Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dispersion of ion gyrocenters in models of anisotropic plasma turbulence

    Thumbnail
    View/Open
    Gustafson_umd_0117E_11026.pdf (5.390Mb)
    No. of downloads: 1187

    Date
    2009
    Author
    Gustafson, Kyle Bergin
    Advisor
    Dorland, William D
    Metadata
    Show full item record
    Abstract
    Turbulent dispersion of ion gyrocenters in a magnetized plasma is studied in the context of a stochastic Hamiltonian transport model and nonlinear, self-consistent gyrokinetic simulations. The Hamiltonian model consists of a superposition of drift waves derived from the linearized Hasegawa-Mima equation and a zonal shear flow perpendicular to the density gradient. Finite Larmor radius (FLR) effects are included. Because there is no particle transport in the direction of the density gradient, the focus is on transport parallel to the shear flow. The prescribed flow produces strongly asymmetric non-Gaussian probability distribution functions (PDFs) of particle displacements, as was previously known. For kρ=0, where k is the characteristic wavelength of the flow and ρ is the thermal Larmor radius, a transition is observed in the scaling of the second moment of particle displacements. The transition separates nearly ballistic superdiffusive dispersion from weaker superdiffusion at later times. FLR effects eliminate this transition. Important features of the PDFs of displacements are reproduced accurately with a fractional diffusion model. The gyroaveraged ExB drift dispersion of a sample of tracer ions is also examined in a two-dimensional, nonlinear, self-consistent gyrokinetic particle-in-cell (PIC) simulation. Turbulence in the simulation is driven by a density gradient and magnetic curvature, resulting in the unstable ρ scale kinetic entropy mode. The dependence of dispersion in both the axial and radial directions is characterized by displacement and velocity increment distributions. The strength of the density gradient is varied, using the local approximation, in three separate trials. A filtering procedure is used to separate trajectories according to whether they were caught in an eddy during a set observation time. Axial displacements are compared to results from the Hasegawa-Mima model. Superdiffusion and ballistic transport are found, depending on filtering and strength of the gradient. The radial dispersion of particles, as measured by the variance of tracer displacements, is diffusive. The dependence of the running diffusion coefficient on ρ for each value of the density gradient is considered.
    URI
    http://hdl.handle.net/1903/10220
    Collections
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility