SemiHOP algorithm uses subpartitions rather than

unique equivalence classes in the RedCONSU(Π, s, T ωΠs) constraints, the algorithm

overhead is much lower than that of the HOP algorithm, and thus yields a more

efficient running time.
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The reduction in the size of the set of constraints afforded by the binary

heuristic algorithm allows us to apply the Naive and SemiHOP algorithms to much

larger ap-programs. In Figure 4.7, we examine the running times of the Naivebinary

and SemiHOPbinary algorithms for large numbers of worlds (up to 290 or about

1.23794 × 1027 possible worlds) with a sample size for the binary heuristic of 2%;

this is to ensure that the reduced linear program is indeed tractable. SemiHOPbinary

consistently takes less time than Naivebinary, though both algorithms still perform

rather well. For 1.23794×1027 possible worlds, Naivebinary takes an average 26,325.1

seconds while SemiHOPbinary requires only 458.07 seconds. This difference occurs be-

cause |S RedCONSU(Π, s, T ωΠs)| < |CONSU(Π, s, T ωΠs)| that is the heuristic algorithm

is further reducing an already smaller constraint set. In addition, because SemiHOP

only solves the linear constraint problem when there is exactly one satisfying in-

terpretation for a subpartition, it performs fewer computations overall. Because of

this property, experiments running SemiHOPbinary on problems with very large ap-

programs (from 1,000 to 100,000 ground atoms) only take around 300 seconds using

a 2% sample rate. However, this aspect of the SemiHOP algorithm can also lead to

some anomalous behavior, where the running time will appear to decrease as the

number of worlds increases. Figure 4.8 illustrates this anomaly, as the computation

time appears to decrease with very large numbers of worlds. This occurs when we

have taken a small sample of subpartitions in a problem with very high rule density,

and there are no subpartitions with a single satisfying interpretation; as a result,

no “most probable world” computations are performed, which obviously leads to

a drastic reduction in the running time. Further experimentation is necessary to

determine the optimal balance between an efficient running time and a sample large

enough to produce meaningful results.
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# Action Atoms # Worlds Time (s)

1,000 ≈ 10301 363.62
10,000 ≈ 103,010 254.41
100,000 ≈ 1030,102 211.65

Figure 4.8: Running time of the SemiHOPbinary algorithm for very large numbers of
possible worlds.

Quality of solution. Figure 4.9 compares the accuracy of the probability found

for the most probable world by SemiHOP, Naivebinary, and SemiHOPbinary to the

solution obtained by the Naive algorithm, averaged over at least 10 runs for each

number of worlds. The results are given as a percentage of the solution returned by

the Naive algorithm, and are only reported in cases where both algorithms found

a solution. The SemiHOP and SemiHOPbinary algorithms demonstrate near perfect

accuracy; this is significant because in the SemiHOPbinary algorithm, the binary

heuristic was only sampling 25% of the possible subpartitions. However, in many

of these cases, both the Naive and the SemiHOP algorithms found most probable

worlds with a probability of zero. The most probable world found by the Naivebinary

algorithm can be between 75% and 100% as likely as those given by the regular

Naive algorithm; however, the Naivebinary algorithm also was often unable to find a

solution.

4.5 Concluding Remarks

We have presented the theory and algorithms of ap-programs. ap-programs

are a variant of probabilistic logic programs and their syntax and semantics is not

very different from them. What we have done, however, is to present the following

contributions:
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Figure 4.9: Quality of the solutions produced by SemiHOP, Naivebinary, and Semi-
HOPbinary as compared to Naive.

1. Dealing with the problem of reducing the size of the linear programs that

are generated by ap-programs - this problem has not been addressed in the

literature for this problem, for any kind of PLPs.

2. Studying the problem of finding the most probable world, given an ap-program;

this problem has not been addressed in the literature either, for any kind of

PLPs.

3. Three algorithms to find the most probable world, along with the Binary

heuristic that can be used in conjunction with any of them.

4. Our theory has produced tangible results of use to US military officers [Bha07,

Sub07].

5. Our implementation is the only one we are aware of that can work for large

numbers of ground atoms with reasonable accuracy and levels of efficiency
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much superior to past efforts (we could only evaluate accuracy in cases with

small numbers of ground atoms).

Furthermore, we have developed methods to reduce the size of the linear programs

involved by taking into account the set of action atoms that a specific user might

be interested in. By taking this into account, one can come up with a smaller linear

program than that obtained by our other algorithms that often, but not always, leads

to a fast solution. The SemiHOP algorithm also proposes a reduction in number of

variables in the resulting linear program by defining equivalence classes of worlds.

However, that algorithm bases the equivalence classes on co-occurrence of worlds in

constraints, whereas the equivalence classes that arise here are purely a consequence

of the input provided by the user through the set Q of actions that are interesting

to him. It remains to be seen what the accuracy of the Monte Carlo approach is,

and whether it can be improved using the heuristics presented here.

There are many problems that remain open. First, we need an accurate es-

timation of the computational complexity of the MPW problem. We have proven

NP-hardness results, but were unable to establish membership in NP. A more ac-

curate classification would be desirable. Moreover, it would be desirable to come

up with efficient parallel algorithms. Third, it would be nice to get some concrete

theoretical results about the accuracy of solutions produced by the binary heuristic.

It is possible also that a judicious selection of variables in the binary heuristic may

yield better results.

In the next chapter, we show that the approach described in this chapter can be

significantly improved through the incorporation of yet another piece of knowledge.

Under certain conditions, when we know what actions the user is interested in

predicting (which is often the case and can be easily communicated by the user to a
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system implementation), we can reduce the size of the linear program significantly,

while guaranteeing that an exact solution will be found, not an approximate solution.

Furthermore, we develop a Monte Carlo sampling approach that, when used in

conjunction with the reduced linear program, is enormously helpful in scaling the

performance of the system.

86



Chapter 5

Focused Most Probable World

Computations in Action Probabilistic

Logic Programs

The “Most Probable World” (MPW) problem in probabilistic logic program-

ming, presented in Chapter 4, is that of finding a possible world with the highest

probability. We have shown that this problem is computationally intractable and

involves solving exponentially many linear programs, each of which is of exponential

size. In this chapter, we study what happens when the user focuses his interest on a

set of atoms in such a PLP. We show that we can significantly reduce the number of

worlds to be considered by defining a “reduced” linear program whose solution is in

one-to-one correspondence with the exact solution to the MPW problem. However,

the problem is still intractable. We develop a Monte Carlo sampling approach that

enables us to build a quick approximation of the reduced linear program that allows

us to estimate (inexactly) the solution to the MPW problem. We show experimen-

tally that our approach works well in practice, scaling well to problems where the

exact solution is intractable to compute.
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5.1 Introduction

As we have discussed in previous chapters, action probabilistic logic pro-

grams [KMN+07b, KMN+07a] (ap-programs for short) provide a logic programming

paradigm through which we can develop stochastic models of the behavior of real

world organizations without making any assumptions about independence of events

and/or conditions. In view of the fact that no such assumptions are made, this

paradigm is fundamentally different from others such as Bayesian Networks which

are based on the assumption that certain variables are only dependent on a spe-

cific subset of variables. ap-programs and their variants have been used extensively

over the last couple of years to develop models of the behaviors of the various

stakeholders in the Afghan drug trade [SMSS07a] as well as terrorist groups such

as Hezbollah [MMP+08a] and Hamas [MMP+08b]. These models, which are now

available through a secure site [MSSS08] to registered users from over 12 defense

organizations, exist for over 36 groups ranging from Morocco to Afghanistan. The

behavioral models themselves are expressed through a set of stochastic rules that are

informally of the form “If condition C holds, then group g will take a given action

a with a probability in the range [`, u].” Note that the use of ap-programs to model

organizational behavior is not limited to organizations with suspicious activities—in

theory, they could just as well be used to learn conditions about when an investment

bank will buy or sell a certain stock, or when an insurance company will pay or deny

a given claim, or when OPEC will raise oil prices. However, these latter applications

have not been built to the best of our knowledge.

A group’s behavior is thus characterized by a set of such rules. Naturally, there

is much interest in what a group will do in a given situation S (real or hypothetical)

that may or may not have been encountered in the past. Past work by us has
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studied this problem in considerable detail. A “world” informally refers to a set

of actions that the group might take in situation S 1. It is clear that the number

of all possible worlds is exponential in the number of actions considered. The key

question for decision makers is: what is the most (or k most) probable world(s) in

a given situation S for group g?

The naive approach to solving this problem as described in Chapter 4 is to

derive a linear program from the ap-program and situation S, and to try to compute

the probability of world w for each and every world w. This approach has two

fundamental problems. First, the size of the linear program is exponential in the

number of actions considered. Second, we need to solve an exponential number of

such linear programs (one for each world) in order to determine the most probable

world. In Chapter 4, we made two major improvements to alleviate these problems.

First, we proposed a method to reduce the size of the linear program (sometimes but

not always) from being exponential in the number of atoms, to being exponential

in the number of rules; and second, we developed a heuristic that explores only a

fixed number of worlds.

In this chapter, we develop an approach based on the action probabilistic

logic programs of [KMN+07b, KMN+07a] that investigates how reasoning with these

programs can take advantage of the incorporation of yet another piece of knowledge.

Under certain conditions, when we know what actions the user is interested in

predicting (which is often the case and can be easily communicated by the user to

a system implementation), we can define a set of “worlds of interest” that abstracts

away the differences that only occur with respect to actions that are not of interest

1It is assumed that all actions in the world are carried out more or less in parallel and at once,
given the temporal granularity adopted along with the model. Contrary to (related but essentially
different) approaches such as stochastic planning, we are not concerned here with reasoning about
the effects of actions.
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to the user. One of the main reasons for doing this is that probabilities assigned

to these worlds “focus” the probability mass that would otherwise be dispersed

across the worlds that are abstracted away by this approach. Another positive

aspect is that doing this yields a linear program that is significantly reduced in

size, while guaranteeing that an exact solution will be found. Furthermore, we

develop approximation algorithms based on Monte Carlo sampling that, when used

in conjunction with the reduced linear program, are enormously helpful in scaling

the performance of the system while not losing a great deal of precision. We describe

these methods and provide experimental results showing that our system performs

well even when a relatively large number of actions is considered.

5.2 Preliminaries

As we have seen in previous chapters, Action probabilistic logic programs (ap-

programs) are a variant of the probabilistic logic programs introduced in [NS91,

NS92]. In this chapter, we assume that we have been provided with a distinguished

set Q of action atoms of interest chosen from the set of all possible ground action

atoms. For instance, when a user is reasoning about a given group, he might specify

what actions he is interested in. The powerset of Q will be denoted by WQ, and

represents the worlds of interest; their importance in the reduction of the size of

the resulting constraints when performing most probable world computations will

be discussed below.

Definition 18. Let F ∈ bf(Lact) be a ground basic action formula, and Q be a set

of ground action atoms. The reduction of F with respect to Q, denoted by red(F,Q)

is defined as a new formula F ′, which is obtained by removing from F , the atoms
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that do not appear in Q. If F is a conjunction (resp. disjunction) and does not

contain any atoms from Q, then red(F,Q) = > (resp. ⊥).

We use comp(F,Q) to denote the part of formula F that does not contain the

atoms in Q (this intuitively corresponds to the complement of red(F,Q)).

Definition 19. Let F ∈ bf(Lact) be a ground basic action formula, and Q be a

set of ground action atoms. The complement of F with respect to Q, denoted by

comp(F,Q) is defined as a new formula F ′, which is obtained by removing from F

the atoms that do not appear in red(F,Q). If F is a conjunction (resp. disjunction)

and , F = red(F,Q) then comp(F,Q) = > (resp. ⊥).

The example below illustrates these concepts.

Example 13. Let F = a ∨ b ∨ c ∨ d ∨ e, and Q = {a, b, c}. In this case, we have

red(F,Q) = a∨ b∨ c, while comp(F,Q) = d∨ e. If Q′ = {f, g}, then red(F,Q′) = ⊥

and comp(F,Q′) = F .

As can be seen from the examples, reductions and complements of a formula

are defined in such a way that their combination (depending on the basic formula’s

type) results in the original formula.

5.3 A new Linear Program Formulation for Worlds

of Interest

Let Π be a basic ap-program, s be a state, Lact be the set of all possible action

predicates, and gr(Lact) be the set of all possible ground action atoms. Following

the work of [Hai84, Nil86, Hal90, FHM90, NS92, Luk98], [KMN+07a] shows how
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we can associate a set of linear constraints with Π, s,Lact. If W is the set of all

possible worlds, and pi is a variable denoting the (as yet unknown) probability of

world wi ∈ W , then [KMN+07a] creates the set CONS(Π, s) of linear constraints

defined by:

1. If Fi : [`, u] ∈ Πs, then ` ≤
(∑

wj |=Fi pj

)
≤ u is in CONS(Π, s).

2.
∑

wi
pi = 1 is in CONS(Π, s).

Now suppose the user selects a set Q of ground action atoms that he considers to

be of interest for his work. We can take advantage of Q to significantly reduce the

size of the linear constraints CONS(Π, s), and focus the probability masses of the

possible worlds over these atoms of interest. We now show an example of how the

latter can prove to be useful.

Example 14. Suppose a given ap-program contains three possible atoms, a, b, and

c, giving rise to eight possible worlds: w0 = {}, w1 = {a}, w2 = {b}, w3 = {c},

w4 = {a, b}, w5 = {a, c}, w6 = {b, c}, and w7 = {a, b, c}. Suppose further that the

most probable world according to the techniques of [KMN+07a] is w6 with probability

0.25, and that the rest of the probability distribution is: p(w0) = 0, p(w1) = 0.2,

p(w2) = 0.05, p(w3) = 0.08, p(w4) = 0.12, p(w5) = 0.16, p(w7) = 0.14. If the

user were only interested in whether or not a is true (i.e., Q = {a}), then the most

probable world w.r.t. Q is {a}, with probability p(w1) + p(w4) + p(w5) + p(w7) =

0.2+0.12+0.16+0.14 = 0.62, versus world {} (representing all worlds where a is not

true) with probability p(w0) + p(w2) + p(w3) + p(w6) = 0 + 0.05 + 0.08 + 0.25 = 0.38.

Note that a wasn’t true in the most probable world originally computed.

In connection to our discussion of applications in Chapter 1, the difference

between the two kinds of probability distributions in Example 14 can also be visu-
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alized by the soccer penalty kick example in Section 1.2.2, as shown in the following

example.

Example 15. Suppose a goalkeeper assumes that the player can kick in six different

ways, with the following probabilities:

p(high ∧ right) = 0.25

p(high ∧ center) = 0.025

p(high ∧ left) = 0.35

p(low ∧ right) = 0.25

p(low ∧ center) = 0.025

p(low ∧ left) = 0.10

Therefore, the most probable kick would be “high to the left”, since it has probability

0.35. However, if the goalkeeper decides to abstract away the height of the kick, he

would get the following, more “focused” distribution:

p(right) = 0.50

p(center) = 0.05

p(left) = 0.45

Similar to what happened in Example 14, note that the most probable kick is now

towards the right instead of to the left.

In this chapter we will tackle the problem of building a set of constraints that

will allow us to carry out the kind of computations discussed in Examples 14 and 15.

Given Q, we define a set of linear constraints CONS0(Π, s,Q). The intuition behind

this set of constraints, as compared to that used in CONS(Π, s) [KMN+07a] is that

we now have a new setWQ that contains 2|Q| worlds, each of which is an abstraction

of worlds in the old set W (each w′ ∈ WQ represents 2|W|−|W
Q| worlds from the
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original set). The constraints are then defined over the set of all possible worlds of

interest WQ as follows:

1. If Fi : [`, u] ∈ Πs, Fi is a conjunction, and red(F1,Q) 6= > then

` ≤

 ∑
wj |=red(F,Q)

pj

− qi0 ≤ u

is in CONS0(Π, s,Q).

2. otherwise (i.e., Fi is a disjunction or red(F1,Q) = >), we have that

` ≤

 ∑
wj |=red(F,Q)

pj

+ qi0 ≤ u

is in CONS0(Π, s,Q).

3. For each variable qi0 introduced in the constraints of type (1) and (2), the set

CONS0(Π, s,Q) contains the constraint qi0 ≥ 0.

4.
∑

wi
pi = 1 is in CONS0(Π, s,Q).

The probability of each world in WQ represents the summation of probabilities

of worlds in the original set of constraints. The qi0 variables introduced in the

constraints of type (1) and (2) (referred to as auxiliary variables from now on) serve

the purpose of compensating for the loss of granularity of this new set of worlds;

for conjunctions they appear as negative values, since the reduced formula has more

satisfying worlds than the original, and for disjunctions the opposite holds. In the

case of conjunctions, the qi0 values represent the summation

∑
wi|=red(Fi,Q)∧¬comp(Fi,Q)

pi (5.1)
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1. a ∨ b ∨ c : [0.85, 0.95] ← .
2. b ∧ c : [0.4, 0.55] ← .
3. a ∨ b ∨ d : [0.6, 0.78] ← .
4. a ∧ c ∧ d : [0.15, 0.3] ← .

0.85 ≤ p1 + p2 + p3 + q1
0 ≤ 0.95

0.4 ≤ p2 + p3 − q2
0 ≤ 0.55

0.6 ≤ p1 + p2 + p3 + q3
0 ≤ 0.78

0.15 ≤ p1 + p3 − q4
0 ≤ 0.3

q1
0, q

2
0, q

3
0, q

4
0 ≥ 0

p0 + p1 + p2 + p3 = 1

Figure 5.1: A simple ap-program and its corresponding set of linear constraints
CONS(Π, ∅, {a, b}).

from the original constraints, while in the case of disjunctions they represent the

summation ∑
wi|=comp(Fi,Q)∧¬red(Fi,Q)

pi (5.2)

In the following, we will use corr(v) (for correction formula) to denote the formula

associated with auxiliary variable v, which initially has the values just described.

Now, this is only a first approximation towards obtaining a set of constraints that

adequately reflects all the restrictions provided by the full set used in [KMN+07a].

In order to clarify what we mean by this, we first present an example of how to

obtain CONS0(Π, s,Q).

Example 16. Suppose we have the basic ap-program Π of Figure 5.1, and let

Q = {a, b}. While the original set of worlds W included 16 worlds, the reduced

set WQ contains only 4. As discussed, each of these worlds represents an ab-

straction of worlds from the original set; for instance, world {a} represents worlds

{a}, {a, c}, {a, d}, and {a, c, d}. This reflects the fact that the reasoning agent is

only interested in the atoms in Q, and therefore needs not differentiate among the

worlds that only differ in atoms that are not in this set. As we will see later on, the
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goal is to have each variable in the linear program represent the sum of the variables

from the original formulation.

The set of constraints CONS(Π, s,Q), for which we use the enumeration of

worlds w0 = {}, w1 = {a}, w2 = {b}, and w3 = {a, b}, is shown in Figure 5.1.

Here, for instance, corr(q2
0) = b ∧ ¬c.

5.3.1 Refining the Set of Constraints

In Example 16, it can clearly be seen that the values of variables q1
0 and q3

0

are not independent of each other, since their corresponding formulas share models,

i.e., (c∧¬(a∨ b))∧ (d∧¬(a∨ b)) 6|= ⊥. In this case, there is one world, {c, d} that is

a model of both correction formulas. This means that the initial set of constraints

does not adequately represent the original restrictions on the probabilities that can

be assigned to each world, and we should take this into account in order to refine

the set of constraints. In order to address this issue, we introduce the RefineCONS

algorithm (Figure 5.2), which replaces the variables that give rise to these situations

with new variables, and sets their associated formulas accordingly. The for loop on

line 15 states that each of the auxiliary variables must be bounded from above by

the upper bounds of formulas in the heads of rules in Π that are satisfied by their

associated formulas. This process can add redundant constraints (since more than

one formula could be satisfied, and then only the lowest upper bound would make

a difference) but we do not include the simple checks to avoid this in order to keep

the presentation clear. The following example shows the set of constraints from the

previous example after applying this algorithm.

Example 17. When we apply the RefineCONS algorithm to the set of constraints

obtained in Example 16, we obtain the following result.
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Algorithm 6: RefineCONS(Π,CONS)
1. CONS′ := copy of CONS;
2. i := 1;
3. while CONS′ has two auxiliary variables uk1 , vk2 such that

corr(uk1) ∧ corr(vk2) 6|= ⊥ {
4. replace uk1 in CONS′ with a new variable ui;
5. set corr(ui) = corr(uk1) ∧ ¬corr(vk2);
6. i := i+ 1;
7. replace vk2 in CONS′ with a new variable vi;
8. set corr(vi) = corr(vk2) ∧ ¬corr(uk1);
9. i := i+ 1;
10. introduce a new variable ri in CONS′ (with coeff. +1)

wherever uk1 and vk2 appeared;

11. set corr(ri) = (corr(uk1) ∧ corr(vk2));
12. add constraint ri ≥ 0 to CONS′;
13. i := i+ 1;
14. }
15. for each auxiliary variable v and formula F in Π such that

corr(v) ∧ F 6|= ⊥ and

F : [L,U ] is the head of a rule in Π {
16. add constraint 0 ≤ v ≤ U to CONS′

17. }
18. return CONS′;

Figure 5.2: The RefineCONS algorithm.

(1). 0.85 ≤ p1 + p2 + p3 + q1
1 + r2 ≤ 0.95 (9). 0 ≤ r2 ≤ 0.78

(2). 0.4 ≤ p2 + p3 − q2
3 − r4 ≤ 0.55 (10). 0 ≤ q2

3 ≤ 0.95

(3). 0.6 ≤ p1 + p2 + p3 + q3
1 + r2 ≤ 0.78 (11). 0 ≤ q2

3 ≤ 0.78

(4). 0.15 ≤ p1 + p3 − q4
3 − r4 ≤ 0.3 (12). 0 ≤ r4 ≤ 0.95

(5). q1
1, q

2
3, q

3
1, q

4
3, r2, r4 ≥ 0 (13). 0 ≤ r4 ≤ 0.78

(6). p0 + p1 + p2 + p3 = 1 (14). 0 ≤ q4
3 ≤ 0.95

(7). 0 ≤ q1
1 ≤ 0.95 (15). 0 ≤ q4

3 ≤ 0.55

(8). 0 ≤ r2 ≤ 0.95 (16). 0 ≤ q4
3 ≤ 0.78

Here, for instance, corr(q2
3) = (b ∧ ¬c) ∧ ¬(a ∧ ¬(c ∧ d)), constraint 11 states that,

because (a ∨ b ∨ d) ∧ corr(q2
3) 6|= ⊥, the upper bound of rule 3 applies to q2

3. As
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Original linear program 

CONS(Πs, s, Q) 

Reduced linear program 

CONS′(Πs, s, Q) 
C1: 0.85 ≤ p′1 + p′2 + p′3 + q1

1 + r2  ≤ 0.95 

 

 

 

 

C2: 0.4 ≤ p′2 + p′3 – q2
3 – r4  ≤ 0.55 

 

 

C1: 0.85 ≤  p4 + p5 + p6 + p7 

 + p8 + p9 + p10 + p11  

+ p12 + p13 + p14 + p15  

+ p2 + p3  ≤ 0.95 

 

C2: 0.4 ≤ p6 + p7 + p14 + p15 ≤ 0.55 

Figure 5.3: Part of the set of constraints after applying the RefineCONS algorithm
to the set of constraints obtained in Example 16. Here, we show one constraint
arising from a rule whose head contains a disjunction and one arising from a rule
containing a conjunction (C1 and C2, respectively) in order to demonstrate the two
possible scenarios that occur.

discussed above, some of the constraints indicating upper bounds (constraints 7 to 16)

are redundant and their insertion can be easily avoided by the algorithm. This is the

case with constraints 8, 10, 12, 14, and 16.

The following proposition states that the running time of the RefineCONS

algorithm makes it intractable even for relatively small instances.

Proposition 8. Given a state s, a set of actions of interest Q, an ap-program Π

containing m rules where the set of action atoms A has n elements, the worst case

computation time for RefineCONS (Π,CONS(Π, s,Q)) is in O (2n+m).

Proof. We start by analyzing the number of times that the while loop in line 3 is

executed. In the worst case, the sets of models of the auxiliary variables are such that

their pairwise intersections are all non-empty. This leads to a number of auxiliary

variables that is exponential in the number of constraints. In Figure 5.4, we show
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Figure 5.4: A Venn diagram representation of the models of formulas. On the left,
two formulas share at least one model; the set of shared models is shown in gray.
On the right, a new formula is introduced, which shares models with all three sets
from the left (i.e., only F1, only F2, and both) generating a total of seven possible
subsets.

how this situation can arise; on the left, we have two formulas whose sets of models

intersect (shown in gray), while on the right we show the worst possible scenario

when considering one more formula, i.e., that the new formula’s models intersect

with all three parts of the original diagram. This clearly leads to 2m − 1 auxiliary

variables in the worst case, since m is the number of constraints in CONS0(Π, s,Q).

The second source of complexity is in evaluating whether the formulas asso-

ciated with a given pair of auxiliary variables are consistent or not (i.e., whether

their sets of models intersect or not). Note that correction formulas contain atoms

from the original set A, and therefore performing the satisfiability checks required

to verify existence of common models will require time in O(2n). Even though all

rules have basic formulas in their heads, note that correction formulas are not basic

in general.

The impact on the running time of the RefineCONS of the size of the ap-

program (both in number of rules and action atoms) will be verified experimentally

in Section 5.4. As hinted in the proof above, we can perform a single step of

refinement in polynomial time.

99



Proposition 9. Given a state s, a set of actions of interest Q, an ap-program Π

containing m rules, and if the set of action atoms A has n elements, the worst case

computation time for refining the correction formulas in CONS0(Π, s,Q) (i.e., per-

forming the first step of refinement) as computed by RefineCONS (Π,CONS(Π, s,Q))

is in O (m2n).

Proof. Let corr(qi), corr(qj) be two correction formulas corresponding to auxiliary

variables in CONS0(Π, s,Q); we must check for each possible pair of such correction

formulas whether or not corr(qi) ∧ corr(qj) |= ⊥. There are three possible cases for

the type of formulas of Fi and Fj that gave rise to these formulas. In the following,

we will denote with atoms(F ) the set of atoms occurring in basic formula F .

1. Fi and Fj are both conjunctions. In this case, we have corr(qi) ≡ red(Fi) ∧

¬comp(Fi), and corr(qj) ≡ red(Fj) ∧ ¬comp(Fj). The conjunction of correc-

tion formulas is always satisfiable, since atoms made true by red(Fi) cannot

conflict with those made true by red(Fj). Likewise, atoms made false by

¬comp(Fi) cannot conflict with those made true by ¬comp(Fj). Furthermore,

a model satisfying the conjunction can be found in time in O(n).

2. Fi is a conjunction and Fj is a disjunction (the opposite case is analogous).

We now have that corr(qi) ≡ red(Fi)∧¬comp(Fi) and corr(qj) ≡ comp(Fj)∧

¬red(Fj). In order for the conjunction to be satisfiable, it must be the case

that atoms(red(qi)) ∩ atoms(red(qj)) = ∅. If this is the case, a model can be

found in time in O(n).

3. Fi and Fj are both disjunctions. In this case, we have corr(qi) ≡ comp(Fi) ∧

¬red(Fi), and corr(qj) ≡ comp(Fj) ∧ ¬red(Fj). Similar to the fist case, the

conjunction of correction formulas is always satisfiable, since atoms made true
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by comp(Fi) cannot conflict with those made true by comp(Fj). Also as be-

fore, atoms made false by ¬red(Fi) cannot conflict with those made true by

¬red(Fj). Finally, a model satisfying the conjunction can be found in time in

O(n).

Checking all pairs of correction formulas in CONS0(Π, s,Q) involves performing

m2/2 such steps, yielding a running time in O (m2n).

We now provide an example of how Proposition 9 can be applied.

Example 18. Consider once again the ap-program from Figure 5.1, where we have

the following correction formulas: corr(q1
0) ≡ c ∧ ¬(a ∨ b), corr(q2

0) ≡ b ∧ ¬c,

corr(q3
0) ≡ d∧¬(a∨ b), and corr(q4

0) ≡ a∧¬(c∧ d). According to Proposition 9, q1
0

and q3
0 (both corresponding to disjunctions) definitely share at least one model. This

model can be obtained by finding a satisfying interpretation for comp(a∨ b∨ c,Q)∧

comp(a∨b∨d,Q) (in this case, c∧d), which is guaranteed to be possible in O(n) time.

On the other hand, using Case 2, we quickly can determine that q1
0 and q4

0 are such

that corr(q1
0)∧ corr(q4

0) |= ⊥, since it holds that atoms(red(q1
0))∩ atoms(red(q4

0)) =

{c} 6= ∅. This saves us from running a SAT check on the original conjunction:

c ∧ ¬(a ∨ b) ∧ a ∧ ¬(c ∧ d).

The above discussion and Propositions 8 and 9 leads us to the following corol-

lary:

Corollary 1. The best case computation time for the RefineCONS algorithm occurs

when all pairs of auxiliary variables have mutually inconsistent correction formulas

after one refinement step, which yields a running time in O (m2n).

The following result links the results obtained from solving the output of Re-

fineCONS with those obtained from solving the original set of constraints used
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in [KMN+07a] for the corresponding worlds. We use Vars(C) to denote the set

of variables occurring in a set C of constraints, and val(V, S) to denote the value

assigned to variable V by a solution S.

Theorem 5. Let Π be an ap-program, s be a state, Q be a subset of all possible

action atoms, C = CONS(Π, s) be the original set of constraints (obtained by con-

sidering the entire set of action atoms), and C∗ be the set of constraints returned

by RefineCONS (Π, C). Then, there exists a mapping µ : Vars(C∗) → 2Vars(C) such

that:

1. If V1, V2 ∈ Vars(C∗), V1 6= V2, then µ(Vi) ∩ µ(V2) = ∅

2. For every solution S of C there exists a solution S∗ of C∗ such that for every

V ∗i ∈ S∗, val(V ∗i , S∗) =
∑

Vj∈µ(V ∗i ) val(Vj, S).

Proof. We first establish how mapping µ is obtained. For any non-auxiliary variable

p∗j corresponding to a world of interest w∗j |= red(F,Q), we have that

µ(p∗j) =
{
pi | wi = w∗j ∪ wr where wr ∈ P

(
W −WQ

)}

and, for any auxiliary variable q∗j we have

µ(q∗j ) =
{
pi | wi ∈ W and wi |= corr(q∗j )

}
.

Note that this mapping is the by-product of how CONS(Π, s,Q) is defined.

We must first prove that condition (1) holds. For non-auxiliary variables, it

is clear from the definition of the mapping that no two images can intersect, since

their elements are constructed from disjoint worlds in WQ. For auxiliary variables,

the algorithm RefineCONS guarantees that the images of two different variables do
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not intersect, since the while loop in line 2 exits only when, for all pairs of auxiliary

variables, their corresponding correction formulas do not share models.

In order to prove condition 2, consider a solution S of C and an assignment

of values S∗ to variables of C∗ satisfying the conditions in the theorem. We must

now prove that S∗ so defined is in fact a solution for C∗; in order to do this, we will

consider constraints arising from disjunctions and conjunctions in turn:

• Let c∗i be a constraint arising from a rule whose head is a disjunction. From the

definition of CONS(Π, s,Q) and the operations performed by the RefineCONS

algorithm, all variables in the constraint appear with a coefficient of 1 (pos-

itive). Therefore, from condition (1) it follows that c∗i is simply a rewriting

of its corresponding constraint in C, where p∗j replaces the block of variables

µ(q∗j ).

• Let c∗i be a constraint arising from a rule whose head is a conjunction. In

this case we will have variables with a −1 coefficient. As before, it is pos-

sible to see c∗i as a rewriting of its corresponding constraint in C. To see

why, consider the set of non-auxiliary variables in c∗i ; the value assigned by

S∗ to the sum of all such variables can be separated into two positive val-

ues, s∗i,1 and s∗i,2, such that s∗i,1 =
∑

wj∈W,wj |=red(F,Q)∧¬comp(F,Q) pj and s∗i,2 =∑
wj∈W,wj |=comp(F,Q)∧¬red(F,Q) pj (note that by definition we have that red(F,Q)∧

comp(F,Q) |= ⊥). Therefore, s∗i,2 = val(qi0) (as stated in Equation 5.1) and,

since RefineCONS guarantees that qi0 will be replaced by a set of variables

whose correction formulas do not share models and with a union of models

equal to that of qi0’s correction formula, this means that the constraint is in-

deed a rewriting of its corresponding one in C, since s∗i,2 is effectively added

and then subtracted.
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The following result is an immediate consequence of the above theorem and

establishes the correctness of the RefineCONS algorithm.

Corollary 2 (Correctness of RefineCONS). Algorithm RefineCONS is correct, i.e.,

minimizing/maximizing with respect to a non-auxiliary variable qi in the set of con-

straints C∗ = RefineCONS (Π, s,Q) yields the same value as that obtained by mini-

mizing/maximizing the sum of variables associated with the set of worlds abstracted

by world wi ∈ WQ.

5.3.2 Refinement Algorithms based on Random Sampling

In the previous section we saw that the applicability of the RefineCONS algo-

rithm is limited due to the intensive computations that it must carry out in order

to ensure that the constraints are fully refined. In this section, we will begin by pre-

senting a Monte Carlo algorithm that alleviates these computations, at the expense

of not being able to guarantee full refinement.

The basic Monte Carlo refinement algorithm is described in Figure 5.5. The

algorithm follows the same basic approach as RefineCONS, except that auxiliary

variables are now refined based on randomly selected models instead of exhaustive

verification of satisfiability of conjunctions of pairs of correction formulas. The

while loop in line 4 uses a subroutine terminationCond as a condition; we assume

that this subroutine is designed by the user to decide when enough refining attempts

have been made (for instance, number of models tried, number of refinements made,

time elapsed, etc). The following is an example of how this algorithm works.
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Algorithm 7: MonteCarloRefineCONS(Π,CONS)
1. CONS′ := copy of CONS;
2. i := 1; m := 0;
3. VariableAssignment test;
4. while terminationCond(Π,CONS, i,m) = false {
5. test = randomly generate a world wrt full set of atoms;

6. m := m+ 1
7. for each pair of auxiliary variables vk1 6= vk2 such that

test |= corr(vk1) ∧ corr(vk2)
8. replace vk1 in CONS′ with a new variable ui;
9. set corr(vi) := corr(vk1) ∧ ¬corr(vk2);
10. i := i+ 1;
11. replace vk2 in CONS′ with a new variable vi;
12. set corr(vi) := corr(vk2) ∧ ¬corr(vk1);
13. i := i+ 1;
14. introduce a new variable ri in CONS′ (with coeff. +1)

wherever vk1 and vk2 appeared;

15. add constraint ri ≥ 0 to CONS′;
16. i := i+ 1;
17. }
18. }
19. for each auxiliary variable v and formula F in Π such that

corr(v) ∧ F 6|= ⊥ and

F : [L,U ] is the head of a rule in Π {
20. add constraint 0 ≤ v ≤ U to CONS′

21. }
22. return CONS′;

Figure 5.5: The basic MonteCarloRefineCONS algorithm.

1. a ∨ b ∨ c : [0.85, 0.95] ← .
2. b ∧ c : [0.4, 0.55] ← .
3. a ∨ b ∨ d : [0.6, 0.78] ← .
4. a ∧ c ∧ d : [0.15, 0.3] ← .
5. e ∧ f ∧ g : [0.35, 0.42] ← .
6. h ∧ i ∧ j ∧ k : [0.90, 0.96] ← .

Figure 5.6: The ap-program from Figure 5.1 with two additional rules.

Example 19. Let Π be the ap-program from Figure 5.1, with the addition of two

rules, as shown in Figure 5.6. Note that the new rules do not share atoms with
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the original ones; in particular, this means that the correction formulas associated

with their auxiliary variables are the same as the heads of these rules. As shown in

Example 17, we need to identify two cases in which pairs of correction formulas have

overlapping models, these are (q1
0, q

3
0) and (q2

0, q
4
0). The first pair involves finding a

model for c∧¬(a∨ b)∧ d (which has a single model, {c, d}) and b∧¬c∧ a∧¬(c∧ d)

(which has two models, {a, b} and {a, b, d}).

Given this setup, suppose MonteCarloRefineCONS selects 100 randomly gen-

erated models and tests all pairs of auxiliary variables for the presence of an overlap.

Suppose the algorithm generates the following 5 models first:

m1 = (1, 0, 0, 1, 0, 0, 0, 1, 1, 0)

m2 = (1, 0, 0, 0, 1, 0, 1, 1, 1, 0)

m3 = (1, 0, 0, 1, 0, 1, 0, 0, 1, 1)

m4 = (1, 1, 0, 1, 1, 1, 0, 0, 0, 0)

m5 = (1, 0, 1, 1, 0, 0, 0, 1, 1, 0)

For models m1 through m5, the algorithm cycles through all pairs of auxiliary vari-

ables, checking if they satisfy the corresponding conjunction of corrections formulas.

For the first three, no overlaps are found. Next, m4 is found to satisfy the conjunc-

tion of q2
0 and q4

0’s correction formulas, and the algorithm therefore introduces a new

variable, r4, with correction formula b ∧ ¬c ∧ a ∧ ¬(c ∧ d); q2
0 is replaced by a new

variable q2
1 such that corr(q2

1) = b∧¬c∧¬(b∧¬c∧a∧¬(c∧d)). The other variable,

q4
0 is updated analogously. This process is carried out for the 95 remaining models.

In the following, we assume that terminationCond simply checks whether the

number of samples has reached a certain number p.
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Proposition 10. Let s be a state, Q be a set of actions of interest, Π be an ap-

program containing m rules where the set of action atoms A has n elements. The

worst case computation time of MonteCarloRefineCONS (Π,CONS(Π, s,Q)) is in

O (22mnp), where p is the number of possible worlds sampled.

Proof. Each interpretation generated by the algorithm in line 5 is used to evaluate

the conjunction of two correction formulas in the for loop in line 7; each such

evaluation can be performed in time in O(n). Since the algorithm will generate

p sample interpretations and, as we have shown in Proposition 8, the number of

auxiliary variables that can be generated is bounded by above by 2m, the running

time is in O (22mnp) since all possible pairs of auxiliary variables are examined in

the for loop in line 7.

As Proposition 10 shows, the Monte Carlo algorithm reduces the computation

time of the exact algorithm by a factor 2n by only looking at a subset of all the

possible interpretations that could lie at the intersection of the sets of models of the

correction formulas. However, its running time is still exponential in the number of

rules in the program, since all possible overlaps are checked for each interpretation

that is generated. However, as in the case of the exact algorithm, we stress that this

is the worst case running time that occurs when all possible overlaps in the sets of

models of formulas are non-empty.

Proposition 11. Let Π be an ap-program containing m rules where the set of action

atoms A has n elements. The probability that the MonteCarloRefineCONS algorithm

finds an interpretation that satisfies two correction formulas at once is bounded from

below by:

1−
(

2n − 1

2n

)p
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where p is the number of possible worlds sampled. The probability that MonteCar-

loRefineCONS finds all overlaps is then bounded from below by:

(
1−

(
2n − 1

2n

)p)2m−1

Proof. For the first part of the proof, note that the worst case is that the two

correction formulas in question only share a single interpretation. Therefore, the

probability of failure when uniformly sampling an interpretation over the set of n

atoms is 2n−1
2n

in each case, and
(

2n−1
2n

)p
of failing p times. Thus, one minus this

expression yields the probability of success. The second part simply states the

probability of finding all possible (worst case) 2m − 1 overlaps.

The probability of success of MonteCarloRefineCONS given by Proposition 11

are very loose lower bounds, since it assumes that the conjunctions in each case

have a single satisfying interpretation. It should be noted, however, that obtaining

a tighter bound is difficult, since knowing the number of satisfying interpretations

in order to obtain one would, in particular, involve knowing that the conjunction

is satisfiable! However, the probability of success using this strategy is likely to be

lower than it could possibly be, since the sampling is being performed over the entire

set of atoms, which is not always necessary. Furthermore, the algorithm is not taking

advantage of easy checks that it could perform. The basic Monte Carlo algorithm

can therefore possibly be enhanced by considering the following two heuristics:

Small number of variables check. Before any sampling is done, we can perform

the same checks done by the exact algorithm, but only carrying them out if the

total number of atoms occurring between the possible overlapping sets of models is

small enough for an exhaustive verification, i.e., a SAT check on the conjunction
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of corresponding correction formulas. This enhances the accuracy of the final re-

sult by identifying easy refinements that could otherwise be missed by the random

generation of models.

Example 20. Suppose we have the same program used in Example 19, and that we

are only willing to perform exact SAT checks for formulas with up to three atoms.

In this case, we can quickly determine that q1
0 and q2

0’s correction formulas do not

share models since c∧¬(a∨b)∧b∧¬c is not satisfiable. All other pairs of corrections

formulas involve a number atoms that is above our threshold, and will therefore not

be checked in this way.

Targeted sampling. A data structure can be maintained for storing the pairs of

auxiliary variables that we have proved do not share models. Such a data structure

can be an array of auxiliary variables, where each variable vi has a set of associated

auxiliary variables vj such that corr(vi) ∧ corr(vj) |= ⊥. These sets are all initially

empty, and then can be updated either by the checks discussed above, or when a

refinement is otherwise identified (such as when a randomly generated model satisfies

two or more variables’ correction formulas). When such an event occurs, the two

variables involved are replaced by the new three, where the conjunction variable is

associated with the union of the two other variables’ sets.

When such a data structure is maintained, targeted sampling can be performed,

i.e., generation of models specifically tailored towards certain pairs. This means that

a pair of variables can be selected out of the possible ones remaining, and models

can be generated involving only the atoms appearing in these variables’ correction

formulas, thus enhancing the chances of finding a model for their conjunction if one

exists. Another advantage of the use of such a data structure is in being able to
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determine how many pairs remain to be tested for refinement, and in particular if

none remain.

Example 21. Coming back to Example 19, consider the set of the four interpre-

tations that the algorithm generated and failed to find an overlap. Note that if m1

does not satisfy any of the pairs of correction formulas, m3 won’t either, since for

this particular example, the two interpretations are “equivalent” since they only vary

in assignments to irrelevant atoms e, f, g, h, i, j, k. This shows how MonteCarloRe-

fineCONS can waste effort when sampling. If we only consider the atoms that are

involved in, say, corr(q1
0) and corr(q3

0, then the sampling will only focus on relevant

atoms a, b, c, d, and generate interpretations that are guaranteed to be different.

The algorithm in Figure 5.7 shows how these two heuristics can be combined

and added to the basic idea of the Monte Carlo algorithm. The first for loop applies

the small number of variables check by doing a full SAT check on all pairs of variables

that only share up to satThresh variables; this parameter indicates the maximum

number of variables for which the user is willing to perform a SAT check. It should

be noted that, every time an overlap is found, a set of disjoint pairs is updated to

record that certain pairs of variables are known to have non-overlapping correction

formulas. The while loop in the second part of the algorithm focuses on the pairs

of variables that are not in this set, and performs up to testThresh tries to find a

satisfying variable assignment using the Monte Carlo method described above. As

was argued before, the samples are taken over the reduced set composed only of

the variables shared between the pair being tested, increasing the chances of finding

a satisfying interpretation if one exists. The algorithm selects for this purpose a

random number of pairs over which it will evenly divide the total number of samples

it will take. The subroutine terminationCond that is used in line 18 simply checks
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whether or not a certain termination condition is true (e.g., time elapsed since a

pair not in disjPairSet was found, etc). The line that reads “update CONS’ as

above” refers to the manipulation of the correction formulas and variables done in

the first for loop when a pair of variables is found to be overlapping. Finally, the

last for loop performs the same operations as the last steps of the exact algorithm

in order to add the corresponding upper bounds on the values that the auxiliary

variables can take. We will now show an example of how this algorithm works.

Example 22. Consider once again the ap-program from Example 19, and suppose

satThresh = 3 and testThresh = 100. The first part of the algorithm (shown shaded

in Figure 5.7) will check to see if there are any pairs of correction formulas whose

conjunction involves at most 3 atoms. As shown in Example 21, only the pair (q1
0, q

2
0)

meet this requirement and, since the corresponding conjunction is not satisfiable, the

algorithm updates disjPairSet reflecting that this pair of correction formulas does not

share models.

For the second part of the algorithm, it is determined that 15 pairs of auxiliary

variables are initially possible; however, the small number variables check brings this

to 14. Suppose the algorithm randomly determines that it will dedicate 20 samples

per randomly selected pair (i.e., perPair = 20). Suppose it begins by randomly

choosing the pair (q1
0, q

4
0); since c ∧ ¬(a ∨ b) ∧ a ∧ ¬(c ∧ d) is not satisfiable, all 20

samples produced will fail to find an overlap in this case. Suppose the pair (q1
0, q

3
0)

is then randomly chosen. For this pair, the algorithm has 20 chances of finding the

model {c, d} which proves that these two variables’ correction formulas share models.

Note that these chances are much better than the ones MonteCarloRefineCONS has

of finding this particular model (see Example 19). If {c, d} is chosen before using up

all 20 possibilities, the algorithm will update the structures as usual, and save the
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Algorithm 8: HeuristicRefineCONS(Π,Q, satThresh, testThresh)

1. CONS′ := copy of CONS; i := 1;
2. Set of variable pairs disjPairSet = new Set;

3. for each pair of auxiliary variables vk1 6= vk2 {
4. if |allV ars(corr(vk1), corr(vk2))| ≤ satThresh

and corr(vk1) ∧ corr(vk2) 6|= ⊥ {
5. replace vk1 in CONS′ with a new variable vi;
6. set corr(vi) := corr(vk1) ∧ ¬corr(vk2); i := i+ 1;
7. replace vk2 in CONS′ with a new variable vi;
8. set corr(vi) := corr(vk2) ∧ ¬corr(vk1); i := i+ 1;
9. introduce a new variable ri in CONS′ (coeff. +1)

wherever vk1 and vk2 appeared;

10. add constraint ri ≥ 0 to CONS′; i := i+ 1;
11. update disjPairSet;

12. }
13. }

14. VariableAssignment test;

15. Integer numPairs := compute # possible aux. var. pairs;

16. Integer perPair := testThresh/U(1, numPairs);
17. Integer totalSamples = 0;
18. while totalSamples < testThresh and terminationCond() {
19. randomly select pair of aux. vars vk1 6= vk2 such that

(vk1 , vk2) /∈ disjPairSet {
20. m := 0;
21. while m < perPair and totalSamples < testThresh and

(vk1 , vk2) /∈ disjPairSet {
22. test = randomly generate a world w.r.t.

23. allV ars (corr(vk1), corr(vk2));
24. m := m+ 1; totalSamples := totalSamples + 1;
25. if test |= corr(vk1) ∧ corr(vk2){
26. update CONS’ as above; update disjPairSet;

27. }
28. }
29. }
30. for each auxiliary variable v and formula F in Π such that

corr(v) ∧ F 6|= ⊥ and

F : [L,U ] is the head of a rule in Π {
31. add constraint 0 ≤ v ≤ U to CONS′

32. }
33. return CONS′;

Figure 5.7: An algorithm based on MonteCarloRefineCONS that uses the small
number of variables and targeted sampling heuristics. The shaded part of the pseu-
docode corresponds to the small number of variables check.
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remaining ones for future pairs. The process continues in this manner until all 100

samples are exhausted or until all pairs have been proved to be disjoint.

Analyzing the running time of the HeuristicRefineCONS algorithm is not an

easy task, since it is composed of two distinct parts. However, the following two

propositions give us some information regarding the computational cost in two par-

ticular cases. The first proposition involves the case in which only the exact checks

in lines 3-13 are performed.

Proposition 12. Let s be a state, Q be a set of actions of interest, Π be an ap-

program containing m rules where the set of action atoms A has n elements. Suppose

all possible pairs of correction formulas have in each case a combined set of atoms C

such that |C| ≤ t, then heuristicRefineCONS (Π, s,Q, t, p) runs in time in O(22m+t).

Proof. Each SAT check in this case takes time in O(2t), and in the worst case there

are 2m − 1 auxiliary variables. Therefore, checking all possible pairs takes time

in O(22m+t).

The next proposition explores a possible use of Proposition 12.

Proposition 13. Let s be a state, Q be a set of actions of interest, and Π be an ap-

program containing m rules where the set of action atoms A has n elements. Then,

the worst case running time of heuristicRefineCONS (Π, s,Q, 0, p) is in O(np).

Proof. Since the satThresh parameter is zero, the exact part of the algorithm (lines 3-

13) is never executed. For the rest of the algorithm, in the worst case the inter-

pretations generated are always of length O(n). Since p such interpretations are

generated, and each can be evaluated in time in O(n), the total running time is in

O(np).
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Propositions 12 and 13 illustrate two extreme cases; it is expected that in

general a value of satThresh can be chosen such that the cost of the exact part of

the algorithm does not render it too expensive. We will compare the performance

of these two algorithms experimentally in Section 5.4.

Before concluding this section, we would like to briefly discuss how our ran-

domized approach is related to the well known randomized algorithms for solving

the satisfiability problem (SAT). Much work has been developed towards this end—

Papadimitriou [Pap91] analyzed a random walk-style algorithm that, starting from

a randomly selected interpretation, chooses variables at random belonging to unsat-

isfied clauses to “flip” in the hopes that this operation brings it closer to a satisfying

assignment. The interesting result was that this procedure is very efficient for 2-SAT

formulas with n variables, requiring only O(n2) flips to reach a satisfying interpre-

tation, if one exists, with high probability. However, this result does not extend to

k-SAT for k > 2, in which case an exponential number of flips is required in the

general case (see, for instance, [WS02]). There has been much work since towards

extending this algorithm [SLM92, SKC94, Sch99]); however, these algorithms suffer

in the general case from exponentially high mixing times of the Markov chains used

in the random walks described above 2.

Even though all of this work is closely related to the problem of refining the

set of auxiliary variables in our domain, these algorithms are not directly applicable.

The main reason for this is that we have a whole set of correction formulas, which

in the worst case is of exponential size. This is why our algorithms are not based on

random walks, opting instead to perform a rather simpler sampling of interpretations

in an effort to at least find a subset of the existing overlaps among sets of models.

2The term mixing time refers to the number of steps the random walk must take in order to
reach its stationary distribution; see [MT06] for a complete treatment.
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Algorithm 9: FindFocusedMPW(Π, s,Q)
1. let WQ be the set of worlds according to Q;
2. obtain CONS0(Π, s,X,Q);
3. CONS′ := RefineCONS (CONS0(Π, s,X,Q));
4. let currlow := 0; currlowWorld := null;

5. for each wQi ∈ P(WQ) {
6. compute low(wQi ) w.r.t. CONS′;
7. if (low(wQi ) > currlow) {
8. currlow := low(wQi );
9. currlowWorld := wQi ;
10. }
11. }
12. return currlowWorld;

Figure 5.8: The FindFocusedMPW algorithm.

However, we will dedicate future work to investigate ways in which we may be able

to take advantage of the many advances that have been made in applying random

walk-style procedures to finding satisfying interpretations.

5.3.3 Finding Most Probable Worlds of Interest

The FindFocusedMPW algorithm shown in Figure 5.8 correctly computes the

most probable world as long as step 6 correctly computes the result of minimizing pi

subject to the constraints in CONS0(Π, s,Q). This can be done by minimizing this

variable subject to the constraints computed by the RefineCONS algorithm, and in

this case, the world returned by FindFocusedMPW is guaranteed to be the most

probable world. However, if the Monte Carlo or Heuristic algorithms are used, this

is not guaranteed.

The FindFocusedMPW algorithm yields a significant improvement in per-

formance with respect to the basic Most Probable Worlds algorithm described

in [KMN+07a], since the size of the linear constraints is much smaller. When
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n = |W|, the savings in number of worlds (and number of LPs solved) when using

algorithm FindFocusedMPW is given by a factor of 2n−|Q|. However, as we have

seen, there is an extra cost associated with this algorithm, since the RefineCONS

subroutine incurs additional costs when trying to separate all the auxiliary variables

into an adequate set.

5.4 Experimental Evaluation

We developed a prototype implementation of the FindFocusedMPW algorithm

using ExactRefineCONS, MonteCarloRefineCONS, and HeuristicRefineCONS con-

straint refinement methods described in this chapter. The implementation consisted

of about 3,000 lines of Java code run on a Linux computing cluster comprised of 64

8-core, 8-processor nodes with between 10GB and 20GB of RAM; the cluster was not

used for parallel computations, but for concurrent independent runs. The linear con-

straints for finding the most probable world were solved using the QSopt [ACDM09]

linear programming solver library, and the logical formula manipulation code from

the COBA belief revision system [DLST07] and SAT4J [sat09] satisfaction library

were used for the SAT checks in the refinement methods.

To test the FindFocusedMPW algorithm with both the full refinement ap-

proach and the approximation algorithms, we conducted a series of experiments on

ap-programs. Recall that an ap-program consists of a set of ap-rules, and that a

state determines which of these ap-rules are applicable. For instance, we noticed

that even though our ap-programs characterizing the behaviors of Hezbollah and

Hamas [MMP+08a, MMP+08b] consist of several thousand rules each, in any given

real world state, only a handful of rules (under 50) are usually applicable. As a
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consequence, we generated sets of applicable rules randomly, rather than first gen-

erating an ap-program and then generating a state. All numbers reported below for

times/number of splits are the result of averaging between 10 and 20 runs. For the

experiments on small numbers of atoms, satThresh was set to 50% of the number of

atoms of interest, and the number of samples (for Monte Carlo) as well as testThresh

(for the heuristic) were set at 10% of the possible worlds. For the experiments on

large numbers of atoms, satThresh was fixed at 10, and both number of samples and

testThresh were fixed at 1, 000.

Experiment 1: Running Times for Small Instances. In the first experiment, we

compared the running time of the FindFocusedMPW algorithm using the Exac-

tRefineCONS to find an exact solution to using the Monte Carlo and Heuristic

approaches. The number of action atoms was varied between 5 and 13, the size of

the formulas was fixed at 5, and the number of applicable rules in the programs

were varied between 4 and 10, in steps of two. In each case, the number of atoms of

interest was set to 50% of the total for each run. For the approximation algorithms,

we report runs with sample sizes of 10%, 20%, and 30% of the number of possible

worlds. Figure 5.9 shows the running time results. There are a number of interesting

observations we can make by looking at Figure 5.9:

• First of all, by observing the graphs on the left, we can see that the Monte

Carlo algorithm does not scale well: for 4 applicable rules, its performance is

already worse than the exact algorithm when 30% sampling is used; however,

performance remains much better than the exact algorithm with 10% sam-

pling, regardless of the number of rules or atoms in the program. Even though

this seems to indicate that Monte Carlo is worse than Exact when sampling is
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Figure 5.9: Comparison of average running times for small numbers of atoms, vary-
ing number of atoms and number of rules (Left: Monte Carlo, Right: Heuristic).
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Figure 5.10: Accuracy of the approximation algorithms, varying number of atoms
and number of rules (Left: Monte Carlo, Right: Heuristic).
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Figure 5.11: Number of “splits” found by the different algorithms, for small numbers
atoms, varying number of atoms and number of rules (Left: Monte Carlo, Right:
Heuristic).
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higher than 10%, we will see in Experiment 3 that this is not the case, since

it is capable of running on large numbers of atoms, whereas Exact is not.

• In contrast, the graphs on the right show that the Heuristic algorithm is quite

efficient. For 4 applicable rules, its performance is comparable to that of

the Exact algorithm, but this is due to the fact that at this instance size

the Exact algorithm is efficient, and Heuristic is likely investing much of its

time carrying out the exact (small number of variables) checks. The situation

changes drastically for programs with 6 and 8 applicable rules, where the curve

corresponding to the Heuristic algorithm can barely be seen since it is dwarfed

by the time taken by the Exact algorithm.

• Finally, we report at the bottom of Figure 5.9 runs for 10 applicable rules,

but only for the approximation algorithms, since the Exact algorithm cannot

be evaluated at this size of instance. Once again, we see that the Heuristic

algorithm is much more efficient, regardless of sampling size and size of the

instance.

Experiment 2: Accuracy for Small Instances. For the same runs as the ones

reported for Experiment 1, we evaluated the accuracy of the results obtained by the

approximation algorithms, where accuracy was measured as one minus the absolute

value of the difference between the approximation algorithms’ answers and those

yielded by the Exact algorithm. The same parameter variations as for Experiment 1

were used; however, the runs for programs with 10 applicable rules could not be

carried out since Exact cannot run on instances of that size. The results are reported

in Figure 5.10; the first observation that can be made is that all answers are at least

70% accurate as compared with the result yielded by the Exact algorithm. These
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graphs include a fourth curve (called “No Splits” in the figure) that corresponds to

the accuracy of a baseline algorithm that does not make any effort to refine the set

of constraints. As we can see, the approximation algorithms yield more accurate

results than the baseline (except for two isolated cases), and often surpass the 95%

mark. Another interesting observation we can make is that the Heuristic algorithm

does not sacrifice accuracy with respect to Monte Carlo, even though it is much

more efficient. As a complement to this set of runs, we also measured the number

of “splits” (cases in which correction formulas were found to share models) found

by each algorithm; the results are reported in Figure 5.11. This is an interesting

measurement to make, since it is not clear how accuracy of the result is correlated

with the number of splits performed. The results we obtained show that Heuristic

found a smaller number of splits than Monte Carlo (this makes sense at this size of

instance, given the way that Heuristic divides up its samples among possible pairs of

variables). This observation seems to indicate that there is a “threshold” number of

splits that must be found in order to be reasonably accurate, since as we mentioned

before both algorithms have very similar accuracy at this size of instance.

Experiment 3: Running Times for Small Number of Rules and Large Number of

Action Atoms. To better evaluate the performance of the approximation algorithms,

we performed a series of runs over programs with large numbers of action atoms,

varying the number of applicable rules over three values (8, 10, and 12). The results

are reported on the left hand side of Figure 5.12. Beyond some fluctuations that

appear due to the random generation of ap-programs, the three graphs show a

tendency of increasing running times when the size of the programs increase, both

in terms of number of action atoms and number of applicable rules. Note that the

Monte Carlo algorithm is affected much more by the variation in size, whereas the
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Figure 5.12: Comparison of average running times (left) and number of splits found
(right) for large numbers of atoms, varying number of atoms and number of rules.
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Heuristic algorithm barely lifts up from the x-axis except for the largest programs

(14 applicable rules and 5,000 atoms).

Experiment 4: Number of Splits for Small Number of Rules and Large Number

of Action Atoms. Using the same runs as those for Experiment 3, we analyzed the

number of splits found by the two algorithms; the results are reported on the right

hand side of Figure 5.12. The main conclusion we can obtain from this experiment is

that the Heuristic algorithm always finds more splits than Monte Carlo does, which

is in line with the hypothesis that we formulated when presenting the Heuristic

algorithm above. In conjunction with the conclusions of Experiment 2, this means

that the results obtained by Heuristic will in general be of greater quality than those

obtained by Monte Carlo.

Experiment 5: Running Times for Large Instances. Finally, given the perfor-

mance of the Heuristic algorithms in the previous experiments, we decided to run

an experiment for a larger numbers of applicable rules (60), varying the number of

atoms in a similar fashion as for the above experiments. The results are reported

in Figure 5.13. As we can see, the Heuristic algorithm remains scalable even at this

number of applicable rules, taking a little over 500 seconds (about 8.3 minutes) to

refine the set of constraints for 7,000 atoms.

5.5 Concluding Remarks

Before concluding this chapter, we believe a note is in order to clarify the

similarities and differences between our two approaches to most probable world

computations. While both Chapters 4 and 5 address the problem of finding most

probable worlds, the main difference between the two is that the latter focuses on
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Figure 5.13: Average time taken by HeuristicRefineCONS to refine the set of con-
straints associated with an ap-program with 60 applicable rules, varying the number
of atoms.

finding most probable worlds of interest. Suppose we consider an ap-program Π

containing k ground action atoms in its associated language. Then the algorithms

in Chapter 4 would consider 2k worlds and try to find the most probable world. In

contrast, in Chapter 5, we assume we have an additional quantity: a subset of k′

ground action atoms in which the user is interested. Therefore, in Chapter 5, the

worlds of interest correspond to subsets of these k′ ground action atoms. A most

probable world drawn from this class of “worlds of interest” can vary dramatically

from the most probable worlds of Chapter 4 and moreover, they are of great interest.

For instance, a user using the STOP system mentioned in Chapter 1 may only be

interested in certain actions (e.g., transnational attacks by a given group instead

of the whole suite of actions). This, for instance, may define the mission that a

European or American defense analyst might have with respect to certain groups’

actions. In this case, he is only interested in worlds defined with respect to the

subset of actions of interest to him. The methods described in Chapter 5 show how

we can seamlessly address this problem by building upon the work in Chapter 4.
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In summary, in this chapter we have developed methods to obtain an alterna-

tive linear program by taking into account the set of action atoms that a specific

user might be interested in. This has a twofold effect: (1) it allows the user to obtain

probability values that are the product of only discerning among worlds of interest,

instead of receiving as an answer a single world with an associated probability, as

in Chapter 4; and (2) the linear programs involved in most probable world of in-

terest computations are smaller than those obtained in Chapter 4 and often, but

not always, lead to a fast solution. The SemiHOP algorithm presented in Chapter 4

also proposes a reduction in number of variables in the resulting linear program by

defining equivalence classes of worlds. However, that algorithm bases the equiv-

alence classes on co-occurrence of worlds in constraints, whereas the equivalence

classes that arise here are purely a consequence of the input provided by the user

through the set Q of actions that are interesting to him.

We have developed the RefineCONS algorithm, and two approaches based on

Monte Carlo sampling in order tackle the scalability issues that affect the exact algo-

rithm. We report on extensive experiments showing that the latter work efficiently

in practice, and that two heuristics can be used to greatly enhance the performance

of the basic Monte Carlo approach.
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Chapter 6

Abductive Inference in Action

Probabilistic Logic Programs

As we discussed in Chapter 1, Action-probabilistic logic programs (ap-programs)

are a class of probabilistic logic programs that have been extensively used during

the last few years for modeling behaviors of entities. Rules in ap-programs have the

form “If the environment in which entity E operates satisfies certain conditions, then

the probability that E will take some action A is between L and U”. In this chap-

ter, we are interested in a the problem of given an ap-programs, trying to change

the environment, subject to some constraints, so that the probability that entity

E takes some action (or combination of actions) is maximized. This is called the

Basic Abductive Query Answering Problem (BAQA). We first formally define and

study the complexity of BAQA and several variants of it. We then provide an exact

(exponential) algorithm to solve BAQA, followed by more efficient algorithms for

specific subclasses of BAQA. We also develop appropriate heuristics to solve BAQA

efficiently.
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6.1 Introduction

Action probabilistic logic programs (ap-programs for short) [KMN+07a] are a

class of the extensively studied family of probabilistic logic programs (PLPs) [NS92,

NS93, KIL04]. We now provide a brief recap of the introduction from Chapters 1

and 2.

Action probabilistic logic programs have been used extensively to model and

reason about the behavior of groups and an application for reasoning about terror

groups based on ap-programs has users from over 12 US government entities [Gil08].

ap-programs use a two sorted logic where there are “state” predicate symbols and

“action” predicate symbols1 and can be used to represent behaviors of arbitrary

entities (ranging from users of web sites to institutional investors in the finance sector

to corporate behavior) because they consist of rules of the form “if a conjunction

C of atoms is true in a given state S, then entity E (the entity whose behavior is

being modeled) will take action A with a probability in the interval [L,U ].”

In this kind of applications, it is essential to avoid making probabilistic in-

dependence assumptions, since the approach involves finding out what probabilis-

tic relationships exist and then exploit these findings in the forecasting effort.

For instance, Figure 6.1 shows a small set of rules automatically extracted from

data [ACW08] about Hezbollah’s past. Rule 1 says that Hezbollah uses kidnap-

pings as an organizational strategy with probability between 0.5 and 0.56 in years

in which no political support was provided to it by a foreign state (forstpolsup),

and the severity of inter-organizational conflict involving (intersev1) it is at level

1Action atoms only represent the fact that an action is taken, and not the action itself; they are
therefore quite different from actions in domains such as AI planning or reasoning about actions,
in which effects, preconditions, and postconditions are part of the specification. We assume that
effects and preconditions are generally not known, though later on we show how to represent the
information we may have about them.
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r1. kidnap(1) : [0.50, 0.56]← forstpolsup(0) ∧ intersev1(c).
r2. kidnap(1) : [0.80, 0.86]← extsup(1) ∧ demorg(0).
r3. kidnap(1) : [0.80, 0.86]← extsup(1) ∧ elecpol(0).
r4. tlethciv(1) : [0.49, 0.55]← demorg(1).
r5. tlethciv(1) : [0.71, 0.77]← elecpol(1) ∧ intersev2(c).

Figure 6.1: A small set of rules modeling Hezbollah.

“c”. Rules 2 and 3, also about kidnappings, state that this action will be per-

formed with probability between 0.8 and 0.86 in years in which no external support

is solicited by the organization (extsup) and either the organization does not ad-

vocate democratic practices (demorg) or electoral politics is not used as a strategy

(elecpol). Similarly, Rules 4 and 5 refer to the action “civilian targets chosen

based on ethnicity” (tlethciv). The first one states that this action will be taken

with probability 0.49 to 0.55 in years in which the organization advocates demo-

cratic practices, while the second states that the probability rises to between 0.71

and 0.77 in years in which electoral politics are used as a strategy and the severity

of inter-organizational conflict (with the organization with which the second high-

est level of conflict occurred) was not negligible” (intersev2). ap-programs have

been used extensively by terrorism analysts to make predictions about terror group

actions [Gil08, MMP+08a].

Suppose, rather than predicting what action(s) a group would take in a given

situation or environment, we want to determine what we can do in order to induce

a given behavior by the group. For example, a policy maker might want to under-

stand what we can do so that a given goal (e.g., the probability of Hezbollah using

kidnappings as a strategy is below some percentage) is achieved, given some con-

straints on what is feasible. The basic abductive query answering problem (BAQA)

deals with finding how to reach a new (feasible) state from the current state such
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s1 = {forstpolsup(0), intersev1(c), intersev2(0), elecpol(1), extsup(0), demorg(0)}
s2 = {forstpolsup(0), intersev1(c), intersev2(0), elecpol(0), extsup(0), demorg(1)}
s3 = {forstpolsup(0), intersev1(c), intersev2(0), elecpol(0), extsup(0), demorg(0)}
s4 = {forstpolsup(1), intersev1(c), intersev2(c), elecpol(1), extsup(1), demorg(0)}
s5 = {forstpolsup(0), intersev1(c), intersev2(c), elecpol(0), extsup(1), demorg(0)}

Figure 6.2: A small set of possible states

that the ap-program associated with the group and the new state jointly entail that

the goal will be true within a given probability interval.

In this chapter, we first briefly recall ap-programs and then formulate BAQA

theoretically. We then develop a host of complexity results for BAQA under varying

assumptions. We then describe both exact and heuristic algorithms to solve the

BAQA problem. We also describe a prototype implementation and experiments

showing that our algorithm is feasible to use even when the ap-program contains

hundreds of rules. A brief note on related work before we begin; almost all past

work on abduction in such settings have been devised under various independence

assumptions [Poo97, Poo93b, Chr08]. We are aware of no work to date on abduction

in possible worlds-based probabilistic logic systems such as those of [Hai84], [Nil86],

and [FHM90] where independence assumptions are not made.

6.2 Basic Abductive Queries to Probabilistic Logic

Programs

Suppose s is a state (the current state), G is a goal (an action formula), and

[`, u] ⊆ [0, 1] is a probability interval. The BAQA problem tries to find a new state

s′ such that Πs′ entails G : [`, u]. However, s′ must be reachable from s. For this,

we merely assume the existence of a reachability predicate reach specifying direct
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reachability from one state to another. The reflexive transitive closure of reach is

denoted with reach∗, and unReach is its complement.

A Note about Reachability. We will investigate, in Section 6.3 below, one way in

which reach can be specified, as well as ways in which knowledge of action effects and

preconditions can be encoded into this predicate. It should be noted that specifying

the reachability predicate may not always be an easy task for the user. However,

an iterative process will likely help the user refine his input to reach when presented

with solutions that he realizes are not actually possible. The same situation could

arise with respect to goals, since the user may realize after being presented with a

solution that his goal was underspecified. The need for such an iterative process

underscores the importance of fast algorithms for BAQA, which is the main goal of

this chapter.

The following is a simple example of a reachability predicate based on the

running example introduced above.

Example 23. Suppose, for simplicity, that the only state predicate symbols are those

that appear in the rules of Figure 6.1, and consider the set of states in Figure 6.2.

Then, some examples of reachability are the following: reach(s1, s2), reach(s1, s3),

reach(s2, s1), reach(s4, s1), ¬reach(s2, s5), and ¬reach(s3, s5). Note that, if state

s5 is reachable, then the ap-program is inconsistent, since both rules 1 and 2 are

relevant in that state.

We can now state the BAQA problem formally:

BAQA Problem.

Input: An ap-program Π, a state s, a reachability predicate reach and a ground

ap-formula G : [`, u].
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Output: “Yes” if there exists a state s′ such that reach∗(s, s′) and Πs′ |= G : [`, u],

and “No” otherwise.

Example 24 (Solution to BAQA). Consider once again the program in the running

example and the set of states from Figure 6.2. If the goal is kidnap(1) : [0, 0.6]

(we want the probability of Hezbollah using kidnappings to be at most 0.6) and the

current state is s4, then the problem is solvable because Example 23 shows that state

s1 can be reached from s4, and Πs1 |= kidnap(1) : [0, 0.6].

There may be costs associated with transforming the current state s into an-

other state s′, and also an associated probability of success of this transformation

(e.g., the fact that we may try to reduce foreign state political support for Hezbollah

may only succeed with some probability). We will formulate this problem formally

and present algorithms for solving it in Chapter 7

The following proposition shows the intractability of the BAQA problem in the

general case.

Proposition 14. The BAQA problem is EXPTIME-complete.

Proof. Suppose we are given an instance of BAQA consisting of an ap-program Π,

a goal G : [`G, uG], a reachability predicate reach, and an initial state s0. We first

point out that any such instance of BAQA can be solved in time exponential in the

size of the input by straightforward search through the space of all possible states,

testing all possible subsets of Π, and solving the linear programs associated with

each one of these possible subsets in order to test for entailment.

In order to show completeness, let P be an arbitrary problem in EXPTIME

and TMP be a deterministic Turing machine that decides P for any input x in time

in O(2|x|). We will provide a polynomial-time transformation from a description
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∆TMP of TMP and x to an instance of BAQA such that TMP accepts x if and only

if the associated BAQA instance returns true. We start by describing a state space S

that mimics the space of all possible configurations of TMP over x, allowing for two

special states s0 and s∗. Since the size of S is clearly in O
(
2|∆TMP |

)
, we can encode

it by means of a set Lsta of size in O(|∆TMP |). Now, we will specify the reach

predicate by making reach(s0, s1) true for the state s1 corresponding to the initial

configuration of TMP over x, and reach(sf , s
∗) true for any state sf that corresponds

to an accepting configuration. Finally, we will make reach(si, sj) true for any states

si, sj ∈ S such that the transition rules in ∆TMP state that the configuration

associated with sj can be reached directly from the configuration associated with

si; reach(si, sj) is false for all pairs of states si, sj that do not fall under any of the

preceding cases. Finally, let Π consist of the single rule F : [ε, 1] ← s∗, where F is

an arbitrary satisfiable formula over an arbitrary set Lact and ε ∈ (0, 1], s0 be the

initial state, and let the goal be F : [ε, 1].

Given the above construction, it is clear that the only way in which the BAQA

instance can be solvable is if s∗ is reachable from s0, and this is possible if and

only if MTP accepts x. Since the transformation was done in polynomial time, the

statement follows.

Moreover, this problem is likely to be intractable even under simplifying as-

sumptions, as shown in the following two results.

Corollary 3. Let Lact be such that |Lact| ≤ c′ for some constant c′ ∈ N; the BAQA

problem under this assumption is EXPTIME-complete.

Proof. The proof is immediate by observing that the proof of Proposition 14 only

makes use of a constant-sized |Lact|.
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Proposition 15. Let Lsta be such that |Lsta| ≤ c′ for some constant c′ ∈ N; the

BAQA problem under this assumption is NP-complete.

Proof. Membership in NP can be shown by applying Lemma 1 (cf. Chapter 4,

Page 57). For any “yes” instance of the problem, the witness will consist of a proof

of reachability (of polynomial size given the hypothesis |Lsta| ≤ c′), a set of rules

Π′ ⊆ Π, and an assignment of non-zero values to a polynomial number variables in

the associated linear program. This witness can clearly be verified in polynomial

time.

We will prove NP-hardness by reduction from SAT. Let F be a boolean formula

that is the input to SAT instance; we then need to obtain, in polynomial time, an

instance of BAQA such that it has a solution if and only if F is satisfiable. Let Π be

an ap-program consisting of a single rule F : [ε, 1]← s, for some ε > 0; furthermore,

let s be the initial state and F : [ε, 1] be the goal formula.

If F is satisfiable, clearly Π |= F : [ε, 1] and, since the initial state makes the

only rule in Π relevant, the problem has a solution. On the other hand, if F is not

satisfiable, then Π will only entail F : [0, 1], and therefore the problem will not be

solvable.

The above results reveal that the complexity of BAQA is caused by two factors.

Specifically, we need to address the following two problems:

(P1) Find a subprogram Π′ of Π such that when the body of all rules in that

subprogram is deleted, the resulting subprogram entails the goal, and

(P2) Decide if there exists a state s′ such that Π′ = Πs and s is reachable from the

initial state.
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In the following, we will present algorithms and techniques for addressing these

problems.

6.3 Algorithms for BAQA

In this section, we leverage the above intuition to first develop a naive al-

gorithm for BAQA, then develop a more efficient algorithm for BAQA under the

assumption that all goals are of the form F : [0, u] (ensure that F ’s probability

is less than or equal to u) or F : [`, 1] (ensure that F ’s probability is at least `).

Finally, we develop a heuristic algorithm.

Naive Algorithm for BAQA. Before presenting a simple approach to solving

BAQA exactly, we first define the concept of a subprogram graph.

Definition 20 (Subprogram reachability graph). Let Π be a ground ap-program

and reach be a reachability predicate. The subprogram graph is defined as G =(
2Heads(Π), E

)
, where (Π1,Π2) ∈ E if and only if there exist states s1, s2 such that Π1

(resp. Π2) is the reduction of a subprogram relevant in s1 (resp. s2), and reach∗(s1, s2).

Figure 6.3 uses this graph to present a general template for solving BAQA. For

instance, the subroutine isSolution called in line 3 simply checks if the ap-program

that is being considered satisfies the goal; this check will depend on the specific

problem that is being solved. The other generic subroutine is getNextSubprogram,

called in line 5. This function is based on a traversal of the graph defined above,

which can of course be implemented in a wide variety of ways. This algorithm is

clearly sound and complete.
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Algorithm 10: subProgramSearchBAQA(Π, s, G : [`G, uG], unReach)
1. curr:= Πs; done:= false;

2. while not done do

3. if isSolution (curr, G : [`G, uG]) then

4. return yes;
5. curr:= getNextSubprogram(curr, unReach);
6. if curr = null then

7. done:= true;

8. return no;

Figure 6.3: A naive algorithm for solving BAQA based on the traversal of the relevant
subprogram reachability graph induced by reach.

Answering Threshold Goals

A threshold goal is an annotated action formula of the form F : [0, u] or

F : [`, 1]. In this section, we study how we can devise a better algorithm for BAQA

when only threshold goals are considered. This is a reasonable approach, since

threshold goals can be used to express the desire that certain formulas (actions)

should only be entailed with a certain maximum probability (upper bound) or should

be entailed with at least a certain minimum probability (lower bound). The tradeoff

lies in the fact that we lose the capacity to express both desires at once. We start

by inducing equivalence classes on subprograms that limit the search space, helping

address problem (P1).

Definition 21 (Equivalence of ap-programs). Let Π be a ground ap-program and

F be a ground action formula. We say that subprograms Π1,Π2 ⊆ Π are equivalent

given F , written Π1 ∼F Π2, iff Π1 |= F : [`, u] ⇔ Π2 |= F : [`, u] for any `, u ∈

[0, 1]. Furthermore, states s1 and s2 are equivalent given F , written s1 ∼F s2, iff

reach(s1, s2), reach(s2, s1), and Πs1 ∼F Πs2.

Example 25 (Equivalence of ap-programs). Let Π be the ap-program from Fig-

ure 6.1, formula F = kidnap(1), Π1 = {r1}, Π2 = {r2, r3} Π3 = {r1, r4} Π4 =
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{r1, r5}, and Π5 = {r2, r3, r5}. Here, Π1 ∼F Π3, Π1 ∼F Π4, Π3 ∼F Π4, and

Π2 ∼F Π5. For instance, we can see that Π1 ∼F Π3 because the probability with

which kidnap(1) is entailed is given by rule r1; rule r4 is immaterial in this case.

Clearly, Π1 6∼F Π2 since F is entailed with different probabilities in each case.

Next, consider the states from Figure 6.2 and the reachability predicate from

Example 23. Since we have that reach(s1, s2), reach(s2, s1), Π1 is relevant in s1, and

Π3 is relevant in s2, we can conclude that s1 ∼F s2.

Relation ∼, both between states and between subprograms, is clearly an equiv-

alence relation. The following lemma specifies a way to construct equivalence classes.

Lemma 2 (Sufficient condition for equivalence of ap-programs). Let Π be an ap-

program and G be an action formula. Consider two subprograms Π′,Π′′ ⊆ Π such

that Π′ = Πa∪Π′p (resp., Π′′ = Πa∪Π′′p), where Πa is a set of rules whose heads have

formulas F such that F ∧ G 6|= ⊥ and Π′p (resp., Π′′p) contains rules whose heads

have formulas H such that H ∧G |= ⊥. Then, Π′ ∼G Π′′.

Lemma 3 (Sufficient conditions for entailment). Let Π be a consistent ap-program

and G : [`G, uG] be a threshold goal. If there exists a rule r ∈ Π such that Head(r) =

F : [`F , uF ] and: either (1) if uG = 1, F |= G, and `G ≤ `F ; or (2) if `G = 0,

G |= F , and uG ≥ uF ; then, Π |= G : [`G, uG].

The algorithm in Figure 6.4 first tries to leverage Lemma 3 and only proceeds

if this is not possible. The way in which the algorithm partitions Π is partly based

on Lemma 2; the following result proves that it correctly computes solutions to our

problem.

Proposition 16 (Correctness and complexity of simpleAnnBAQA). Given an ap-

program Π, a state s ∈ S, and an annotated action formula G : [`, u], Algorithm
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Algorithm 11: simpleAnnBAQA(Π, s, G : [`G, uG])

1. Select rules of the form r : F : [`r, ur]← s1∧. . .∧sn such that F∧G 6|= ⊥;
call all such rules active rules, and the complement set passive rules.
We denote the former with active(Π, G : [`G, uG]) and the latter with
passive(Π, G : [`G, uG]).

2. If Lemma 3 is applicable, return true if there exists a consistent Π′ ⊆
candAct(Π, G : [`G, uG]) ∪ passive(Π, G : [`G, uG]) s.t.:

(a) If uG = 1, then at least one rule r ∈ Π′ must have head F : [`F , uF ]
such that F |= G and `G ≤ `F ; otherwise (i.e., `G = 0), at least
one rule r ∈ Π′ must have head F : [`F , uF ] such that G |= F and
uG ≥ uF ;

(b) State s′ for which Πs′ = Π′ is such that reach∗(s, s′).

3. Otherwise, for each rule ri : F : [`r, ur]← s1 ∧ . . . ∧ sn do:

(a) If `G = 0, F |= G, and `r > uG then add ri to set conf(Π, G :
[`G, uG])

(b) Otherwise (i.e., uG = 1), if G |= F and ur < `G then add ri to set
conf(Π, G : [`G, uG]).

4. Let candAct(Π, G : [`G, uG]) =
active(Π, G : [`G, uG]) \ conf(Π, G : [`G, uG]);

5. Consider the set candAct(Π, G : [`G, uG]) ∪ passive(Π, G : [`G, uG]) and,
for each pair of rules ri : Fi : [`ri , uri ] ← si1 ∧ . . . ∧ sin and rj : Fj :
[`rj , urj ] ← sj1 ∧ . . . ∧ sjm such that Fi : [`ri , uri ] and Fj : [`rj , urj ] are
mutually inconsistent, add the pair (ri, rj) to a set called inc(Π).

6. Return true if there exists a set of rules Π′ ⊆ candAct(Π, G : [`G, uG]) ∪
passive(Π, G : [`G, uG]) such that Π′ ∩ candAct(Π, G : [`G, uG]) 6= ∅, no
pair {r1, r2} ⊆ Π′ belongs to inc(Π), and:

(a) Π′ |= G : [`G, uG];

(b) ∃ state s′ for which Πs′ = Π′ such that reach∗(s, s′)2.

7. If Step 6 is not possible, return false;

Figure 6.4: An algorithm to solve BAQA assuming a threshold goal.

simpleAnnBAQA correctly computes a solution to BAQA. Its worst case running

time is in O
(
2|Π| + 2|Lsta| + 2|Lact|

)
.
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Proof. The construction of the sets in Steps 1 and 3 are designed to partition Π

into rules that must play a part in the entailment of the goal (candAct), those that

cannot play such a part (conf), and those that are irrelevant (passive). We have

that candAct = active \ conf, since rules in active are the ones that have heads that

are mutually satisfiable with the goal. It remains to see then that conf is correctly

computed. To show that this is the case, consider first the case of a goal with a [0, uG]

annotaton (Step 3a). Here, the algorithm marks as conflicting every rule with head

F such that F |= G and its lower bound annotation `r is such that `r > uG. Since

all models of F are models of G, there will exist a linear constraint in LC stating

that the sum of their probabilities must exceed `r; this implies that the sum of the

probabilities of worlds satisfying G also exceeds `r, and therefore also uG, which is

inconsistent with the goal’s annotation. Therefore, this rule should not be made

relevant. Consider now a goal with a [`G, 1] annotation (Step 3b); now, conflicting

rules are characterized as those with heads F such that G |= F and upper bound

annotation ur such that ur > `G. Similar to the previous case, since all models of

G are models of F , and there will exist a linear constraint in LC stating that the

sum of the probabilities of models of F should not exceed ur, this means that the

sum of models of G cannot exceed ur either, which is inconsistent with the [`G, 1]

annotation since ur < `G. Therefore, such rules should not be made relevant. In

Step 4, the algorithm takes the active rules that are not conflicting and calls them

“candidate active”. The final step of the setup is Step 5, which identifies pairs of

rules that are mutually inconsistent.

In Step 6, we characterize the composition of the result; it is clear from our

analysis above that all rules in any result must belong to candAct(Π, G : [`G, uG])∪

passive(Π, G : [`G, uG]), and no pair can be mutually inconsistent. The two following
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requirements simply make sure that the selected subprogram entails the goal and

that the associated state is eventually reachable. Finally, if such a result cannot be

obtained, then false must be returned.

To prove the worst case running time result, it is enough to note that satisfia-

bility checks require time exponential in the number of atoms in the formulas, that

we may need to search through all possible subsets of rules in candAct ∪ passive (of

which there are O(2|Π|)), and that the other step that dominates computation time

is the search for a reachable subprogram. The proof of Proposition 14 then yields

the necessary result.

Note that, if we assume that the number of atoms that can appear in action

formulas in the heads of rules is bounded by a constant, then the term exponential

in |Lact| will not be present in the running time of the algorithm. We now present

an example of how this algorithm works.

Example 26 (simpleAnnBAQA over the running example). Suppose Π is the ap-

program of Figure 6.1, the goal is kidnap(1) : [0, 0.6] (abbreviated with G : [0, 0.6]

from now on) and the state is that of Example 24, scurr = {forstpolsup(1),

intersev1(c), intersev2(c), elecpol(1), extsup(1), demorg(0)};

note that Πscurr = {r2, r5} and that clearly Πscurr 6|= kidnap(1) : [0, 0.6]. Step 1 of

simpleAnnBAQA is simple in this case, since all the heads of rules in Π are atomic

– therefore passive(Πscurr , G : [0, 0.6]) = ∅, and the set of active rules contains all the

rules in Π. The following step checks for the applicability of Lemma 3; clearly rule r1

satisfies the conditions and we only need to verify that some subprogram containing it

is reachable. Assuming the same reachability predicate outlined in Example 23, s1 =

{forstpolsup(0), intersev1(c), intersev2(0), elecpol(1), extsup(0), demorg(0)} is

140



reachable from scurr; this corresponds to choosing subprogram Π′ = {r1}. The only

other possibilities are to make both r1 and one of r4 or r5 relevant.

In the next section we will explore ways in which reach can be expressed, and

how different restrictions on this predicate impact the difficulty of solving BAQA.

An Improved BAQA Algorithm

In this section, we show that if we assume reachability/unreachability is speci-

fied in a syntactic manner rather than in a very general manner as presented earlier,

we can come up with some good heuristics to solve BAQA.

Definition 22 (Reachability constraint). Let F and G be first-order formulas over

Lsta and Lvar, connectives ∧, ∨, and ¬, such that the set of variables over F is equal

to those over G, and all variables are assumed to be universally quantified with scope

over both F and G. A reachability constraint is of the form F 6↪→ G; we call F the

antecedent and G the consequent of the constraint, and its semantics is:

unReach(s1, s2)⇔ s1 |= F and s2 |= G

where s1 and s2 are states in S.

Reachability constraints simply state that if the first formula is satisfied in a

certain state, then no states that satisfy the second formula are reachable from it.

We now present an example of a set of reachability constraints.
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Example 27 (Reachability constraints). Consider again the setting and ap-program

from Figure 6.1. The following are examples of reachability constraints:

rc1 : forstpolsup(1) 6↪→ intersev1(c)

rc2 : extsup(1) 6↪→ intersev1(2)

rc3 : intersev1(c) ∨ intersev2(c)) ∧ demorg(0) 6↪→ demorg(1)

Suppose that we wish to represent the fact that action kidnap(1) cannot be taken

whenever demorg(1) is true. This can be represented with constraint:

demorg(1) 6↪→ kidnap performed(1)

where kidnap performed(1) is an environment atom expressing that action kidnap(1)

was taken3. Knowledge of action effects can clearly be represented with constraints

built in a similar manner.

Algorithm simpleAnnBAQA-Heur-RC (Figure 6.5) takes advantage of the struc-

ture added by the presence of reachability constraints. The algorithm starts out by

executing the steps of simpleAnnBAQA that compute the sets active(Π, G : [`G, uG]),

passive(Π, G : [`G, uG]), candAct(Π, G : [`G, uG]), conf(Π, G : [`G, uG]), and inc(Π).

It then builds formulas generated by reachability constraints that any solution state

must satisfy; the algorithm uses a subroutine formula(s) which returns a formula

that is a conjunction of all the atoms in state s and the negations of those not in s.

In Step 4, the formula describes the fact that at least one of the states that make

relevant “candidate active” rules (as described in Algorithm simpleAnnBAQA) must

3This sort of atom is only necessary if we wish to encode knowledge of action effects and
preconditions.
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Algorithm 12: simpleAnnBAQA-Heur-RC(Π, s, G : [`G, uG],RC)

1. execute Steps 1, 3, 4, and 5 of simpleAnnBAQA;

2. let goalState, goalStateAct, goalStateConf, and goalStateInf be logical for-
mulas over Lsta and Lvar;

3. initialize goalState to null, goalStateAct to ⊥, and goalStateConf,
goalStateInc to >;

4. for each rule ri ∈ candAct(Π, G : [`G, uG]) with

Head(ri) = F : [`F , uF ] do

if [(uG = 1) and (F |= G and `G ≤ `F )] or

[(`G = 0) and (G |= F and uG ≥ uF )]

then set goalStateAct := goalStateAct ∨ getStateFormula(ri);

5. for each rule ri ∈ conf(Π, G : [`G, uG]) do

set goalStateConf := goalStateConf ∧ ¬getStateFormula(ri);

6. for each pair of rules (ri, rj) ∈ inc(Π) do

set goalStateInc := goalStateInc ∧ ¬(getStateFormula(ri)∧
getStateFormula(rj));

7. set goalState := goalStateAct ∧ goalStateConf ∧ goalStateInc;

// goalState describes the states that satisfy the goal

8. return decideReachability(s, goalState, RC);

Figure 6.5: A heuristic algorithm based on Lemma 3 to solve BAQA assuming that
the goal is an ap-formula of the form either G : [0, u] or G : [`, 1] and that state
reachability is expressed as a set RC of reachability constraints.

be part of the solution; similarly, Step 5 builds a formula ensuring that none of the

conflicting active rules can be relevant if the problem is to have a solution. Fi-

nally, Step 6 describes the constraints associated with making relevant rules that

are probabilistically inconsistent. Noticeably absent are the “passive” rules from the

previous algorithm; such rules impose no constraints on the solution. The last two

steps put subformulas together into a conjunction of constraints, and the algorithm
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must decide if there exist any states that model formula goalState and are eventually

reachable from s.

Deciding eventual reachability, as we have seen, is one of the main problems

that we set out to solve as part of BAQA. We therefore propose two possible imple-

mentations of this subroutine: (i) a SAT-based algorithm, presented in Figure 6.6

and (ii) one based on a hill climbing strategy, whose pseudocode can be found in

Figure 6.7. The SAT-based algorithm is simple: if the current state does not satisfy

goalState, it starts by initializing formula Reachable which will be used to represent

the set of eventually reachable states at each step. The initial formula describes

state s, and the algorithm then proceeds to select all the constraints whose an-

tecedents are entailed by Reachable. Once we have this set, Reachable is updated

to the conjunction of the negations of all the consequents of constraints in the set.

We are done if either Reachable at this point models goalState, or the old version of

Reachable is modeled by the new one, i.e., no new reachable states were discovered.

Proposition 17. Let s1 be a state, goalState be a formula over states, and RC be a

set of reachability constraints. Algorithm decideReachability-SAT(s, goalState,RC)

correctly decides if there exists a state s′ such that s′ |= goalState and reach∗(s, s′).

Proof. To prove correctness, we must prove that the algorithm returns true if and

only if there exists a sequence of states s1, s2, . . . , sk such that reach(si, si+1), for

1 ≤ i < k, and sk |= goalState.

(⇒) Suppose the algorithm returns true. Formula Reachable is built taking into

account the formula associated with the initial state, and the subsequent updates

made during the while loop in Line 3. Reachable is updated with the conjunction

of the negations of the consequents of reachability constraints whose antecedents

are modeled by the previous version of Reachable; clearly, the only models of the
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updated Reachable are the states that are reachable from the old version. Since

by hypothesis the algorithm returned true, we know that after a certain number

of iterations Reachable and goalState are mutually satisfiable. Since reachability

constraints were respected by construction at each iteration, this entails the existence

of the sequence mentioned above for all states that are eventually reachable from s.

(⇐) Suppose there exists a sequence of states s1, s2, . . . , sk such that reach(si, si+1),

for 1 ≤ i < k, and sk |= goalState. By construction, the formula associated with s1

and Reachable are mutually satisfiable by the start of the first iteration of the while

loop in Line 4. Now, by hypothesis, state s2 is reachable from s1; since the algorithm

updates Reachable to model all states that satisfy the reachability constraints, s2

must be a model of Reachabile after the first iteration. Continuing in this manner,

we can arrive at state sk, which by the same reasoning will be a model of Reachable,

and therefore the algorithm will return yes since it is also a model of goalState.

The following is an example of how decideReachability-SAT works.

Example 28. Consider the ap-program from Figure 6.1, along with constraint rc1

from Example 27. As we saw in Example 26, if the goal is kidnap(1) : [0, 0.06] and

the current state is s0 =

{forstpolsup(1), intersev1(c), intersev2(c), elecpol(1), extsup(1), demorg(0)};

then the either {r1} or {r1, r4} should be made relevant, which yields the following

goalState formula:

forstpolsup(0) ∧ intersev1(c) ∧ ¬

 ∨
i=2,3,5

Body(ri)


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Algorithm 13: decideReachability-SAT(s, goalState,RC)

1. let Reachable be a formula initialized to formula(s);

2. set done := (Reachable ∧ goalState 6|= ⊥);

3. while not done do

set Reachableold := Reachable;

let RCcurr ⊆ RC be the set of constraints Fi 6↪→ Gi

such that Reachable |= Fi;

set Reachable :=
(∧

Fi 6↪→Gi∈RCcurr
¬Gi

)
;

set done:=

((Reachable ∧ goalState) 6|= ⊥) ∨ (Reachable |= Reachableold);

4. return (Reachable ∧ goalState 6|= ⊥);

Figure 6.6: An algorithm to decide reachability from a state s to any of the states
that satisfy the formula goalState, where reachability is expressed as a set RC of
reachability constraints. This version is based on deriving a formula that describes
the set of all possible states eventually reachable from the initial one.

Reachable starts out with formula(s0) and, as Reachable |= forstpolsup(1), it gets

updated to:

¬intersev1(c)

which is mutually unsatisfiable with goalState. In the next iteration, however, as

Reachable does not entail the antecedent of rc1, it gets updated to >, which means

that there are no constraints regarding the states that can be reached, and therefore

the algorithm will answer true.

Algorithm decideReachability-HillClimb, on the other hand, takes a different

approach. Rather than characterize the states that are eventually reachable from s

and seeing if such set overlaps with the models of goalState, it simply finds a single

model g of goalState and computes the atoms that are “different” between s and g
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(i.e., atoms that are true in s and false in g and vice versa).4 The algorithm then

begins the hill climbing strategy by selecting atoms from these sets of differences to

change in the current state, checking that the new state is in fact reachable from

the old one given the constraints in RC. We are done whenever we find that such a

change is impossible, or the change lead to a state that satisfies goalState. It should

be noted that this algorithm is vulnerable to bad choices regarding the changes it

makes to intermediate states, as well as the fact that it’s impossible for it to change

atoms that are not part of diff+ or diff−. It is therefore a heuristic algorithm that

has the advantage of speed over completeness. It is, however, sound, as the following

proposition proves.

Proposition 18. Let s be a state, goalState be a formula over states, and RC be a set

of reachability constraints. Algorithm decideReachability-HillClimb(s, goalState,RC)

is sound, i.e., if it returns true then there exists a state s′ such that s′ |= goalState

and reach∗(s, s′).

Proof. Apart from the trivial case in Line 1, the algorithm begins by obtaining a

model g of the goalState formula, which describes all states that are solutions to

the problem. The main work done by the algorithm is in the while loop in Line 4,

which starts by computing the set of atoms that differ in currState (initialized to

the starting state) w.r.t. g. Clearly, if currState can be changed into g by applying

changes that satisfy all constraints in RC, then the algorithm will return true. The

following operations in the while loop build a formula Curr that describes the set

of states that can be accessed from currState according to the constraints. Finally,

the loop ends by trying to select at random an atom to change, making sure that

4Note that focusing on a single state also allows is to be used in conjunction with the original
simpleAnnBAQA algorithm, as it does not rely on a general reachability formula that can only be
obtained by relying on Lemma 3.
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Algorithm 14: decideReachability-HillClimb(s, goalState,RC)

1. if s |= goalState then return true;

2. let g be a state such that g |= goalState; set done:= false;

3. let currState be a state initialized to s;

4. while not done do

let diff+ be a set of atoms ai such that g |= ai and curr 6|= ai;

let diff− be a set of atoms ai such that g 6|= ai and curr |= ai;

let RCcurr ⊆ RC be the set of constraints Fi 6↪→ Gi such that
currState |= Fi;

for each constraint Fi 6↪→ Gi ∈ RCcurr do

set Curr :=
(∧

Fi 6↪→Gi∈RC∧currState|=Fi ¬Gi

)
;

let currState′ be a new state equal to currState except that each

atom from a randomly chosen subset of diff+ ∪ diff− is made

true (for +) or false (for −) in state currState′ and such that

currState′ |= Curr; if this is not possible, set done:= true;

set done:= currState′ |= goalState;

set currState := currState′

5. return Curr |= goalState;

Figure 6.7: An algorithm to decide reachability from a state s to any of the states
that satisfy the formula goalState, where reachability is expressed as a set RC of
reachability constraints. This version is based on selecting a single goal state that
satisfies goalState and performing a hill climb by selecting atoms that must be made
true or false in order to reach it from the current one.

the change does not violate any constraints. Therefore, by construction, if the

algorithm returns true, the sequence of intermediate values of currState proves that

there exists a state that is eventually reachable from the starting state and satisfies

goalState.

The following is an example of how decideReachability-HillClimb works.
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Example 29. Consider the same setup from Example 28. The first step in the

algorithm is to obtain a state g that satisfies goalState. Suppose we choose the

following state g =

{forstpolsup(0), intersev1(c), intersev2(1), elecpol(c), extsup(0), demorg(1)}

Suppose that the current state is s0 =

{forstpolsup(1), intersev1(c), intersev2(1), elecpol(c), extsup(1), demorg(1)}

The following are the two sets computed at the beginning of the while loop:

diff+ = {forstpolsup(0), extsup(0)}

diff− = {forstpolsup(1), extsup(1)}

Suppose the algorithm chooses to make forstpolsup(1) false from diff−, and

forstpolsup(0) true from diff+ in the next step. This, however, does not satisfy

Curr, which at this point is ¬intersev1(c). This is a case in which the algorithm

will return false when there is actually a solution to the problem; unfortunately, as

atom intersev1(c) is not part of diff+∪ diff−, it can never change in currState and

thus Curr can never be satisfied.

Example 30. Consider now the following ap-program:
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p ∧ q : [0.3, 0.5] ← a ∧ b.

p : [0.3, 0.8] ← a ∧ d.

p : [0.1, 0.2] ← a ∧ b ∧ c.

q : [0.5, 0.9] ← b.

s ∧ ¬p : [0.8, 0.95] ← b ∧ d.

where Lact = {p, q} and Lsta = {a, b, c, d}. Let the following be the set of reachability

constraints: {c1 : d 6↪→ a ∧ b, c2 : b 6↪→ a, c3 : a 6↪→ b, c4 : ¬c 6↪→ d}. Suppose we have

the following goalState formula corresponding to goal p : [0.25, 1]:

(a ∧ b) ∧ ¬(a ∧ b ∧ c) ∧ ¬(a ∧ d)

and that the current state is s0 = {¬a,¬b, c, d}. Suppose now that the hill climb-

ing algorithm chooses state g = {a, b,¬c,¬d} as the goal. Then, we have that

diff+ = {a, b} and diff− = {c, d}. The only antecedent that is satisfied in the current

state is that of c1, and therefore we can access any state that does not satisfy its

consequent, i.e., a∧ b. Suppose the algorithm chooses s1 = {¬a,¬b,¬c, d}; now, the

only antecedent that is satisfied is that of c4, and therefore we must make d false in

the next state. Let s2 = {¬a,¬b,¬c,¬d}. Now, since there is nothing stopping a

transition to states in which a and b are both true, we can reach g and we are done.

Note that this step could have been taken from s1 directly, but the algorithm does not

necessarily make the smallest number of transitions.
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Algorithm Reference Comment

subProgramSearchBAQA Alg. 10, Fig. 6.3, p. 136 Naive approach: traverses the entire
reachability graph checking for a solution.

simpleAnnBAQA Alg. 11, Fig.6.4, p. 138 Works on goals with [0, u] or [`, 1]
annotations; leverages subprogram equivalence
and heuristics for rule selection.

simpleAnnBAQA-heur-RC Alg. 12, Fig. 6.5, p. 143 Builds on top of Alg. 11 to build a formula
describing all states eventually reachable
from s0

decideReachabilitySAT Alg. 13, Fig. 6.6, p. 146 Correctly decides eventual reachability
given the formula built in Alg. 12

decideReachabilityHillClimb Alg. 14, Fig. 6.7, p. 148 Heuristic for deciding eventual reachability
given the formula built in Alg. 12

Figure 6.8: A summary of the algorithms for BAQA.
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Figure 6.9: Varying number of ground
state atoms for programs with 5 rules,
25 ground action atoms, 5 reachability
constraints, and atomic queries.
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Figure 6.10: Varying the number of
ground action atoms for ap-programs
with 5 rules, 5 ground state atoms, and
non-atomic queries.

6.4 Experimental Results

We conducted experiments using a prototype Java implementation consisting

of roughly 2,500 lines of code All experiments were run on multiple multi-core Intel

Xeon E5345 processors at 2.33GHz, 8GB of memory, running the Scientific Linux

distribution of the GNU/Linux operating system, kernel version 2.6.9-55.0.2.ELsmp.

We note that this implementation makes use of only one processor and one core.

All numbers reported are averages over at least 20 runs to minimize experimental

error; runs were performed over randomly generated ap-programs and goals based

on the following parameters: number of ground state and action atoms, number of
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Figure 6.11: Varying number of rules;
25 ground action atoms, 5 ground state
atoms, and atomic queries.
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(with 10% of them goal-conflicting); 25
ground action atoms, 5 ground state
atoms, and atomic queries.
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Figure 6.13: Varying the percentage of
rules that are in conflict with the goal;
ap-programs with 10 rules.
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Figure 6.14: Varying number of rules
(larger ap-programs); 25 ground action
atoms, 5 state atoms, and 5 reachability
constraints

reachability constraints, number and size of clauses in rule heads and reachability

constraints, number of rules, and number and size of clauses in goals. Due to the

vast number of parameters, we chose to vary a selection of them for the purposes

of this study; since these experiments were designed to show the effects of varying

certain parameters, those that were not varied in each case were kept at low values

to simplify the presentation of the results (see, for instance, the number of ground

state atoms in Figure 6.10, or the number of ground action atoms in Figure 6.11).
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No. of State Atoms. In Figure 6.9 we show the running times of the different

approaches to deciding reachability; the naive approach becomes intractable very

quickly, while the (still exact) SAT-based algorithm approach has negligible cost for

these runs.

No. of Action Atoms. Figure 6.10 shows the effect of varying the number of action

atoms on the running times of the different approaches to solving the rule selection

problem. Again we see how SimpleAnn is only slightly better than naive since

conflicting rules did not arise in the randomly generated programs. The algorithms

applying the (sound but not complete) heuristics exhibit a much lower running time,

though are clearly affected by the increase in number of atoms due to the difficulty

of satisfiability and entailment checks.

No. of Rules. Figure 6.11 reports the running times of the SimpleAnn rule selection

algorithms, where SimpleAnn-Heur refers to the heuristic applied by algorithm Sim-

pleAnn. We can see that both the naive approach and SimpleAnn quickly become

intractable as the number of rules in the input program increases. For SimpleAnn,

this is because the randomly generated programs do not provide it with the oppor-

tunity to apply its enhancements over the naive approach, in particular dismissing

conflicting rules. To show the effect of the presence of this kind of rules, we ran

another series of experiments in which a certain percentage of the rules in the in-

put program were forced to be in probabilistic conflict with the goal; the results

are shown in Figures 6.12 and 6.13. The former shows the same experiment as

Figure 6.11 but with (rounded) 10% of the rules forced to be in conflict, while the

latter shows the effect of increasing this percentage for programs of 10 rules. Both

figures show how SimpleAnn leverages the presence of these rules, greatly reducing

its running time w.r.t. that of the naive algorithm.
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The last set of experiments are presented in Figure 6.14, which shows the

running times for the SimpleAnn heuristic step (that is, assuming the algorithm

only tries to apply the heuristic and returns false otherwise) and the SimpleAnn-

HeurRC algorithm for larger programs. It is interesting to see the different shapes

of the curves: as programs get larger, the SAT formulas associated with SimpleAnn-

HeurRC become larger as well, leading to the gradual increase in the running time;

on the other hand, we can see that the strategy of only focusing on certain “heuristic

rules” pays off for the SimpleAnn heuristic step, but there is a spike in running time

when the size grows from 400 to 500 rules. This is likely due to the appearance of

more such rules, which means that the algorithm has many more subprograms to

verify.

Finally, we would like to point out that all runs reported a percentage of false

negatives of at most 20% for the heuristic algorithms (false positives are not possible

because they are sound algorithms), and were close to zero in many cases. In future

work we will extend this experimental study to investigate which parameters have

the most influence over the precision of our heuristics.

6.5 Concluding Remarks

To the best of our knowledge, this is the first effort that tackles the problem

of abductive reasoning in probabilistic logic programming under no independence

assumptions, in the tradition of the works of [NS92] for probabilistic logic program-

ming, and [Hai84], [Nil86], and [FHM90] for probabilistic logic in general. As we

are adopting the class of action probabilistic logic programs from [KMN+07a], it is

natural to consider abductive reasoning with respect to goals instead of observations
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(as is done sometimes when the logic programming perspective of abductive infer-

ence is adopted). In Chapter 3, we discuss the work in the literature that is most

closely related to our approach.

In the next chapter, we will focus on a generalization of BAQA, which we call

cost-based abductive query answering (or CBQA). The generalization arises from the

fact that we are no longer interested in finding a reachable state for which the goal is

entailed, but rather a reachable state for which the associated path from the current

state has minimal cost. Chapter 7 will focus on the set of related issues that arise,

such as how cost can be defined, and how this generalization can be used to take

into account the adversary’s reactions to the reasoning agent’s attempts at changing

the environment.
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Chapter 7

Abductive Inference Taking the

Adversary into Account

In this chapter, we will expand on the basic query answering problem described

in Chapter 6 by assuming that there are costs associated with transforming the

current state into another state, and also an associated probability of success of

this transformation; e.g., the fact that we may try to reduce foreign state political

support for a certain group may only succeed with some probability. Furthermore,

we are interested in associating a reward with each state; such a reward can be

defined in many ways, but we will focus on associating a value that is related to

the probabilities of certain actions being taken by the adversary (where actions

undesired by the reasoning agent ensue lower rewards). To model this, we will make

use of three functions, defined next:

Definition 23. A transition function is any function T : S ×S → [0, 1], and a cost

function is any function cost : S → [0, 1]. A transition cost function, defined w.r.t.
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a transition function T and some cost function cost, is a function costT : S × S →

[0,∞), with costT (s, s′) = cost(s′)
T (s,s′)

whenever T (s, s′) 6= 0, and ∞ otherwise1.

Example 31. Suppose that the only state predicate symbols are those that appear

in the rules of Figure 6.1 (Page 129), and consider the set of states in Figure 6.2.

Then, an example of a transition function is: T (s1, s2) = 0.93, T (s1, s3) = 0.68,

T (s2, s1) = 0.31, T (s4, s1) = 1, T (s2, s5) = 0, T (s3, s5) = 0, and T (si, sj) = 0

for any pair si, sj other than the ones considered above. Note that, if state s5 is

reachable, then the ap-program is inconsistent, since both rules 1 and 2 are relevant

in that state.

Function costT describes reachability between any pair of states – a cost of ∞

represents an impossible transition. The cost of transforming a state s0 into state sn

by intermediate transformations through the sequence of states seq = 〈s0, s1, . . . , sn〉

is defined:

cost∗seq(s0, sn) = e
∑

0≤i<n,si∈seq
costT (si,si+1) (7.1)

One way in which cost functions can be specified is in terms of reward functions.

Definition 24 (Reward functions). An action reward function is a partial function

R : APF → [0, 1]. An action reward function is finite if dom(R) is finite.

Let R be a finite reward function and Π be an ap-program. An entailment-

based reward function for Π and R is a function EΠ,R : S → [0,∞), defined as:

EΠ,R(s) =
∑

F :[`,u]∈dom(R)∧Πs|=F :[`,u]

R(F : [`, u]) (7.2)

1We assume that ∞ represents a value for which, in finite-precision arithmetic, 1
∞ = 0 and

x∞ =∞ when x > 1. The IEEE 754 floating point standard satisfies these rules.
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Reward functions are used to represent how desirable it is, from the reasoning

agent’s point of view, for a given annotated action formula to be entailed in a given

state by the model being used. In this chapter, we will assume that all reward

functions are finite. We use this notion of reward to define a natural canonical cost

function as cost◦(s) = 1
EΠ,R(s)

when EΠ,R(s) 6= 0, and 1 otherwise, for each state s.

In the rest of this chapter, we assume that all transition cost functions are defined

in terms of a canonical cost function.

Example 32. An example of an entailment-based reward function is as follows.

Consider state s2 from Figure 6.2, and annotated formulas F1 = kidnap(1) ∧

tlethciv(1) : [0, 0.60], F2 = kidnap(1) : [0, 0.05], and F3 = tlethciv(1) : [0, 0.5].

Suppose we have action reward function R such that R(F1) = 0.2, R(F2) = 0.54, and

R(F3) = 0.14. Now, considering that Πs2 |= F1, Πs2 6|= F2, and Πs2 |= F3, we have

that, according to Equation 7.2 in Definition 24, EΠ,R(s2) = 0.2 + 0.14, 1 = 0.34.

Assuming T (s1, s2) = 0.93 as in Example 31, we have costT (s1, s2) = 0.34
0.93
≈ 0.365.

In the next section, we will formally present the cost-based query answering

problem.

7.1 Cost-based Query Answering (CBQA)

Given the preliminary definitions above, we can now present the main problem

that will be addressed in this chapter.

Definition 25. A cost based query is a 4-tuple 〈G : [`, u], s, costT , k〉, where G : [`, u]

is an ap-formula, s ∈ S, costT is a cost function, and k ∈ R+ ∪ {0}.

CBQA Problem. Given ap-program Π and cost-based query 〈G : [`, u], s, costT , k〉,

return “Yes” if and only if there exists a state s′ and sequence of states seq =
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〈s, s1, . . . , s
′〉 such that cost∗seq(s, s

′) ≤ k, and Πs′ |= G : [`, u]; the answer is “No”

otherwise.

The main difference between the BAQA problem presented above and CBQA is

that in BAQA there is no notion of cost, and we are only interested in the existence

of some sequence of states leading to a state that entails the ap-formula.

Example 33. Consider once again the program in the running example and the

set of states from Figure 6.2. Suppose the goal is kidnap(1) : [0, 0.6] (we want the

probability of Hezbollah using kidnappings to be at most 0.6) and the current state

is s4, k = 3. Suppose we have a reward function EΠ,R such that EΠ,R(s1) = 0.5,

EΠ,R(s2) = 0.15, EΠ,R(s3) = 0.5, EΠ,R(s4) = 0.1, EΠ,R(s5) = 0, and EΠ,R(si) = 0

for all other si ∈ S. Finally, for the sake of simplicity, suppose transition function

T states that all transitions have probability 1.

The states that make relevant a subprogram that entails the goal are: s1, s2,

s3, and s5. The objective is then to find a finite sequence of states starting at s4

and finishing in any other state such that the total cost of the sequence is less than

3 (recall that cost is defined costT (s, s′) = cost◦(s′)/T (s, s′)). We can easily see that

directly moving to either state s1 or s3 satisfies these conditions, with a cost of 2;

moving to s2 or s5 does not, since the cost would be ≈ 6.67 and ∞, respectively.

The following proposition is a direct consequence of Proposition 14, which

stated that the BAQA problem is EXPTIME-complete.

Proposition 19. CBQA is EXPTIME-complete.

Proof. Direct consequence of Proposition 14, by observing that BAQA is a special

case of CBQA where the transition function is T is such that T (si, sj) = 1 for any
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si, sj ∈ S, the reward function is such that EΠ,R(s) = 1 for all s ∈ S, and k = ∞

(i.e., a high enough value).

This same argument allows us to show, as direct consequences of Corollary 3

and Proposition 15, that CBQA is EXPTIME -complete and NP -complete whenever

the cardinality of the set of ground action atoms is bounded by a constant, and the

cardinality of the set of ground state atoms is bounded by a constant, respectively.

Problems P1 and P2 described on Page 134 also apply to CBQA, the only difference

being that in P2 we must take the cost budget (and therefore also the transition

probabilities) into account.

In the next sections we will investigate algorithms for CBQA when the cost

function is defined in terms of entailment-based reward functions. We will begin

by presenting an exact algorithm, and then go on to investigate a more tractable

approach to finding solutions, albeit not optimal ones.

7.2 An Exact Algorithm for CBQA

We show that any CBQA problem can be mapped to a Markov Decision Pro-

cess [Bel57, Put94] problem. An instance of an MDP consists of: a finite set S of

environment states; a finite set A of actions; a transition function T : S×A→ Π(S)

specifying the probability of arriving at every possible state given that a certain ac-

tion is taken in a given state; and a reward function R : S ×A→ R specifying the

expected immediate reward gained by taking an action in a state. The objective is

to compute a policy π : S → A specifying what action should be taken in each state

– the policy should be optimal w.r.t. the expected utility obtained from executing

it.
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Obtaining an MDP from the Specification of a CBQA Instance. We show

how any instance of a CBQA problem can be mapped to an MDP in such a way

that an optimal policy for this MDP corresponds to solutions to the original CBQA

problem.

State Space: The set SMDP of MDP states corresponds directly to the set S.

Actions: The set AMDP of possible actions in the MDP domain corresponds to the

set of all possible attempts at changing the current state. We can think of the set

of actions as containing one action per state in s ∈ S, which represents the change

from the current state to s. We will therefore say that action a specifying that the

state will be changed to s is congruent with s, denoted a ∼= s.

Transition Function: The transition function TMDP for the MDP can be directly

obtained from the transition function T in the CBQA instance. Formally, let s, s′ ∈

SMDP and a ∈ AMDP; we define:

TMDP(s, a, s′) =


0 if a 6∼= s′,

T (s, s′) otherwise;

(7.3)

TMDP(s, a, s) = 1− T (s, a, s′) for a ∼= s′; (7.4)

the last case represents the fact that, when actions fail to have the desired effect,

the current state is unchanged.

Reward Function: The reward function of the MDP, which describes the reward

directly obtained from performing action a ∈ A in state s ∈ S, can also be directly

obtained from the CBQA instance. Let s ∈ SMDP, a ∈ AMDP, Π be an ap-program,
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G : [`, u] be the goal, and EΠ,R be an entailment-based reward function:

R(s, a) =


−1 ∗ costT (s, s′) for state s′ ∈ S such that a ∼= s′,

1 for states s′ ∈ S such that Πs′ |= G : [`, u].

(7.5)

To conclude, we present the following results. The first states that given an instance

of CBQA, our proposed translation into an MDP is such that an optimal policy under

Maximum Expected Utility (MEU) for such an MDP expresses a solution for the

original instance. In the following, we say that a sequence of states 〈s0, s1, . . . , sk〉

is the result of following a policy π if π(si) = ai+1, where 0 ≤ i < k and ai+1
∼= si+1.

Proposition 20. Let O = (Π,S, s0, G : [`, u], cost, T, EΠ,R, k) be a CBQA problem

instance that has a solution (output “Yes”), and M = (SMDP, AMDP, TMDP, RMDP)

be its corresponding translation into an MDP. If π is a policy for M that is optimal

w.r.t. the MEU criterion, then following π starting at state s0 ∈ SMDP yields a

sequence of states that satisfies the conditions for a solution to O.

Proof. By hypothesis we have that π is MEU-optimal, which means that

π(s) = arg max
a

(
RMDP(s, a) + max

a′

(∑
s′∈S

TMDP(s, a, s′) ·Q(s′, a′)

))
(7.6)

where Q is the action utility function defined as usual:

Q(s, a) = RMDP(s, a) + max
a′

(∑
s′∈S

TMDP(s, a, s′) ·Q(s′, a′)

)

By hypothesis, we have that the answer to instance O is “Yes”, meaning that there

exists a sequence seq = 〈s0, . . . , sn〉 such that cost∗seq(s0, sn) ≤ k. We will prove, by

induction on the length of seq, that the theorem holds.
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Base case: For |seq| = 2, π(s0) must correspond to an action that takes us directly

to state s′ satisfying the entailment condition. Furthermore, by definition of MEU

policy, it must be the action that maximizes the reward function defined in Equa-

tion 7.5. By hypothesis, it must be the case that cost∗seq(s0, s
′) ≤ k; the theorem

therefore holds.

Inductive step: Assume that the theorem holds whenever solution seq is such that

|seq| = k, for some k ∈ N, k > 2; we must then prove that it also holds whenever

|seq| = k+1. Consider the set S ′0 comprised of states s′0 such that T (s0, s
′
0) 6= 0 and

cost∗seq(s0, s
′
0) ≤ k. Then, since by hypothesis we know that there exists a solution

to O of length k + 1, there must exist a solution of length k to some instance

O′ =
(
Π,S − {s0}, s′0, G : [`, u], cost, T, EΠ,R, k − cost∗seq(s0, s

′
0)
)
,

for some s′0 ∈ S ′0. By the inductive hypothesis, the theorem is satisfied for O′,

meaning that the MEU optimal policy π for O is defined for all states in S − {s0}.

Now, π(s0) will correspond to the action with the highest reward; clearly, the action

that corresponds to state s′0 from O′ satisfies this property.

Second, we analyze the computational cost of taking this approach. As there

are numerous algorithms to solve MDPs, we only analyze the size of the MDP re-

sulting from the translation of an instance of CBQA. The well-known Value Iteration

algorithm [Bel57] iterates over the entire state space a number of times that is poly-

nomial in |S|, |A|, β, and B, where B is an upper bound on the number of bits

that are needed to represent any numerator or denominator of β [Lit96]. Now, each

iteration takes time in O(|A| · |S|2), which is equivalent to O(|S|3) since |A| = |S|;
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this means that only for very small instances will solving the corresponding MDP

be feasible.

As can be seen from the above mapping, the key point in which our problem

differs from approaches like planning under uncertainty is that finding a sequence of

states that is a solution to CBQA involves executing actions in parallel which, among

other things, means that the number of possible actions that can be considered

in a given state is very large. This makes planning approaches infeasible since

their computational cost is intimately tied to the number of possible actions in the

domain (generally assumed to be fixed at a relatively small number). In the case of

MDPs, even though state aggregation techniques have been investigated to keep the

number of states being considered manageable [BDG00, TvR96], similar techniques

for action aggregation have not been developed.

7.3 A Heuristic Algorithm based on Iterative Sam-

pling of Solutions

Given the exponential search space, we would like to find a tractable heuristic

approach. We now show how this can be done by developing an algorithm in the class

of iterated density estimation algorithms (IDEAs) [BJV96, PGL02]. The main idea

behind these algorithms is to improve on other approaches such as Hill Climbing,

Simulated Annealing, and Genetic Algorithms by maintaining a probabilistic model

characterizing the best solutions found so far. An iteration then proceeds by (1)

generating new candidate solutions using the current model, (2) singling out the

best out of the new samples, and (3) updating the model with the samples from

Step 2. One of the main advantages of these algorithms over classical approaches
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Algorithm 15: DE CBQA(Π, G : [`, u], s0, T, h, k, numIter , giveUp)
1. SG:= getGoalStates(Π, G : [`, u]);
2. test all transitions (s0, sG), for sG ∈ SG; calculate cost∗seq(s0, sG) for each;
3. let φbest be the two-state sequence that has the lowest cost, denoted cbest;
4. let S ′ = S − SG − {s0}; set j := 2;
5. P := new uniform probability distribution over sequences(S ′);
6. while !giveUp do
7. j := j + 1;
8. for i = 1 to numIter do
9. randomly sample (using P ) a set H of h sequences of states

of length j starting at s0 and ending at some sG ∈ SG;
10. rank each sequence φ with cost∗seq(s0, φ(j));
11. pick the sequence in H with the lowest cost c∗, call it φ∗;
12. if c∗ < cbest then φbest:= φ∗; cbest:= c∗;
13. P := generate new distribution based on H;
14. return φbest;

Figure 7.1: An algorithm for CBQA based on probability density estimation.

is that the probabilistic model, a “byproduct” of the effort to find an optimum,

contains a wealth of information about the problem at hand.

Algorithm DE CBQA (Figure 7.1) follows this approach to finding a solution

to our problem. The algorithm begins by identifying certain goal states, which are

states s′ such that Πs′ |= G : [`, u]; these states are pivotal, since any sequence of

states from s0 to a goal state is a candidate solution. The algorithms in Section 6.2

can be used to compute a set of goal states. Continuing with the preparation phase,

the algorithm then tests how good the direct transitions from the initial state s0 to

each of the goal states is; φ∗ now represents the current best sequence (though it

might not actually be a solution). The final step before the sampling begins occurs

in line 5, where we initialize a probability distribution over all states2, starting out

as the uniform distribution.

2In an actual implementation, the probability distribution should be represented implicitly, as
storing a probability for an exponential number of states would be intractable.
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The getGoalStates function called in line 1 performs two tasks: first, it identi-

fies subprograms Π′ of Π such that Π′ |= G : [`, u]; second, it identifies states s such

that Πs = Π′, for some Π′ found in the first step. All such states are then labeled

as goal states, since any sequence of states from s0 to any goal state is a candidate

solution. The algorithms developed in Section 6.2 can be used to compute a set of

goal states.

The while loop in lines 6-13 then performs the main search; giveUp is a pred-

icate given by parameter which simply tells us when the algorithm should stop (it

can be based on total number of samples, time elapsed, etc). The value j represents

the length of the sequence of states currently considered, and numIter is a param-

eter indicating how many iterations we wish to perform for each length. Line 9

performs the sampling of sequences, while line 10 assigns a score to each based on

the transition cost function. After updating the score of the best solution found up

to now, line 13 updates the probabilistic model P being used by keeping only the

best solutions found during the last sampling phase. The algorithm finally returns

the best solution it found (if any). An attractive feature of DE CBQA is that it is

an anytime algorithm, i.e., once it finds a solution, given more time it may be able

to refine it into a better one while always being able to return the best so far. We

now show an example of this algorithm at work.

Example 34. Consider once again the ap-program from Figure 6.1, and the states

from Figure 6.2. Suppose that we have the following inputs. The goal is kidnap(1) :

[0, 0.6]; the transition probabilities are as follows: T (s4, s1) = 0.1, T (s4, s2) = 0.1,

T (s4, s3) = 0.1, T (s2, s1) = 0.9, T (s3, s2) = 0.8, T (s5, s2) = 0.9, T (s5, s3) = 0.2,

T (s5, s1) = 0.3, T (s1, s3) = 0.01, and T (si, sj) = 1 for any pair of states si, sj not

previously mentioned; the initial state is s4; the reward function EΠ,R is defined as
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follows: EΠ,R(s1) = 0.5, EΠ,R(s2) = 0.15, EΠ,R(s3) = 0.5, EΠ,R(s4) = 0.1, and

EΠ,R(s5) = 0.7; giveUp is a predicate that simply checks if we’ve sampled a total of

5 or more sequences; numIter = 2; h = 3; and k = 1, 000.

The three states that make relevant a subprogram that entails the goal are s1, s2,

and s3. The costs of the two-state direct sequences are the following: costseq(s4, s1) ≈

108.68, costseq(s4, s2) ≈ 1028.9, and costseq(s4, s3) ≈ 108.68; therefore, cbest = 108.68 and

φbest = 〈s4, s3〉. Next, since we are assuming that s1-s5 are the only states for the

sake of brevity, the algorithm sets up a probability distribution P represented as a

distribution over the set of states that starts out as (0.2, 0.2, 0.2, 0.2, 0.2). Suppose

we sample H = {〈s4, s5, s3〉, 〈s4, s5, s2〉, 〈s4, s1, s3〉}. These sequences have respective

costs of 109.23, 103.21, and 1021.71. The update step in line 13 of the algorithm will

then look at the two best sequences in H and, depending on how it is implemented,

might update P to (0.1, 0.1, 0.1, 0, 0.7). Thus, the algorithm has learned that s4, s5

seems to be a good way to start. For brevity, suppose that the next iteration of

samples (the last one according to giveUp) contains 〈s4, s5, s1〉, whose cost is ≈

102.89; it is the best seen so far, and since 102.89 < k, it is a valid answer.

In Section 7.4, we present the results of our experimental evaluation of this algo-

rithm, comparing it first to an exact solver and then investigating its scalability.

7.4 Experimental Results

In this section, we will report on a series of experimental evaluations that we

carried out on the algorithms presented in Sections 6.2 and 7.1. Due to the vast

number of possible parameters in these algorithms, we chose to vary a subset of

them for the purposes of this study.
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A note about state space size. As with ground action atoms and worlds, the num-

ber of possible states grows exponentially with the number of ground state atoms.

However, the situation is made worse in the case of states since the cardinality of

this set influences the number of possible state transitions, and therefore also the

number of sequences of states, which is basically the search space of the problem

at hand3. For n ground state atoms, we have 2n states, 22n state transitions, and(
22n

k

)
possible sequences of length k without repetition. Thus, for 10 ground state

atoms we have 1, 024 states, around 1 million possible state transitions, and about

1018 possible sequences of length 3! This number rapidly grows to about 1036 for 13

ground state atoms and sequences of length 5.

We carried out all experiments on an Intel Core2 Q6600 processor running at

2.4GHz with 8GB of memory available, using code written in Java 1.6; all runs were

preformed on Windows 7 Ultimate 64-bit OS, and made use of a single core.

First, we compare the run time and accuracy of the MDP formulation against

that of the DE CBQA algorithm. Recall that DE CBQA randomly selects states

with respect to a probability distribution that is updated from one iteration to the

next. The simplest way to represent this probability distribution is with a vector

of size |S|, where the element at position i represents the proportion of “good”

samples that contained state i. This representation does not scale as |S| increases;

our implementation thus only keeps track of the states we have visited, implicitly

assigning proportion 0 to all nonvisited states. As such, the required storage for the

probability distribution is proportional only to the number of states visited, not the

entire state space.

3Another direct consequence of this is that the number of possible state transitions directly
affects the size of the transition probability matrices, at least for explicit representations.
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Second, we explore instances of CBQA that are beyond the scope of the exact

MDP implementation, but within reach of the DE CBQA heuristic algorithm. As

discussed in Section 7.2, our problem assumes the agent being modeled can carry out

actions in parallel. For realistic problem settings, this leads to a very large number of

possible actions to be considered at every state, alongside an equally large number of

states to consider. As such, the exact MDP algorithm runs in polynomial time with

respect to an exponential number of actions and states, losing its tractability. To

address this shortcoming, we apply the basic DE CBQA algorithm to large problem

instances and discuss how it scales in relation to increased rule and state spaces.

Finally, we explore a different representation of the probability distribution

in the DE CBQA algorithm based on a Bayesian network. We contrast the two

implementations of the DE CBQA algorithm in large problem instances and end

with a discussion of “smarter” heuristics and their effects on both runtime and

quality of result.

For all experiments, we assume an instance of the CBQA problem with ap-

program Π and cost-based query Q = 〈G : [`, u], s, costT , k〉. The required cost,

transition, and reward values for both algorithms are assigned randomly in accor-

dance with their definitions. We assume an infinite budget for our experiments,

choosing instead to compare the numeric costs associated with the sequences re-

turned by the algorithms.

Exact MDP versus Heuristic DE CBQA. Let SMDP and AMDP be the state

and action spaces of the MDP corresponding to a given CBQA – each iteration

of the Value Iteration algorithm requires O
(
|SMDP |2 · |AMDP |

)
time. From the

transformation discussed in Section 7.2, we see that |AMDP | = |SMDP |; furthermore,

since |SMDP | is exponentially larger than the number of state atoms found in Π,
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Figure 7.2: Log-scale run time comparison of MDP and DE CBQA, shown with
increasing state size (top axis) for each of 2, 4, 8, and 16 rules (bottom axis). Note
the sharp jump in run time as the number of rules increases compared to the gradual
upward trend as the number of states rises.

we expect running the multiple iterations of Value Iteration required to obtain an

optimal policy to be intractable for all but very small instances of our problem. Our

experimental results support this intuition.

For this set of experiments, we varied the number of state atoms, action atoms,

and ap-rules in an ap-program Π; 10 unique ap-programs were created per combina-

tion of these inputs. We tested 10 randomly generated cost, transition, and reward

assignments for each unique ap-program. Then, for each of these generations, we

tested multiple runs of the MDP and DE CBQA algorithms. We varied the discount

factor γ and maximum error ε for the MDP4, while exploring different completion

predicates, maximum and minimum sequence lengths, and number of iterations per

sequence length for DE CBQA. We provide an overview of the results here.

Figure 7.2 compares the running time (log-scale) of both algorithms. Immedi-

ately clear is the fact that, although increasing state and rule space size slows down

both algorithms, DE CBQA consistently outperforms the standard MDP implemen-

tation. More subtle is the observation that the difference in run times between the

two algorithms increases with the number of states, with DE CBQA maintaining

4Given γ and ε, one can calculate an error threshold that guarantees an optimal policy [WB94].
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nearly constant run time across small numbers of states as the MDP implementation

increases noticeably. This disparity is explained at least in part by the MDP’s opti-

mality requirement; it requires an exhaustive list of all goal states while DE CBQA

can rely on faster heuristic search methods (see Section 6.2). As the state space

increases, so too does the list of states that must be tested for entailment of the goal

ap-formula.

We now compare the costs of sequences returned by MDP and DE CBQA,

as given by Equation 7.1. Typically, the recommended sequences’ costs are close5;

however, in rare cases, DE CBQA performs poorly. We believe this is due to the

initial probability distribution assigning mass uniformly to all states – meaning that

“good” and “bad” states are equally likely to be selected, at least initially. When

DE CBQA randomly selects bad states at the start, its ability to find better, lower-

cost states in future iterations is hampered. Given its low run time, one strategy for

dealing with these fringe cases is executing DE CBQA multiple times, selecting and

returning the overall lowest-cost sequence over all runs. In general, increasing the

number of iterations (line 8) did not affect sequence cost; however, increasing the

number of samples per iteration (line 9) often resulted in a better sequence. This

hints that allowing the probability mass to converge to a small number of states too

quickly is not desirable, as low-cost candidates that are not immediately evident can

be ignored. Furthermore, increasing the minimum and maximum sequence lengths

(lines 4 and 6) did not benefit the final result.

Finally, we tried using Policy Iteration [Tse90] instead of Value Iteration to

solve the MDP; however, this method was either slower than Value Iteration or, if

faster, forced to use such a low discount factor γ and error limit ε that following the

5In terms of relative error, η = |v−v′|
|v| , for true cost v (MDP) and approx. cost v′ (DE CBQA).

171



32 64 128 256 512

0.1

1

10

100

25
6

51
2

1,
02
4

2,
04
8

4,
09
6

25
6

51
2

1,
02
4

2,
04
8

4,
09
6

25
6

51
2

1,
02
4

2,
04
8

4,
09
6

25
6

51
2

1,
02
4

2,
04
8

4,
09
6

25
6

51
2

1,
02
4

2,
04
8

4,
09
6

Number of States

A
ve
ra
ge
 T
im

e 
(s
)

Number of Rules

Figure 7.3: Log-scale run time as DE CBQA scales with respect to number of states
(top axis) and number of rules (bottom axis). Note the addition of extra rules slows
down algorithm execution time much more significantly than a similar increase in
state space size.

resultant policy often yielded a worse sequence than DE CBQA’s recommendation

– at a slower speed!

Scaling the Heuristic DE CBQA Algorithm. The MDP formulation of CBQA

quickly becomes intractable as Π becomes more complex. In this section, we discuss

how DE CBQA scales beyond the reach of MDP as the number of states, actions,

and rules increase. In order to avoid a direct exponential blowup when increasing

the number of rules, we made one small change to the algorithm: whenever no goal

states are found with the fast heuristics (line 1), it fails to return an answer; i.e., it

takes a pessimistic approach.

Figure 7.3 compares an increase in number of states to a similar increase in

number of rules; observe that the number of rules seems to have a larger effect

on overall run time, with an increase in state space being less noticeable. This is

due to two characteristics of our algorithm. First, the heuristic sampling strategy

to find states that entail the goal formula visits every rule, but not every state.

Second, once entailing states are found, the run time of the DE CBQA algorithm is

only as related to the size of the state space as its probability distribution requires.
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States Actions Rules Time (s)

4,096 220 4,096 35.817
64 225,600 1,024 6.881
64 220 16,384 213.511

Figure 7.4: Towards the limits of our current implementation. Timing results taken
by maximizing an individual parameter. The size of the state space was limited by
system memory in this implementation.

For the basic probability vector variant implemented with a data structure that

supports constant lookup, there is very little relation to the number of states. In

our experience, real-world instances of CBQA tend to contain significantly fewer

rules than states and actions [KMN+07a]. For these cases, DE CBQA scales quite

well.

Toward Better Sampling. The most straightforward representation of the prob-

ability distribution in the DE CBQA algorithm is, as discussed earlier, a mapping of

states to the proportion of “good” sampled sequences that contain that state. While

this representation is neither memory nor computationally intensive, it ignores any

subtle relationships that may exist between individual states or their ordering in the

overall sequence. For instance, assume there is some state that is very desirable if

and only if it is visited immediately after the initial state; otherwise, it is extremely

undesirable. If DE CBQA happens to choose this state initially, its näıve probabil-

ity vector will be inclined to recommend the state equally at all locations in future

sequences, including those that are undesirable.

It is our belief that real instances of CBQA will exist in similar worlds where

states and actions are not conditionally independent; as such, it is critical to explore

a more informed approach to maintaining our probability distribution. One such

method is the Bayesian belief network [Pea88], a directed acyclic graph modeling

conditional dependencies among random variables. In our case, each node in the net-
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work structure represents a random variable covering all possible states for a single

(ordered) position in the final sequence. For a given node, a state is assigned prob-

ability mass proportional to how likely it is to be included in a “good” sequence at

the position associated with that node. These values are initially provided through

uninformed sampling of the state space, while the structure of the final network is

learned through standard machine learning techniques.

Since an exhaustive search for the optimal structure across all potential net-

works is superexponential in the number of variables — in our case, the length of the

sequence — we use a heuristic local search algorithm to perceive graph structure.

We use a slightly modified K2 search algorithm with a fixed ordering based on the

sampled sequences to emphasize speed of structure learning [CH92]. Our intuition

is that neighboring nodes in the sequence are more likely to affect each other than

those farther away. Many other heuristic search algorithms exist, but a discussion

of their merits is outside the scope of this paper.

Sampling from the network is accomplished in two steps. First, recall that

a state’s probability mass at a root node in our Bayesian network is related only

to the proportion of “good” training sequences containing that state at a specific

location. With this in mind, for every root node, we take a weighted sample from its

prior probability distribution table. Second, we sample the conditional probability

table of each child node with respect to the partial assignment provided by sampling

its immediate parents. In this way, we provide a method for sampling a full path

through the state space that takes into account conditional dependencies between

states, their ordering, and position.

Intuitively, an informed sampling method should provide higher accuracy (i.e.,

lower sequence costs) at a greater computational cost, especially in instances when
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states and actions interact. To explore this intuition, we remove some of the ran-

domness from our original testing suite by seeding desirable paths through the state

space. This is accomplished by manipulating the cost and transition functions be-

tween states, yielding low costs for specific sequences of states and high costs other-

wise. In this way, obvious conditional dependencies are introduced into the world.

We now compare the Bayesian method (implemented with WEKA [HFH+09])

against the initial näıve probability vector method. First, as a measure of result

quality, we define the cost decrease factor to be the factor difference in the cost

of the best sequence returned by the Bayesian method over that returned by the

vector implementation. Higher cost decrease factors correspond to better relative

Bayesian method performance. Figure 7.5 shows the cost decrease factor for very

small amounts of seeded paths compared to different sizes of state spaces. For

extremely small numbers of seeded paths, the Bayesian algorithm outperforms by

roughly a factor of 2. This low number signifies similar performance to the vec-

tor method and is due to both DE CBQA implementations missing the very few

“carved” sequences in their initial sampling, before any probability distribution is

constructed. The conditional network constructed from bad sampling is less useful;

however, this problem can be easily solved by repetition of the algorithm.

Two trends, distinguished by the size of the state space, begin to form as

we increase the number of seeded paths. When considering a larger number of

seeded paths in larger state spaces, the Bayesian method shows its ability to discover

dependencies in sampled sequences; however, when considering the same number of

paths in a smaller state space, the Bayesian method continues to perform only

slightly better than its vector counterpart. Carving too many (relative to the size

of the state space) desirable paths essentially randomizes the transitions between
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Figure 7.5: Varying the number of
seeded paths with a small (e.g., 16 or 32)
number of states versus a larger (e.g.,
512 or 1024) state space.

2

3

4

5

Co
st
 D
ec
re
as
e 
Fa
ct
or

16
32
512
1024

1

2

3

4

5

1% 2% 4% 8% 16% 32% 64% 128% 256%

Co
st
 D
ec
re
as
e 
Fa
ct
or

Number of Seeded Paths (% of Num. of States)

16
32
512
1024

Figure 7.6: Varying the number of
seeded paths (and thus the level of con-
ditional dependence in the world) as a
percentage of the total number of states.

0.1

1

10

100

A
ve
ra
ge
 T
im

e 
(s
)

Vector

Bayes

0.01

0.1

1

10

100

A
ve
ra
ge
 T
im

e 
(s
)

Number of States

Vector

Bayes

Figure 7.7: Log-scale run time as both the Bayesian and vector-based DE CBQA
algorithms scale. Note the linear increase in Bayesian runtime caused by structure
learning, storage, and sampling overhead.

states; for example, 20 paths through only 16 states alters overall dependencies far

more than a similar number through 1, 024 states. We explore this relationship

further below.

Figure 7.6 shows the quality of results as the number of seeded paths is in-

creased significantly. We see that the Bayesian network version performs admirably

in large state spaces until roughly 8%, when its performance degrades to that of the

Bayesian version in a smaller state space. As in Figure 7.5, small instances of the

problem stay roughly constant. Regardless of state space size, we see an increase in

result quality of 2 to 3 over the näıve probability vector.
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We have seen that the more informed sampling method performs well, decreas-

ing overall sequence cost. However, as our initial intuition suggested, the increased

overhead of maintaining conditional dependencies slows the DE CBQA algorithm

significantly. Figure 7.7 shows that although the memory requirements of both al-

gorithms increase linearly in the size of the number of states sampled, the Bayesian

method is consistently slower than the vector method. This is due to a similar

increase in the runtime complexity of the Bayesian method. The vector method

represents probabilities as a simple mapping of states to real numbers; as such, an

implementation with a constant lookup time data structure provides extremely fast

sampling with a small memory footprint. For the more informed Bayesian variant of

the heuristic, this relationship is based both on the number of initial iterations over

the state space prior to the formation of the sampling structure and the maximum

length of a sampled sequence. The Bayesian graph has as many nodes as there are

states in a sampled sequence; furthermore, each of these nodes maintains knowledge

of all unique states corresponding to a particular position in the sequence. Learning

the structure of the network, storing the graph, and sampling from it are all de-

pendent on the number of sampled states and sequence length. Thankfully, we can

apply reasonable bounds to the number of samples, opting instead to instantiate

multiple Bayesian networks over a smaller sample set.

When we include the additional cost of searching for entailing goal states

(Line 1 of the DE CBQA algorithm), both the näıve probability vector and in-

formed Bayesian network methods scale similarly. We use the same fail-fast pes-

simistic approach to the heuristic goal search described earlier. Figure 7.8 shows

how both algorithms scale with respect to an increase in number of states and

number of rules. As before, the number of rules has a significantly higher effect
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Figure 7.8: Run time comparison as DE CBQA scales with respect to number of
states (top axis) and number of rules (bottom axis). Note the similarity in run time
between the Bayesian and vector probability models.

on overall runtime than the number of states. We see that the algorithm scales

gracefully to large state/action spaces. As we mentioned above, in our experience,

real-world instances of CBQA tend to contain significantly fewer rules than states

and actions [KMN+07a]; as such, in these cases DE CBQA scales quite well.

7.5 Concluding Remarks

In this chapter, we introduced the Cost-based Query Answering Problem

(CBQA), and show that computing an optimal solution to this problem is compu-

tationally intractable, both in theory and in practice. We then propose a heuristic

algorithm (DE CBQA) based on iterative random sampling and show experimen-

tally that it provides comparably accurate solutions in significantly less time. Fi-

nally, we show that DE CBQA scales to very large problem sizes. The main goal

of generalizing the BAQA problem from Chapter 6 in this way was to be able to

take into account how the adversary responds in the intermediate states that must

be traversed in order to reach the final state that satisfies the reasoning agent’s

probabilistic goal.
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Chapter 8

Advanced Applications of ap-programs:

Taking Promise Fulfillment into Account

The main problems addressed so far have been about computing the most

probable sets of actions given a situation (Chapters 4 and 5), and reasoning about

how the current environment can be changed in such a way that a given ground

action probabilistic formula (i.e., a boolean combination of concrete actions and

an associated probability interval) is entailed in the new environment (Chapters 6

and 7). As we discussed in Chapter 2 when presenting the basic syntax and semantics

of ap-programs, in all of these problems we assume that the formalism has been set

up in such a way that predicates can refer to either actions taken by the agent being

modeled or the environment, and that all rules been learned with respect to this

setup.

In this chapter, we will study how the ap-program framework can be set up

when certain special considerations need to be made. In particular, this chapter will

provide a mechanism by which ap-programs can include state and action atoms as

part of rules that refer to promises made between agents. For instance, based on
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past performance of agent A on a certain kind of promise, agent C may derive the

following rules:

fulfill(P,medium) : [0.85, 0.92]←

(P = promise(A,C, fly(From,To,DepTime),ArrTime)) ∧

inNE(From) ∧ inMidwest(To) ∧ holidaySeason(DepTime).

This rule intuitively says that if A made a promise to C to fly from a certain airport

From in the Northeast to airport To in the Midwest, departing at time DepTime

which is during the holiday season (we assume the time includes the date as well)

and arriving at time ArrTime, then it is likely that the promise will be fulfilled only

to a medium degree (the probability of this is between 0.85 and 0.92). Note that for

this example we are assuming that degrees of fulfillment are categorized into buckets

such as low, medium, and high. Even though this is not necessary, it will most likely

be advantageous to reason about degrees of fulfillment at a higher level than the real

numbers that are likely to occur in raw data, since the reasoning agent may only

care about a few different levels of fulfillment. The user can of course define as many

buckets as he sees fit for the application at hand. These rules can be derived in a

fairly straightforward manner using standard learning algorithms. If an agent has

access to historic records of how others have fulfilled their promises, it can derive

this sort of rules and use them during negotiations to decide if it is dealing with a

trustworthy party or not, or to perform more complex reasoning such as expected

payoff of a given deal.

We will begin by presenting a motivating example in the next section, which

we will refer to throughout this chapter.
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8.1 Introduction and Motivating Example

Politicians and political parties are prime examples of people and organizations

that make and break promises . Conference and journal reviewers often promise to

review papers by a deadline, but may not meet the deadline, may only review part

of their assigned load, or not do it at all. Airlines promise to deliver passengers and

their bags by a deadline, but may miss the deadline altogether. Suppliers to manu-

facturing plants and/or to retail outlets make promises about when inventory and/or

supplies will be delivered, but may meet their promises partially or completely.

The goal of this chapter is to develop a formal theory to quantitatively evaluate

how well an agent has fulfilled its past promises and use that as a predictor of whether

it will keep its current (as yet unfulfilled promises). An agent A can use the theory

developed in this chapter to assess the likelihood that an agent B will fulfill a given

promise. Our framework takes into account three important factors not considered

before: partial fulfillment of a promise is taken into account, as is late fulfillment,

fulfillment of a promise that is similar to, but not identical to the promise that was

made, and combinations thereof. The toy example below, called the Store example,

is used throughout the chapter.

Example 35. Consider a Store agent and a Supplier agent. The supplier provides,

among other things, shirts and balls to the store. The supplier promises to deliver 10

blue balls by time t1, 5 green balls by time t2, and 15 green shirts by time t3. Here

are some possible scenarios.

(S1) He delivers 7 blue balls at time t1 and 3 blue balls separately at time t1.

(S2) He delivers 7 blue balls at time t1 and 3 blue balls at time t1 + 1.

(S3) He delivers 7 blue balls at time t1, 2 at time t1 + 1 and 1 at time t1 + 2.
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(S4) He delivers 10 blue balls at time t1 − 3.

Most readers will agree that the degree of fulfillment of the supplier’s promise in S1

exceeds that in S2 which in turn exceeds that in case S3. However, case S4 is less

clear. Should early delivery be penalized? For example, a grocery store may want

just in time delivery as there are storage costs involved. An early delivery of fish by

one supplier may cause the fish to rot if sufficient refrigeration is not available when

the delivery occurs.

In this chapter, we make the following contributions. First, we define a formal

syntax for expressing promises and actions that an agent might take to keep those

promises. These include promises and actions with a numerical component. We then

define distance measures between actions (with the same action symbol), followed

by distance measures between sets of promises and actions. Rather than define

distance measures directly, we develop axioms that such distance measures should

satisfy and we then show some example distance measures that satisfy the axioms.

We then define the concept of an enactment mapping, which maps actions

taken by an agent to the promises that those actions were intended to contribute

towards. Given an enactment mapping, we can define a degree of fulfillment of a

promise w.r.t. the enactment mapping. When the enactment mapping is not known,

finding the enactment mapping that maximizes the degree of fulfillment is shown

to be computationally intractable. Fortunately, one can get around this complexity

result easily as long as the agent taking an action specifies which promise the action

is supposed to contribute towards. We prove various desirable properties of our

notion of fulfillment and show that when the enactment mapping is fixed, it leads

to an incremental way of updating the degree of fulfillment when new actions are

performed, i.e., without having to process past actions all over again. We then derive
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specific methods to estimate the likelihood that a given promise will be fulfilled in

the future.

In order to test our methods, we developed a prototype implementation of

our system and tested it out on real US airline data where the promises pertain to

on-time flight departures and arrivals. We show that our estimation methods have

strong predictive power. We used our algorithms to predict how well airlines would

perform (in terms of on-time flight arrivals) in 2007 based on previous years’ data.

Our predictions were highly accurate and took small amounts of compute time.

There is some past work on developing models of trust in agent systems.

[SD07a] presents a model of decision making based on trust in simple Offer, Accept,

Reject negotiations. Decision-making in this model integrates the utilitarian, infor-

mation, and semantic views of the exchange of information, and the authors present

summary measures that generalize trust, reliability, and reputation as an illustra-

tion of the model’s capabilities. However, promises of the kind we discuss in this

chapter are not considered. Another important difference with our approach is that

these measures assume the availability of probability distributions that describe the

ideal enactments with respect to a given commitment, expected enactments, a more

general semantic similarity measure that allows to gauge the similarity between the

commitment and its actual enactment, and a measure of how much uncertainty we

expect to have given a certain commitment. Other related work is that in the area of

trust and reputation in agent systems (which can include both artificial and human

agents). [DB07] propose a generic method of selecting evidence that is recognized

as support for trust, while [Del06] provides a recent survey of the area, focusing

on Internet-based mechanisms (such as for online auctions). Game-theoretic treat-

ments of this topic have also been developed, such as in [EFL02], but this approach
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has been criticized for placing too much importance on probability while underes-

timating its cognitive aspects, such as in [FC01]. In this respect, our work takes

a step in this direction by allowing agents to influence the measure of fulfillment

according to their own preferences.

In contrast to this past work, we focus on developing a general model of

promises that tries to quantitatively assess how well an agent has met its past com-

mitments, taking into account the fact that time plays a role in whether a promise is

met or not (promises often involve doing things by a deadline), that the “content” of

an action sometimes (but not always) allows a promise to be replaced by a similar,

but different promise (e.g., delivering red balls instead of green balls), and partial

fulfillment where part of a promise is kept. Our framework is one of the first to

develop a unified theory around these important concepts.

8.2 Preliminaries

We start by defining the notion of temporal expression, which is used to denote

time points: we assume that time in our model is discrete.

Definition 26 (from [DKS06]). (1) Every integer is a temporal expression. (2) tnow

is a temporal expression. (3) If t1 and t2 are temporal expressions, then so is (t1 +

t2).

Symbol tnow represents the current time point; we assume its value gets automati-

cally updated as time goes by in the environment.

We assume the existence of a logical alphabet that consists of a finite set L of

constant symbols, a finite set A of action symbols (each with an associated arity),
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the predicate symbols Do and Promise, and an infinite set V of variable symbols. A

constant or variable symbol is called a term.

Definition 27 (action atom). If α ∈ A, and t1, ..., tm (m ≥ 0) are terms (resp.

constants), then α(t1, ..., tm) is called an action atom (resp. ground action atom).

atoms(α) denotes the set of all possible action atoms of the form α(. . .).

Definition 28 (Do and Promise atoms). Suppose A,B are agents, T is a temporal

expression, and X is an action atom. Then, Do(A,B,X,T) and Promise(A,B,X,T)

are called Do and Promise atoms respectively.

Intuitively, Do(A,B,X,T) is read “agent A does X for agent B at time T” while

Promise(A,B,X,T) is read “agent A promised agent B that it would do X at time

T”. The following example, based on the Store example above, is presented in order

to illustrate these concepts.

Example 36. Let A and B be the Supplier and Store agents, Here are some example

Promise and Do atoms involving the action del(it, col, am) which states that am

amount of item it of color col are delivered.

P1 = Promise(B,A, del(ball, blue, 10), T1),

P2 = Promise(B,A, del(shirt, green, 5), T2),

P3 = Promise(B,A, del(shirt, green, 15), T3),

D1 = Do(B,A, del(ball, blue, 7), T1),

D2 = Do(B,A, del(ball, darkBlue, 3), T1),

D3 = Do(B,A, del(shirt, green, 20), T3)

However, it might be the case that the Store agent is neutral about whether

the supplier delivers blue balls or green balls, even though the supplier promised
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blue balls. We therefore need a binary replaceability relation on action atoms in

order to capture this type of situation.

Definition 29. Let A be an agent, and S1 = {α1(~t1), ..., αl(~tl)} and

S2 = {β1( ~u1), ..., βm( ~um)} be two sets of action atoms. We assume each agent A has

an associated relation of replaceability, denoted S1 
A S2, read as: S1 is replaceable

by S2 for agent A. We only require S 
A S for any set S and agent A.

When the agent is clear from context, we will simply write S1 
 S2. The

above definition allows us to consider a promise to be fulfilled when the agent has

taken an action that is considered good enough, even though it does not exactly

fulfill the promise as stated. The store manager who thinks it is all right to replace

blue balls with green ones may set {del(ball, blue,N1), . . . , del(ball, blue,Nm)} 


{del(ball, green,M1), . . . , del(ball, green,Mk)} iff N1 + . . .+Nm = M1 + . . .+Mk.
1

One reason we need the 
 relation is because a Supplier might have made multiple

promises (of 5 green balls and 3 green balls all to be delivered at time 7) and may

execute multiple Do actions (e.g., by delivering two packages each of 4 green balls

at time 7) that jointly meet the promises. In order to reason about this kind of

situation, we need ways of aggregating promises together. We start by defining two

sets. Given agents A,B, and a temporal expression T :

• UProm
A,B,T = {〈Promise(A,B, ai, T ), ωi〉 | 0 ≤ ωi ≤ 1 and Promise(A,B, ai, T )

is a promise atom }. ωi is any real number in the [0, 1] interval called the

proportion component.

• UDo
A,B,T = {Do(A,B, ai, T ) | ai is an action atom } .

1We do not provide an explicit syntax to express the 
 relation here; we will address this in
future work.
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The following definition specifies whether it is possible to merge multiple

Promise atoms or Do atoms into one.

Definition 30. Let A and B be agents, T be a temporal expression, Sp ⊆ UProm
A,B,T ,

and Sd ⊆ UDo
A,B,T .

• Suppose a∗ is an action atom such that {ai | 〈Promise(A,B, ai, T ), ωi〉 ∈ Sp}�

{a∗}. The promise composition operator χ takes any subset Sp ⊆ UProm
A,B,T as

input and returns the Promise atom χ(Sp) = Promise(A,B, a∗, T ) if and only

if
∑
〈Promise(A,B,ai,T ),ωi〉∈Sp ωi = 1. Otherwise, it is undefined.

• If a∗ is an action atom such that {ai |Do(A,B, ai, T ) ∈ Sd}� {a∗}, then the

do composition operator χ takes a set Sd ⊆ UDo
A,B,T as input and returns the

Do atom χ(Sd) = Do(A,B, a∗, T ) if and only if {ai |Do(A,B, ai, T ) ∈ Sd} �

{a∗}. Otherwise, it is undefined.

We let χ−1(X), be the set of all sets S ⊆ UDo
A,B,T or S ⊆ UPromise

A,B,T such that

χ(S) = X. Informally, compositions and decompositions are simply ways in which

to refer to “parts” of Promise and Do atoms. In the case of Promise atoms, decom-

positions are sets of pairs that include a proportion for each atom in the set, whereas

in the case of Do atoms, a decomposition is just a set. In contrast, compositions

specify a set of Do atoms as input and composes them, when possible, into a single

Do atom.

The following is an example of combinations and decompositions of Promise

and Do atoms.

Example 37. Consider the Promise atoms and Do atoms in Example 36 and let:

P 1
1 = Promise(B,A, del(ball, blue, 7), T1),

P 2
1 = Promise(B,A, del(ball, blue, 3), T1),
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D1
3 = Do(B,A, del(shirt, green, 5), T3),

D2
3 = Do(B,A, del(shirt, green, 15), T3)

Now, if χp is a promise composition operator and Sp = {〈P 1
1 , 0.7〉 , 〈P 2

1 , 0.3〉}, we

have that χp(Sp) = P1. Similarly, if χd is a do composition operator and Sd =

{D1
3, D

2
3}, we have that χd(Sd) = D3.

We now define event sets and action histories.

Definition 31 (event sets and action histories). An event set is any finite set of

ground Do and Promise atoms. An action history is a function h from [0, ..., tnow]

to event sets.

An action history describes what promises were made and what actions oc-

curred at each time point before tnow. We will generally be interested in finite action

histories, i.e., where {t | h(t) 6= ∅} is finite.

8.3 A Distance Measure between Atoms

In order to determine the degree of fulfillment between promises and actions,

we will develop distance functions in three phases: first between action atoms, then

between Promise atoms and Do atoms, and finally between sets of Promise atoms

and sets of Do atoms. Of course, these distance functions can be defined in many

ways, and so we present axioms governing the definition of such distance functions

so that application specific knowledge can play a role in our framework.

8.3.1 Distance between Two Action Atoms

We start with distance functions on action atoms by first considering two

action atoms that share the same action symbol.
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Definition 32. A distance measure between two action atoms α(t1, t2, ..., tn) and

α(s1, s2, ..., sn), from the point of view of agent A is a function δAα : atoms(α) ×

atoms(α) → R̄+ ∪ {0}. Function δAα must satisfy the property of Weak Identity of

Indiscernibles: If a1 = a2 then δAα (a1, a2) = 0.

Note that the distance measure δAα is undefined when comparing atoms with

different action symbols.

Example 38. From the point of view of the Store agent, the distance between two

atoms deliver(i1, c1, q1) and del(i2, c2, q2) may be |q1 − q2| if and only if i1 = i2 and

c1 = c2, and some very large constant d� 0 otherwise, indicating that the manager

considers any deviation in the product to represent a large difference.

Note that this is not a distance metric from a mathematical point of view,

since symmetry and triangle inequality are not required by the definition; as we will

argue in the following, these properties are not always desirable in this framework.

For instance, consider actions a1 = del(ball, 7) and a2 = del(ball, 10). Here, three

extra balls were delivered and we might want to set δAdel(a1, a2) = 3. However, we

might want to set δAdel(a2, a1) > δAdel(a1, a2) because delivering three fewer balls may

be less desirable. For triangle inequality, consider an order for screws with actions

a1 = del(screws, 5mm), a2 = del(screws, 5.2mm), and a3 = del(screws, 5.4mm),

where the first component refers to a standard sized bag of screws and the second

refers to their size. If the allotted error range of the manufacturer is 0.3mm, then

δAdel(a1, a2) and δAdel(a2, a3) might be 0, but δAdel(a1, a3) would be strictly positive.

We now present a set of axioms that describe the desired characteristics for a

measure of distance between two action atoms; in the following, sharing the same ac-

tion symbol. Let a1 = α(t1, t2, ..., tn), a2 = α(s1, s2, ..., sn), and a3 = α(r1, r2, ..., rn)

be action atoms. The following definition is required before presenting the axioms.
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Definition 33. Let a1 = α(t1, t2, ..., tn) and a2 = α(s1, s2, ..., sn) be two action

atoms. The disagreement set of the two atoms, denoted by disagree(a1, a2) is the set

of all triples (ti, si, i) such that ti 6= si.

We now present axioms that δAα should satisfy.

Axiom A1: δAα (a1, a2) = 0 iff {a1}
A {a2}.

This axiom simply states that the distance between two actions is zero if and

only if the singleton sets that contain each are replaceable from the point of view of

the agent.

Axiom A2: If disagree(a1, a2) ⊆ disagree(a1, a3), a2 6� a3, and a1 6� a3, then

δAα (a1, a2) < δAα (a1, a3).

Axiom A2 intuitively states that if the discordances between a1 and a2 are a

subset of those between a1 and a3, and a2 is not replaceable by a3 (i.e., the remaining

differences are significant), then the distance between a1 and a2 is strictly smaller

than that between a1 and a3. The following axiom deals with the case in which the

remaining differences are not significant from the point of view of the agent.

Axiom A3: If a2 �A a3, then δAα (a1, a2) = δAα (a1, a3).

According to Axiom A3, the distance between an atom a1 and two others

a2 and a3, such that a2 is replaceable by a3, is the same. The following example

illustrates these axioms.

Example 39. Suppose we have a1 = del(bball, blue, 50), a2 = del(vball, blue, 45),

and a3 = del(vball, white, 45). Here bball may refer to a beach ball, while vball

refers to a volleyball. We then have disagree(a1, a2) = {(bball, vball, 1), (50, 45, 3)}

and disagree(a1, a3) = {(bball, vball, 1), (blue, white, 2), (50, 45, 3)}, and therefore the

inclusion holds. Then, if a2 6� a3 we have that the difference in color is significant

and therefore δα(a1, a2) < δα(a1, a3) according to A2. However, if the difference in

190



color is not significant, which would be the case if a2 � a3, the two distances should

be equal, as stated by axiom A3.

8.3.2 Distance between a Promise and a Do Atom

We now deal with the problem of measuring the distance between a single

Promise atom and a single Do atom, interpreted as being the enactment of the

promise.

Definition 34. A distance measure between a Promise atom P of the form

Promise(B,A, a1, T1) and either a Do atom D of the form Do(B,A, a2, T2) or the

special constant Null, from the point of view of agent A, is a function φAα (P,D) →

R̄+ ∪ {0}, where a1 and a2 are action atoms that share the same action symbol α.

When clear from context, we will simply write φα(P,D). The Null constant

stands for the “lack of enactment”, it is a key aspect of the treatment of degree of

fulfillment presented in the next section. We now present axioms that constrain the

value that the degree of fulfillment function can take given the various situations.

Axiom F1: φAα (Promise(B,A, a1, T1),Do(B,A, a2, T2)) ≥ δAα (a1, a2)

This basic axiom states that the distance between a Promise atom and a Do atom

cannot be less than that between the actions they refer to.

Axiom F2: φAα (Promise(B,A, a1, T1),Null) =∞

This axiom states that the distance between a Promise atom and the constant Null

is infinite.

Axiom F3: If T1 = T2 then

φAα (Promise(B,A, a1, T1),Do(B,A, a2, T2)) = δAα (a1, a2)

191



If the action enactment was performed at the time agreed in the promise, then the

distance between the promise and the enactment must be the distance between the

two actions. In particular, if the action agreed upon is replaceable by the one that

performed, then the distance between the promise and its enactment must be zero,

according to Axiom A1.

Two key situations, early completion and late completion, are unconstrained

by the axioms. This is because different scenarios can arise, both where either of

these are beneficial and detrimental to the agent to which the promise was made.

For instance, while early delivery of an email is most likely harmless, a manager

receiving items like fish and meat that require refrigeration earlier than expected

must have the appropriate storage space (e.g., refrigerator space) to store it. The

following proposition presents a class of functions that satisfy all of the axioms.

Proposition 21. Let P = Promise(B,A, a1, T1) and D = Do(B,A, a2, T2) be two

atoms such that a1 and a2 have action symbol α. Any φ function of the form:

φAα (P,Null) =∞

φAα (P,D) =



f`(T1, T2) + k`δ
A
α (a1, a2) if T2 > T1,

δAα (a1, a2) if T1 = T2,

fe(T1, T2) + keδ
A
α (a1, a2) if T1 > T2,

where f`(.) and fe(.) are positive real functions, and k` and ke are constants in R≥1,

satisfies axioms F1, F2, and F3.

Proof. We have to show that φAα (P,D) satisfies all three axioms F1, F2, and F3.
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Satisfaction of Axiom F1. Case 2 of the function definition, for T1 = T2, trivially

satisfies this axiom by definition. For cases 1 and 3, we assume that k`, ke ≥ 1 and

get:

φAα (P,D) = f`/e(T1, T2) + k`/eδ
A
α (a1, a2)

≥ k`/eδ
A
α (a1, a2) ≥ δAα (a1, a2)

since f`(T1, T2) and fe(T1, T2) are both positive functions.

Satisfaction of axiom F2. Satisfied trivially by definition.

Satisfaction of axiom F3. Satisfied by case 2 of the function definition.

There are many such examples of reasonable φ functions that fall into this

category, such as one that simply fixes the weight assigned to every time unit under

or over the deadline by defining f` = ` × |T2 − T1|, fe = e × |T2 − T1|, for some

e, ` ∈ R+, and k` = ke = 1. Of course, functions outside this class can also be

defined.

8.4 A Function to Measure Degree of Fulfillment

The φ function presented above is the backbone of the final measure that we

will present, which allows an agent to measure the degree of fulfillment given a set

of Promise atoms and a set of Do atoms. Before introducing this function, we need

the definition of an enactment mapping:
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Definition 35. Let A and B be agents, and Sp = {P1, . . . , Pn} and Sd = {D1, . . . , Dm}

be sets of Promise and Do atoms, respectively. Let

∆p =

|Sp|⋃
i=1

Si and ∆d =

|Sd|⋃
j=1

Sj

for some Si ∈ χ−1(Pi) and Sj ∈ χ−1(Dj).

An enactment mapping between Sp and Sd is defined as any MSp,Sd : ∆p → ∆d ∪

{Null} that is quasi injective, i.e., ∀pi, pj ∈ Sp : MSp,Sd(pi) = MSp,Sd(pj)∧MSp,Sd(pi) 6=

Null =⇒ pi = pj.

Intuitively, an enactment mapping associates “parts” of Promise atoms with

“parts” of Do atoms (or Null), stating that the latter “counts towards” the former.

The space of all possible such mappings is given by the different possible composi-

tions of the ∆ sets given the variation in the S sets involved. The following example

shows a simple enactment mapping function:

Example 40. Consider the set of atoms from Example 37. A possible enactment

mapping M is the following:

M(P 1
1 ) = D1, M(P 2

1 ) = D2,

M(P2) = D1
3, M(P3) = D2

3.

In this case, promise P1 was split into two atoms in order to map it to D1 and D2,

as was enactment D3, in order to map it to P2 and P3.

The degree of fulfillment is then defined as:

Definition 36. Let M be an enactment mapping between two sets Sp and Sd and let

P = Promise(A,B, a, T ). The degree of fulfillment of P , denoted degFulfillM(P ),
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is defined as:

e
−

∑
Pi∈Dom(MP ) ωiφ

A
α (Pi,M(Pi))

where DomMP
is the domain of M restricted to considering only atom P . The degree

of fulfillment for Sp, denoted degFulfillM(Sp), is then defined as:

∑
Pi∈Sp γ

diff(tnow,Ti)degFulfillM(Pi))∑
Pi∈Sp γ

diff(tnow,Ti)

where γ ∈ (0, 1], Ti is the time point associated with Pi, and diff(x, y) = x − y if

x > y and 0 otherwise.

Note that degree of fulfillment according to this definition is a real number in

[0, 1]. Intuitively, this definition assumes the existence of a set of Promise atoms

Sp and a set of Do atoms Sd, that represent promises made by an agent B to an

agent A and what actions were carried out by B towards fulfilling such promises.

In order to obtain the associated degree of fulfillment, A will evaluate the distance

between the promises and the enactments by establishing a mapping from some

suitable decomposition of Sp to some suitable decomposition of Sd. With such a

mapping, individual degrees of fulfillment are obtained using the first part of the

definition, and then each individual degree is weighted according to the time at

which the promise was due as in the second part of the definition.

In Definition 36, the term φAα (Pi,M(Pi)) refers to the distance between a given

promise Pi and the action M(Pi) that was performed to fulfill that promise according

to enactment mapping M . Multiplying this term by the proportion ωi of Pi gives

us a weighted assessment of this distance (for cases in which the Pi’s correspond

to parts of an original promise). The summation over all Pi’s in Dom(MP ) gives

us all sub-promises Pi associated with P and computes their individual fulfillments.
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Taking e to the negative power of this summation weights promise P ’s fulfillment in

a way that is inversely proportional to these distances, resulting in a value in [0, 1].

The following example shows a simple calculation of degree of fulfillment:

Example 41. Let us return to Examples 36 and 37, where D1 is now changed to

Do(B,A, del(ball, blue, 5), T1) instead. Consider the functions

δdel(del(I1, C1, X1), del(I2, C2, X2)) = |X1 −X2|

iff I1 = I2 and C1 = C2, and ∞ otherwise, and

φdel(Promise(B,A, a1, T1),Do(B,A, a2, T2)) = δAdel(a1, a2) + |T1 − T2|

In this case, using mapping M from Example 40, we have the following individual

degrees of fulfillment:

degFulfillM(P1) = e−(0.7 ∗ 2 + 0.3 ∗ 0) = 0.246

degFulfillM(P2) = e−1 ∗ 0 = 1

degFulfillM(P3) = e−1 ∗ 0 = 1

Then, assuming γ = 0.9, that the different time points are at unit distance, and that

tnow = T3 + 1, we get:

0.93 ∗ 0.246 + 0.92 ∗ 1 + 0.9 ∗ 1

0.93 + 0.92 + 0.9
≈ 1.889

2.439
≈ 0.774

As we have seen, mapping M plays a major role in how the degree of fulfillment

is computed, and there are many ways in which this mapping can be obtained. For

instance, it can be built by the agents involved in the promises made, since they

can agree on this mapping when each action described by a Do atom is performed.

Another way would be to perform a search through the space of possible mappings
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in order to obtain one that maximizes the degree of fulfillment that is obtained, i.e.,

the mapping that is most beneficial to agent B. However, this approach has a high

computational cost, as shown in the following result.

Proposition 22. Given two sets Sp and Sd of Promise and Do atoms, respec-

tively, and a real number k ∈ [0, 1], finding an enactment mapping M such that

degFulfillM(Sp) > k is NP-complete.

Proof. We will first show membership in NP and then NP-hardness.

Membership in NP: If we are given a mappingM , checking that it is well defined (i.e.,

that its domain and codomain are valid decompositions of Sp and Sd, respectively)

can be done in polynomial time. Hence, it remains to be proven, that the size

of M (where M is a relation, i.e., a set of pairs) is polynomial in the size of the

input, i.e., |Sp| and |Sd|. For this, it is important to observe that the number of

elements in any minimal decomposition χ−1(P ) of any promise P ∈ Sp is bounded

by |Sd|+ 1. To prove this, assume the contrary. Hence, we have |χ−1(P )| > |Sd|+ 1,

from which we can conclude that at least two elements p1, p2 must be mapped onto

elements d1, d2 which are part of the decomposition of a single do atom D ∈ Sd,

i.e., d1, d2 ∈ χ−1(D). Hence, we can merge p1, p2 and d1, d2 within their respective

decompositions and arrive at a new mapping M∗ that is semantically equivalent

(i.e., promises are fulfilled by the same Do’s or decompositions thereof) due to the

fact that M is quasi injective and hence violates the minimality of the original

decomposition χ−1(P ). The case where both p1 and p2 are mapped onto Null is

similar to the one presented above, whereby we only merge p1, p2. Consequently, the

size ofM is bounded by |Sp| (|Sd|+1) as had to be proven. Note that we only consider

the bound on minimal mappings (minimality with respect to the decompositions).

The argument above shows that this does not exclude reasonable mappings.
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NP-hardness: We will reduce the problem of SUBSET-SUM (SS) with positive

integers to our problem in polynomial time in order to prove NP-hardness. This

corresponds to deciding, given a set S of positive integers and an integer c, if there

exists S ′ ⊆ S such that
∑

ei∈S′ ei = c.

Given an instance of SS, we must then provide an instance of our problem

such that its solution provides an answer to SS. Let Sp = {Promise(A,B, α0, 0)},

and Sd = {Do(A,B, βj, 0) | j ∈ S}, where αi and βj are dummy action symbols of

arity zero. We fix the replaceability relation � such that it states that {α0} � D

if and only if D = {αi | i ∈ S} and
∑

αi∈D i = c. Next, φ(αi, βj) = 0 if and only if

i = j and ∞ otherwise. for i, j ∈ S. Lastly, let k = 0.

This transformation yields the desired results, since an enactment mapping M

such that degFulfillM(Sp) > 0 exists if and only if Sp can be decomposed into a set

of Promise atoms that represent a subset of S that sums to c. If this is not possible,

then by Definition 36, degFulfillM(Sp) = 0. Lastly, note that this reduction can be

done in polynomial time.

We conclude this section by stating some propositions that characterize the

degree of fulfillment introduced in Definition 36. We first show that the overall

degree of fulfillment does not depend on the reference time point tnow, and hence

gives justification for our notation which leaves the time point tnow implicit with the

context.

Proposition 23. The overall degree of fulfillment, degFulfillM(Sp), is independent

of the reference time point tnow, i.e., evaluating degFulfillM(Sp) w.r.t. two reference

time points t1now and t2now such that ∀Pi ∈ Sp : Ti ≤ t1now, t
2
now yields the same value.
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Proof. Let M be a fixed mapping between promise and do decompositions and let

Sp be a set of promises. Let t1now and t2now be two time points such that ∀Pi ∈ Sp :

Ti ≤ t1now, t
2
now. Then we have:

degFulfillM(Sp) =

∑
Pi∈Sp γ

diff(t1now,Ti)degFulfill(Pi, Sd)∑
Pi∈Sp γ

diff(t1now,Ti)

=

∑
Pi∈Sp γ

t1now−TidegFulfill(Pi, Sd)∑
Pi∈Sp γ

t1now−Ti

=
γt

1
now
∑

Pi∈Sp γ
−TidegFulfill(Pi, Sd)

γt1now
∑

Pi∈Sp γ
−Ti

=

∑
Pi∈Sp γ

−TidegFulfill(Pi, Sd)∑
Pi∈Sp γ

−Ti

=
γt

2
now

γt2now

∑
Pi∈Sp γ

−TidegFulfill(Pi, Sd)∑
Pi∈Sp γ

−Ti

=

∑
Pi∈Sp γ

t2now−TidegFulfill(Pi, Sd)∑
Pi∈Sp γ

t2now−Ti

=

∑
Pi∈Sp γ

diff(t2now,Ti)degFulfill(Pi, Sd)∑
Pi∈Sp γ

diff(t2now,Ti)

The following result shows how the overall degree of fulfillment can be incre-

mentally computed.

Proposition 24. Let Sd be a set of promises and let ρ = degFulfillM(Sp) denotes

its overall degree of fulfillment. Suppose S̃p = Sp ∪ {P} and degFulfillM(P ) denotes

the degree of fulfillment of P according to M . Then we have:

degFulfillM(S̃p) =
ρτ + γdiff(tnow,time(P ))degFulfillM(P )

τ + γdiff(tnow,time(P ))

where τ is the denominator of the degree formula, i.e. τ =
∑

Pi∈Sp γ
diff(tnow,Ti).
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Proof. Starting from the definition of degFulfillM(S̃p), we have the following deriva-

tion:

degFulfillM(S̃p) =

∑
Pi∈S̃p γ

diff(tnow,Ti)degFulfillM(Pi))∑
Pi∈S̃p γ

diff(tnow,Ti)

=

∑
Pi∈Sp γ

diff(tnow,Ti)degFulfillM(Pi)) + γdiff(t1now,time(P ))degFulfillM(P )∑
Pi∈Sp γ

diff(tnow,Ti) + γdiff(t1now,time(P ))

=
ρτ + γdiff(tnow,time(P ))degFulfillM(P )

τ + γdiff(t1now,time(P ))

since

degFulfillM(Sp) =
ρ

τ

where τ is the denominator of the degree formula, i.e., τ =
∑

Pi∈Sp γ
diff(tnow,Ti).

The following result shows that the degree of fulfillment of a single promise

changes by a constant factor for different weightings of time in the particular distance

measure introduced in Proposition 21.

Proposition 25. Let φµ(P,D) = `µ × |T2 − T1|+ δAα (a1, a2), for atoms of the form

P = Promise(B,A, a1, T1) and D = Do(B,A, a2, T2), be distance measures similar

to the one defined in Proposition 21 where `µ ≥ 0 are a set of real numbers to weight

time delays. Let M be the fixed mapping between promise and do decompositions as

before. Let degFulfill
φµ
M (P ) denote the degree of fulfillment for a single promise P
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with respect to the distance measure φµ. Then we have:

degFulfillφkM (P )

degFulfill
φj
M(P )

= e
−(`k−`j)

∑
Pi∈D{P}

ωi|time(Pi)−time(M(Pi))|

Proof. We start from the definitions of degFulfillφkM (P ) and degFulfill
φj
M(P ); we then

have the following derivation:

degFulfillφkM (P )

degFulfill
φj
M(P )

=
e
−

∑
Pi∈D{P}

ωiφk(Pi,M(Pi))

e
−

∑
Pi∈D{P}

ωiφj(Pi,M(Pi))
=

= e
−

∑
Pi∈D{P}

ωi(φk(Pi,M(Pi))−φj(Pi,M(Pi)))
=

= e
−

∑
Pi∈D{P}

ωi((`k−`j)×|time(Pi)−time(M(Pi))|+d−d)

where d = δAα (a1, a2); continuing with the derivation:

e
−

∑
Pi∈D{P}

ωi((`k−`j)×|time(Pi)−time(M(Pi))|)
=

= ke
−(`k−`j)

∑
Pi∈D{P}

ωi|time(Pi)−time(M(Pi))|

The next result shows how linear changes in the distance function on actions

impact the degree of fulfillment.

Proposition 26. Let φ1(P,D) = `×|T2−T1|+ δAα (a1, a2) and φ2(P,D) = `×|T2−

T1| + λδAα (a1, a2), for P = Promise(B,A, a1, T1) and D = Do(B,A, a2, T2), be two
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distance measures. Then we have

degFulfillφ2

M (P )

degFulfillφ1

M (P )
= e

−(λ−1)
∑
Pi∈D{P}

ωiδ
A
α (action(Pi),action(M(Pi)))

Proof. We start from the definitions of degFulfillφ1

M (P ) and degFulfillφ2

M (P ); we then

have the following derivation:

degFulfillφ2

M (P )

degFulfillφ1

M (P )
=
e
−

∑
Pi∈D{P}

ωiφ2(Pi,M(Pi))

e
−

∑
Pi∈D{P}

ωiφ1(Pi,M(Pi))
=

= e
−

∑
Pi∈D{P}

ωi(φ2(Pi,M(Pi))−φ1(Pi,M(Pi)))
=

= e
−

∑
Pi∈D{P}

ωi((`−`)×|time(Pi)−time(M(Pi))|+(1−λ)×d)
=

where d = δAα (a1, a2); continuing with the derivation:

= e
−

∑
Pi∈D{P}

ωi((1−λ)×δAα (a1,a2))
=

= e
−(1−λ)

∑
Pi∈D{P}

ωiδ
A
α (a1,a2)

In the following section, we will preent an application of this framework for

reasoning about the fulfillment of promises made by airlines.
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8.5 Application and Experiments

In this section, we use the preceding results to estimate the future behavior

of agents that made a promise in the past. We show that our fulfillment measures

have a strong predictive power (unlike past papers on this topic which did not

demonstrate predictive power).

In the rest of this section, we assume that mapping M used in Definition 36

above is fixed a priori2. We now discuss two different ways in which an agent can

reason about the likelihood of the different outcomes that can arise in the presence

of a pending promise or set of promises.

• FFIP Strategy (Future fulfillment is identical to the Past). Agent A decides

that the likelihood that a certain promise P ∗ = Promise(B,A,a,T) where

T > tnow will be kept by agent B at a future time T is completely determined

by the experiences with past promises. Hence, in this case, we set FFIP =

degFulfillM(Sp), which simply states that we expect the agent to fulfill its

promises to the degree of fulfillment associated with its past promises. The

agent is free to choose which promises should be included in this computation,

since taking different subsets into account (taking into account the type of

promise) may have an impact on how accurate the estimation is.

• FFLT Strategy (Future fulfillment is a Linear Trend based on the Past).

Agent A evaluating agent B’s promise notices that the reliability of B has

changed over time. For instance, its reliability at time 1 was r1, its reliability

2This assumption is made without loss of generality, and is needed in order to avoid unwanted
variations in the way in which the mapping is done when changing the set of relevant promises
taken from historic information. An easy way to fix a mapping is the following: when an agent
performs an action, it merely states which promise that action is intended to fulfill, partially or
completely.
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at time 2 was r2, and so forth. The reliability at any time t is computed

using degFulfillM(Sp) as above. The agent now considers the ri’s as a time

series and uses linear regression to predict the value of this time series at

time T . This method allows our system to establish a more controlled way

in which to penalize an agent that has broken recent promises (even though

promises in the distant past were kept well) or to reward an agent that has

kept its promises recently (even though it broke promises in the more distant

past). Of course, this method can be easily extended to the use of other kinds

of regression models such as logistic regression or higher degree polynomial

regressions used commonly in statistics; we leave the study of the application

of these models for future work.

8.5.1 The US Airline On-Time Performance Dataset

As an example application, we use our approach to analyze the reliability of

US airlines. The dataset used in this experimental evaluation corresponds to the

on-time performance data for over 117 million flights in the US, recorded over a

span of 20 years. For each flight, 55 attributes are stored, including flight dates,

origin and destination, departure and arrival delays, whether the flight was can-

celed or diverted, and information about who was responsible for delays and/or

cancelations [BTS08].

We considered each flight stored in the database to represent both a promise

made by the airline to the customer (of departing and arriving on time, without

deviating from the agreed on departure and arrival airports) and its enactment.

Therefore, we have a single action symbol fly of arity 3, i.e., actions are of the form

fly(from, to, depTime), while promises and enactments have the form Promise(A,

204



Airline FFIP FFLT Actual distFFIP distFFLT

A1 0.933 0.924 0.924 0.009 0
A2 0.922 0.911 0.877 0.045 0.034
A3 0.914 0.909 0.883 0.031 0.026
A4 0.942 0.936 0.935 0.007 0.001
A5 0.924 0.918 0.895 0.029 0.023
A6 0.935 0.927 0.904 0.031 0.023
A7 0.934 0.926 0.899 0.035 0.027
A8 0.923 0.907 0.908 0.015 0.001

Table 8.1: Predictions for 2007: all past data and linear trend

C, f, arrTime) and Do(A, C, f, arrTime), respectively, where A is the airline agent,

C is the customer agent, f is a fly atom, and arrTime is the arrival time promised.

The information provided in the database for each flight is enough to derive these

atoms.

8.5.2 Empirical Results

Out of the airlines that reported on-time performance for their flights, we chose

the eight that have reported continuously from 1988 to 2007; this set includes all

major US airlines active today, but we will keep their names anonymous in reporting

our results.

For these preliminary evaluations, we computed degrees of fulfillment over sets

of promises made throughout entire years, in order to avoid seasonal variations (such

as increased delays during winter). However, each individual flight made a contri-

bution to the final degree computed, as dictated by Definition 36. We implemented

the FFIP and FFLT strategies that an individual traveler or a travel agent could

adopt in order to predict the degree of fulfillment that a promise will have when

made by a certain airline. Table 8.1 shows how these strategies performed when

trying to predict the degree of fulfillment for the year 2007 based on information of
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all flights from 1988 to 2006. All degrees of fulfillment reported in these tables were

obtained using a distance function φ that ignored delays in departures, and used a

“step” function for assigning distances regarding arrival delays. This step function

is defined as follows: 0.1 for delays up to 15 minutes, 0.2 up to 30 minutes, 0.8 up

to 45 minutes, 2.0 up to 60 minutes, and 10.0 for 90 minutes or more. This means,

for instance, that a flight arriving 18 minutes late is considered to be fulfilled to a

degree of e0.2, which is about 0.818. A value of 0.99 was used for γ, tnow was set to

January 2, 2008, and the unit of time granularity was set to 30 days, meaning that

a flight that occurred in January of 1988 is 244 time units away, and its weight is

0.99244 ≈ 0.086.

Fulfillment Model Construction Time. The time taken to compute these de-

grees depends linearly on the number of promises, as can be deduced from Def-

inition 36. For example, as a general indication of the time required to perform

this computation, all 15.6 million flights for airline a1 (from 1988 to 2006) were

processed at a rate of about 0.18 milliseconds per promise. All computations were

performed on a computer with an Intel Xeon CPU at 3.4GHz and 32GB of RAM

under the Linux Operating System (2.6.9-42.0.10.ELlargesmp kernel); the database

engine used was PostgreSQL version 7.4.16.

FFIP and FFLT query processing time. Most computations for the FFIP and

FFLT strategies are performed during the model construction time; actual query

processing involves a small number of primitive operations (looking up a value, and

computing a linear function, respectively), and therefore query processing times are

under 1ms.

Accuracy of Predictions. Two things to note from the results in Table 8.1 are:
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Figure 8.1: Evolution of degree of fulfillment for a single airline over time, for two
different φ functions sensitive only to arrival delays.
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Figure 8.2: Evolution of degree of fulfillment for a single airline over time, for a φ
function sensitive to departure delays only; note that the trend is positive, unlike
those shown in Figure 8.1 (note the difference in scale in the x axis w.r.t. that figure).

1. When comparing what actually happened in terms of an airline’s performance

(the “Actual” column) and what FFIP and FFLT predicted, the distances

between them was relatively small — under 0.03 in almost all cases.

2. When comparing FFIP and FFLT against each other, FFLT was closer to the

actual degree of fulfillment in every single case. We then conclude that FFLT

is the better algorithm.
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Figure 8.1 presents an example of two trend analyses. The top curve shows how the

degree of fulfillment (grouped in years) has evolved for a certain airline from 1988 to

2006, while the dotted line indicates the linear trend it follows. The bottom curve

and dotted line correspond to the same analysis, but w.r.t. a different, “harsher” φ

distance function. This function is similar to the one presented above, but assigns

larger distances, namely: 0.1 for delays up to 5 minutes, 0.2 up to 15 minutes, 0.8

up to 25 minutes, 2.0 up to 35 minutes, and 10.0 for 45 minutes or more. For the

example flight above which was 18 minutes late, this function declares a degree of

fulfillment of e0.8, which is about 0.449.

We observe that this yielded overall lower degrees of fulfillment, but the shape

of the curve is more or less the same, with each inflection being more exaggerated

than its counterpart for the previous function. These changes correspond to what

was expected given the change in how the φ function was defined.

Finally, Figure 8.2 shows an example of a trend analysis for the same airline

shown in Figure 8.1. The φ distance function used in this case is a different one,

which is only sensitive to delays in departures instead of arrivals (the specific values

are the same as for the first function presented above). It is interesting to observe

that, depending on the perspective of the user, the same airline displays both a

downward trend and an upward trend in the evolution of its degree of fulfillment

over time. This shows one of the strengths of the framework, i.e., that the user’s

preferences are taken into account in evaluating the degree of fulfillment of an agent’s

promises. This is in contrast to, for example, the conclusions that could be obtained

by performing a traditional statistical analysis of the frequency of delays such as

those presented in [Fli08].
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8.6 Discussion

In this section, we would like to discuss several aspects of our framework that

we want to highlight, including several limitations that the reader should be aware

of.

First of all, the work in this chapter assumes that all promises considered have

already been made, and therefore “agreed upon” by both parties, i.e., the promise

was proposed and accepted. This means that agents cannot simply make promises

leaving a lot of room for possible failures (for instance, promising to land at 9AM

instead of at 8:15AM), since this kind of behavior will likely not be accepted by the

other agent. Furthermore, promises in this framework only involve one action, so a

“complex” promise that requires several actions to be performed is actually regarded

as a series of promises, each of which will have its associated degree of fulfillment.

Lastly, we are focusing only on reasoning based on actions taken towards these

promises, and not about beliefs regarding the capabilities of agents to fulfill the

promises they have made.

We would like to discuss certain limitations that the framework exhibits. First

of all, the axiomatization presented is intended to be a general set of properties

that any system should exhibit. Even though this generality can be perceived as

a weakness, it lays the groundwork for future research in which assumptions can

be made in accordance with specific domains. Another important aspect to note is

that the current presentation assumes that the reasoning agent evaluates degrees of

fulfillment for one agent at a time. This means that, for instance, it will not reason

about what the other agent did towards fulfilling its promises with other agents; if

this were not the case, Axiom F2 would not always be a desirable property since no

action might be preferable to actions benefiting others. Another aspect that may
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be perceived as a limitation is the fact that degrees of fulfillment are real numbers.

This means that it is hard to make the distinction, for instance, between complete

fulfillment of a strict subset of promises versus partial fulfillment of all promises

in the same set (this is similar to the limitation exhibited by customer satisfaction

ratings that merge ratings in different areas into one percentage value). Finally,

the distance function between actions as defined here can only be evaluated for

atoms that share the same action symbol, which does not allow agents to compare

promises with respect to different actions, even though this may be desirable in

certain situations.

8.7 Concluding Remarks

There are numerous applications where an organization or an individual wants

to estimate the likelihood that a given organization or individual will fulfill a promise.

Manufacturing companies wish to make such estimates in order to assign logistics

assets and to plan accordingly. Consumers would like to decide whether one airline

is more reliable than another or whether one politician is more likely to honor his

promises than another.

In this chapter, we have developed axioms that a notion of distance between

actions, between promises and performed actions, and between sets of promises and

sets of actions must satisfy. These axioms are generic and can be satisfied by many

different specific distance functions. We provide an epistemic basis for these axioms

and define some specific distance functions.

Based on these ideas, we propose a notion of fulfillment of promises that has

many important features. In particular, it accounts for three phenomena not fully
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handled in previous works. First, we develop a notion of time in studies of promises.

Our axioms allow us to penalize late (or early) fulfillments of promises if we so wish,

though it does not require such penalties to be imposed. Second, we develop a

notion of numeric quantities in promises: delivering 50 of a promised 100 units of a

given item can be considered better than nothing and has an impact on our rating

of the fulfillment of that promise. Third, we develop notions of replaceability where

an agent can accept actions in place of promises that are close enough (e.g. 50 red

balls may be acceptable in place of 50 blue balls). Our framework is rich enough to

support a variety of desires on the part of users to customize the notion of promise

fulfillment to their needs.

We implemented two methods for using such fulfillment metrics in order to

predict the likelihood of fulfillment of a promise in the future by a given agent, and

tested them out on a database of flight on-time information for 8 major US airlines

over the last 20 years. Our predictions, tested on the degrees of fulfillment for all

flights in 2007 operated by these airlines, are highly accurate and can be computed

within reasonable amounts of time.

Even though the methods used above to predict future degrees of fulfillment

had a relatively low error in their estimations, it should be noted that the types

of predictions that they were evaluated on were very simple since no distinctions

were made regarding the kind of promises that were made. We argue here that

the reasoning agent will be mostly interested in evaluating how likely it is that the

actions involved in the promises that it is analyzing given past behavior on the same

kind of promise. In order to perform this kind of analysis, a richer representation is

needed for the model that the agent is building of others.
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In particular, this framework can be applied in the derivation of probabilistic

logic programs that can later be used by agents to reason about the likelihood that

certain promises will be kept, or what its expected degree of fulfillment is.
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Chapter 9

Conclusions

In Chapter 1, we began by introducing the general set of problems that we

address in this thesis, including the intuition behind the use of action probabilistic

logic programs for stochastic reasoning about the kinds of actions that can be ex-

pected from agents being modeled in a certain environment. Various applications

of this kind of reasoning were discussed in detail, and we also discussed briefly how

rules for ap-programs can be derived using straightforward data mining techniques;

even though more complex algorithms could also be used, this is not in the scope of

this thesis, but we considered it important to at least discuss briefly how these rules

can be automatically extracted. Finally, an important point made in Chapter 1 as a

starting point for this work was the need for formalisms that make no assumptions

about probabilistic independence.

In Chapter 2, we presented the basic concepts and definitions pertinent to

action probabilistic logic programs that would be extensively used in later chapters,

including syntax, semantics, and a brief discussion about the fixpoint operator that

can be used to derive ap-programs without action atoms in the body (which is the

basis of the assumption we make, without loss of generality, that no such atoms
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occur in the bodies of rules). We included examples in this chapter as well in order

to enhance the presentation by illustrating the basic concepts being introduced.

Chapter 3 contains important discussions about the vast amount of literature

that is related to the work in this thesis to varying degrees. In particular, we

discuss probabilistic logic (with a brief recap of how it was originated in the time of

Leibniz). Probabilistic logic programming, the close relative of probabilistic logic,

is also discussed in detail given its close relationship to our work. An important

section in this chapter discusses how action probabilistic logic programs compare

to other approaches to probabilistic reasoning (such as Bayesian Networks), which

includes examples illustrating the points being made. Finally, this chapter also

contains discussions on work related to probabilistic abduction, trust and reputation

in autonomous agents, and reasoning about adversaries.

Chapters 4 and 5 present our work on computing most probable worlds in

ap-programs. Chapters 4 introduces this problem, and presents exact and heuristic

algorithms to solve it. On the other hand, Chapter 5 treats a different version of

the problem, in which we assume that the user has selected a subset of actions

representing the ones he considers to be of interest. The basic idea is to redefine

worlds in such a way that each world of interest subsumes a set of the original worlds

so the user is not burdened by having to distinguish differences he does not consider

to be relevant. We show that a new, smaller linear program can be derived from

the original one, and that solutions to this new problem correspond to the sums of

the probabilities of all the worlds being subsumed. This has a twofold effect: the

linear program is easier to solve because it contains exponentially less variables, and

the results obtained are likely to be more meaningful to the user since they more

closely represent his interests. We present exact and heuristic algorithms to solve
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this new version of the most probable world problem. Finally, both Chapters 4

and 5 conclude with empirical evaluations of the accuracy and scalability of our

algorithms.

Chapters 6 and 7 also solve closely related problems. The main idea is to solve

a dual of the most probable world problem, which asks: “how can we change the

environment in such a way that certain actions are evoked with a given probabil-

ity?”; we call this problem abductive query answering. Chapter 6 presents the basic

setup, which formalizes how we can represent the reasoning agent’s capabilities for

changing the environment, and what it means for an abductive query to be success-

ful; it contains a set of exact and heuristic algorithms for this basic case, as well

as empirical evaluations for them. On the other hand, Chapter 7 extends these re-

sults for the cost-based (or non-basic) setup, in which we assume that the reasoning

agent’s capabilities to change the environment are not always successful, and have

an associated cost. Furthermore, we assume that intermediate states through which

the environment goes in the path to satisfying an abductive query have different

rewards; these rewards, along with the costs and probabilities of success just men-

tioned, represent the fact that the agent being modeled must be taken into account

when answering this kind of query, in the spirit of game-theoretic reasoning. Finally,

this chapter also concludes with extensive experimental evaluation of the algorithms

presented, both for scalability and accuracy.

The final chapter before these conclusions, Chapter 8, presents a novel frame-

work for quantitative reasoning about fulfillment of promises made between au-

tonomous agents; the goal of developing such a framework was to show how action

probabilistic logic programs can be tailored to work in advanced applications. The

result of this work is a notion of fulfillment of promises that accounts for aspects that
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were not fully addressed in past work in the area. In particular, the consideration of

time is central to the approach, since late or early fulfillment may be an important

point to consider; second, a quantitative treatment of fulfillment is made, taking

into account for instance that delivering half of what was promised may be better

than nothing; and we propose the notion of promise replaceability, which allows

agents to specify what they consider to be equivalent when evaluating fulfillment.

In all three of these aspects, the perspective of the agents involved is central, since

different agents may have different valuations in different situations. We present

an empirical evaluation of this framework on real world data regarding the on-time

performance of airlines over two decades time (where airlines are assumed to have

made the promise to take off and land on time), showing that different perspectives

have a large impact on the results obtained.

In conclusion, this thesis develops action probabilistic logic programs, a for-

malism that is based on classical probabilistic logic programming. The problems

proposed, as well as the solutions, are novel and driven by applications to reasoning

about the kinds of actions that can be expected from agents being modeled in an

environment. One of the key aspects of all this work is that no probabilistic inde-

pendence assumptions are made with respect to events involved, which reflects the

situations most commonly encountered in the real world in the kind of applications

discussed throughout this work.
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