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Turbulent dispersion of ion gyrocenters in a magnetized plasma is studied

in the context of a stochastic Hamiltonian transport model and nonlinear, self-

consistent gyrokinetic simulations. The Hamiltonian model consists of a superpo-

sition of drift waves derived from the linearized Hasegawa-Mima equation and a

zonal shear flow perpendicular to the density gradient. Finite Larmor radius (FLR)

effects are included. Because there is no particle transport in the direction of the

density gradient, the focus is on transport parallel to the shear flow. The prescribed

flow produces strongly asymmetric non-Gaussian probability distribution functions

(PDFs) of particle displacements, as was previously known. For k⊥ρth = 0, where

k⊥ is the characteristic wavelength of the flow and ρth is the thermal Larmor radius,

a transition is observed in the scaling of the second moment of particle displace-

ments, σ2 ∼ tγ. The transition separates nearly ballistic superdiffusive motion,

γ ≈ 1.9, at intermediate times from weaker superdiffusion, γ ∼ 1.6, at later times.

This change of scaling is accompanied by the transition of the probability density



function (PDF) of particle displacements from algebraic decay to exponential decay.

However, FLR effects eliminate this transition. In all cases, the Lagrangian velocity

autocorrelation function exhibits algebraic decay, C ∼ τ−ζ , with ζ = 2 − γ to a

good approximation. The PDFs of trapping and flight events show clear evidence of

algebraic scaling with decay exponents depending on the value of k⊥ρth. Important

features of the PDFs of particle displacements are reproduced accurately with a

fractional diffusion model. The gyroaveraged E × B drift dispersion of a sample of

tracer ions is also examined in a two-dimensional, nonlinear, self-consistent δf gy-

rokinetic particle-in-cell (PIC) simulation. Turbulence in the simulation is driven by

a density gradient and magnetic curvature, resulting in the unstable ρi-scale kinetic

entropy mode. The dependence of dispersion in both the axial and radial directions

is characterized by displacement and velocity increment distributions. The strength

of the density gradient is varied, using the local approximation, in three separate

trials. A filtering procedure is used to separate trajectories according to whether

they were caught in an eddy during a set observation time. Axial displacements

are compared to the results from the simplified Hasegawa-Mima model. Superdif-

fusion and ballistic transport is found, depending on the filtering and the strength

of the gradient. The radial dispersion of particles, as measured by the variance,

σ2
x(t), of tracer displacements, is diffusive. The dependence of the running diffusion

coefficient, D(t) = σ2
x(t)/t, on ρi for each value of the density gradient is considered.
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Chapter 1

Introduction

Magnetized plasmas provide physicists with a variety of complex, nonlinear

phenomena for study in terrestrial experiments, astrophysical observations and sim-

ulations of fluid or kinetic equations. A sufficient physical understanding of heated,

confined plasmas could provide society with a solution to the limited supply of fossil

fuels. One community with this goal is the international effort to design a mag-

netic confinement reactor for nuclear fusion. The imminent construction of ITER,

planned as the largest tokamak to date, will increase global investment in fusion en-

ergy and require new ideas for managing and sustaining a burning plasma. At the

same time, existing tokamaks, innovative confinement concepts, and basic plasma

experiments contribute to the development of models and reactor design.

Understanding and controlling the level of heat and particle transport from the

hot (5−20keV) core to the cold (0−0.1keV) edge of a magnetic confinement device

is crucial to the design of a successful and economical fusion reactor. The behavior

of these nonlinear, nonequilibrium systems is better understood today, compared

to twenty years ago, largely because of focused efforts in gyrokinetic theory and

simulation [3, 4, 5, 6, 7, 8] and thousands of experimental data points [9]. However,

agreement between the best simulation predictions for transport levels and real

data continues to be imprecise. While there are many reasons for discrepancies, one
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problem may be the assumption that turbulent transport follows the same diffusive

rules as collisional transport. In particular, the nature of particle transport in some

turbulent situations may require a theory of nonlocal or nondiffusive transport,

which generalizes the usual diffusive assumptions [10, 11, 12, 13, 14].

This thesis contributes to answering the fundamental question of how ion gy-

rocenter tracers disperse in a turbulent plasma near the ρi scale, where ρi =
v⊥,i

Ωi

is the Larmor radius of the ions, v⊥,i is the phase space velocity perpendicular to

the magnetic field and Ωi = qiB
mic

is the Larmor frequency. Understanding disper-

sion of tracers is one way to determine whether diffusive models are sufficient for

describing particle transport in fusion plasmas. Our methods are based on tracking

of gyrocenter trajectories following an E × B drift velocity field. We confine our

study to examine statistics of tracer dispersion in two examples of particle m drift

motion. One of these examples is a stochastic Hamiltonian model based on the

Hasegawa-Mima equation for drift wave turbulence. The second example uses self-

consistent, nonlinear gyrokinetic simulations in a two-dimensional geometry.

Gyrokinetic theory offers a widely applicable framework for understanding

kinetic instabilities in magnetized plasmas with multiple interacting species (see

Section 2.1). It was first derived in the linear regime by Antonsen and Lane [15]

and then extended with nonlinear terms in Frieman and Chen [16]. Recent efforts

have clarified the foundation of the theory and begun to apply it to astrophysical

problems [17, 18]. In the linear approximation, the gyrokinetic dispersion relation

can be solved analytically to identify several modes of instability with particular

growth rates and frequencies. Linear instabilities are characterized by a range of
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growing modes. When nonlinear terms are included in the equation, exchange of

energy between several modes can cause competition and saturation of perturba-

tion amplitudes. The saturated state may be turbulent, and steady-state turbulent

heat and particle fluxes can then be measured in simulations. Innovations such as

field-line following coordinates [19], highly accurate spectral methods and massively

parallel computing platforms have enabled a number of research groups to attempt

gyrokinetic simulations of tokamaks and compare the results with experimental di-

agnostics [20, 21].

In this thesis, we consider two simplifications of the fully electromagnetic

gyrokinetic-Poisson system. First we examine gyrocenter E × B-drift dispersion

of a set of tracer ions in a prescribed velocity field based on the Hasegawa-Mima

equation. The Hasegawa-Mima equation describes the nonlinear evolution of the

electrostatic potential under the influence of a density gradient. Formally, it does

not account for gyromotion of charged particles, so we introduce this effect exter-

nally through tracer particles following the E × B-drift specified by φ(x, y, t), the

electrostatic potential. The form of the E × B-drift causes φ to be identified as a

Hamiltonian. This model will therefore be referred to as a stochastic Hamiltonian

model.

The interaction of a static shear flow with a time-dependent vortex chain in

the stochastic Hamiltonian causes truncated Lèvy flight-type motion, which leads to

superdiffusion in the direction of the flow. Lèvy flights are jumps that come from the

long, non-Gaussian tail of a Lèvy distribution, and truncation is a physical upper

limit to the jump sizes. Here we find that a subset of nonballistic gyrocenter tracers
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disperse superdiffusively (σ2
y(t) = tγ , γ > 1) in a direction parallel to a shear flow, ex-

hibiting a time-dependent transition from γ = 1.6 → γ = 1.9. We vary the thermal

gyroradius (Larmor radius) of the tracers as drawn from a Maxwellian distribution.

This transition behavior ceases when the average Larmor radius reaches the size of

the vortices. Moreover, the propagation of particles along this prescribed flow is

found to agree with an analytical solution of a fractional diffusion equation. The

fractional diffusion equation describes a generalization of Brownian motion when

the underlying jump sizes and waiting times are given by power laws.

We then move to a study of gyrocenter E × B dispersion in self- consistent

gyrokinetic turbulence with zonal flows in the nonlinear phase of a density gradient-

driven instability. Using a recently benchmarked particle-in-cell code called GSP, we

carefully examine the gyrocenter transport in both the radial and axial directions in

a cylindrical slab. For three values of the strength of the density gradient, we find

that tracer dispersion in the axial direction, parallel to the shear flow, is superdif-

fusive. We identify a filtering technique based on axial velocity reversal that splits

the population of tracers into “flights” and “non-flights.” We find that for three

values of the density gradient, spanning three orders of magnitude in the saturated

value of the particle flux, the dispersion of tracer particles is diffusive. This diffusive

behavior is in agreement with some published work and in disagreement with others

(as discussed in Chapter 5). The test-particle diffusion coefficient, Dpart, s consis-

tently lower than the Fick’s law estimate of the diffusion coefficient, Dflux, from the

saturated flux for each value of the gradient, with a scaling factor of order unity

between Dpart and Dflux. We also identify an attenuation of radial dispersion with
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increasing gyroradius, regardless of the strength of the density gradient, consistent

with the smoothing effect of the gyroaverage operator, and comparable to other

published results.

The remainder of this introductory chapter introduces key concepts in nondif-

fusive transport, tracer tracking methods and a generalized description of particle

dispersion. Our goal here is to provide a context for the results presented in Chapters

3 and 4.

1.1 Nondiffusive turbulent transport in fusion devices

In the presence of a density or temperature gradient, respectively, particles

or heat may be transported by two basic mechanisms. Collisions (described by

a Fokker-Planck term in a kinetic equation [22]) induce diffusion of particles or

heat from high concentration to low concentration. This is the mechanism of the

collisional transport channel, which includes the regimes of classical and neoclassical

transport in tokamaks. If the gradient triggers an instability in the plasma or fluid

medium, a state of turbulence may be induced. If the turbulence level is significant,

it may open the corresponding channel of turbulent transport. One could describe

both types of transport by microscopic dispersion, characterized by the spread of a

scalar quantity,

σ2(t) = Dcollt+ σ2(t)turb (1.1)

where σ2(t) is the variance of the concentration of an initially localized peak. The

first term on the right-hand side of Equation 1.1 is the collisional term, assumed to
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be diffusive and characterized by a diffusion coefficient (or diffusivity) Dcoll. The

second term is the dispersion due to a turbulent velocity field, which could obey

a nondiffusive law: σ2(t) = Dpartt
γ . This will provide our basic definition of non-

diffusive dispersion: γ 6= 1. When the turbulence has a well-defined correlation

length, lc, and well-defined correlation time, tc, a mixing length [23] estimate for the

turbulent transport will give an estimate for the scaling of the diffusion coefficient,

Dpart = D0l
2
c/tc, where D0 is a dimensionless scale factor.

The space-averaged (indicated by 〈·〉, radial, ion flux in a turbulent plasma,

ignoring collisions and using the second moment of the kinetic equation, is [24]

〈nu〉 · r̂ =
1

Ω0,i

〈
n
(
b̂× ((u · ∇)u)

)
+

1

mi

(
b̂×∇ · π

)〉
· r̂ + 〈nvE×B〉 · r̂ (1.2)

where particle density n =
∫
fd3

v, u = 1
n

∫
d3vfv, Ω0,i is the cyclotron frequency,

mi is the mass, b̂ is the magnetic field direction, B is the magnetic field vector and

π is the off-diagonal part of the pressure tensor. This can be written as 〈Γp〉 =

〈Γp〉s + 〈Γp〉E , where the first term on the right-hand side is the Reynolds stress

generated flux and the second term is the flux due to phase matching between

the density and the vE×B = cE×b̂
B

velocity. The turbulent flux can be split into a

diffusive and convective part: 〈Γp〉s = −D ∂n
∂r

+ Vpn. The three parts of the particle

flux (two turbulent parts and E×B) are sometimes combined into a single Dflux
∂n
∂r

and Dflux is treated as a transport coefficient, sometimes with a space and time

dependence. This is a macroscopically averaged view of transport that incorporates

the turbulence through phase matching between velocity and density fluctuations.

We will present, in Chapter 3, an alternative framework for understanding transport
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from a microscopic perspective that includes nondiffusive effects through the use of

integro- differential operators.

A common way to derive a diffusion equation is to consider the equations

of conservation of mass and Fick’s law relating the flux to the gradient for a one-

dimensional concentration density F (x, t):

∂F

∂t
+
∂Γ

∂x
=0

Γ = −Dflux(x, t)
∂F

∂x
⇒

∂tF =
∂

∂x

(
Dflux(x, t)

∂F

∂x

)

It is not clear whether Dflux and Dpart should ever be equivalent. For Hasegawa-

Wakatani turbulence, it has been shown theoretically and numerically that the two

quantities are comparable [25].

Einstein’s 1905 explanation of Brownian motion [26] gives the classical, neutral-

fluid, diffusion coefficient Dsphere = kBT
6πηvσs

for a sphere of cross-section σs subject to

viscosity ηv at temperature T , where kB is Boltzmann’s constant. Much of the work

in explaining certain anomalous measurements for transport in plasmas has focused

on finding an analogous result for the proper parameterization of the collisional and

turbulent diffusion coefficients. In general, the details of a transport process should

depend on the details of the turbulent structures in a flow. Simple descriptions such

as the mixing length characterization of a turbulent process in terms of a typical

eddy size ignore the details of the eddy shapes and the broad distribution of length

scales that may be relevant.

Turbulent plasmas, both in astrophysical and laboratory contexts, may not be
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consistent with these assumptions because the turbulence-induced part of the trans-

port may be anisotropic and dependent on multiple scales. It is therefore necessary

to investigate whether diffusive models for plasma heat and particle transport are

sufficient for the spatial and temporal scales of interest. Early work in turbulent

diffusion in plasmas concluded [27] that the electron transport in a stochastic mag-

netic field could be described by subdiffusion (〈(∆r)2〉 = D
√
χ‖t) when there are

no trajectory deviations from magnetic field lines and by diffusion when particles

can break free from field lines. These results were derived by examining destroyed

magnetic flux surfaces, rather than the stochastic E×B drift dispersion studied in

this thesis.

Nondiffusive transport may also be manifest in intermittent phenomena, such

as sawteeth disruptions or edge-localized modes [28]. Bursts of transport on top of

a fairly quiescent baseline often give a distribution of flux events with long, non-

Gaussian tails. This is one reason for the use of the term “non-Gaussian” to describe

intermittent events. Attempts have been made by Diamond and Hahm [29] and Car-

reras et al [10] to apply the ideas of self-organized criticality and avalanche theory

to explain these phenomena. These attempts have been met with skepticism by

Krommes [30]. Another area in which a generalization of the diffusive model has

been examined is in the stochastic magnetic field of a reversed-field pinch [31, 32].

This computational work used a collisional tracer particle code in a magnetohydro-

dynamic (MHD) simulation of the Reversed-Field Experiment (RFX) plasma. The

results show that long waiting times between flights of the untrapped particles lead

to subdiffusive behavior for that fraction of particles. This analysis prompted a con-
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sideration of continuous-time random walk models as a complementary alternative

to fractional diffusion equations. The stochastic behavior considered in this thesis

is due to the turbulent structures present in the E×B drift patterns. We examine

situations where this turbulence leads to superdiffusive or ballistic transport parallel

to a shear flow and diffusive transport perpendicular to the shear flow.

1.2 Lagrangian tracers for tracking gyrocenter displacements

Instead of examining only the box-averaged (〈·〉) flux 〈Γp(x, t)〉 = 〈n(x, t)v(x, t)〉

of density transport, we seek to understand the dispersion of an ensemble of tracer

particles subject to a gyroaveraged E× B drift. This is similar to passive scalar or

passive tracer transport that is a common technique in fluid turbulence simulations

and experiments. Studies of tracer and passive scalar tracking in fluids and plas-

mas include twisted pipe flow [33], temporally irregular flows [34] and Kolmogorov-

Arnold-Moser (KAM) island chains [35, 36]. Diffusion coefficients in plasmas have

been studied in lower hybrid waves [37] and propagating electrostatic waves [38].

The perspective of these works helps inform the study of gyrocenter transport in

the stochastic Hamiltonian (analogous to KAM chains) and gyrokinetic turbulence

in this thesis.

As we study the dispersion of particles, we are focusing on the spread of a

clump from a localized starting position. This is much different than measuring

the average flux of particles or heat through a relatively large region of the plasma.

This sort of analysis is relevant to the dispersion of impurities or the ablation of an
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injected pellet [39]. A straightforward technique is to use an ensemble of Lagrangian

marker particles that follow the instantaneous velocities given by the equations of

the flow. The displacements, δx = x(t) − x(0), of these particles along the x-

axis are measured at regular intervals and sorted into a histogram which contains

information about the effect of the flow. This histogram, once normalized, is called

the probability distribution function (PDF), P (δx), for displacements. The moments

of the PDF can be used to determine the average position of an ensemble of tracers,

µ(t) ≡ 〈δx(t)〉, the variance of a distribution of an ensemble of tracers, σ2(t) ≡

〈(δx(t)−〈δx(t)〉)2〉, and higher-order moments such as the skew and kurtosis (defined

in Chapter 4).

Tracers in the Hasegawa-Mima [40] and Hasegawa-Wakatani [41] equations

have been used extensively to study nondiffusive transport [42, 43, 44, 45, 46, 47]

in two-dimensional plasmas with finite Larmor radius (FLR) effects. Useful analo-

gies have been drawn with geophysical flows [42] governed by the Charney equa-

tion, which is mathematically identical to the Hasegawa-Mima equation, but with

the Coriolis force taking the place of a plasma density gradient. Hasegawa-Mima

equation studies of tracer spreading perpendicular to the density gradient and the

magnetic field found that interplay between the linear and nonlinear terms of the

equation can affect γ, such that σ2(t) ∼ tγ [48]. The most anisotropic cases, those

with the largest density gradient, showed persistent superdiffusive behavior. It was

also shown that increasing the Larmor radius to the scale of the turbulent eddies will

decrease the value of the effective diffusion coefficient. Hasegawa-Wakatani tracer

studies showed that superdiffusive transport can arise, but will turn over to diffusive
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transport after the characteristic particle trapping time [46].

Tracer particles, interpreted as energetic ions, have also been used to study

transport in two-dimensional and three-dimensional fields obtained from continuum

(pseudo-spectral) gyrokinetic simulations [49, 13, 50, 51]. These recent studies have

found a temporary regime of subdiffusive radial transport of tracers in ion tempera-

ture gradient turbulence (as measured by σ2(t) ∼ tγ, γ < 1). The variance converges

to diffusive after ∼ 10L⊥/cs where L⊥ is the scale length of the temperature pro-

file and cs =
√

(Te/mi) is the ion acoustic velocity [49]. Other tokamak tracer ion

studies include a gyrokinetic core ion-temperature gradient simulation with marker

particles in a particle-in-cell (PIC) code [14] and an “L-mode” simulation with a

two-fluid code at a timescale between the Alfvén time and the resistive time [52].

The PIC and two-fluid studies have focused on finding the exponents to characterize

the nondiffusive process.

1.3 Generalization of diffusion equation for particle dispersion

Dispersion of tracer particles, e.g. in the r̂ radial direction, is characterized by

the variance σ2
r(t) = 〈(δr(t)−〈δr(t)〉)2〉 of tracer displacements δr(t) = r(t)− r(t0).

For diffusive transport, by definition, the distribution of step sizes for the random

walk is given by a Gaussian distribution, and the waiting times between steps are

given by a Poisson distribution. This leads to a linear scaling in the variance,

such that σ2 ∼ t. If transport is nondiffusive, the distributions of step sizes and

waiting times are not given by the Gaussian and Poisson distributions. If the jump
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length and waiting time random variables are given by power laws, the scaling

in the variance is σ2(t) ∼ tγ , where γ < 1 indicates subdiffusive transport and

γ > 1 indicates superdiffusive transport. For the study in this thesis of dispersion of

gyrocenters in a sheared-velocity flow, one expects to have superdiffusive transport

along the shear direction and subdiffusive transport perpendicular to the shear.

Determining the details of how nondiffusive tracer transport depends on the details

of the inhomogeneous turbulence and the finite Larmor radius effects is the principal

content of the results presented here.

Much of the work in the recent wave of interest in “non-local” plasma transport

in fusion physics may have been inspired by experiments with cold pulses [53, 54].

These experiments showed that a cold region at the edge of a tokamak propagates

inward much faster than expected by a diffusion equation. Several theories have

been developed to explain these observations [55]. One framework comes from the

mathematics of fractional calculus applied to transport equations, often called frac-

tional diffusion equations (FDE). Fractional calculus has been used to study many

problems in physics [56, 57, 58]. In plasma turbulence, it has been used to study

tracer transport statistics in a fluid model of a pressure-gradient driven instabil-

ity [12]. Also, cold pulse experiments have been duplicated at JET recently [59],

and these results have been modeled with fractional diffusion equations [60]. These

models may distinguish between local, critical-gradient transport models and the

non-local phenomenology of the fractional diffusion equation, which can be derived

from a continuous-time random walk.

A continuous-time random walk is a framework for describing a general trans-
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port process in which the dynamics are specified by probability distributions of

jump lengths and waiting times. When the process is purely collisional, the one-

dimensional jump length distribution, η(x), after an appropriate equilibration/relaxation

time is given by a Gaussian distribution, η(x) ∼ exp(x2/σ2). This gives the flight

lengths a typical scale, σ, and reduces the probability of jumps larger than three σ

to less than one percent. The distribution of waiting times in a collisional process

is given by a Poisson distribution, ψ(t) ∼ exp(−µt), where µ is the inverse of a

characteristic waiting time.

The Gaussian jump lengths and Poisson waiting times lead directly to a dif-

fusion equation when these distributions are inserted into the appropriate general

equation, as described in Chapter 2. If instead the flight lengths and waiting times

are given by power law distributions (with no characteristic scale), the general-

ized equation leads to a fractional diffusion equation, written in compact notation

(described in Chapter 2) as dβ

dtβ
P (x, t) = Df

dα

dxαP (x, t). Here, α and β are charac-

teristic exponents of the FDE which are related to the exponents of the power laws

determining jump lengths and waiting times of particles. Also, P (x, t) is a prob-

ability distribution function, dependent on time, and Df is an effective “diffusion

coefficient.” In the case where α = 2 and β = 1, we recover the familiar diffusion

equation.

For other α and β, the transport is either superdiffusive or subdiffusive, since

long flights and short waiting times will lead to faster spreading, and short flights

with long waiting times will lead to slower spreading of particles. Any transport

not described by the diffusion equation is often called “anomalous transport” or

13



“strange kinetics” in the literature of stochastic processes [61, 58, 62]. Anomalous

transport in plasmas, however, refers to the anomalously fast transport of heat

observed in experiments as compared to the expectations of neoclassical theory.

Therefore, we will use the terms nondiffusive or non-Gaussian, where nondiffusive

means σ2(t) ∼ tγ : γ 6= 1, and non-Gaussian means that the distribution of jump

lengths and waiting times are not Gaussian and Poisson.

1.4 Outline

The remainder of this thesis comprises four more chapters. Chapter 2 defines

and derives the necessary plasma turbulence models, the continuous time random

walk framework, and the simulation tools. Chapter 3 is a self-contained and pre-

viously published study of gyrocenter drift tracer dispersion in a prescribed flow.

Chapter 4 contains new results from ion gyrocenter dispersion in self-consistent gy-

rokinetic turbulence. Chapter 5 summarizes the results of the thesis and compares

them with recently published work from other sources.
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Chapter 2

Theory and simulation tools for the statistics of gyrocenter dispersion

A wide variety of flow models have been used to study ensembles of Lagrangian

trajectories in time-dependent velocity fields. Here we are considering the use of

φ(x, y, z, t), an electrostatic potential, as the input for the E×B drift equations of

motion of gyrocenters, where

〈vE×B〉R = ẑ × c∇〈φ〉 /B (2.1)

is the gyroaveraged drift velocity and c is speed of light. The gyroaveraging operator

is described in Section 2.1.5. More generally, one may track particles in a three-

dimensional velocity field, possibly using the full equation of motion from the Lorentz

force law, explicitly including the gyration about the magnetic field lines. When

the magnetic field lines are curved and have spatial dependence orthogonal to the

direction of the magnetic field, the curvature and ∇B drift velocities may be included

by adding these drift velocities explicitly, as will be described below.

The electrostatic potential can be determined in two ways for the purposes

of this thesis. First, it might be constructed from a known functional form. This

construction may be a spectrum of sinusoidal oscillations approximating turbulence

[38, 63, 49], or a simplification of a fluid or kinetic equation. When studying a

specific feature of a velocity field, such as a shear flow or a collection of vortices, the

feature can be inserted into the model, as in Chapter 2 of this thesis. Alternatively,
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the potential may be constructed by solving a self-consistent system of differential

equations, such as the Vlasov-Poisson system for fully kinetic dynamics. A self-

consistent technique has the advantage of being more realistic, but is typically more

computationally expensive and more difficult to characterize, given the presence of

multiple competing effects on particle transport.

The procedure for particle pushing is the following. A turbulent (self-consistent)

or quasi-turbulent (prescribed) velocity field is defined at successive times for all

points in space or on a spatial grid. Probe particles are introduced into this Eu-

lerian velocity field and moved from initial positions, r(t0), according to the drift

velocity. Particle positions, r(t), are computed and stored for statistical analysis.

The drift velocity may be gyroaveraged, which means that the trajectories are those

of gyrocenters. The details of the gyroaveraging operation will be described in this

chapter and in Chapter 3. Here, let us note the distinction between using tracer

particles versus using self-consistent particles. Tracer particles are displaced by the

flow, but are unable to affect the structure of the flow. This situation may arise

when the particles have negligible density. Such tracers are widely used in both

experiment and simulation to characterize complex flows. In a kinetic simulation

of turbulence it may be more convenient to use self-consistent kinetic particles as

Lagrangian probes of the flow. The trajectories of self-consistent probes should be

indistinguishable from tracers.

A study of turbulent transport would be uninteresting if the turbulent flow

were purely isotropic and homogenous. With no preferred direction and a quickly

decaying correlation time, dispersion should become diffusive after a short ballis-
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tic transient. More interesting scenarios involve a preferred direction induced by

a gradient in the system, which could create instabilities associated with wavelike

structures or intermittent blob-like structures. These structures might persist, in-

troducing longer correlation times and the possibility of nondiffusive transport. A

detailed discussion of nondiffusive transport in this sense may be found in Chapter

3. For now, let us define nondiffusive transport as the dispersion of an ensemble

of tracer particles with a variance (second moment of the distribution) that is not

linearly dependent on time.

When choosing a flow model for testing whether nondiffusive transport is sig-

nificant, it is necessary to balance tractability with realism. In the context of con-

fined fusion plasmas, we are interested in the behavior of particle transport near

transport barriers [64]. Transport barriers likely have strongly sheared flows like

zonal flows observed in gyrokinetic simulations [65, 66, 67]. In this work, we select

two models for sheared velocity flows. The first is a simplification of the Hasegawa-

Mima equation in which the shear flow is specifically chosen as the background

velocity field. Within this model we study the transport of tracer particles paral-

lel to the direction of the shear flow, perpendicular to the density gradient. For a

more realistic model, we use a numerical simulation of the gyrokinetic equations for

a entropy mode turbulence in a strongly magnetized plasma Z-pinch plasma with

k‖ = 0 [1].

The hierarchy of models for Lagrangian tracer probing of plasma and/or neu-

tral fluid turbulence, from most complex to the simplest is summarized in the fol-

lowing chart.
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Vlasov-Fokker-Planck ⇒ 3D gyrokinetic ⇒ 2D gyrokinetic ⇒ Hasegawa-Wakatani ⇒

Hasegawa-Mima ⇒ neutral modes of Hasegawa-Mima ⇒ random phase sinusoids

Qualitative similarities exist between many of these models. The modes of the

Hasegawa-Mima equation may be chosen to mimic shear flows that exist in turbu-

lence simulations. A full Fokker-Planck simulation is rarely necessary for simulating

tokamak microturbulence because the gyrofrequency is much faster than the tur-

bulent dynamics. For a given study, it is important to choose the simplest model

necessary to understand the effect in question.

In this thesis, we will start from the Vlasov-Fokker-Planck equations for a

multispecies plasma which, upon coupling with Maxwell’s equations, constitute a

complete model for the plasma dynamics. Assuming β ≪ 1, and using the ordering

parameter ǫ = ω/Ω0 ∼ ρi/L≪ 1, where ω is the frequency of the turbulence, Ω0 is

the ion cyclotron frequency, ρi is the ion Larmor radius and L is the outer scale, or

system size, we will use the fact that the gyration frequency of particles around the

magnetic field is very fast compared to the frequencies of the turbulence in which we

are interested. This yields the gyrokinetic equation. We will derive the gyrokinetic

equation in a form appropriate for the application in this thesis. Finally, we will

see how the gyrokinetic equation can be simplified to the Hasegawa-Mima equation,

which can then be used to create streamfunctions with the proper mix of structures

(free-streaming and trapping regions) to produce nondiffusive transport.
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2.1 Fokker-Planck to gyrokinetic equation

The Klimontovich equation is an elementary description of the evolution of the

density of a set of linearly superimposed points in phase space under the influence of

a force [68]. If the force law depends on the positions and velocities of the particles,

the equation is nontrivially self-consistent and may exhibit interesting nonlinear

effects. In itself, this description is exactly appropriate for studying the charac-

ter, whether diffusive or nondiffusive, of dispersion caused by a particular applied

force. However, the full Klimontovich description, including all particle couplings

and physics at all scales of space and time is intractable and hopefully unnecessary

for understanding many phenomena. When the governing force is electromagnetic

and particle discreteness can be ignored (small plasma parameter Λ = 4πnλ3
D where

n is the plasma density and λ3
D is the Debye length), the Boltzmann equation can be

derived as a limit of the Klimontovich equation. A simplification of the Boltzmann

equation, for use when the dynamics of interest occur on a timescale much larger

than the gyroperiod is called the gyrokinetic equation.

The starting point for this derivation is the Vlasov-Fokker-Planck or Boltz-

mann equation describing the evolution of a phase-space distribution function f(r,v)

for each plasma species. Equations for ions and electrons can be derived using the

small mass ratio me/mi as a subsidiary ordering. Here, the focus will be on the ion

species; therefore, species indices will be dropped in the following:

∂f

∂t
+ v · ∂f

∂r
+

q

m

(
E +

(v × B)

c

)
· ∂f
∂v

= C(f, f). (2.2)

The phase space coordinates and velocities are given by r and v, charge by q, mass
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by m, electric and magnetic fields by E and B. A collision operator C(f, f) is

included for completeness.

2.1.1 Separation of scales and ordering assumptions

In principle, one could simply perform a direct numerical simulation of the

full ion distribution function in six-dimensional phase space, subject to the full

velocity space collision operator and coupled into Maxwell’s equations for E and

B. This technique would be prohibitively expensive for obtaining the dynamics of

a realistically-sized system for an experimentally relevant timescale. Instead, the

standard practice is to capitalize on natural separations of scales that arise from

various processes in this equation. For a magnetized plasma, one such technique

exploits the smallness of the ρ-scale turbulence compared to the size of the system

being studied (L) such that:

ρ

L
≡ ǫ ≪ 1. (2.3)

We will use ǫ as the small parameter for ordering Equation 2.2 in the following. This

derivation of the slab gyrokinetic equation closely follows recent expositions [17, 18]

and the detailed notes contained in [69, 70, 71, 72], The first complete derivation of

the linear equation is found in Antonsen and Lane [15]. The nonlinear equations were

first derived by Frieman and Chen [16]. Fundamental to the gyrokinetic approach

is the requirement that the ion cyclotron frequency, Ω0,i = qiB
mic

, is large compared

to the frequency of the turbulence, ω, such that:

ω ∼ vth

L
∼ O(ǫΩ0,i). (2.4)
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Here, vth =
√
T/m where T is the temperature in units of Boltzmann’s constant.

This first order turbulent frequency is taken to be fast again compared to the slower

transport time scale, 1/τ over which the background may evolve:

1

τ
∼ O(ǫ2ω). (2.5)

The expansions are thus:

f = F0 + ǫF0 + · · · = F0 + δf1 + δf2 + · · ·

B = B0 + ǫB + · · · = B0 + δB1 + · · ·

E = E0 + δE.

Here, E0 = 0, and the E× B velocity is then small compared to vth:

c|δE|
|B| ∼ O(ǫ)vth. (2.6)

The equation required for our results is electrostatic, so we will assume ∂A

∂t
≡ 0 in the

following. We can write the fields in the potential formulation, for the electrostatic

case, simply as:

E = −∇φ; B0 = ∇× A0. (2.7)

The usual gyrokinetic theory also uses the ǫ parameter to separate parallel

and perpendicular directions. The background quantities are allowed to vary slowly

in space:

∇[F0, B0] ∼ O(1/L)[F0, B0]. (2.8)

For perturbed quantities, parallel wavelengths are on the order of the system size:

∇‖[δf1, δB, δE] ∼ O(1/L)[δf1, δB, δE] (2.9)
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and perpendicular wavelengths are on the order of the Larmor radius:

∇⊥[δf1, δB, δE] ∼ O(1/ρ)[δf1, δB, δE]. (2.10)

The cross-field inhomogeneity implies:

k‖
k⊥

∼ ρi

L
∼ O(ǫ). (2.11)

Also note that the velocity space derivatives are on the order of the thermal velocity:

∂f

∂v
∼ O(v−1

th ). (2.12)

Expanding the Fokker-Planck equation in ǫ for the electrostatic limit gives

∂F0

∂t
+
∂δf1

∂t
+ v · ∂F0

∂r
+ v⊥ · ∂δf1

∂r
+ v‖ ·

∂δf1

∂r

+
q

m
δE · ∂F0

∂v
+

q

mc
(v × B0) ·

∂F0

∂v
+

q

mc
(v × δB) · ∂F0

∂v

+
q

m
δE · ∂δf1

∂v
+

q

mc
(v × B0) ·

∂δf1

∂v
+

q

mc
(v × δB) · ∂δf1

∂v

= C(F0, F0) + C(F0, δf1) + C(δf1, F0) + C(δf1, δf1).

After applying the ordering assumptions for the space and time derivatives on the

equilibrium and perturbed quantities, we can multiply the equation by L/vthF0 to

make the ordering more explicit. Also note that δE ∼ O(ǫB0), and Ω0 ≡ qB0

mc
.

Finally, note that the collision operator contributes a factor of order ν ∼ O(ω). The

following equation shows the ordering assumptions for each term of the gyrokinetic

equation.
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F0

τ︸︷︷︸
ǫ2

+ δf1ω︸︷︷︸
ǫ

+
vthF0

L︸ ︷︷ ︸
1

+
vthδf1

ρ︸ ︷︷ ︸
1

+
vthδf1

L︸ ︷︷ ︸
ǫ

+ ǫΩ0F0︸ ︷︷ ︸
1

+ Ω0F0︸ ︷︷ ︸
ǫ−1

+ ǫΩ0F0︸ ︷︷ ︸
1

+

+ ǫΩ0δf1︸ ︷︷ ︸
ǫ

+ Ω0δf1︸ ︷︷ ︸
1

+ ǫΩ0δf1︸ ︷︷ ︸
ǫ

= C(F0, F0)︸ ︷︷ ︸
1

+C(F0, δf1)︸ ︷︷ ︸
ǫ

+C(δf1, F0)︸ ︷︷ ︸
ǫ

+C(δf1, δf1)︸ ︷︷ ︸
ǫ2

. (2.13)

2.1.2 F0 is independent of the angle of Larmor rotation

The lowest order term in the Fokker-Planck ǫ ordering is

q

mc
v × B0 ·

∂F0

∂v
. (2.14)

Let us take B0 = B0ẑ, and then work from cylindrical coordinates in velocity space

as shown in Figure 2.1

Now we can use the cylindrical coordinates:

q

mc
v × B0 ·

∂F0

∂v
=

q

mc

∣∣∣∣∣∣∣∣∣∣∣∣

x̂ ŷ ẑ

v⊥ cos(θ) v⊥ sin(θ) v‖

0 0 B0

∣∣∣∣∣∣∣∣∣∣∣∣

· ∂F0

∂v

=
qB0

mc
v⊥(cos(θ)x̂− sin(θ)ŷ) · ∂F0

∂v

=
qB0

mc
v⊥θ̂ ·

∂F0

∂v

= −Ω0v⊥
∂F0

∂θ
= 0.

We see that F0 = F0(r, v‖, v⊥, t) must be independent of θ for v⊥ 6= 0.

23



Figure 2.1: Coordinates for cylindrical velocity space, with the magnetic field aligned

on the axis.
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2.1.3 F0 is a Maxwellian in velocity space

Taking the terms of Equation 2.13 at O(1), we have

v · ∂F0

∂r
+ v⊥ · ∂δf1

∂r
+

q

m

(
δE +

(v ×B0)

c
· ∂F0

∂v
+

(v × B0)

c
· ∂δf1

∂v

)
= C(F0, F0)

v · ∂F0

∂r
+ v⊥ · ∂δf1

∂r
+

q

m

(
δE +

(v × δB)

c

)
· ∂F0

∂v
− Ω0

∂δf1

∂θ
= C(F0, F0).

(2.15)

Before obtaining an equation for δf1, it can be shown that F0 is a Maxwellian.

To show this, first integrate the entire equation over
∫ ∫ ∫

dxdydz and assume pe-

riodic boundary conditions. Upon integrating by parts and noting that δE+ (v×δB)
c

is divergence free in velocity space, one can reduce the equation to:

v · ∂F0

∂r
− Ω0

∂δf1

∂θ
= C(F0, F0). (2.16)

This equation can then be multiplied by (1+lnF0) and integrated over velocity

space. The only surviving term, assuming b̂ · ∇F0 = 0 is

∫
d3r

∫
d3vC(F0, F0) lnF0 = 0, (2.17)

which implies, through the use of Boltzmann’s H-theorem, that entropy is conserved

and F0 is therefore a Maxwellian:

F0 = FM =
n0(r)

π3/2v3
th

exp(−v2/2v2
th) (2.18)

where n0 is the background density.
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2.1.4 Homogeneous and particular solutions for δf1

Using the Maxwellian form for F0, which eliminates the collision operator, the

O(1) equation may be rewritten as

v⊥ · ∇⊥δf1 − Ω0
∂δf1

∂θ
= −v⊥ · ∇⊥

(
qφ

T

)
F0 − v · ∇F0 (2.19)

where T is the temperature from the Maxwellian and the parallel dependence of φ

is neglected at this order. Now it is useful to change coordinates using the so-called

Catto transformation to the frame of the gyrocenter position:

R = r +
v × B̂0

Ω0

= r +
v⊥
Ωc

(x̂ sin(Ωct) + ŷ cos(Ωct)) (2.20)

with gyroradius vector ~ρ = B̂0 ×v/Ω0. This change of variables with respect to the

locally circular gyroradius (see Figure 2.2) implies that

(
∂

∂θ

)

r

=

(
∂

∂θ

)

R

+

(
∂R

∂θ

)

r

·
(
∂

∂R

)

θ

=

(
∂

∂θ

)

R

+
v⊥

Ω0
· ∂
∂r
. (2.21)

The gyroangle, or phase angle of the Larmor rotation, is θ. Now one may rewrite

Equation 2.19 as

v · ∇F0 + v⊥ · ∇⊥(
qφ

T
)F0 = Ω0

(
∂δf1

∂θ

)

R

. (2.22)

Solutions of this differential equation for δf1 have homogeneous and particular

parts. The homogenous part of the equation is

(
∂h

∂θ

)

R

= 0 ⇒ h = h(R, v‖, v⊥, t), (2.23)

so that this part does not depend on gyroangle, and describes the perturbed part of

the distribution function measured at the gyrocenter coordinate.
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Figure 2.2: Illustration of the Catto transformation, showing the particle position

vector r and the gyrocenter position vector R relative to the gyroradius vector ρ.

The gyroorbit is assumed to be circular, which is exactly accurate when there are

no perturbed electric or magnetic fields.
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The particular solution comes from separating perpendicular and parallel com-

ponents of the velocity derivatives in Equation 2.22, and recalling that the Maxwellian

is gyrophase independent when applying the Catto transformation:

v⊥ · ∇⊥

(
F0(1 +

qφ

T
)

)
+ v‖b̂ · ∇F0 = Ω0

(
∂δf1

∂θ

)

R

−Ω0

(
∂

∂θ

)

R

(
F0(1 +

qφ

T
)

)
+ v‖b̂ · ∇F0 = Ω0

(
∂δf1

∂θ

)

R

.

Gyroaveraging this equation shows that b̂ · ∇F0 = 0, so that F0 is a flux function,

constant on a magnetic flux surface.

This result removes the ∇‖F0 term in Equation 2.22, giving

v⊥ · ∇⊥F0 + v⊥ · ∇⊥(
qφ

T
)F0 = Ω0

(
∂δf1

∂θ

)

R

.

This has the particular solution δf p
1 = − qφ

T
F0, which can be confirmed by substitu-

tion. This piece of the distribution function may be absorbed into the definition of

F0 in gyrocenter coordinates so that

F0(R) = FM(R) exp(−qφ
T0

). (2.24)

Here, we have used exp(−qφ/T ) ∼ 1− qφ/T , where qφ/T ≪ 1. One may also write

the full distribution function as

F = FM − qφ

T
FM + h(R) + δf2 + · · · (2.25)

which implies that δf1 = h− qφ
T
FM , and 〈δf1〉R = h− q

T
〈φ〉R FM . The gyrokinetic

equation in the end can be written in terms of either 〈δf1〉R or h. Our simulation

will be in terms of 〈δf1〉.
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2.1.5 Convenient gyrokinetic variables and their gyroaverages

Now it is useful to rewrite the Boltzmann equation in terms of the so-called

gyrokinetic variables,

R = r − b̂× v

Ω0
; E = mv2/2 + qφ; µ = mv2

⊥/2B0; θ; t, (2.26)

respectively, the guiding center position, particle energy in the electrostatic field,

magnetic moment, gyroangle, time. It is necessary to find the gyroaverage of the

time derivatives of these variables for use in the ordered Vlasov-Fokker-Planck equa-

tion in the next section.

The gyroaveraging operators are given by two expressions. The first is for a

gyroaverage at constant gyrocenter position:

〈A(r,v, t)〉R =
1

2π

∫ 2π

0

A
(

R − b̂× v

Ω0
,v, t

)
dθ (2.27)

where θ is the gyroangle. The second gyroaverage is at constant particle position:

〈A(R,v, t)〉r =
1

2π

∫
A
(

r +
b̂× v

Ω0
,v, t

)
dθ. (2.28)

Now the gyroaverages of the time derivatives of gyrokinetics variables will be exam-

ined.

The magnetic moment is conserved to O(ǫ):

〈
dµ

dt

〉

R

= 0 ⇒ mv2
⊥/2B0 = constant. (2.29)

The time derivative of the gyro-angle is the Larmor frequency, at O(ǫ), which

is shown by comparing the time derivative of the velocity with the Lorentz force:

〈
dθ

dt

〉

R

= −Ω0 = −qB0

mc
. (2.30)
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For the Z-pinch geometry, with a curved magnetic field that falls off as 1/r

pointing out from the axis, the rate of change of the position of gyrocenters, or the

gyroaveraged drifts, can be produced (see Appendix B) as:

〈
dR

dt

〉

R

=
〈
v‖b̂
〉

R
+

q

m

〈
(δE +

v × δB)

c
× b̂

Ω0

〉

R

+

〈
v × (v · ∇(

b̂

Ω0
))

〉

R〈
dR

dt

〉

R

=
〈
v‖b̂
〉

R
−∇⊥ 〈φ〉R × b̂

B0
+ v2

‖

b̂

Ω0
× (b̂ · ∇b̂) +

v2
⊥

2

b̂×∇B0

ΩOB0

where the form of the ∇B and curvature drifts are joined in the ẑ direction for a

Z-pinch, such that

v
tot
B =

v2
‖ + v2

⊥/2

Ω0Rc
ẑ (2.31)

in the geometry of the Z-pinch with Rc the radius of curvature. Therefore, the form

of the gyrocenter position needed for the electrostatic Z-pinch is:

〈
dR

dt

〉

R

= v‖b̂−∇⊥ 〈φ〉R × b̂

B0
+

2v2
‖ + v2

⊥

2Ω0Rc
ẑ. (2.32)

Finally, the energy variable is conveniently reducible after time differentiation

and gyroaveraging:

〈
dE
dt

〉

R

=

〈
mv ·

(
q

m

(
−∇φ− 1

c

∂A

∂t

)
+

v × B

c

)
+ q

∂φ

∂t
+ qv · ∇φ

〉

〈
dE
dt

〉

R

= q
d

dt
(φ− v · A + qv · (v × B))

〈
dE
dt

〉

R

= q

(
∂

∂t
〈φ〉R

)
.

Note again that the gyrokinetic turbulence results presented in the following

are electrostatic.
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2.1.6 The gyrokinetic equation at O(ǫ)

Rephrasing the Vlasov-Fokker-Planck equation in terms of the gyrokinetic

variables will yield the gyrokinetic equation. First, expand the total derivative:

∂f

∂t
+
∂R

∂t
· ∂f
∂R

+
∂E
∂t

∂f

∂E +
∂µ

∂t

∂f

∂µ
+
∂θ

∂t

∂f

∂θ
=
∑

s

C(f, fs). (2.33)

The proper ordering of this equation at the turbulent time and space scale, keeping

terms of O(ǫ) is

∂h

∂t
+
dR

dt
· ∂

∂R
(h+ F0) +

dµ

dt
(
∂h

∂µ
) +

∂E
∂t

(
∂h

∂E )− C(h) = Ω0
∂δf2

∂Θ
+

1

T0

dE
dt
F0. (2.34)

Gyroaveraging this equation gives

∂h

∂t
+

〈
dR

dt

〉

R

· ∂

∂R
(h+ F0) +

dµ

dt
(
∂h

∂µ
) +

∂E
∂t

(
∂h

∂E ) =

〈C(h)〉R
〈

Ω0
∂δf2

∂Θ

〉

R

+
1

T0

〈
dE
dt

〉

R

F0,

which annihilates the δf2 term, while the constancy of µ removes the third term

on the left-hand side. Inserting the useful expressions from the previous subsection

gives

∂h

∂t
+

(
v‖b̂−∇⊥ 〈φ〉R × b̂

B0

+ v
tot
B

)
· ∂

∂R
(h+ F0) =

〈C(h)〉R +
q

T0

(
∂

∂t
〈φ〉R

)
F0 ⇒

∂h

∂t
+ v‖b̂ · ∇h +

(
−∇⊥ 〈φ〉R × b̂

B0
+ v

tot
B

)
· ∂

∂R
(h+ F0) =

〈C(h)〉R +
q

T0

(
∂

∂t
〈φ〉R

)
F0.
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The electrostatic h form of the gyrokinetic equation with a Z-pinch magnetic

field is:

∂h

∂t
+
(
v‖b̂+ 〈vE×B〉R + v

tot
B

)
· ∇h+ v

tot
B · ∇F0

=
qF0

T

∂ 〈φ〉R
∂t

− 〈vE×B〉R · ∇F0 + 〈C(h)〉R . (2.35)

The δf = δf1 = h− qφ
T
F0 form of the GKE, using 〈δf〉R = h− q〈φ〉R

T
F0 is:

∂ 〈δf〉R
∂t

+
(
v‖b̂0 + 〈vE×B〉R + v

tot
B

)
· ∇ 〈δf〉R

= −〈vE×B〉R · ∇F0 − v‖
qF0

T
(b̂ · ∇ 〈φ〉R) − v

tot
B · ∇

(
q 〈φ〉R
T

F0

)
+ 〈C(h)〉R .

(2.36)

2.1.7 Maxwell’s equations to close the system

In general, it is necessary to compute the gyrokinetic limits of (1) Poisson’s

equation, (2) the parallel part of Ampère’s Law and (3) the perpendicular part of

Ampère’s law. For this application, we will only need Poisson’s equation, so the

details of the derivation will be presented carefully now. Neglecting the Debye-scale

fluctuations in the electrostatic field, we can arrive at quasineutrality, such that:

0 = ∇2φ =
∑

s

qsns (2.37)

which is a good assumption when studying variations of plasma density on scales

much larger than the Debye scale. This can be seen as follows.

In the process of computing the time evolution of the first order perturbation,

δf1, it is necessary to solve for the electrostatic potential, φ(x), so that the drift
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velocities can be computed self-consistently. The Poisson equation for a hydrogenic

plasma,

−∇2φ = 4πρc = 4π(eδni − eδne), (2.38)

simplifies to δne = δni when quasineutrality is valid. The first-order perturbed

density δn1,s for species s will be called δns, and the species index will be hidden

unless needed. Here, ρc is the total charge density, δne,i are the first-order perturbed

electron and ion number densities and e is the unit charge. When δf or δn are

written without specifying the order in ǫ, the quantity should be assumed first order.

Quasineutrality is essentially the assumption that the interesting spatial variations

in φ are larger than the Debye scale. This is seen in the following sequence of steps:

Te

4πnee2∇2(eφ/Te) = (δne − δni)/ne where temperature is in units of kB, Boltzmann’s

constant. Now, it is clear that when k2λ2
D ≪ 1 the left-hand side of the Poisson

equation will be negligible, at least to first order. In this case, we take δne = δni

to be the fundamental relationship for computing φ. As shown in the following

paragraphs, this gyrokinetic Poisson equation contains φ since δne =
∫
d3vδfe =

∫
d3vδfi = δni generally, and δfs can be expressed in terms of φ, as we will see

shortly.

Using several assumptions, it is possible to further simplify this equation by

using a Boltzmann, or adiabatic, response for the electrons: δne = neeφ/T . Let us

examine the assumptions behind the adiabatic response. Starting from the first mo-

ment of the collisionless, sourceless electron Vlasov equation for small β (neglecting

∂A
∂t

) we may write the parallel component of the electron fluid linear force-balance
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as

me
∂neVe

∂t
+ ∇‖ · pe − eneE‖ = 0. (2.39)

The ∂t can be neglected if the electron mass is considered small. A more care-

ful analysis shows that meωneV‖,e ≪ k‖neTe = k‖nemev
2
th,e ⇒ ω ≪ k‖vth,e is the

condition needed to eliminate the electron inertia term.

Now, if the electrons can be taken to be isothermal in the parallel direction

(true when there are no collisions; see [73]), so that ne∇‖Te ≪ Te∇‖ne, the parallel

pressure gradient can be written as ∇‖pe = Te∇‖ne. This leads to the following

assertion concerning the electron response:

eneE‖ + Te∇‖ne = 0

ene∇‖φ = Te∇‖ne

ene exp(−eφ/Te)∇‖φ = Te exp(−eφ/Te)∇‖ne

∇‖(ne exp(−eφ/Te)) = 0

When eφ/Te is small, we can expand the exponential in a Taylor series and put

an arbitrary flux function on the right hand side after integrating. Splitting the

electron density into mean and perturbed parts, ne = n0,e + δne we find that

δne = n0,eeφ/Te − n0,ee 〈φ〉fsa /Te (2.40)

where the flux surface averaged quantity 〈φ〉fsa varies only in the radial direction.

This simplification for δne still requires an expression for the ion density in

the gyrokinetic Poisson equation (GKPE). One may express δns(R), where s is a
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species index, with the following:

δfs(R) = h− qsφ

Ts

F0 (2.41)

〈δfs〉R = h− qs 〈φ〉R
Ts

F0 (2.42)

so that

δfs = 〈δfs〉R +
qsFM

Ts

(〈φ〉R − φ) (2.43)

The details of the calculation for the ion density are presented here in k-space:

δni =

∫ (
〈〈δfi〉R〉r +

Zi|e|
Ti

〈
J0

(
k⊥v⊥,i

Ωi

)
φ

〉

r

F0 −
Zi|e|
Ti

φF0

)
d3v

δni =

∫
J0

(
k⊥v⊥,i

Ωi

)
〈δfi〉R d3v +

Zi|e|
Ti

(∫
J2

0

(
k⊥v⊥,i

Ωi

)
F0d

3v −
∫
F0φd

3v

)

δni =

∫
J0

(
k⊥v⊥,i

Ωi

)
〈δfi〉R d3v +

n0,iZi|e|φ
Ti

Γ0

[(
k⊥v⊥,i

Ωi

)2
]
− n0,iZi|e|φ

Ti

δni =

∫
J0

(
k⊥v⊥,i

Ωi

)
〈δfi〉R d3v +

n0,iZi|e|φ
Ti

(
Γ0

[(
k⊥v⊥,i

Ωi

)2
]
− 1

)

Now we have φ in the quasineutrality (Poisson) equation, and we have used the

gyroaveraging identities in k-space:

1

v2
th

∫ ∞

0

exp(−v2
⊥/2v

2
th)J

2
0 (k⊥v⊥/Ω)v⊥dv⊥F0 ≡ n0Γ0(k

2
⊥v

2
⊥/Ω

2)

〈δf〉 = J0(k⊥v⊥/Ω)δfk (2.44)

where J0 is the first order Bessel function Γ0(b) = I0(b) exp(−b), and I0 is the

modified first order Bessel function.

Therefore, when the gyrokinetic Poisson equation is used for adiabatic elec-
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trons and hydrogenic ions:

en0,e

Te

(
φ− 〈φ〉fsa

)
=

∫
J0

(
k⊥v⊥,i

Ωi

)
〈δfi〉R d3v +

en0,iφ

Ti

(
Γ0

[(
k⊥v⊥,i

Ωi

)2
]
− 1

)
⇒

φ(kx, ky, kz) =

∫
J0(

k⊥v⊥,i

Ωi
) 〈δfi〉R d3v

en0,e

Te
+

en0,i

Ti

(
1 − Γ0

[
(

k⊥v⊥,i

Ωi
)2
]) . (2.45)

where we have neglected the flux-surface averaged part of the electron response.

If the electrons are not adiabatic, the electron term in the denominator of this

φ equation may be replaced with a term analogous to the ion term, and an extra

electron term is added to the numerator so that the final result for the self-consistent

φ at position r at any given time (specified by the state of the distribution function)

is

φ(r) =
∑

k

φk exp(ik · r)

φk =

∫
v⊥dv⊥dv‖ (ZiJ0(k⊥v⊥/Ωi) 〈δfi〉R − J0(k⊥v⊥/Ωe) 〈δfe〉R)

e
(

Zin0,i

Ti
(1 − Γ0(k2

⊥v
2
⊥/Ωi)) +

n0,e

Te
(1 − Γ0(k2

⊥v
2
⊥/Ωe))

) . (2.46)

2.2 Hasegawa-Mima as a limit of the gyrokinetic-Poisson system

The Hasegawa-Mima equation was originally derived from the Navier-Stokes

equation as a limit accounting for drift waves in a quasineutral plasma with cold ions

[40]. It is a single field equation for the electrostatic potential, φ. The Hasegawa-

Mima equation is perhaps the most basic model for drift waves in a magnetized

plasma with an adiabatic electron response. The equation is structurally identical to

the Charney equation [74] for oscillations in a planetary atmosphere or any rotating

fluid, where the asymmetric term is obtained from the Coriolis force. Many authors

have analyzed the nonlinear turbulence produced from direct numerical simulations
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of the this equation, including the spectrum of fluctuations and the dual cascade

associated with the length scale, ρs =
√
Te/mi, of the dynamics (c.f.[75, 36]).

It is also possible to obtain the HM equation from the gyrokinetic equation

with the appropriate assumptions [76, 16, 77, 71]. Although it was originally derived

with adiabatic electrons from a fluid perspective, it is more sensible to find the HM

equation with adiabatic ions at the k⊥ρi ≫ 1, k⊥ρe ≪ 1 limit. First, the derivation

requiring adiabatic electrons will be shown, and the problem with this derivation

will be identified. Then the derivation requiring adiabatic ions will be shown.

Start from the gyrokinetic equation for ions

∂ 〈δfi〉R
∂t

+ v‖b̂ · ∇ 〈δfi〉R +
q

mic

〈
E‖

〉
R

∂FM

∂v‖
+

〈vE〉R · ∇
(
FM + 〈δfi〉R +

q

Ti

((〈φ〉R − φ)FM)

)
= 0

then integrate over velocity space to find an equation for ni,R =
∫
d3v 〈δf1〉R

∂ni,R

∂t
+ ∇‖(u‖ni,R) + 〈vE〉R · ∇(n0 + ni,R) = 0 (2.47)

where n0 is the background Maxwellian density and u‖ is a fluid velocity.

Using the same procedure as in Equation 2.46 for transforming back to the r

coordinate, one finds that the density ni,r is

ni,r =

∫
d3v 〈〈δf1〉R〉r +

qφ

T
(Γ0((k⊥v⊥/Ω)2) − 1)n0 (2.48)

In the cold ion limit Γ0 − 1 ∼ (k⊥v⊥/Ω)2 and
∫
d3v 〈〈δf1〉R〉r ∼ ni,R. Making the

adiabaticity assumption for the electrons, ne,r = qφ
Te

and setting the electron and
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perturbed densities in the r coordinate equal due to quasineutrality,

ne,r = ni,r

qφ

Te
n0 = ni,R +

c

B
k2
⊥φ

n0

Ωi

ni,R =
qφ

Te
n0 −

c

B
∇2

⊥φ
n0

Ωi

ni,R = n0

(
qφ

Te
− c

B
∇2

⊥φ
1

Ωi

)
.

This expression for ni,R can be inserted into the collisionless gyrokinetic equa-

tion to obtain, with b̂ = ẑ and kz = 0:

∂

∂t

(
n0

(
qφ

Te

− c

B

1

Ωi

∇2φ

))
+ ∇‖

(
u‖n0

(
qφ

Te

− c

B

1

Ωi

∇2φ

))
+

qB

mic
(ẑ ×∇φ) · ∇

(
qφ

Te
n0 −

c

B

n0

Ωi
∇2φ+ n0

)
= 0, (2.49)

which implies:

1

Ωi

∂

∂t

(
c

B

1

Ωi
∇2φ− qφ

Te

)
+

1

n0
(ẑ ×∇φ) · ∇

(
c

B

n0

Ωi
∇2φ− qφ

Te
n0 + n0

)
= 0. (2.50)

This can also be written as

1

Ω0,i

∂

∂t

(
c

B

1

Ωi

∇2φ− qφ

Te

)
+ (ẑ ×∇φ) · ∇(ln(n0))+

1

n0

n0(ẑ ×∇φ) · ∇
(
c

B

1

Ωi

∇2φ− qφ

Te

)
−
(
c

B

1

Ωi

∇2φ− qφ

Te

)
(ẑ ×∇φ) · ∇ (ln(n0)) = 0,

(2.51)

or

1

Ωi

∂

∂t

(
c

B

1

Ωi

∇2φ− qφ

Te

)
+ (ẑ ×∇φ) · ∇

(
ln(n0) +

c

B

1

Ωi

∇2φ− qφ

Te

)
= 0. (2.52)

The normalization for the this cold ion HM equation is φ → qφ
Te

, ∇ → ρs∇, where

ρs =
√
Te/mi and ∂t → 1

Ωi
∂t, which is easily seen when one realizes that c/BΩi =

q
Te
/ρ2

s.

38



One problem with this derivation for cold ions is with the approximation of

adiabatic electrons. It should be noted that this approximation is not valid for

describing ion-temperature gradient turbulence at k⊥ρi ≪ 1 ([78]. To see this, take

the O(1) terms from the δf1 electron gyrokinetic equation:

v‖∇‖

(
〈δf1〉 −

q 〈φ〉
Te

FM

)
= 0 ⇒

δf1 =
qφ

Te
FM +G(x, y) ⇒

G(x, y) = − q

Te
FM 〈φ〉fsa ⇒

δf1 =
q

Te
FM

(
φ− 〈φ〉fsa

)

where 〈·〉fsa is a flux surface average operator, working as a spatial average over

a magnetic flux surface, introduced already in Equation 2.40. The conventional

assumption for adiabatic electrons is only obtained if the one assumes 〈φ〉fsa = 0.

An alternative derivation of the Hasegawa-Mima equation for k⊥ρe ≪ 1 and

k⊥ρi ≫ 1 arrives at adiabatic ions by using:

ni(r) =

∫
d3v(〈δfi〉R +

q

Ti
〈φ〉R FM) −

∫
d3v

qφ

Ti
FM

and noting that the first two terms on the left-hand side are negligible since the

gyroaverage translates as a J0, which is small for large values of the argument k⊥ρi.

The equation is found in the same form as before but with the new normalizations:

Ωi → Ωe, ρs → ρs,e =
√
Ti/me/Ωe and q/Ti → q/Te.

A shorthand notation for the Hasegawa-Mima equation is

[∂t + (z ×∇φ) · ∇]
(
∇2φ− φ− βx

)
= 0 , (2.53)
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where the x coordinate corresponds to the direction of the density gradient driving

the drift-wave instability, and y corresponds to the direction of propagation of the

drift-waves. In toroidal geometry, x is analogous to a normalized coordinate along

the minor radius, and y is a poloidal-like coordinate. Here we assume a slab approx-

imation and treat (x, y) as Cartesian coordinates. The parameter β = n0(x)
′/n0(x)

measures the scale length of the density gradient, and not the ratio of plasma and

magnetic pressure.

Many simulations of this equation have been performed, including many stud-

ies of the transport of Lagrangian tracer particles and gyrocenters [48, 45, 79, 43, 44].

One may perform a direct numerical simulation for freely decaying turubulence, with

an artificial viscosity term added. One may also apply a forcing to the system, which

can drive an inverse cascade. When the β term is strong enough compared to the

nonlinear term, saturated states of the HM equation turbulence appear as zonal

flows [44]. If the nonlinear term is relatively strong compared to the asymmetry, a

saturated state consisting of two large vortices, the so called modon solution, will

appear [80]. This solution is also obtainable from analysis [75]. A dipole state is nat-

ural for the HM equation because the turbulent cascade of energy in this quasi-two

dimensional geometry is inverse compared to the standard three dimensional Kol-

mogorov direct cascade of energy to small scales. Another interesting result with a

strong similarity to a solution of the HM equation comes from electron temperature

gradient turbulence in a continuum gyrokinetic code [81].
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2.3 Overview of continuous-time random walks and fractional calcu-

lus

We are interested in the drift dispersion of particles or gyrocenters in flows

where a coherent component is combined with an incoherent component. Perhaps a

narrow band of relatively large amplitude, anisotropic waves coexists with smaller

amplitude, randomly phased Fourier components. For the limit of a purely coherent

flow with no time dependence, the motion of particles will be completely predictable

on a particle-by-particle basis. In a simple shear flow without any stochastic region,

particles are completely trapped in the direction perpendicular to the flow and

free-streaming parallel to the flow. For the opposing limit of a purely random

flow, such as isotropic and homogeneous turbulence, each particle trajectory will be

unpredictable, but the overall dispersion will be given by a diffusion equation.

This conclusion follows from the Markovian (short memory) nature of homo-

geneous turbulence, such that the autocorrelation function for velocities is given by

an exponential decay:

C(τ) =
〈u(t)u(t+ τ)〉

〈u2〉 = exp(−τ/τc) (2.54)

where τc is a typical decay time. This timescale can be interpreted as the time for

which memory, or history, is not relevant for trajectories or dispersion on average.

Taylor’s theorem [82] (which is an example of a Green-Kubo relation) relates the

integral of the velocity correlation function to the dispersion of particles:

dσ2(t)

dt
=

∫ t

0

〈v(0)v(τ)〉 dτ (2.55)
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which implies

σ2(t) = 2v̄2

∫ t

0

(t− τ)C(τ)dτ (2.56)

as shown quite clearly in [83]. Here, v̄2 is the average initial velocity. Equation 2.56

implies that

σ2(t) = v̄2t2 + O(t4) (2.57)

as τ → 0 if C(τ) → 1. Also,

σ2(t) = 2v̄2t0(t− t1) (2.58)

as τ → ∞ assuming that the integral of the correlation function converges, where

t0 is the zeroth moment of the correlation function and t1 is the first moment. This

is the functional form predicted by the classical diffusion equation.

For the intermediate scenarios we are confronting here, inhomogeneities and

persistent structures in a flow extend the effects of memory and influence the un-

derlying random walk process so that the result of the process may not be diffusive,

perhaps for some significant amount of time. A foundation for understanding and

quantifying these nondiffusive processes comes from the so-called continuous-time

random walk (CTRW) theory based on a generalized master equation for the space

and time dependence of the probability function for locating a single particle.

Nondiffusive transport, e.g. in the r̂ radial direction, is characterized in this

thesis by the moments of the particle displacement distribution function, includ-

ing the mean M(t) = 〈δr(t)〉 (if there is advection) and the variance σ2
r(t) =

〈(δr(t) − 〈δr(t)〉)2〉 of particle displacements δr(t) = r(t)− r(0). For diffusive trans-

port, the distribution of step sizes for the random walk is given by a Gaussian

42



distribution and the waiting times between steps are given by a Poisson distribu-

tion. This leads to a linear scaling in the variance and the mean, such that M(t) ∼ t

for normal advection and σ2 ∼ t for normal diffusion. If transport is nondiffusive,

the variance scales as σ2(t) ∼ tγ , where γ < 1 indicates subdiffusive transport and

γ > 1 indicates superdiffusive transport by definition [84]. If power law distributions

are assumed or detected for the microscopic dynamics of the particle trajectories,

the value of γ can be related to the exponents of those power laws, as we will see in

this Section and in Chapter 3.

The particle propagator for the probability of finding the particle at a future

time and place, given the probability at a starting time and place is given by

P (x, t|x′, t′) ≡ P (x, t) (2.59)

where the equivalency here indicates our notation shortcut. In the remainder of

this section, the notation will also only include one dimension: x → x. Computing

the evolution of this propagator is the fundamental tool of this work. We obtain

numerical approximations to the propagator by pushing a large number of individual

particles and examining the distribution of their displacements.

Predictions for the particle propagator can be derived from the foundation of

the continuous-time random walk (CTRW) formalism [85, 58]. The CTRW method

supposes that the information content of a random walk is contained in Ψ(x, t), a

probability density function called the kernel of particle propagation or the jump

PDF. The probability of jump length is given by

η(x) =

∫ ∞

−∞

Ψ(x, t)dt (2.60)
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and the probability of a waiting time is given by

ψ(t) =

∫ ∞

−∞

Ψ(x, t)dx. (2.61)

Note carefully the difference between Ψ(x, t) and ψ(t). Often, the assumption of

separability is made for the transport kernel, so that Ψ(x, t) = η(x)ψ(t). Let us

now see how a master equation for the propagator, under the influence of Ψ(x, t)

can lead to both a diffusion equation and a fractional diffusion equation. Following

[58], define the probability of just having arrived at (x, t) from (x′, t′), with initial

condition starting from t = 0, x = 0 as:

J(x, t) =

∫ ∞

−∞

dx′
∫ t

0

dt′J(x′, t′)Ψ(x− x′, t− t′) + δ(x)δ(t) (2.62)

so that the cumulative probability of being at (x, t) is given by another integration

P (x, t) =

∫ t

0

J(x, t′)k(t− t′)dt′ (2.63)

where

k(t) = 1 −
∫ t

0

ψ(t′)dt′ (2.64)

is called the survival probability [85]. Putting it all together:

P (x, t) =

∫ t

0

J(x, t′)k(t− t′)dt′

=

∫ t

0

dt′

[∫ ∞

−∞

dx′
∫ t′

0

J(x′, t′′)Ψ(x− x′, t− t′′)dt′′ + δ(x)δ(t′)

]
k(t− t′)

= k(t)δ(x) +

∫ t

0

dt′
∫ ∞

−∞

dx′
∫ t′

0

dt′′J(x′, t′′)Ψ(x− x′, t− t′′)k(t− t′),

and so,

P (x, t) = k(t)δ(x) +

∫ t

0

dt′
∫ ∞

−∞

dx′Ψ(x− x′, t− t′)P (x′, t′) (2.65)
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This type of relationship between a particle propagator and a kernel is called a

master equation [86], since it contains all of the information necessary to predict

where a particle will be at any point in space and time, assuming the kernel is

perfectly accurate.

Fourier and Laplace transforms are defined in one dimension as:

F [f(x)] = f̂(k) =

∫ ∞

−∞

f(x)e−ikxdx (2.66)

and

L [f(t)] = f̃(s) =

∫ ∞

0

e−stf(t)dt. (2.67)

We will often omit the ·̂ and ·̃ for brevity, while explicitly stating the argument for

clarity.

Next note that the Laplace transform of k(t) is given by

k(s) =
1 − ψ(s)

s
(2.68)

With this, the transform of Equation 2.65 follows from a convolution theorem

P (k, s) =
1 − ψ(s)

s

1

1 − Ψ(k, s)
. (2.69)

Equation 2.69 is identified with the Montroll-Weiss equation [87, 86] which becomes,

in the separable limit,

P (k, s) =
1 − ψ(s)

s

1

1 − η(k)ψ(s)
. (2.70)

Recent versions of this derivation can be found in [12, 88] and references therein.

45



2.3.1 Gauss and Poisson ⇒ diffusion equation

The standard diffusion equation follows when the distribution of step sizes is

given by a Gaussian

η(x) =
1√

2πσ2
exp(−x2/2σ2)

η(k) =
1

2
exp(−k2σ2/2) =

1

2
(1 − (kσ)2/2 + O(k4)). (2.71)

The distribution of waiting times is given by a Poisson distribution, which is equiv-

alent to a Markov (memory-free) process

ψ(t) = µ exp(−µt)

ψ(s) =
µ

s+ µ
= 1 − s

µ
+ O(s2). (2.72)

In the small s and small k limits, the master equation becomes

P (k, s) ∼ 1

s+ k2D
⇒ ∂P

∂t
= D

∂2P

∂x2
(2.73)

Transforming back to x and t gives the diffusion equation with diffusion coefficient

D = σ2µ given by the characteristic step size and waiting times. Note that this

result is valid in the limit of long times and long wavelengths. This means that the

diffusion equation may not describe a Gauss-Markov process at scales comparable

to the characteristic waiting time 1/µ or the characteristic jump length σ. This is

usually manifested as a period of ballistic motion before asymptotic diffusion.
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2.3.2 Power laws ⇒ fractional diffusion equation

Another special case of the CTRW model is the fractional diffusion equation.

Start from two power laws for the step sizes and waiting times,

η(x) = A|x|−(α+1)

ψ(t) = Bt−(β+1)

In Fourier and Laplace space, these power laws have the asymptotic forms

η(x) ∼ 1 − |k|α

ψ(t) ∼ 1 − sβ

These algebraically decaying tails are characteristic of stable Lèvy distributions with

a stability index α less than 2 [89, 86, 88]. Let us quickly define Lèvy distributions

for future reference. The symmetrical Lèvy stable distribution with stability index

0 < αL ≤ 2 and scale factor γL > 0 is [90]:

L(x) =
1

π

∫ ∞

0

exp (−γLq
αL) cos(qx)dq. (2.74)

For 1 < α < 2, L(x) has a series representation with power law tails [90].

Again, in the small s, small k limit, the master equation can be simplified and

rearranged

P (k, s) =
sβ

s

1

c1sβ + c2|k|α

sβP (k, s) − sβ−1 = −Df |k|αP (k, s) (2.75)

where Df = c2/c1 is an effective diffusion coefficient with dimensions xα/tβ . Inverse
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transforming gives, by definition, the fractional diffusion equation:

C
0 D

β
t P (x, t) = DfD

α
xP (x, t) (2.76)

where the fractional integro-differential operators can be defined in several ways

[57]. There is some ambiguity to their definition, since several forms can give the

same result. Regularizations are sometimes necessary to obtain sensible physical

interpretations. The operator must be equivalent with the Fourier-Laplace transform

in Eq uation 2.75.

Another way to see the origin of the fractional operator is to take the Cauchy

formula for repeated integration and generalize it to non-integer order. The Cauchy

formula

In (f(x)) =
1

Γ(n)

∫ x2

x1

(x− u)n−1f(u)dt (2.77)

where Γ(n) is the factorial function for integers. This well-known result can be

proven inductively or by using the binomial theorem and integration by parts. While

Equation 2.77 is derived assuming n ∈ N, it is easy to simply assert that n → ν,

with ν ∈ R, and therefore define a fractional integral. A fractional derivative is

then defined by applying an integer-order derivative to fractional integral. (The

term fractional is misleading, since this generalization is not confined to rational

numbers.)

The most common definition of the spatial fractional derivative operator, called

the Riemann-Liouville (RL) fractional derivative appears as :

xD
α
b P =

1

Γ(m− α)

∂m

∂xm

∫ b

x

P (y, t)

(y − x)α+1−m
dy. (2.78)
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More specifically, this is the right-hand RL operator. The left-hand operator is

bD
α
xP =

1

Γ(m− α)

∂m

∂xm

∫ x

b

P (y, t)

(x− y)α+1−m
dy. (2.79)

Here, m− 1 ≤ α < m is an integer and Γ(m− α) is the gamma function (compare

to Equation 2.77). The temporal operator, which is “regularized in the time origin”

[91] is called the Caputo fractional derivative and appears (for 0 < β < 1) as

C
0 D

β
t P =

1

Γ(1 − β)

∫ t

0

∂t′P (t′)

(t− t′)β
dt′ (2.80)

This form of the fractional operator satisfies the Laplace transform in Equation 2.75

and requires the initial value of the function as a boundary condition, rather than the

initial value of the fractional derivation as in other definitions [12]. Interpretation of

the fractional diffusion equation as a description of a probability density is limited

to [0 < α ≤ 2] ∩ [0 < β ≤ 1] or 1 < β ≤ α ≤ 2 [91].

2.3.3 Premise for deducing a CTRW from a flow

Power laws are found in many different contexts to describe many types of

behavior. As we have seen, if a random walk is governed by step sizes and waiting

times drawn from pure power laws, a fractional diffusion equation is the result. The

solution of the fractional diffusion equation takes a well-defined form, and attempts

have been made to identify the probability distribution of particles with fractional

diffusion solutions, including the work in Chapter 3 of this thesis, and [12]. In

scenarios where the random walk is not dictated by pure power laws, which includes

any realistic example where infinite step sizes are impossible, other forms of the
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kernel Ψ(x, t) = η(x)ψ(t) must be identified. Truncated power laws from truncated

Lévy flights [90] provide one way of obtaining a realistic non-Gaussian random

walk. Another technique, which introduces the complication of coupling between

η(x) and ψ(t) is the Lèvy walk [85], in which “long steps are penalized by required

more time to be performed.”

More generally, it would be useful to obtain a kernel from the structure of a

particular flow. In the context of magnetic stochastic transport on RFX, speculation

on this possibility has been made [32]. Plainly, one would like to construct η(x)

and ψ(t) from some average values of Eulerian quantities, such as velocity, density

and vorticity. This kernel could then be used to simulate a continuous time random

walk and determine whether nondiffusive transport is important without performing

explicit Lagrangian probe simulations of the flow. Lagrangian studies might be

especially difficult for experimental situations where highly time-resolved data is

not available. Obtaining the kernel from direct observation of the flow would also

eliminate the expense of integrating a statistically significant number of tracers

through interpolation and ODE solving. The simulation of the kernel as a random

walk would only require a Monte Carlo-style sampling of the transport kernel. In

some sense, such a method shifts the responsibility for capturing the details of the

flow from the computation of single particle trajectories to the determination of an

accurate kernel from Eulerian data. It remains to be seen whether this technique

can be useful in the context of the results of this thesis.

Next, a framework will be described for translating a set of flow data into

a kernel for a random walk. The question is to determine both the step size and
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waiting time distributions. In general, these may be coupled, so that the step size

depends on the waiting time (or vice versa) for some range of values [85].

The step size distribution is easier to define. Let the step size for a particle in

an eddy of scale k be given by

Λ(k) = SΛ0(k) = S 2π

k
(2.81)

where S is a scale factor correcting for the possibility that particle escape might

occur before the structure is crossed. This scale factor might be drawn from a

random distribution. Then the probability of step size x is given by

η(x, t) =

∑
k 2Sπ/kFk(t)∑

k Fk(t)
(2.82)

where time (not waiting time) dependence has been introduced in the frequency,

Fk, of occurrence of eddies with scale k in the bounded system of interest.

The waiting time distribution is a bit harder to define since the scaling is not as

obvious as the inverse wavelength was for the scale of the steps. Let the Lagrangian

persistence time of an eddy be given by

Φ(k) = PΦ0(k) = Pτ to
k (2.83)

where P is a (possibly randomized) scale factor and τ to
k is the eddy turnover time

at scale k. Then the probability of waiting time τ is

ψ(τ, t) =

∑
k Pτ to

k Fk(t)∑
k Fk(t)

. (2.84)

The complexity of the problem has now been isolated into two unknown quan-

tities, plus two scale factors. First is the lifetime of an eddy, which is related to
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the eddy turnover time, but is likely a complicated object to measure. Second is

the frequency of occurrence for an eddy of scale k. From a brute force point of

view, this quantity could be measured using a manual or automated counting rou-

tine. A possibly more reliable and more general technique would be to look at

the wavenumber spectrum for a flow and observe which wavenumbers are present.

Then the frequency of occurrence for the eddy of scale k will be comparable to the

product of the scale length and the size of the bounded domain: kL
2π

. Once the

turbulence reaches a steady state, the frequency of occurrence should be a fairly

time-independent function, but it may be necessary to have some oscillatory time

dependence included.

Once ψ(τ, t) and η(x, t) have been estimated by examining the Eulerian flow

data appropriately, these distributions could be used to numerically solve for the

particle propagator P (x, t). The goal of such an effort would be to predict whether

particle dispersion in a given streamfunction is non-Gaussian based on the particular

structure of an experimental flow. This technique could avoid the more expensive

tracer tracking simulations by replacing interpolation and ODE solving with a time-

dependent random selection of jump and waiting times from realistic distributions,

rather than power law or Gaussian approximations.

2.4 Implementation of the gyrokinetic equation

Many numerical implementations of the gyrokinetic formalism are in use by

the fusion, and recently, the space physics [17] communities. While the wide vari-

52



ety of gyrokinetic codes can cause confusion, cooperative efforts such as the Cyclone

initiative for ion-temperature gradient turbulence [65] have identified points of agree-

ment. Gyrokinetic codes can be classified in several ways. Here, we stay within the

δf1 form of the gyrokinetic equation and describe the significant differences between

continuum/Eulerian and particle/Lagrangian methods.

2.4.1 Continuum gyrokinetic solvers

One technique for solving the gyrokinetic PDE is to employ a pseudospectral

description of the distribution function and fields, combined with a finite difference

scheme for the nonperiodic dimensions. This technique is generally referred to as a

continuum method, since the distribution function is represented smoothly in a given

domain, in the spirit of the Vlasov equation. A spectral solver, such as in GS2 [92, 3],

GYRO [93] or GENE [94] transforms the δf or h = δf − qφ/T into Fourier space

in the directions perpendicular to the magnetic field: δf(x⊥,1, x⊥,2, x‖, v‖, v⊥) ⇒

δf(kx,1, kx,2, x‖, v‖, v⊥). Since the fast Fourier transform FFTW [95] is a very quick

parallel algorithm, it allows derivatives in the periodic directions to be found quickly

with high accuracy. It also allows the gyroaveraging operator to be applied to the

fields using the exact Bessel function multiplier: J0(k⊥v⊥/Ω).

For the nonperiodic directions, continuum codes use finite differencing schemes

on grids in phase space. Timestepping of the PDE is accomplished typically with

a Runge-Kutta method. Realistic collision operators can be implemented with con-

tinuum codes since the derivatives in pitch-angle or energy can be taken directly on
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the smoothly defined distribution function. These collision operators are important

for removing the fine-scale (grid-scale) structure in velocity space that should be

physically damped [96, 97].

2.4.2 Particle-in-cell simulation technique

A competing framework for solving the δf gyrokinetic equation for the k⊥ρ ∼ 1

scale turbulence is the particle-in-cell (PIC) type of algorithm, first implemented by

[98] and [99], then used extensively by many authors, e.g [100, 101]. In the spirit of

the Klimontovich equation for the evolution of individual points (Dirac δ-functions)

in phase space, which represent a distribution function in aggregate, a PIC simula-

tion uses the method of characteristics to convert the gyrokinetic PDE into a set of

ODEs to be solved for many initial conditions. The solution on each characteristic is

interpreted as a marker particle which follows a phase space trajectory specified by

the gyrokinetic equation. Each marker with index i carries a weight, wi = δfi/F0,

which represents the perturbation of the distribution function at the location of the

marker.

When necessary, the marker weights can be interpolated onto a phase space

grid to give the perturbed distribution function. This function is used to solve for

the electromagnetic fields, in general, so that such self-consistent fields can be used

to find the marker weights and positions at the next time step. PIC codes may

be parallelized quite trivially by partitioning the ensemble of markers onto a large

number of processors, so that the only interprocessor communication is during a
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field solve. This is the technique chosen for GSP, but it is not common.

For the gyroaveraging operation, PIC codes often use a four or eight-point

stencil on the ring, though GSP uses a spectral method as described below. Col-

lision operators with pitch-angle or other phase space derivatives can be difficult

or expensive to implement in PIC codes since the discrete differencing operation

requires another interpolation, which is one of the slowest parts of the PIC algo-

rithm. We will show here that artificial fine scale structure on the PIC grid must

be controlled. The inaccuracies from this structure, which should be damped by a

physical mechanism, can overwhelm the signal even when the number of particles

per cell is very high. In this thesis, we use a Krook collision operator, as explained

in Section 4.2.2.

In recent history, δf gyrokinetic PIC codes for magnetic confinement fusion

applications have had trouble with discrete particle noise [102], part of which is the

1/
√
N noise inherent in Monte Carlo sampling of an integral (where N is the number

of marker particles). Nevertheless, it is possible to obtain results with PIC codes that

benchmark favorably with continuum codes. PIC codes are quite attractive because

of the relative simplicity of the fundamental algorithm and ease of parallelization.

For the main point of this thesis, a PIC code is a natural way of tracking the

dispersion of an ensemble of particles since a subset of the marker particles used to

sample the distribution function can be used directly as the Lagrangian probes for

the turbulent flow.
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2.5 Our implementation of particle-in-cell

The gyrokinetic simulations used for the results of Chapter 4 are based on a

code originally written by Broemstrup for his doctoral thesis. Preliminary results

from this code, dubbed GSP, showed that it was capable of reproducing some results

from GS2 in ion-temperature-gradient and entropy mode turbulence. The unique

features of GSP include its ability to study plasma behavior at k⊥ρ > 1 due to the

implementation of the gyroaveraging operator in k-space with the Bessel function.

The contributions to the code for this thesis include the marker particle tracking

algorithm and associated diagnostics, which are described in Section 4.3. The results

in this thesis are obtained at higher spatial resolution than used in the original work,

and the basic diagnostics for the code have been refined. Explicit spatial filtering

during the field solve is implemented, and original convergence tests have been

performed, with details in Sections 4.2.1 and 4.2.2.

2.5.1 Method of characteristics

The foundation for the PIC algorithm is the method of characteristics, which

is a standard technique used to split an N variable partial differential equation into

N + 1 ordinary differential equations. The general form of a first order PDE in N

variables with source term S can be written as:

N∑

i

Ci
∂F
∂xi

= S. (2.85)
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The main idea is to parameterize the terms of this equation such that xi = xi(t),

where we will identify t as time in the gyrokinetic equation. Thus,

dxi

dt
= Ci∀i (2.86)

and

dF
dt

= S (2.87)

is the value of the function along the N characteristics parameterized by t. Now we

will see how this method applies to our example.

The coordinates used here will be the same as in Figure 4.1, but as stated

again in Chapter 4, results will be reported with notation consistent with Chapter

3. Starting from the gyrokinetic equation for the Z-pinch, Equation 2.36,

∂ 〈δf〉R
∂t

+ (v‖B0 + 〈vE×B〉R + v
tot
D ) · ∇ 〈δf〉R

= −〈vE×B〉R · ∇F0 − v‖
qF0

T
(B̂0 · ∇ 〈φ〉R) − v

tot
D · ∇

(
q 〈φ〉R
T

F0

)
,

and comparing with the expansion Equations 2.86 and 2.87 to find the coefficients

Ci,

dr

dt
= 〈vE×B〉R · r̂ (2.88)

dz

dt
= 〈vE×B〉R · ẑ + vtot

D (2.89)

dϕ

dt
= v‖ (2.90)

dv⊥

dt
= 0 (2.91)

dv‖

dt
= 0 (2.92)

d 〈δf〉R
dt

= −〈vE×B〉R · ∇F0 − v‖
qF0

T
(B̂0 · ∇ 〈φ〉R) − v

tot
D · ∇

(
q 〈φ〉R
T

F0

)
. (2.93)
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Since the Maxwellian background distribution function is O(ǫ−1) larger than δf ,

one typically chooses to decrease the Monte Carlo noise in the simulation by using

the relative weight wi = 〈δf〉R /F0 as the evolved quantity in the simulation. This

is equivalent to importance sampling as described in [103]. Importance sampling

requires separation of scales between a relatively large and stationary background

(preferably known analytically) and a perturbation on the background. Solving

for the integral of the background using a closed form (such as the Maxwellian in

gyrokinetics) relegates sampling error to the estimate of the perturbed part. This

sampling error is therefore smaller by the order of the scale separation, which in this

case is ǫ = ρ/L.

Now we show how to convert Equation 2.93 into an equation for wi. The form

of the Maxwellian (with species index suppressed) is given by

F0 =
n0(r)

π3/2v3
th

exp(−v2/2v2
th)

=
n0(r)T0(r)

−3/2

(π/m)3/2
exp

(
−m

2
v2T−1

0 (r)
)

so that the ∇F0 terms may use

∇F0 =
exp(−m

2
v2T−1

0 (r))

(π/m)3/2

(
n′

0T
−3/2
0 − n0

3

2
T

−5/2
0 T ′

0 +
m

2
v2n0T

−7/2
0 T ′

0

)

⇒ ∇F0/F0 =
n′

0

n0

− 3

2

T ′
0

T0

+
mv2T ′

0

2T 2
0

=
n′

0

n0

− 3

2

T ′
0

T0

+
v2T ′

0

2T0v
2
th

=
−1

Ln

+
3

2LT

− v2

2LT v
2
th

Since F0 is static on the timescale of the derivative on 〈δf〉R,

∂ 〈δf〉R /F0

∂t
=
∂ 〈w〉R
∂t

= − 〈vE×B〉R · r̂
(
− 1

Ln
+

3

2LT
− v2

2LTv2
th

)

+ v‖
q

T0
Eϕ − vtot

D

q

T0
Ez.

58



This equation for the evolution of the weight will apply to each trajectory, each hav-

ing a unique input for 〈vE×B〉R, v‖ and vtot
D . Each characteristic with the associated

solution of dtw represents a realization of the perturbed distribution function for a

particular initial condition. By taking many thousands or millions of these sample

solutions and following them for a certain amount of time, one finds an accurate

Monte Carlo estimate of the distribution function.

There are many reasons for inaccuracy in any sort of numerical simulation,

relative both to analytic limits of the model and the natural processes meant to

be reproduced by the model. In a PIC simulation, the inaccuracies relative to the

model are often referred to as discrete particle noise. There are at least four obvious

sources of discrete particle noise:

- Grid resolution

- Interpolation accuracy

- Finite timestep size

- Number of particles or Monte Carlo sampling

The finite number of particles in a PIC simulation leads to Monte Carlo sam-

pling error as noted by [103, 102] The sampling error is the only error specific to

a particle code - continuum codes will also be susceptible to error from the other

listed sources. Sampling error is slowly converging with particle number, as
√

1/N ,

and in a collisionless simulation, the weights will always grow no matter how many

particles are used per grid cell for interpolation [104].
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2.5.2 Normalization: code units

We define several reference quantities to be used in the normalization of the

three nontrivial characteristic equations. A reference gyroradius ρr is given by a

reference thermal velocity vth,r ≡
√
Tr/mr and a reference Larmor frequency, Ωr ≡

Zr|e|B/mrc. Two length scales are present, so two normalizations for length are

needed. Perpendicular lengths are normalized by ρr. Parallel lengths are normalized

by the system size a. Time is normalized by t ⇒ tvth,r/a and φ ⇒ Zr |e|φ
Tr

a
ρr

. This

factor of a
ρr

is present in order to make the perturbed quantities O(1).

Normalization of the curvature and ∇B terms into dimensionless code units

goes as follows:

w = · · · − ∆t
∂

∂z
〈φ〉R

c

B

Z|e|
T

v2
‖ + 1

2
v2
⊥

ΩRc

ρ

a
wN = · · · − a

vth

∆tN
1

ρ

∂

∂zN

ρT

Z|e|a 〈φN〉R
c

B

Z|e|
T

v2
th

a

v2
‖N + 1

2
v2
⊥N

ΩRcN

wN = · · · − ∆tN
c

B

v2
‖N + 1

2
v2
⊥N

RcN

∂

∂zN

〈φN〉R

2.5.3 Initialization details

Our particle loading scheme for the Z-pinch gives random and uniform posi-

tions in r, z, and v‖. For v⊥, the markers are loaded on a regularly spaced grid.

This is to facilitate the gyroaveraging procedure that will be described below. Ini-

tial weights are also chosen uniformly random with a small initial amplitude. This

amplitude is chosen so that the primary instability is excited promptly, but able to
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grow at the rate specified by the linear dispersion relation.

2.5.4 Parallelization

GSP utilizes multiple processors by splitting the population of marker particles

equally onto each computing core. When solving the field equations, the entire

population is required to resolve the integral of the distribution function, which is

require to calculate φ. Message Passing Interface (MPI) routines are used to combine

the marker information on the grid and share with each processor. After receiving

the field solve result, each processor pushes its allocation of markers independently

again. Consolidation of information from each processor is also necessary when

computing an integrated diagnostic quantity, such as the particle flux averaged over

the entire box. The spatial domain is not parallelized in GSP.

2.5.5 Numerical integration of the characteristic ODEs

A predictor-corrector method is used to advance the ODEs for marker position

and weight. It is equivalent to the explicit so-called midpoint method, which is a

version of Runge-Kutta order 2 (error at each time step is O(δt3)). This method

computes the solution of each ODE at half of the specified time step, and uses this

prediction to find the estimated value of the function at the full time step. Thus,

the following are computed for each equation dA/dt = f(t, A):

A1 = A0 +
∆t

2
f(t0, A0)

A2 = A0 + ∆tf(t0, A1) ()
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Here A2 is the final result of the timestepping technique. These value of the position,

velocity and weight for each particle from the ODE solver is then used to find the

fields for the next time step. We recall that in our application, the phase space

velocities are constant.

2.5.6 Interpolation techniques in GSP

The marker particles in GSP are pushed by Equations 2.88-2.93 without ref-

erence to a finite grid of positions in the gyrocenter coordinate, R = (X̂, Ŷ , Ẑ).

Markers carry information about their positions and δf weights. When a field solve

is required, it is necessary to resolve information from the markers onto a grid for

solving the Poisson equation and, separately, for computing the gyroaveraged E×B

velocities.

This second grid, for v⊥, is designed to use the exact Bessel function for com-

puting gyroaverages (see Figure 3.2 in Section 3.3 for details on the accuracy of this

computation). This is a unique feature of GSP compared to many other gyrokinetic

PIC codes which use a four point stencil for the gyroaverage. The velocity space

grid in the code is chosen at regular values of v⊥ for efficient computation of the

gyroaverage operator in spectral space. The values of v‖,i are chosen at random, and

scaled to a maximum value set such that v2
⊥,i + v2

‖,i is constant (see Figure 2.3.

Interpolation for finding the gyroaveraged E×B drift velocity is done with the

nearest neighbor technique. A higher order bilinear method is used for the solution

of the Poisson equation. This is also referred to as a “cloud-in-cell” technique [105]
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Figure 2.3: Top: idealized gridding scheme for v⊥ to facilitate spectrally accurate

gyroaveraging. Bottom: actual grid points used in a GSP simulation.
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since it effectively gives the point particle a (triangular) shape with respect to the

grid. It is second order accurate [106].

2.5.7 Essential steps in the algorithm

In GSP, the following sequence of events occurs. Before the first timestep,

marker positions and weights are either initialized according to Section 2.5.3 or

from a restart file. Then the initial potential φk is computed in Fourier space. The

gyroaveraged electric field and associated drift velocities are then computed, and

the characteristic equations 2.88 - 2.93 are found for a half timestep as described in

Section 2.5.5. The next positions are found from:

xi,j+1 = modulo(xi,j + vE×B,x ∗ δt/2, Lx)

yi,j+1 = modulo(yi,j + vE×B,y ∗ δt/2, Ly)

where Lx and Ly are the dimensions of the periodic box. Quasineutrality is used to

find φ again, and the procedure is repeated, using the field at the half timestep to

solve the characteristics agin, completing the full δt timestep.

At the end of the timestep, trajectory positions are found by computing the

displacement without using the modulo function. This allows tracers to be tracked

outside of the periodic box. These ”outside the box” positions are kept in memory

throughout a run of the code. The positions, weights and velocities of the markers on

a small number of processors are saved at regular intervals to produce an ASCII file

of reasonable size. If the simulation is restarted, these tracer positions are forgotten,

and the tracking begins again with the positions modulo the box dimensions. The
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magnetic drift term vtot
B is used to find the tracer positions, but the displacement

due to this term can be subtracted from the total displacement to focus on the E×B

drift, as is done in Chapter 4.

65



Chapter 3

Superdiffusive gyrocenter drift transport parallel to a shear flow with

persistent vortices

Reprinted with permission from K. Gustafson, D. del-Castillo-Negrete and W.

Dorland, Phys. Plasmas 15, 102309 (2008). Copyright 2008, American Institute of

Physics.

3.1 Introduction

Simulations of self-consistent turbulent transport involve nonlinear interac-

tions at disparate scales, which often makes numerical computations expensive and

analytic methods intractable. As an alternative, one may consider models of in-

termediate complexity that incorporate important aspects of transport within a

relatively simple reduced description. This approach can reduce confusion and di-

rect the course of more comprehensive studies. In this chapter we accept a reduced

model and present a numerical study of the role of finite Larmor radius (FLR) effects

on non-diffusive poloidal transport in zonal shear flows using a E×B Hamiltonian

test particle transport model.

Following Ref. [42], we model the flow as a superposition of a shear flow and

drift waves obtained from the linearized Hasegawa-Mima (HM) equation [40]. Test

particle characteristics in this flow are generally not integrable and exhibit chaotic
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advection, also known as Lagrangian turbulence, which reproduces key ingredients

of particle transport in more complex flows. High frequency FLR effects are in-

corporated by solving the test particle equations of motion for the gyroaveraged

E × B velocity. As demonstrated by Ref. [107], we compute the gyroaverage using

a discrete N -polygon approximation.

We adopt a statistical approach and apply non-diffusive transport diagnostics

to large ensembles of particles. One of the simplest diagnostics is the scaling of the

second moment of particle displacements, σ2(t) = 〈[δy − 〈δy〉]2〉, where δy = δy(t)

denotes the particle’s displacement and 〈 〉 denotes the ensemble average. In the

standard diffusion case, σ2(t) ∼ t, linear scaling allows the definition of an effective

diffusivity as the ratio Deff = σ2(t)/(2t) in the limit of large t. However, in the case

of non-diffusive transport, σ2(t) ∼ tγ with γ 6= 1. When 0 < γ < 1, the growth of

the variance is slower than diffusion and transport is sub-diffusive. When 1 < γ < 2

transport is super- diffusive, which means the spreading is faster than diffusion,

and the displacements may be Lévy flights [58]. In both super- and sub-diffusion,

characterization of transport as a diffusive process with an“effective diffusivity”

Deff breaks down because Deff → 0 when 0 < γ < 1, and Deff → ∞ when

1 < γ < 2. Other measures of non-diffusive transport, which will be discussed in

detail later, include non-Gaussianity of the probability distribution of displacements

(propagator), slow decay of the Lagrangian velocity autocorrelation function, the

presence of long jumps (Lévy flights) and long waiting times, and the non-local

(i.e., non-Fickian) dependence of fluxes on gradients. A general review of non-

diffusive transport can be found in Ref. [108], and discussions focusing on plasmas
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can be found in Ref. [109, 110].

Test particle transport in HM flows, as in Fig. 3.1(a), has been studied in

Refs. [111, 48, 45, 112, 43, 42, 44]. In Ref. [42], which did not include FLR effects,

it was shown that zonal flows give rise to Lévy flights and strongly asymmetric non-

Gaussian PDFs of particle displacements. References [48, 45] addressed the role of

FLR effects but restricted attention to diffusive transport. More recently, Ref. [44]

considered FLR effects in non-diffusive transport in HM turbulence and concluded

that the exponent γ does not change appreciably with the Larmor radius but that the

effective diffusion coefficient is reduced. There is a very close connection between

drift waves as described by the HM equation and Rossby waves as described by

the quasigeostrophic equation, see for example Ref. [75]. Therefore, statistical test

particle studies in fluid mechanics, such as Refs. [36, 113], are in principle applicable

to drift wave transport.

The main new results presented here, which to our knowledge have not been

reported in the literature before, include: (i) a transition from algebraic to ex-

ponential decay in the tails of PDFs of particle displacements accompanied by a

transition from ballistic (γ ≈ 2) to super- diffusive (1 < γ < 2) transport; (ii) a

numerical study of the role of FLR on the Lagrangian velocity autocorrelation func-

tion and on the particle trapping and particle flight PDFs; (iii) the construction

of a effective fractional diffusion model that reproduces the shape and the spatio-

temporal anomalous self-similar scaling of the PDF of particle displacements. In

recent years, fractional diffusion models have been applied to describe non-diffusive

plasma transport, e.g. Refs. [114, 12, 115, 116, 60, 117]. Although the present
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Figure 3.1: Contour plots of electrostatic potential φ. Panel (a) shows a snapshot

of the potential obtained from a direct numerical simulation of the Hasegawa-Mima

equation (3.5). Panel (b) shows φ at a fixed time according to the chaotic Hamil-

tonian transport model in Eq. (3.9). The thick line limiting the central vortex in

(b) is the separatrix. Particles inside the separatrix are trapped, and, as the arrows

show, particles outside the separatrix are transported by the zonal flow. The Hamil-

tonian model in (b) provides a reduced description of E × B transport dominated

by vortices and zonal flows as highlighted by the rectangle in (a).
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work focuses on a prototypical model of transport, the diagnostics used and the

non-diffusive phenomenology discussed here might be of relevance to the study of

transport in more general flows dominated by coherent structures like zonal flows

and eddies. Despite the fact that these coherent structures are ubiquitous in sim-

ulations and experiments [75, 118, 119], their influence on non-diffusive transport

is not well understood. In this regard, Ref. [50] showed evidence of non-diffusive

transport in gyrokinetic turbulence for “intermediate” simulation times.

The rest of the chapter is organized as follows. In Sec. 3.2 the E×B transport

model with and without FLR effects is explained. Section 3.3 shows a benchmark

of the numerical method against an exact solution for the particle propagator in a

parallel flow. Section 3.4 presents a summary of Lagrangian diagnostics to study

non-diffusive transport. The main numerical results are presented in Sec. 3.5. Sec-

tion 3.6 describes the anomalous self-similarity properties of the PDF of particle

displacements and presents an effective fractional diffusion model. Section 3.7 con-

tains the conclusions.

3.2 Transport model

We follow a Lagrangian approach to study transport and consider large en-

sembles of discrete particles moving in a prescribed flow. We limit attention to

test particles, neglecting self-consistency effects and assuming that the particles are

transported by the flow without modifying it. When finite Larmor radius (FLR)

effects can also be neglected, the dynamics are determined by a drift equation which,
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in the E ×B approximation, is

dr

dt
=

E × B

B2
, (3.1)

where r = (x, y) denotes the particle position, E is the electrostatic field, and B

is the magnetic field. Writing B = B0ẑ, and E = −∇φ(x, y, t), Eq. (3.1) can be

equivalently written as the Hamiltonian dynamical system

dx

dt
= −∂φ

∂y
,

dy

dt
=
∂φ

∂x
, (3.2)

where the electrostatic potential is analogous to the Hamiltonian, and the spatial

coordinates are the canonical conjugate phase space variables.

For relatively high energy particles or for a flow varying relatively rapidly in

space, the zero Larmor radius approximation fails and it is necessary to incorporate

FLR effects. A simple, natural way of doing this is to substitute the E×B flow on

the right hand side of Eq. (3.2), which is evaluated at the location of the guiding

center, by its value averaged over a ring of radius ρ, where ρ is the Larmor radius

[107]. Formally, the procedure is given by

dx

dt
= −

〈
∂φ

∂y

〉

θ

,
dy

dt
=

〈
∂φ

∂x

〉

θ

(3.3)

where the gyroaverage, 〈 〉θ, is defined as

〈Ψ〉θ ≡
1

2π

∫ 2π

0

Ψ (x+ ρ cos θ, y + ρ sin θ) dθ . (3.4)

This is a good approximation provided the gyrofrequency is greater than other

frequencies in the system.
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In the HM model for drift waves the electrostatic potential is determined from

[40]

[∂t + (z ×∇φ) · ∇]
(
∇2φ− φ− βx

)
= 0 , (3.5)

where the x coordinate corresponds to the direction of the density gradient driving

the drift-wave instability, and y corresponds to the direction of propagation of the

drift-waves. In toroidal geometry, x is analogous to a normalized coordinate along

the minor radius, and y is a poloidal-like coordinate. Here we assume a slab approx-

imation and treat (x, y) as Cartesian coordinates. The parameter β = n0(x)
′/n0(x)

measures the scale length of the density gradient. We model the electrostatic po-

tential (test particle Hamiltonian) as a superposition of an equilibrium zonal shear

flow, ϕ0(x), and the corresponding eigenmodes of Eq. (3.5), ϕj(x), with perpendic-

ular wave numbers, k⊥j, and frequencies, cjk⊥j,

φ = ϕ0(x) +

N∑

j=1

εj ϕj(x) cos k⊥j(y − cjt) . (3.6)

We consider a monotonic zonal flow of the form

vy,0(x) = tanh(x) . (3.7)

In this case, depending on the parameter values, there is a band of unstable modes

bounded by two regular neutral modes with eigenfunctions [42]

ϕj = [1 + tanhx]
1−cj

2 [1 − tanhx]
1+cj

2 . (3.8)

Since these modes are neutral, c1 and c2 are real and the corresponding values of

k⊥j are obtained from the linear dispersion relation. Neutral modes are important
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because they describe dynamics near marginal stability. Following Ref. [42], we

consider a traveling wave perturbation of the first neutral mode. The electrostatic

potential in the co-moving reference frame of the neutral mode takes the form

φ = ln (cosh x) + ϕ1(x) [ε1 cos k⊥1y +

ε2 cos(k⊥2y − ωt)] − c1x. (3.9)

The first term on the right hand side of Eq. (3.9) is the potential of the shear

flow in Eq. (3.7), and ω is the frequency of the perturbation. The wavenumbers

perpendicular to the uniform magnetic field, k⊥1 and k⊥2, characterize the size of

E × B eddies, while ε1 and ε2 give the amplitudes of the waves. When computing

k⊥ρth to compare the scale length of the eddies in this flow to the thermal gyroradius,

we use the mean value k⊥ = (k⊥1 + k⊥2)/2.

When ε2 = 0 the Hamiltonian in Eq. (3.9) is time independent, and the test

particles follow contours of constant φ shown in Fig. 3.1(b). In this case, particles

inside the separatrix remain trapped and those outside the separatrix are always

untrapped with ẏ > 0 left of the vortices and ẏ < 0 right of the vortices. However,

when there is a time dependent perturbation, i.e. when ε2 6= 0 in Eq. (3.9), the

E×B particle trajectories are in general not integrable. In this case, the separatrix

breaks and forms a stochastic layer where test particles alternate chaotically between

being untrapped in the zonal flow and being trapped inside the vortices. This is

the phenomenon of chaotic transport that has been studied in both plasmas and

fluid systems, see for example Refs. [111, 120, 121, 36] and references therein. As

Fig. 3.1(a) illustrates, the simple Hamiltonian model in Eq. (3.9) provides a reduced
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description of E×B eddies embedded in a background zonal flow in HM turbulence.

3.3 Numerical method

The zero Larmor radius calculations are based on the Hamitonian-like equa-

tions of Eq. (3.2). For the numerical integration of these equations we used the

second-order symplectic predictor-corrector scheme of Ref. [122] with a fixed time

step of 0.05 and 8 iterations in the predictor-corrector loop. These parameters were

chosen based on numerical convergence studies and by monitoring the accuracy of

energy conservation. For the model parameters we used ε1 = 0.5, ε2 = 0.2, c1 = 0.4,

k⊥1 = 6.0, k⊥2 = 5.0 and ω = 6.0. This choice is motivated by Refs. [36, 42]

where it was shown that, for this set of parameters, test particles exhibit strongly

asymmetric, non-Gaussian statistics. As such, these parameters are a good starting

point to study the role of FLR effects on non-diffusive transport. For the initial

conditions we used an ensemble of particles located in the vicinity of the hyperbolic

fixed point of the Hamiltonian at (x0, y0) ∼ (−1,−0.5). This localization guarantees

that a large fraction of the particles will stay in the stochastic layer and undergo

chaotic transport. Other choices of initial positions can lead to integrable motion

with particles permanently either inside the eddies, circling, or outside, following

the zonal flow.

The only difference between the zero and finite Larmor radius calculations is

in the evaluation of the velocity of the test particle. Assuming fast gyration in a

strong B field, the gyroaverage of the E × B velocity is computed over a circle of
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radius ρ, where ρ is the Larmor radius of the particle. Throughout this chapter we

will assume a Maxwellian equilibrium distribution for the Larmor radii of the test

particles of the form

H(ρ) =
2

ρ2
th

e−ρ2/ρ2
th , (3.10)

normalized according to
∫∞

0
H(ρ)ρdρ = 1. For the numerical computation of the

gyroaverage we approximate the circle with an inscribed polygon with Ng-sides

and approximate the integral over the circle as the average over the vertices of the

polygon. This method, widely used in kinetic particle codes (e.g. [107]), simply

samples the field on the gyration arc at a small number of equally spaced points.

For example, the 8-point (octagon) approximation evaluates the gyroaverage by

considering Ng = 8 points distributed around the circle in equal increments, i.e.,

at θ = {2π/8, 2π/7, . . .2π}. If the mean gyroradius, 〈ρ〉 = (
√
π/2)ρth, becomes

large relative to the typical scale length, ∼ 1/k⊥, of the flow, i.e., if k⊥ρth ≫ 1, the

number of points used to compute the gyroaverage must be increased to maintain

the same level of accuracy.

The error involved in the approximation of the gyroaverage on Ng for a given

value of k⊥ρth and, therefore, a benchmark for the accuracy of the numerical scheme

can be studied by considering the following parallel flow in arbitrary geometry

φ = φ0 cos(k⊥x) . (3.11)

The main object of interest is the probability distribution function of particle dis-

placements, or propagator, P = P (y, t|y′, t′), which gives the probability for a par-

ticle to be at y′ at time t′ if it was at y at time t. Since vx = 0 for this choice of φ,
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we restrict study to the y direction. The function P depends on k⊥ρth and the goal

is to study the error in the numerical evaluation of P as function of k⊥ρth and the

value of Ng used in the approximation of the gyroaverage. As discussed in Appendix

A, the exact propagator for Eq. (3.11) is given by

P (y, t|y′, t′) =
1

U0(t− t′)
G(ζ) , ζ =

1

U0

(y − y′)

(t− t′)
, (3.12)

with

G(ζ) =
2

(k⊥ρth)
2

Nz∑

i=1

zi e
−(zi/k⊥ρth)2

|J1(zi)|
, (3.13)

where zi = zi(ζ) denotes the i-th zero of the equation J0(zi)− ζ = 0. Here, J0 is the

order zero Bessel function of the first kind. For a given ζ , the number of zeros of

this equation is Nz which goes to ∞ as ζ goes to zero. Note also that because the

minimum and maximum values of J0 are −0.4025 and 1, respectively, no zero exists

for ζ < −0.4025 or ζ > 1. Therefore, P identically vanishes outside the interval

ζ ∈ (−0.4025, 1). Despite its apparent complexity, this analytical result provides a

valuable benchmark to assess the accuracy of the gyroaverage computation.

Figure 3.2 compares the exact propagator in Eq. (3.12) with the propagator

obtained from direct numerical integration of the gyroaverage equations of motion in

Eq. (3.3) for different values of k⊥ρth and Ng. The FLR effects significantly change

the k⊥ρth = 0 propagator, which is a δ-function centered at ζ = 1: P (y, t|y′, t′) =

(1/U0(t−t′))δ(ζ−1). It is observed that for k⊥ρth = 3.0, Ng = 8 produces relatively

good results, although it misses the small spike in P around δy/U0t ∼ 0.25. Other

Ng = 8 cases with k⊥ρth ≤ 3.0 (not shown) give nearly exact agreement. However,

for k⊥ρth = 5.0, the Ng = 8 average departs significantly from the exact result. This
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failure means that choosing Ng > 8, such as Ng = 16, is necessary. One is led to

conclude that the Ng = 8 method should not be used for values of k⊥ρth & 3.0.

This statement is further supported by an assessment of accuracy when rep-

resenting J0(ι) as a finite sum based on the integral

J0(ι) =
1

2π

∫ 2π

0

cos(ι sin τ)dτ . (3.14)

The Bessel function is used in spectral simulations of the gyrokinetic equation, which

gives the spectral technique an advantage that we cannot use here. The Bessel

integral representation may be discretized and evaluated using different numbers of

terms in the sum. Additional terms in the sum reduce the error of discretization just

as increasing Ng reduces the error of discrete gyroaveraging. When the integral is

approximated with 8 or 16 equally spaced points between 0 and 2π, the result agrees

to 0.1% with the value of J0(ι) up to ι = 3.0 or ι = 9.0, respectively. For higher

values of ι, the approximation diverges quickly, just as the discrete gyroaverage

method diverges from the analytic result for increasing k⊥ρth. Based on this, care

must be taken in selecting Ng for large values of k⊥ρth. In this chapter we restrict

attention to k⊥ρth ≤ 3.0 and use an adaptive Ng technique based on Ref. [123].

3.4 Diagnostics for non-diffusive transport

In this section we review several Lagrangian diagnostics for transport study.

After defining each diagnostic, we recall expected behavior for both diffusive and

non-diffusive transport. These diagnostics have been successfully used in transport

experiments, models, and simulations in both fluids and plasmas. For examples
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Figure 3.2: Particle propagator for finite Larmor radius transport in the parallel

shear flow of Eq. (3.11). Panel (a) corresponds to k⊥ρth = 3.0 and (b) corresponds

to k⊥ρth = 5.0. The solid line denotes the exact analytical result in Eq. (3.12), the

dashed line and the marked line (shown only in (b)) denote the 8-point and the

16-point average numerical results, respectively.
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see Refs. [121, 36, 12] and references therein. To simplify the discussion we limit

attention to one-dimensional transport, i.e. transport in the poloidal-like direction

y. In the specific transport problem considered in this chapter, y is in the direction

of the propagation of the zonal flow and the drift waves, and is orthogonal to both

the density gradient and the magnetic field. Generalization of the diagnostics to

higher dimensions is straightforward.

3.4.1 Statistical moments of particle displacements

The basic particle data consists of the ensemble {yi(t)}, with i = 1, 2, . . .Np,

containing the time evolution of the y-coordinate of the Np test particles in the sim-

ulation. From here we define the ensemble of particle displacements, {δyi(t)}, where

δyi(t) = yi(t)− yi(0). The statistical moments of the particle displacements provide

one of the simplest and most natural characterizations of Lagrangian transport. Of

particular interest are the mean M(t) = 〈δy〉 and the variance σ2(t) = 〈[δy − 〈δy〉]2〉

where 〈 〉 denotes ensemble average. In the case of diffusive transport (e.g., a Brow-

nian random walk), the moments exhibit asymptotic linear scaling in time, which

allows the definition of an effective transport velocity (pinch) Veff and an effective

diffusivity Deff according to Veff = limt→∞M(t)/t and Deff = limt→∞ σ2(t)/2t.

However, in the case of nondiffusive transport, the moments display anomalous

scaling of the form

M ∼ tχ , σ2 ∼ tγ , (3.15)

with χ 6= 1 and γ 6= 1. If 0 < γ < 1 the spreading is slower than in the diffusive
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case and transport is called sub-diffusive. If 1 < γ < 2, the spreading is faster

than diffusion and transport is super-diffusive. A similar classification applies for

sub-advection (0 < χ < 1) and super-advection (1 < χ < 2). In the presence of

anomalous scaling, the introduction of an effective transport velocity or an effective

diffusivity is meaningless since these transport coefficients are either zero (in the

sub-advection/sub-diffusion case) or infinite (in the super-advection/super-diffusion

case). The diagnostics based on the statistical moments are straightforward to

implement. The key is to look for a scaling region in a log-log plot of the moments as

functions of time, after transients have passed. However, as with the data analyzed

below, it is possible for the moments to follow different scaling regimes for different

time intervals.

3.4.2 Particle displacement PDFs: spatial scaling

The probability distribution function (PDF) of particle displacements, P (δy, t|δy′, t′),

contains all of the statistical information from displacements beyond the first and

second moments. By definition, P (δy, t|δy′, t′ = t) = δ(y). Numerically, P is con-

structed from the normalized histogram of particle positions at a given time. For-

mally, P (δy, t|δy′, t′) corresponds to the Green’s function determining the distribu-

tion of the test particles in terms of the initial particle distribution. For a Brownian

random walk, the central limit theorem implies that P asymptotically approaches

a Gaussian distribution, PG, that satisfies diffusive scaling, PG = t−1/2G(Y/t1/2),

where G is a Gaussian and Y = δy− 〈δy〉. However, a non-diffusive propagator can
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exhibit the more general (anomalous) self-similar scaling

P = t−γ/2L(Y/tγ/2) , (3.16)

where 0 < γ < 2 and L is a non-Gaussian function. Note that, by construction, the

propagator has zero mean, and the scaling exponent γ in Eq. (3.16) is the same as the

exponent in Eq. (3.15). From Eq. (3.16) it follows that P (Y, t) = λγ/2P (λγ/2Y, λt)

where λ is a real number. Therefore, if the propagator is self-similar, P is invariant

with respect to the space-time renormalization transformation (Y, t) → (λγ/2Y, λt),

up to a scale factor.

Equation (3.16) provides a useful diagnostic to reveal non-diffusive transport

and, in particular, the existence of anomalous self- similar scaling. This diagnostic

is implemented by plotting the propagator at different times in rescaled coordinates,

i.e. tγ/2P versus Y/tγ/2. With self-similar non-diffusive transport, the plots at dif-

ferent times rescale and collapse into a single function L. One of the most important

departures from Gaussianity is algebraic decaying, “fat” tails in the propagator for

large δy at fixed t,

P ∼ δy−ζ . (3.17)

When this behavior is found, the value of the scaling exponent ζ is a useful diagnostic

that characterizes the intermittency of the transport process.

3.4.3 Trapping and flight probability distribution functions

Diffusive transport can be interpreted as a coarse-grained (macroscopic) de-

scription of a fine-grained (microscopic) Brownian random walk. In a similar way,
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non-diffusive transport can sometimes be viewed as the result of a non-Brownian

random walk with a non-Gaussian and/or non-Markovian [84] underlying stochas-

tic process. Trapping and flight probability distribution functions are two useful

diagnostics for the characterization of non-Brownian random walks. Given a parti-

cle trajectory, yi(t), a trapping event is defined a portion of the trajectory during

which the particle stays on an eddy. Flight events are portions that are not trap-

ping events. Thus, each particle orbit in the ensemble of initial conditions may be

decomposed as a sequence of trapping and flight events.

Numerically, the events are detected by tracking reversals in the Lagrangian

acceleration of particles. From the histograms of trapping and flight events one may

construct the probability distribution functions of trapping events, ψ(t), and flight

events, λ(y). Indications of non-diffusive transport can be explored by studying

the departures of λ(y) and ψ(t) from the Gaussian and exponential dependencies

characteristic of Brownian random walks. Of particular interest is the presence of

asymptotic algebraic scaling of the form,

ψ ∼ t−ν , λ ∼ y−µ . (3.18)

When µ < 1 the mean waiting time,
∫
tψdt, is infinite and no characteristic temporal

scale exists. In the Lévy flight regime µ < 3, and therefore the second moment,

∫
y2λdy, diverges and no characteristic spatial scale exists. The PDFs of flight

and trapping events are in principle interesting because of their connection to the

continuous time random walk (CTRW) model, which, in the fluid continuum limit,

can be described using fractional diffusion equations [87, 124, 58].
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3.4.4 Lagrangian velocity autocorrelation function

Further insights into non-diffusive transport can be gained by looking at the

Lagrangian velocity autocorrelation function C(τ) = 〈vy(τ)vy(0)〉 where vy is the

Lagrangian velocity of a particle. The Green-Kubo relation, dσ2/dt = 2
∫ t

0
C(τ)dτ ,

relates the velocity autocorrelation function to the variance of displacements. When

C decays fast enough so that the integral converges, this relation can be used to

define an effective diffusivity according to Deff =
∫∞

0
C(τ)dτ . However, when C

has algebraic decay of the form

C(τ) ∼ τ−κ , (3.19)

with κ < 1, the integral diverges and the concept of effective diffusivity loses mean-

ing. For super-diffusive transport, σ2 ∼ tγ implies γ = 2 − κ.

3.5 Numerical results

For the Lagrangian statistics we consider ensembles of N = 8 × 104 test par-

ticles, and integrate the equations of motion, with and without FLR effects, up to

t = 5.2 × 103. The zero Larmor radius results were obtained from the numerical

integration of the guiding center equations in Eq. (3.3) with the Hamiltonian in

Eq. (3.9) with ε1 = 0.5, ε2 = 0.2, c1 = 0.4, k⊥1 = 6.0, k⊥2 = 5.0, ω = 6.0. The

same Hamiltonian and parameter values were used in the FLR (0 < k⊥ρth < 3)

calculations based on an Ng adaptive gyroaverage.

The Poincaré plots in Fig. 3.3 show the dependence of the degree of stochastic-

ity on the value of k⊥ρ. Figure 3.3(a) corresponds to k⊥ρ = 0. The degree of stochas-
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ticity is relatively large and, consistent with the results reported in Refs. [36, 42],

the stochastic layer is strongly asymmetric. In particular, the region of stochasticity

left of the unperturbed separatrix (shown with the bold line) is very small. As will

be discussed below, this asymmetry manifests directly in the skewness of the tail of

the test particle propagator, which decays strongly for δy > 0 due to the very low

probability of having sticky-flight particles jumping in the y > 0 direction. It may

be interesting to compare ρth to the thickness of the lower branch of the stochastic

region, ∆s. For example, when k⊥ρth = {1.2, 2}, ρth/∆s = {0.44, 1.8}. This trend is

mainly due to the rapid shrinkage of the stochastic layer as a function of ρth. When

k⊥ρth = 3, the value of ∆s is very difficult to determine because the stochastic layer

has almost completely disappeared.

In the FLR calculations the test particles have a Maxwellian distribution of

Larmor radii characterized by a mean value, ρth. Thus, depending on its specific

value of ρ, each particle “sees” a different Hamiltonian, which in general will be

stochastic to a lesser degree as ρ increases. Figures 3.3(b)-(d) illustrate this with

Poincaré plots corresponding to (b) k⊥ρ = 1.2, (c) k⊥ρ = 2.0 and (d) k⊥ρ = 3.0.

Each one of these Poincaré sections was computed by assigning the same value

of k⊥ρ, to all the initial conditions. It is observed that the value of k⊥ρ has a

direct non-trivial influence on the degree of stochasticity. In general, a Poincaré

plot corresponding to an ensemble of particles with a Maxwellian distribution of

gyroradii will be a mixture of k⊥ρ Poincaré plots, as seen in Fig. 3.4. The crossings of

curves in the Poincaré plots indicates the presence of multiple Hamiltonian systems

indexed by values of k⊥ρ.
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Figure 3.3: Dependence of phase space topology and stochasticity on Larmor radius

for the Hamiltonian model in Eq. (3.9). The panels show Poincaré maps for a

ensemble of particles with gyroradius distribution of the form H = δ(k⊥ρ − k⊥ρth)

with (a) k⊥ρth = 0, (b) k⊥ρth = 1.2, (c) k⊥ρth = 2.0 and (d) k⊥ρth = 3.0. The bold,

solid curve indicates the unperturbed separatrix for k⊥ρth = 0.
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Figure 3.4: Poincaré plot for multiple gyroradii values from the Maxwellian dis-

tribution with k⊥ρth = 0.6. Crossings of curves indicate the presence of multiple

Hamiltonian systems, one for each value of ρ.
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To compute the Lagrangian diagnostics of non-diffusive transport, we consid-

ered groups of particles located in the vicinity of a hyperbolic equilibrium point of

the Hamiltonian. The resulting trajectories can be divided into three categories:

(a) passing trajectories that follow the zonal flow and never enter an E × B eddy

(vortex), (b) stagnant trajectories which never leave an eddy and (c) sticky-flight

trajectories which, as shown in Fig. 3.5, alternate between the eddies and the zonal

flow. Since the statistics of the passing and the stagnant trajectories are trivial,

these particles will be ignored during the data analysis.

Several techniques for isolating sticky-flight trajectories can be devised. Our

trajectory filter works by examining all trajectories during their entire history, and

discarding those that never encircle a vortex (passing) and those that do not move

more than one vortex width from ther original positions (stagnant). We have also

tested a filter in Fourier-velocity space that discards horizontal velocity time series

without a broadband spectrum. Depending on the threshold for defining “broad-

band,” the Fourier filter gives practically the same results as the trajectory filter.

Analysis of sticky-flights in more realistic velocity fields would be served better by

a Fourier-velocity filter. The proper threshold for defining a “broadband” spectrum

can be found from asymptotic considerations.

Figure 3.6 shows the effect of the trajectory filter on the histogram of Larmor

radii. In the computation of the histogram we show the number of particles, N ,

multiplied by the appropriate metric factor ρ. The solid line denotes the histogram

considering all the particles in the ensemble, i.e. without the filter. As expected, this

histogram corresponds to a sampling of the Mawellian distribution in Eq. (3.10). It
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Figure 3.5: Typical sticky-flight trajectory in the Hamiltonian transport model.

This particle alternates in a seemingly unpredictable way between being trapped in

E × B eddies and being transported following the zonal shear flow. Other types of

orbits, not shown, correspond to trapped orbits that never leave the original eddy,

or passing orbits that move following the zonal flows without being trapped.
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is observed that the filter tends to remove particles with large ρ, and, as expected,

the number of particles removed decreases with tl, the time of filter application.

Since tl = 5200 appears to give an asymptotic value for the number of sticky-flights,

it is used as the filtering time for the following diagnostics. When scaling values

are reported for t < 5200, the filter is still applied uniformly at t = 5200. The first

column in Table 3.1 gives Πs, the percentage of sticky-flights, for each tested value

of k⊥ρth when the filter is applied at tl = 5200.

3.5.1 Super-diffusive scaling

Before presenting the chaotic transport results, it is instructive to go back to

the simple parallel flow in Eq. 3.11 to explore the role of FLR effects on particle

dispersion in the context of an integrable flow for a ensemble of particles initially

distributed according to P = δ(x− x0)δ(y − y0). If all the particles have the same

Larmor radius, i.e. if H(ρ) = δ(ρ − ρth), then as Eq. A.3 in Appendix A shows,

P maintains its delta function shape and simply drifts with the effective velocity

J0(kρ)U0, which in the limit of zero Larmor radius corresponds to the parallel flow

velocity. In this case, FLR effects are irrelevant since they simply rescale the velocity.

However, when the particles have different Larmor radii, as in the Maxwellian case

of Eq. A.4, the effective velocity of each particle will be different and the initial

delta function will spread in space as is evident in the particle propagators shown

in Fig. 3.2. In this case, the first and second moments are M = Veff t and σ2 = At2,

where Veff and A are functions of k⊥ρth given in Appendix A. The key issue to
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Figure 3.6: Gyroradius histogram for k⊥ρth = 1.2 with sticky-flight filter applied at

various times. The uppermost curve shows the unfiltered distribution obtained from

the sampling of the 2-D Maxwellian distribution in Eq. (3.10). The other curves give

the distribution at different times after the filter (which keeps only the sticky-flight

orbits) has been applied. The vertical line marks the maximum of the unfiltered

distribution.
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Table 3.1: Measures of sticky trajectories and non-diffusive transport for the vy =

tanh(x) model with initial positions in a box centered on a hyperbolic fixed point.

The percentage of sticky trajectories at t = 5200, Πs, is shown, along with the mean

and variance time power law exponents, χ and γ respectively, at early and late time.

“Early” refers to a fit for 104 < t < 1040 and “late” refers to 4700 < t < 5200.

Accuracy for these fits is similar to that observed in Fig. 3.7, and equal to ±0.1.

k⊥ρth Πs χearly χlate γearly γlate ζt=1040

0.0 96 1.1 1.0 1.9 1.6 2.0

0.001 96 1.1 1.0 1.9 1.6 2.0

0.01 96 1.1 1.0 1.9 1.6 2.0

0.1 98 1.1 1.1 2.0 1.8 2.2

0.2 97 1.1 1.1 2.0 1.8 2.3

0.4 96 1.1 1.1 1.9 1.9 2.3

0.6 92 1.1 1.0 1.9 1.9 2.7

0.8 83 1.1 1.1 1.9 1.9 2.7

1.2 58 0.9 1.0 1.8 1.8 2.9

1.6 36 0.8 1.0 1.8 1.8 2.9

3.0 11 0.9 0.9 1.8 1.6 3.1
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observe is that the variance does not exhibit diffusive scaling, and that a distribution

of Larmor radii gives rise to a ballistic spreading of the particles.

For transport in the nonintegrable flow with the zonal flow and drift waves,

Fig. 3.7 shows the mean, M(t), and variance, σ2(t), for k⊥ρth = 0 and k⊥ρth = 0.6.

A summary of the values of the scaling exponents χ and γ for all the values of k⊥ρth

studied is presented in Table 3.1. To a good approximation, the mean exhibits linear

scaling, i.e. χ ≈ 1 in Eq. (3.15), indicative of regular advection, for all values of

k⊥ρth. The variance consistently shows clear evidence of super-diffusive transport,

i.e. γ > 1 in Eq. (3.15). In the zero Larmor radius case, two scaling regimes are

observed. Up to t ≈ 103, which corresponds to the simulations in Ref. [36], the

power law fitting in Fig. 3.7(b) indicates an almost ballistic scaling with γ = 1.9.

However, at a later time there is a transition to γ = 1.6. As Table 3.1 shows,

FLR effects seem to eliminate the distinction between early and late regimes. In

particular, according to Fig. 3.7(d) where k⊥ρth = 0.6, the scaling γ = 1.6 holds

throughout the integration time. As a general trend, it is observed that the exponent

γ decreases with increasing k⊥ρth beyond 0.1. Statistics for sticky-flights become

poor for k⊥ρth = 3 because the degree of stochasticity [see Fig. 3.3(d)] becomes

small.

3.5.2 Asymmetric, non-Gaussian PDF of particle displacements

Motivated by the presence of two different scaling regimens in the variance, we

study the PDF of particle displacements at intermediate and large times. Figure 3.8
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Figure 3.7: Time evolution of statistical moments of particle displacements. Panels

(a) and (b) correspond to k⊥ρth = 0 and panels (c) and (d) correspond to k⊥ρth =

0.6. Plots (a) and (c) give the absolute value of the first moment M , and plots

(b) and (d) show the second moment. The dashed lines in panels (a) and (c) have

slopes corresponding to χ = 1.1(0.9) and χ = 1.0 indicative of normal advection

scaling, i.e. |M | ∼ tχ with χ ≈ 1. The variance shows super-diffusive scaling i.e.

σ2 ∼ tγ with γ 6= 1. However, in the k⊥ρth = 0 case, a sharp transition is observed

in the anomalous diffusion exponent. The dashed lines in panels (b) have slopes

corresponding to γ = 1.9 and γ = 1.6. The dashed line in panel (d) has a slope

corresponding γ = 1.9 indicating a uniform scaling of the variance for k⊥ρth = 0.6.
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shows the PDFs at intermediate times, with 3.8(a) corresponding to k⊥ρth = 0 and

3.8(b) corresponding to k⊥ρth = 1.2. The solid lines denote the PDFs of the filtered

data, (i.e. including only sticky-flight orbits) and the dashed line denotes the PDFs

of the unfiltered data. The spikes for large δy in the unfiltered distributions result

from the contribution of passing orbits that the filter effectively removes. The filtered

PDFs are clearly non-Gaussian with strong skewness in the negative δy direction.

The strong left-right asymmetry of the PDFs results from the asymmetry of the

stochastic layer.

In particular, as the Poincaré plots in Fig. 3.3 show, the stochastic layer is

thicker on the right side of the vortex. This asymmetry depends on the value of the

perturbation frequency ω in Eq. (3.9). In fact, as discussed in Ref. [36], the relative

thickness of the stochastic layers, and therefore the symmetry of tracer transport,

can be controlled by changing ω. As the insets in Fig. 7 show, both PDFs decay

algebraically as in Eq. (3.17). However, a strong dependence of the decay exponent

on the value of the Larmor radius is observed. For k⊥ρth = 0, ζ ≈ 1.95, and for

k⊥ρth = 1.2, ζ ≈ 2.9. As Table 3.1 indicates, the value of the decay exponent ζ

increases monotonically with k⊥ρth.

The particle displacement PDFs at longer times are shown in Fig. 3.9. As

before, the solid lines denote the filtered distribution and the dashed lines the un-

filtered distribution. A critical dependence on the Larmor radius is observed. For

k⊥ρth = 0 the PDF transitions to an exponential decaying distribution, whereas for

k⊥ρth = 0.6 the PDF maintains its algebraic decay with the same exponent as the

one observed at short times, ζ ≈ 2.9. The robustness of the algebraic decay in the
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Figure 3.8: Probability distribution function of particle displacements at intermedi-

ate times, t = 1040. Panel (a) corresponds to k⊥ρth = 0 and panel (b) corresponds

to k⊥ρth = 1.2. The insets in both figures show evidence of algebraic decaying tails,

P ∼ δy−ζ with ζ = 1.95 for k⊥ρth = 0 and ζ = 2.9 for k⊥ρth = 1.2. In both plots, the

solid line denotes the PDF of sticky-flights (i.e., excluding the passing and trapped

orbits), and the dashed line denotes the PDF computed using all the orbits.
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finite Larmor radius case might be attributed to the persistence of large particle

displacements which, due to the presence of the strong zonal flows, are enhanced by

the gyroaverage. One should note that a Lévy process requires ζ < 3, which means

that the increase of k⊥ρth moves the process away from the Lévy type.

The transition from algebraic to exponential decay in the zero Larmor radius

case is likely due to the presence of truncated Lévy flights. Exact Lévy flights

produce long particle displacements that result in slowly decaying algebraic tails at

all times. However, non-ideal effects such as particle decorrelation might preclude

the existence of arbitrarily long displacements, resulting in a faster than algebraic

decay of the tails at long times. See, for example, Refs. [90, 125, 126] for more details

on truncated Lévy processes. One obvious reason for a truncated Lévy process in

the present system is the finite velocity requirement, which precludes the existence

of infinite jumps.

3.5.3 Lévy flights and algebraic trapping PDFs

Figure 3.10 shows the trapping time and flight length PDFs for k⊥ρth = 0 in (a)

and (c), and for k⊥ρth = 1.2 in (b) and (d). In both cases, the trapping PDF clearly

decays algebraically as in Eq. (3.18), with ν = 1.8 for k⊥ρth = 0, and ν = 2.0 for

k⊥ρth = 1.2. Figures 3.10(c) and 3.10(d) show the PDFs of flight lengths. Note that,

because transport in this case is asymmetric, there are actually two flight PDFs, one

corresponding to positive flights (with dashed fit line) and another corresponding to

negative flights (solid fit line). The PDF of negative flights decays as a power law
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Figure 3.9: Probability distribution function of particle displacements at large times,

t = 5200. Panel (a) corresponds to k⊥ρth = 0 and panel (b) corresponds to k⊥ρth =

1.2. In case (a) the PDF decays exponentially, P ∼ e−λδy with λ ∼ 0.002. On the

other hand, for k⊥ρth = 1.2, the inset shows evidence of algebraic decay, P ∼ δy−ζ

with ζ = 2.9. In both plots, the solid line denotes the PDF of sticky-flights (i.e.,

excluding the passing and trapped orbits), and the dashed line denotes the PDF

computed using all the orbits.
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with µ = 1.8 for k⊥ρth = 0, and µ = 2.7 for k⊥ρth = 1.2. Since µ < 3 in both cases,

these flights correspond to Lévy flights. However, the decay of the curve for positive

flights is much steeper with µ & 3 regardless of the value of k⊥ρth, which implies

that positive displacements are not Lévy flights. The tails of the trapping and flight

PDFs transition to exponential decay at δyflight ≈ −1000 and ttrapt ≈ 2000. As

discussed before, this transition is indicative of the possible presence of truncated

Lévy flights.

3.5.4 Algebraic decay of Lagrangian velocity autocorrelation func-

tion

Figure 3.11 shows the Lagrangian velocity autocorrelation function for the

sticky-flights with k⊥ρth = 0 in Fig. 3.11(a) and with k⊥ρth = 1.2 in Fig. 3.11(b).

Both curves follow algebraic decay of the form C(τ) ∼ τ−κ. When k⊥ρth = 0,

κ = 0.2 and when k⊥ρth = 1.2, κ = 0.3. Both values are consistent with the Green-

Kubo relation between the decay of the velocity correlation and the scaling of the

variance according to which κ = 2 − γ. The frequency of small scale oscillations

observed in the correlation seems to increase when k⊥ρth changes from 0 → 1.2.

3.6 Self-similar anomalous scaling and fractional diffusion modeling

An important goal of transport modeling is to construct effective transport

equations that describe the “macroscopic” coarse grained dynamics when given in-

formation at the “microscopic” kinetic level. When the microscopic dynamics in-
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Figure 3.10: Probability distribution functions of particle trapping events and par-

ticle flight events for k⊥ρth = 0 and k⊥ρth = 1.2. The trapping PDFs are shown

in (a) and (b), and the flight PDFs are shown in (c) and (d). Panels (a) and (c)

correspond to k⊥ρth = 0, and panels (b) and (d) correspond to k⊥ρth = 1.2. The

solid straight lines in (a) and (c) indicate that the trapping PDFs show algebraic

decay, P ∼ t−ν
trap, with ν ≈ 1.8 for k⊥ρth = 0, and ν ≈ 2.0 for k⊥ρth = 1.2. The

negative flights PDF shown fit with solid lines also exhibit algebraic decay of the

form P ∼ t−µ
flight with µ ≈ 1.8 for the case k⊥ρth = 0, and µ ≈ 2.7 for the case

k⊥ρth = 1.2. The PDFs of positive flights, shown fit with dashed lines, show a faster

exponential-type decay with µ ≈ 3.0 in both cases.
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Figure 3.11: Lagrangian velocity autocorrelation function for sticky-flight trajecto-

ries. Panel (a) corresponds to k⊥ρth = 0 and panel (b) corresponds to k⊥ρth = 1.2.

The curves with dots are the numerical results, and the solid line curves are algebraic

fits of the form C ∼ τ−κ with κ = 0.2 in (a) and κ = 0.3 in (b).
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volves Gaussian, Markovian stochastic processes (e.g., a Brownian random walk)

the macroscopic dynamics can be modeled using diffusion type equations. This is

the basic idea behind the use of diffusive models to describe collisional transport.

However, in recent years it has been shown that the standard diffusion picture can

fail when non- Gaussian and/or non-Markovian statistics are present.

In particular, experimental, numerical and analytical transport studies in flu-

ids and plasmas (e.g. Refs. [112, 34, 127, 128, 36, 113, 12, 129, 130, 50] and references

therein) have shown that underlying stochastic processes governing particle trans-

port in flows with coherent structures, like zonal flows and eddies, typically involve

anomalously large particle displacements induced by the zonal flows and/or anoma-

lous particle trapping in eddies. The presence of large particle displacements can

invalidate the Gaussianity of displacement distributions. Particle trapping can in-

troduce waiting time effects that invalidate the Markovian assumption because of

memory effects. The statistics of particle transport discussed in the previous section

shows clear evidence of these type of phenomena. This section presents an effective

macroscopic model that describes quantitatively the spatio-temporal evolution of

the PDF of particle displacements.

An important piece of information needed for constructing an effective trans-

port model is shown in Fig. 3.12. Figures 3.12(a)-(c) show the temporal evolution

of the PDF of particle displacements for different values of k⊥ρth. As discussed

before, the PDF develops a strong “fat” tail to the left and, by conservation of

probability, the peak of the distribution goes down. Figures 3.12(d)-(f) show the

same data plotted using rescaled variables as in Eq. (3.16). In the horizontal axis,
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η = δy/tγ/2, and in the vertical axis, P has been multiplied by the factor tγ/2,

where γ is the anomalous diffusion exponent in Eq. (3.15). From this it follows that

the PDF at a time λt is related to the PDF at time t by the scaling transformation

P (δy, λt) = λ−γ/2P (y/λγ/2, t). The fact that, for the problem of interest here, γ 6= 1,

rules out the possibility of constructing a transport model based on the diffusion

equation with an effective diffusivity because the solution of the diffusion equation

scales as P = t−1/2L(δy/t1/2).

A natural way to built transport models that display self-similar anomalous

scaling is to use fractional diffusion equations of the from

C
0 D

β
t P = χf [l −∞D

α
y + r yD

α
∞]P , (3.20)

where l = − sec(απ/2)(1 − θ)/2, and r = − sec(απ/2)(1 + θ)/2. The operators

−∞D
α
y and yD

α
∞ are called the left and right fractional derivatives. These non-

local operators are a natural generalization of the regular differential operator, ∂n
y ,

of integer order n. For example, Fourier transforms of the fractional operator,

F [f ] = f̂ =
∫
eikyfdy, satisfy

F
[
−∞D

α
yP
]

= (−ik)α P̂ , F [yD
α
∞P ] = (ik)α P̂ , (3.21)

for non-integer values of α. In a similar way, the operator on the left hand side of

Eq. (3.20) is a natural extension of the regular time derivative, ∂tf , in the sense

that its Laplace transform, L[f ] = f̃ =
∫
e−stfdt, satisfies

L
[

C
0 D

β
t P
]

= sβP̃ − sβ−1P (t = 0) , (3.22)

for 0 < β < 1. As expected, Eq. (3.20) reduces to the standard diffusion equation
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Figure 3.12: Self-similar scaling of probability distribution function of particle dis-

placements (PDF). The curves denote the PDFs at t = 1040, t = 1560, and t = 2080,

with later times showing more spreading in the PDF. Panels (a), (b) and (c) show

the PDFs corresponding to k⊥ρth = 0, k⊥ρth = 0.6 and k⊥ρth = 1.2, respectively.

Panels (d), (e) and (f) show the collapse of the corresponding PDFs when plotted

as functions of the similarity variable η = δy/tγ/2 and rescaled with the factor tγ/2.
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when α = 2 and β = 1. Further formal details on fractional derivatives, including

their representation in the y and t domains in terms of non-local operators can be

found in Refs. [56, 131]. For a discussion on the use of these operators to model

non-diffusive transport in plasmas, see for example Refs. [12, 115] and references

therein.

To explore the self-similarity properties of the fractional diffusion model we

use Eqs. (3.21)-(3.22) and write the Fourier-Laplace transform, ˆ̃G, of the Green’s

function, G, of Eq. (3.20) as

ˆ̃G =
sβ−1

sβ − Λ
, Λ = χf [l (−ik)α + r (ik)α] , (3.23)

where α 6= 1 and G(y, t = 0) = δ(y). It follows directly from Eq. (3.23) that

ˆ̃G(k, s/λ) = λ ˆ̃G(λβ/αk, s) which in y-t space implies the self-similar scaling G(y, λt) =

λ−β/αG(λ−β/αy, t) of the fractional diffusion propagator Eq. (3.20). Therefore, the

fractional equation will exhibit the same self-similar scaling as the numerically ob-

tained PDF provided the fractional orders of the spatial and temporal derivatives

satisfy

γ = 2β/α . (3.24)

According to Table 1, to a good approximation, γ ≈ 2 in the intermediate

asymptotic regime. Based on this observation, and following Eq. (3.24), we will

assume α = β in the fractional diffusion model. This special case, known as neutral

fractional diffusion, has a Green’s function that can fortunately be expressed in
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closed form using elementary functions, as shown in Ref. [91]:

G(η;α, θ̂) =
1

π

sin
[
π(α− θ̂)/2

]
ηα−1

1 + 2ηα cos
[
π(α− θ̂)/2

]
+ η2α

,

for η > 0 , (3.25)

where η = δy/tγ/2 is the similarity variable and |θ̂| ≤ min{α, 2 − α}. The solution

for η < 0 is obtained using the relation G(−η;α, θ̂) = G(η;α,−θ̂). The parameter θ̂

is related to the asymmetry parameter θ introduced before in the definition of the

weighting factors l and r according to θ = tan(πθ̂/2)/ tan(πα/2). Given the Green’s

function, the solution of the fractional diffusion equation for an initial condition

P0(δy) = P (δy, 0) is

P (δy, t) =

∫ ∞

−∞

P0(δy
′)G(δy − δy′, t)dδy′ . (3.26)

For the initial condition we assume a localized distribution of the form P0 =

1/A for |δy| < A/2 and P0 = 0 elsewhere (see Ref. [12]). The use of this initial

condition is necessary to account for the presence of transients in the evolution of

the PDF not reproduced by the fractional diffusion equation, which describes the

intermediate time regime. Figure 3.13 shows the comparison of the solution of the

fractional diffusion equation in Eq. (3.20) according to Eqs. (3.26) and (3.25) and the

numerically obtained PDF obtained from the histograms of particle displacements

at t = 936 for k⊥ρth = 0 in Fig. 3.13(a) and k⊥ρth = 0.6 in Fig. 3.13(b). For the

fractional diffusion model parameters we used α = β = 0.80 and θ̂ = 0.79 in the

k⊥ρth = 0 case, and α = β = 0.85 and θ̂ = 0.84 in the k⊥ρth = 0.6 case. In both

cases, we used A = 60, which is small compared to the maximum range of the PDF,

δy ∼ −800.
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Figure 3.13: Comparison between the numerically determined PDF of particle dis-

placements (square markers) and the solution of the effective fractional diffusion

model in Eq. (3.25)(solid lines) with a localized initial condition. In panel (a),

which corresponds to k⊥ρth = 0, the fractional diffusion parameters are α = 0.8,

θ̂ = 0.79, A = 60 and χf = 0.15. For the case k⊥ρth = 0.6, shown in panel (b),

α = β = .85, θ̂ = 0.84, A = 60 and χ = 0.12.

106



3.7 Summary and conclusions

In this chapter we presented a numerical study of FLR effects on non-diffusive

transport of test particles in a flow dominated by a strong zonal shear flow and large

scale E × B eddies. We modeled the flow using a Hamiltonian dynamical system

consisting of a linear superposition of a strong zonal shear flow and eigenmodes of

the HM equation. For the parameter values considered, the Hamiltonian causes

chaotic transport. Test particles alternate stochastically between being trapped in

the vortices and being transported by the zonal flow. To expose the non-diffusive

properties of the system we used Lagrangian statistical diagnostics including: (i) the

scaling in time of statistical moments; (ii) the PDFs of particle displacements, (iii)

trapping events and (iv) flight events; and (v) the decay of the Lagrangian velocity

autocorrelation function.

Finite Larmor radius effects were incorporated in the particle calculations by

substituting the value of the E×B velocity at the location of the guiding center by

its value averaged over a ring of radius ρ, where ρ is the Larmor radius. The ring

average was computed using a discrete approximation. The numerical method was

benchmarked using an analytical solution for a parallel zonal flow with no waves.

We found that for k⊥ρ < 3 an 8-point average gives accurate results, but higher

order approximations must be used for for k⊥ρ > 3. Contrary to previous works

where all the particles were assumed to have the same value of ρ, here we considered

a more realistic Maxwellian distribution of Larmor radii. Poincaré plots revealed

that the Larmor radius has a direct nontrivial effect on the topology of the flow and
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the degree of chaos of test particles. In particular, it was observed that the amount

of chaos, measured by the width of the stochastic region, is significantly reduced as

k⊥ρth increases from 0 to 3. A distribution of Larmor radii can also have a direct

effect on the dispersion of particles. In particular, we have shown that, even in the

case of a completely integrable flow, particles exhibit ballistic spreading, σ2 ∼ t2,

when they have different Larmor radii.

For the Lagrangian statistics we limited attention to sticky-flight orbits and

ignored trapped and passing orbits. The rationale for this filter is that the trivial

dynamics of passing and trapped particles give rise to outliers that artificially bias

the statistics. The first moment, to a good approximation, has normal advective

scaling, i.e. M ∼ tχ, with χ ≈ 1, and the second moment has super-diffusive

scaling, i.e. σ2 ∼ tγ, with γ > 1. For k⊥ρ = 0, a sharp transition was observed in

the scaling exponent, from γ = 1.9 at intermediate times to γ = 1.6 at larger times.

Similar transitions in the value of γ have been also found in other systems including

temporally irregular channel flows [34], time dependent, three dimensional flows

[132], and two-dimensional vortex flows [113]. For specific experimental instances,

early time behavior will be more important than late time behavior if the domain

crossing time is small enough. We have found that FLR effects seem to eliminate

the distinction between early and late time. For the range of k⊥ρth considered,

γ ≈ 1.8± 0.1. We refer to this regime as super-diffusive ballistic transport since the

variance approaches ballistic scaling (γ = 2) but the PDF of displacements retains

a super- diffusive appearance. Complementary results were obtained in Ref. [43] for

nonlinear HM simulations.
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We also observed that the Lagrangian velocity autocorrelation function decays

algebraically, C ∼ τ−ζ where, in reasonable agreement with the Green-Kubo scaling,

ζ = 2−γ. The trapping and flight distributions show algebraic decay. The trapping

time exponent, ν, remains the same when k⊥ρth changes. The PDFs of negative

flights qualify as truncated Lévy distributions but positive flights are definitively

not Lévy. The negative flight exponent for k⊥ρth = 1.2 is larger than expected in

the context of a CTRW.

At intermediate times, consistent with Refs. [36, 42], the PDF of particle

displacements in the zero Larmor radius case is an asymmetric non-Gaussian distri-

bution with an algebraic decaying leftward tail. However, for larger times, the tail of

the PDF transitions from algebraic to exponential decay. This algebraic-exponential

transition in the PDF is likely to be related to the presence of truncated Lévy flights,

which, as discussed in Ref. [126], might result from particle decorrelation or the fi-

nite size of possible displacements. The robustness of the algebraic decay in the

finite Larmor radius case might be attributed to the persistence of large particle

displacements which, due to the presence of the strong zonal flows, are enhanced by

the gyroaverage. We have also shown that the PDF of particle displacements has

self-similar scaling behavior for 0 ≤ k⊥ρth ≤ 3 and k⊥ρth 6= 0. Most importantly, we

have shown that these distributions correspond to solutions of the neutral (α = β)

asymmetric fractional diffusion equation.

Future work will apply the ideas and tools developed here to turbulent flows

to more realistic plasma turbulence models. In particular, we will examine self-

consistent particle transport parallel to a density gradient in a gyrokinetic particle-
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in-cell simulation. Transport properties of tracers and self-consistent particles should

be compared.
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Chapter 4

Gyrocenter dispersion in a Z-pinch using self-consistent markers

Here we expand our investigation to a cylindrical magnetic geometry with

gyrokinetic ions and electrons in self-consistent turbulence. The source of free energy

for the turbulence is a fixed density gradient chosen in the regime of the entropy

mode. The entropy mode is the kinetic analogy to the MHD interchange mode. We

vary the density gradient and characterize the dispersion of ion tracer gyrocenters

across a zonal flow, parallel to the direction of the density gradient. The Z-pinch

magnetic geometry is simple compared to the fully three-dimensional tokamak or

other confinement device. However, the self-consistent turbulence of the entropy

mode at the ρi scale is qualitatively similar to the zonal flows seen in gyrokinetic

simulations of tokamak turbulence. Therefore, the results from this study should

be helpful for developing physical intuition and elucidating the relevant parameters

for dispersion of gyrocenters in a shear flow.

The entropy mode with kinetic ions and electrons can be used to study the box

averaged particle transport 〈Γ〉p and tracer particle dispersion simultaneously. This

is in contrast to 3D tokamak ion-temperature gradient (ITG) global PIC (UCAN

[133]) gyrokinetic simulations with adiabatic electrons [14]. Our use of a PIC code is

also in contrast to local continuum (GENE) gyrokinetic simulations of tracer trans-

port in Cyclone ITG turbulence [50]. Our major contributions, complementary to
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other works, are: a comparison between several values of the density gradient, a

careful study of the axial and radial displacement and velocity statistics for ion gy-

rocenters, and quantification of the dependence of the dispersion on the size of the

gyroradius (or the perpendicular velocity). As we will see, varying the density gradi-

ent qualitatively changes the dispersion properties of drifting gyrocenters. We choose

three values of the density gradient in the linear instability range for the gyrokinetic

entropy mode [1]: Ln/Rc = [0.5, 0.625, 0.75]. GS2 predicts 〈Γ〉∞p ∼ [1, 0.1, 0.01] for

the collisionless case, where 〈Γ〉∞p is a steady state flux during saturation of the

instability. We choose these values for our most detailed analysis because we want

to see how the tracer dispersion varies as the converged flux varies significantly.

Based on our vortex/shear studies described in Chapter 3, one suspects that

the E × B dispersion associated with tracers in a shear flow may be nondiffusive.

In particular, it may be subdiffusive perpendicular to the direction of the drift

velocity shear (radial in the Z-pinch) and superdiffusive parallel to the shear (axial

in the Z-pinch). The radial direction is more directly relevant to confinement in

a fusion device, but the axial transport should well-understood also. Studying the

axial transport also allows us to compare with Chapter 3, where the nature of the

prescribed flow made radial transport uninteresting.

We vary the strength of the density gradient and examine several measures

of the properties of the dispersion, including the displacement distribution function

and its moments, the Lagrangian velocity correlation function, and the velocity

increment distribution. Furthermore, the dependence of the test-particle diffusion

coefficient on particle energy is considered. This dependence is relevant to the
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transport of energetic ions, since gyroaveraging effects are expected to affect their

transport properties [134].

4.1 Premises of the Z-pinch and entropy mode

The Z pinch, in which a straight vertical current creates a cylindrically sym-

metric magnetic field, is a useful intermediate step between slab and tokamak ge-

ometry. For β ≪ 1, the parallel dynamics are negligible, so k‖ = 0 and we can

reduce to two dimensions in configuration space. At the same time, the Z pinch

includes both the ∇B and curvature drifts that produce important instabilities. As

shown in Figure 4.1, the Z pinch is essentially a slab wrapped around into a cylinder

so that the B field is axisymmetric. The static magnetic field is in the azimuthal

direction, B̂0 = −ϕ̂, with a radial dependence B ∼ 1/r. A combination of ∇B and

curvature gives a drift that is always perpendicular to both the r̂ and ϕ̂ directions

and depends on the sign of the charged particle. The E × B drift, on the other

hand, is generally in both the r̂ and ẑ directions. The gyrokinetic equation derived

in Chapter 2 is valid for the electrostatic Z-pinch since it includes the curvature

and ∇B drift terms, which manifest in both the weight equation and the ẑ position

equation in the characteristic ODEs. From this point forward the axial direction

in the Z-pinch will be referred to as the ŷ and the radial direction will be x̂ for

agreement with Chapter 3. This means that the conventions used in Chapter 2 will

be changed in this chapter, as such: r̂ → x̂, ẑ → ŷ and ϕ̂→ ẑ = b̂.

The entropy mode in the Z-pinch is a low frequency (ω ∼ ωd,i, the ion drift
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Figure 4.1: Geometry for the Z pinch is a mapping of the (x, y, z) code coordinates

to the (r, z, ϕ) coordinates of the Z pinch. The current is in the ẑ direction, and the

B field in purely in the −ϕ̂ direction in a right-handed coordinate system. (Graphic

courtesy Dr. Ingmar Broemstrup and Kenton Kodner)

frequency) wave that exists when the density and (optionally) the temperature are

perturbed while keeping the pressure constant. This non-ideal mode was studied

in the context of classical plasma stability theory [135], and more recently for the

Levitated Dipole Experiment (LDX) at MIT [136, 137]. Gyrokinetic studies at kρs ∼

1 in both the linear and nonlinear regimes of instability have recently been added to

the literature by Ricci et al [1, 138] using the continuum gyrokinetic code GS2 [92].

This mode exists at weaker pressure gradients than the ideal magnetohydrodynamic

(MHD) interchange mode, and can have growth rates comparable to the MHD

mode when the density gradient scale length, L−1
n = −n′/n is in the proper range:

2/7 < Ln/Rc < π/2, where Rc is the radius of curvature (see Figure 4.1). For

this range of linear instability, the temperature gradient is negligibly small and the
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temperature ratio between electrons and ions is τe,i = 1. It was shown that the

entropy mode creates radial streamer-type E × B flows in the linear phase, which

break up into zonal E×B drift flows in the ŷ direction during the nonlinear phase

because of a secondary Kelvin-Helmholtz instability [1].

This type of secondary instability drive for zonal flow generation is similar

to that observed in tokamak geometry [66]. While the Z-pinch studied here is

missing the third dimension and the effects of trapped particles due to nonuniform

magnetic fields, zonal flows in tokamaks are qualitatively similar to the entropy mode

zonal flows and the present results should contribute to understanding tokamak

transport. The results may also be important for devices such as the LDX and

perhaps simple magnetized torii, such as TORPEX [139]. In any case, there is little

argument that zonal flows are an important phenomenon for confinement. The zonal

flows generated self-consistently in the local approximation of the gyrokinetic Z-

pinch constitute an important step for studying dispersion of tracer particles across

sheared-velocity flows in more comprehensive physical models.

4.2 Structure of the inhomogeneous turbulence

For the results presented here, GSP is run with ∼12 million particles, or 786

particles per (x, y, z) grid cell for a 128 × 128 × 1 run. This is a significantly larger

marker particle density than is often used in the literature [140, 14]. As shown in

Section 4.2.3, smaller numbers of particles per cell can give different answers for

the converged particle flux even with explicit noise control. The box dimensions are
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Lx = Ly = 125.66, Lz = 6.28 and the timestep δt = 0.05 is constant for the second-

order predictor-corrector method used for solving the ODEs from the method of

characteristics. See Section 2.5.2 for the normalizations used in the code. Two

kinetic species are used: electrons and singly-charged ions with equal temperature,

Ti = Te and realistic hydrogenic mass ratio me/mi = 5.4 × 10−4.

Before examining the dispersion of an ensemble of particles in the gyrokinetic

Z-pinch, it is useful to examine the structure of the inhomogeneous turbulence gen-

erated by our nonlinear PIC simulations. There are two benefits to starting with this

perspective. First, verification of the code’s ability to represent the physics of the

gyrokinetic equation can be demonstrated by comparison with GS2 results. Second,

an intuition for the structure of the flow is gained. We perform convergence and

signal-to-noise tests in addition to benchmarking against published results from the

continuum code, GS2. Such verification efforts are crucial to all numerical studies

that hope to represent a physical model.

Our figure of merit for convergence tests and GS2 benchmarking is the box

averaged particle flux generated by the unstable entropy mode in a stationary state

of nonlinear saturation [1]. This saturated state is steady in the sense that the

spectrum of excited modes has a converged time average. For this example, the

secondary instability in the entropy mode has a shearing rate below the critical value

for a tertiary shear instability. In the code, we define the normalized, y integrated,

radial particle flux for species s as follows. To normalize a probability distribution

function, its integral over all of phase space should be unity. In our scheme, this

means that the integral over the entire distribution function, f = f0 + δf should be
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unity to order ǫ. The following calculation demonstrates the proper way to compute

the flux in a GSP simulation.

First, the box-averaged particle flux of the perturbed density, δn1, must be

computed, taking into account the Maxwellian factors δf1 = wiF0, which give the

proper weight to large velocities contributions. These factors are

F0 = exp(−v2
⊥/2v

2
th) exp(−v2

‖/2v
2
th). (4.1)

When integrating over velocity space, the proper Jacobian for the cylindrical (v⊥, v‖)

geometry gives v⊥dv⊥dv‖ as the measure. Therefore, the radial E × B particle flux

in GSP must be computed as

Γp,x =

∫

x,y,z

∫

v⊥,v‖

wvE×B · x̂v⊥ exp(−v2
⊥/2v

2
th) exp(−v2

‖/2v
2
th)dv⊥dv‖. (4.2)

When this integration is taken over marker particles, treated as δ-functions in ve-

locity space, as in the Klimontovich representation, these δ-functions are inserted

into the integrals:

δ(x − xi)δ(v⊥ − vi,⊥)δ(v‖ − vi,‖). (4.3)

Thus, the non-normalized particle flux computed in GSP is exactly:

Γp,x =
∑

i

wivi,E×B · x̂v⊥,i exp(−(v2
i,⊥ + v2

i,‖)/2v
2
th), (4.4)

which also includes the Monte Carlo estimate in (x, y, z) space, where the Jacobian

is trivial and there are no other factors. The velocity space normalization factor,
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M , necessary for finding any integrated quantity in the code is:

M

∫

x

∫

y

∫

z

∫

vx

∫

vy

∫

vz

d3xd3vF0 = 1

M

∫

x,y,z

∫

v⊥,v‖

d3xdv⊥dv‖v⊥δ(x − xi)δ(v⊥ − vi,⊥)δ(v‖ − vi,‖) exp(−(v2
⊥ + v2

‖)/2v
2
th) = 1

M−1 =
∑

i

vi,⊥ exp(−(v2
⊥,i + v2

i,‖)/2v
2
th)

(4.5)

With the correct normalization, ambipolarity is fulfilled to a high degree of

accuracy in all of the simulations shown here, as expected when using quasineutrality

to solve for the gyrokinetic potential. It is worth mentioning that both the GS2

and GSP runs show a systematically higher ion particle flux (1 − 3%) compared to

electron particle flux throughout the simulations, pointing to a phenomenon common

to both codes.

Next we will examine convergence of the y-averaged radial particle flux with

respect to the particle number, timestep, collisionality, and explicit spatial filtering.

We will show the results of tests for determining whether the signal or the noise is

producing particle transport, and we will compare the spectrum of the turbulence

and the particle flux to the results from GS2.

4.2.1 Convergence test

We have been able to compute the average radial particle flux for three values of

the timestep using the strongest density gradient, as shown in Figure 4.2. The flux is

similar for both of the smaller timesteps tested, and is similar to the result from GS2,

as discussed below. Testing smaller values of the time step becomes prohibitively
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Figure 4.2: Particle flux for three different timesteps, from top to bottom, δt = 0.1,

δt = 0.05 and δt = 0.025.

expensive. While the stability of the simulation is clearly better for δt = 0.05

compared to δt = 0.1, the values of the flux at t = 250L/vth are significantly

different. Note that in Figure 4.6, the δt = 0.05 simulation is carried to t =

1000L/vth, and the particle flux remains converged.

For our purposes, it is sufficient to use the converged result with δt = 0.05.

Our study is concerned with the dispersion of tracers for three values of the density

gradient for which the converged particle flux varies by 102. While the particle

flux will depend on the dispersion of the tracers, which are markers of the flow,

we are reporting a trend in a parameter scan rather than flux levels to compare

quantitatively with an experiment.

Box size convergence tests have not been performed in detail at the time of
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this writing because of the expense. However, the box size was chosen to give the

same range of wavenumbers used in GS2 for the entropy mode study mentioned

previously [1, 138].

4.2.2 Noise tests

One perspective on controlling noise due to increasing particle weights comes

from the collision operator in the gyrokinetic equation. The physical motivation

for including an accurate pitch-angle scattering collision operator is to control the

fine-scale structures in velocity space, with a corresponding damping of fluctuations

in configuration space as well [1] A collision operator can also be used to control

the growth of the weights, independent of the physical content of the operator.

Careful consideration of a gyroaveraged linearized Landau collision operator leads

to a comprehensive collision operator that includes FLR effects, energy diffusion

and resistivity while satisfying an H theorem [96, 97].

For our purposes, a simpler example of a collision operator is the Krook oper-

ator. This is a simple and coarse way to decrease the amplitude of the distribution

function at all scales:

C(〈δf〉R) = −νK〈δf〉R. (4.6)

It can be very effective at managing weight growth for the proper choice of νK , but

this collision frequency must not be so large that an unphysical damping of low k

structure occurs.

Another method for controlling noise in a particle simulation is to employ a
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low-pass spatial filter for the electrostatic potential, which eliminates high frequency

structures due to the lack of dissipation at small scales and the low resolution at

small scales for finite numbers of particles. This is because there are effectively fewer

markers used to represent the distribution function at shorter wavelengths. The use

of a low-pass filter for removing the unphysical information at large k can be very

effective and perhaps essential for producing good results from a particle code.

The form of low-pass filter that we have used is a hyper-Gaussian:

F(k) = exp[−A⊥(k⊥ρ)
8] (4.7)

where A⊥ must be chosen carefully for the range of wavenumbers deemed to be

physically important to the turbulence. This form of filter is chosen because it

has almost no effect on low k and a smooth but fast transition to decreasing the

amplitude of large k. The shape of this filter is shown in Figure 4.3.

The effect of the Krook operator, with and without the low-pass filter, is shown

in Figures 4.4 and 4.5. It is apparent that both noise control techniques have some

success in drawing the expected behavior from the code. Using both the Krook

operator and the filter is the only method for obtaining a particle flux that is always

positive and similar to GS2 results. For the production of the data for this thesis, the

same forms of the Krook operator and the low-pass filter are used, and the number

of particles per cell is increased to 786 to ensure a high signal to noise ratio with

a reasonable amount of simulation time. This particle density is more difficult to

achieve in a full three-dimensional simulation, where the same number of particles

and isotropic resolution would give only 6 particles per cell. It is possible to obtain
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Figure 4.3: Shape of the low-pass filter used for the simulations in this chapter.

122



similar results for the particle flux using fewer particles, but we are choosing to be

cautious, since it is expensive to perform rigorous particle number convergence tests.

4.2.3 Particle flux in PIC and continuum simulations

Besides convergence tests, which are expensive to perform comprehensively, a

reasonable way to decide whether the results from a code are producing physically

accurate output is to compare with a similar trusted code, such as GS2 [92]. GSP

solves the same gyrokinetic equation as GS2 using the particle-in-cell technique

rather than continuum/Vlasov method. Here we compare the GSP and GS2 particle

flux in a stationary nonlinear state for three different density gradients in the range of

entropy mode instability. The result for the strongest gradient is seen in Figure 4.6,

where the mean value of the GSP flux is Γ∞
p,GSP = 1.9, and the mean value for GS2

is Γ∞
p,GS2 ∼ 4 in units of (ρi/R)2n0vth,i. The other gradients show flux levels with

similar comparisons to the reported GS2 levels, as shown in Figure 4.7. While the

flux is appreciably lower for the strongest gradient case compared to the GS2 result

[1], our statistical studies of displacements are hoped to be only weakly dependent

on the exact flux levels. A comparison with tracers in similar GS2 turbulence has

not been completed.

In addition, we perform a “scrambling test” (similar to the “Bolton-Lin noise

test” discussed by Nevins et al [102]) to ascertain the signal to noise ratio indicated in

the particle flux diagnostic. This test is implemented by restarting a run with a value

of the particle flux that seems to be stationary and converged to a value comparable
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Figure 4.4: Effect of the Krook collision operator and the low-pass filter on the

particle flux diagnostic for a simulation of the entropy mode with 100 particles per

cell. The upper left panel has no noise control; upper right has a Krook operator

with coefficient νK = 0.0055; lower left has the low-pass filter detailed above with

width av⊥ = 0.001; lower right has both the Krook operator and low-pass filter.

124



0 100 200
−2

0

2

4

6

<Γ
> p

 100 part/cell noise

0 100 200
−2

0

2

4

6
 100 part/cell krook

0 100 200
−2

0

2

4

6

t

<Γ
> p

 100 part/cell filter

0 100 200
−2

0

2

4

6

t

 100 part/cell krook+filter

Figure 4.5: Effect of the Krook collision operator and the low-pass filter on the

particle flux diagnostic for a simulation of the entropy mode with 200 particles per

cell. The upper left panel has no noise control; upper right has a Krook operator

with coefficient νK = 0.0055; lower left has the low-pass filter detailed above with

width av⊥ = 0.001; lower right has both the Krook operator and low-pass filter.
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Figure 4.6: Radial ion gyrocenter flux for nonlinear entropy mode instability for

Ln/Rc = 0.5, showing the burst of radial transport caused by the linear instability

and the saturated nonlinear state. A horizontal line shows the level of transport

found in a GS2 simulation [1]. After t = 1000R/vth, a scrambling of the y positions

of all the markers causes the flux to drop to zero, then recover to the previous level.

This indicates that the particle flux is converged and due to a physical signal from

the turbulence. No time-averaging has been applied here, so fluctuations from the

mean value are smaller than in the lower right-hand plots of Figures 4.4 and 4.5.
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Figure 4.7: Radial ion particle flux for entropy mode instability for (top to bottom)

Ln/Rc = [0.5, 0.625, 0.75]. The mean value of the flux after the drawn-in vertical

lines for each gradient strength, respectively, is Γ∞
p = [1.9, 0.17, 0.03]. For com-

parison, the approximate value for the GS2 flux for each case is given as a dashed

vertical line in each plot. These traces of numerical data have been boxcar averaged

over ten time points, unlike Figure 4.6.

127



to the result from GS2. Upon restart, the axial (y) positions of all the marker

particles are randomized while keeping the radial positions and weights the same.

If the level of transport is set by noise in the simulation. the flux should remain

the same upon scrambling. If the level is set by a physical signal, the scrambling

should erase that signal and change the flux. If the simulation is converged to a

true steady state, the transport level should return to the pre-scrambled state. The

results of this scrambling test, shown in Figure 4.6 for the strongest gradient (with

largest weight growth) indicate that the flux is a converged signal. The y-position

scrambling test has a similar result, in terms of convergence, for all three values of

the gradient tested.

Weight growth is controlled by the Krook operator, but the instability is not

overdamped, as shown in Figure 4.8 and confirmed by the favorable comparison of

the stationary
〈
Γ∞

p

〉
to GS2 results.

4.2.4 Streamfunction plots

The next few figures display the appearance of the electrostatic potential, φ,

which is also the streamfunction for the E × B drift of ions and electrons. First,

isosurface plots (from Matlab) of φ(x, y) are displayed in Fig. 4.9 and 4.10 from a

typical snapshot during the linear growth and the nonlinear stationary state for the

two extreme values of the gradient studied. These plots clearly show the inhomo-

geneity of the flow: first the kyρ ∼ 1 streamers of the linear instability, and then the

kxρi ∼ 1 directed zonal flows of the secondary instability. In the nonlinear phase,
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Figure 4.9: Electrostatic potential surface for the linear and nonlinear state of the

entropy mode for Ln/Rc = 0.5.

one may also observe a long wavelength mode in the axial direction similar to the

inverse box size, kyρi ∼ 1/L. This mode is peaked at kxρi = 0 and represents one

of the excited modes of the secondary instability.

There are structures in the turbulence with lower amplitudes than the strong

zonal flow. These structures have finite ky and are responsible for drift transport in

the radial direction. A Fourier filter at to remove kx > 0, ky = 0 modes removes the

zonal flows and reveals the structure underneath. This effect of this filter is shown

in Figures 4.11, 4.12 and 4.13 for all three gradients studied here. These figures

also show the value of φ, showing that the turbulence amplitude for the stronger

gradient is larger, and the amplitude of the zonal flows is larger than the background

turbulence.

Now it is also useful to examine the mode structure of the turbulence in k

space. Figures 4.14 and 4.15 show the dependence of the |φ|2 spectra as a function

of kx and ky with summation taken over the perpendicular direction for each data
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Figure 4.10: Electrostatic potential surface for the linear and nonlinear state of the

entropy mode for Ln/Rc = 0.75.

set. These plots also show the effect of the zonal flow filtering on both kx and ky

spectra. Wavenumbers larger than kρ = 2.5 are not shown in these plots because the

low-pass filter makes their amplitudes negligible. The broader spectrum of excited

modes φ2(kx) and φ2(ky) is closer to parity for the stronger gradient.

4.3 Analysis of dispersion of gyrocenters

A PIC code such as GSP provides a straightforward way to extract Lagrangian

particle tracking data from the simulation. The marker particles used for solving

the gyrokinetic characteristics can be appropriated as the tracers for the E×B drift.

The markers are not strictly tracers, since their positions affect the field. However,

when a small number of markers is isolated and used to probe the turbulence, the

statistics of the markers should give the same result as pure tracer particles when

the number of probe markers is small, and thus represents a low density species.

Each marker also carries a weight, which contains information about the fraction
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Figure 4.11: Electrostatic potential surface for two snapshots of the nonlinear state

of the entropy mode for Ln/Rc = 0.5. The top panels are the unfiltered data, while

the bottom panels have all significant kx structure at ky = 0 removed.
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Figure 4.12: Electrostatic potential surface for two snapshots of the nonlinear state

of the entropy mode for Ln/Rc = 0.625. The top panels are the unfiltered data,

while the bottom panels have all significant kx structure at ky = 0 removed.
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Figure 4.13: Electrostatic potential surface for two snapshots of the nonlinear state

of the entropy mode for Ln/Rc = 0.75. The top panels are the unfiltered data, while

the bottom panels have all significant kx structure at ky = 0 removed.
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Figure 4.14: Spectra of |φ|2 for the strongest gradient Ln/Rc = 0.5 in the linear

transient (top) and nonlinear stationary phase (bottom). The spectra φ(kx) are

integrated over all ky and vice versa. Dashed lines show the spectra (φf) after the

zonal flows (kx > 0, ky = 0) have been filtered out of the spectra.
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Figure 4.15: Spectra of |φ|2 for the weaker gradient Ln/Rc = 0.75 in the linear
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zonal flows (kx > 0, ky = 0) have been filtered out of the spectra.
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of the perturbed distribution function represented by each marker. These weights

change as the simulation proceeds, and when the weight changes, the identities of the

plasma particles represented by the marker changes as well. One way to understand

this is to realize that the gathering and scattering of information on and off the grid

for solving the gyrokinetic Poisson equation mixes the identities of the individual

particles that each marker is meant to represent. Therefore, when using particle

tracking techniques, the weights should be treated carefully, and the markers can

be interpreted as tracers. Each one represents the same number of massless plasma

particles. Unlike the δf weights, which impart a positive or negative deviation

from the background Maxwellian to each marker, the tracer interpretation gives

a constant value to the weight of each tracer. The tracer weight can be assumed

unity, and the variance of tracer displacements can be taken formally with this

trivial weight factor.

All of the following data on marker trajectories is based on the ion gyrocenter

motion for ∼ 50000 tracers taken from the self-consistent ensemble. These probe

are meant to be a random sample from the entire set of markers. A similar, in-

dependently random set of markers is initialized on each processor in the parallel

simulation. Though the turbulence simulation has periodic boundary conditions,

the subset of probe markers is allowed to follow a trajectory outside of the periodic

box, where they encounter a copy of the streamfunction.

A lucid interpretation of the statistics of gyrocenter dispersion is aided by

inspection of several sample drift trajectories in the flow. The following figures show

sample trajectories in the (x̂, ŷ) plane for various values of v⊥. Figure 4.16 shows
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the tracks of several gyrocenters, ignoring the initial burst of quick radial transport

from the streamers. This gives an idea of the range of possible trajectory types

in the flow. Most trajectories move long axial distances, some reversing direction

frequently and others perhaps never reversing direction. The incremental radial and

vertical E × B drift velocities of these tracers are quite similar, but the directed

motion along the zonal flow causes much larger axial displacements. The size of

the gyroradius changes the dispersion properties of gyrocenters, as expected from

Chapter 3. For example, gyrocenters with the largest gyroradii are ten times less

likely to undergo a radial excursion of more than 30ρi when Ln/Rc = 0.5. Section

4.5.4 contains more details on the ρi dependence of radial dispersion statistics.

4.4 Self-consistent δf marker particle axial tracer dispersion

For a comparison between the tracer statistics from Chapter 3 and the self-

consistent turbulence addressed here, it is necessary to examine the axial displace-

ments for the marker ion gyrocenters in the Z-pinch. In Chapter 3 we noted the

superdiffusive behavior of the streaming of sticky-flight trajectories in this direc-

tion. The superdiffusion experienced a transition in time (for small values of ρ),

from nearly ballistic (γ = 1.9) to moderately superdiffusive (γ = 1.6). Larger av-

erage gyroradii erased this transitional behavior by smoothing over the stochastic

region. The number of sticky flights reduced to zero in the limit of ρ >> O(1/k),

where k is the wavenumber of the well-defined vortices in the single shear layer of

Chapter 3. Presently, with self-consistent, doubly periodic turbulence, we expect
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Figure 4.16: Four sample particle trajectories from the Ln/Rc = 0.5 case, for

100L/vth < t < 250L/vth. Clockwise from upper left, the value of v⊥/vth is

[0.125, 0.125, 3.0, 1.5]. The upper right and lower left trajectories are classified as

non-flights, while the other two are flights, as decided by the velocity reversal filter.
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complications, since there is no longer a sharp transition between integrable and

nonintegrable orbits (see Figure 3.4).

4.4.1 Filtering the ballistic trajectories

A filter was implemented in the example of the Hamiltonian flow of Chapter

3 to focus on the most interesting trajectories. This filter separated the population

according to the time of first reversal in the sign of vy. The same technique yields

a meaningful separation of trajectories in the self-consistent case as well. Let the

observation of sign(vy) begin at tobs = 540. If the cutoff time trev for the first

reversal is taken as trev = 840 after the beginning of the simulation, the population

breaks into two distinct categories for each value of the gradient examined here.

Let us use the term “flights” for trajectories which do not reverse velocity within

tobs < t < trev, and the term “non-flights” for other trajectories. A velocity reversal

indicates that a trajectory is trapped, at least briefly, in an eddy. For gradients given

by Ln/Rc = [0.5, 0.625, 0.75], the ratio of number of flights to number of non-flights

is Nf/Nnf = [0.16, 1, 1]. The effect of the filter can be seen for the weak gradient

example in Figures 4.17 and 4.18. The distinction between final positions in both

radial and axial directions is clear: flights travel further axially than non-flights,

and flight travel less far radially than non-flights.
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Figure 4.17: Positions of gyrocenters at the end of the simulation for the weak-

est gradient, Ln/Rc = 0.75. These are the gyrocenters categorized as non-flights.

Colored according to instantaneous value of −3.2 < vE×B · ŷ < 4.0.
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Figure 4.18: Positions of gyrocenters at the end of the simulation for the weakest

gradient, Ln/Rc = 0.75. These are the gyrocenters categorized as flights. Colored

according to instantaneous value of −3.4vE×B · ŷ < 4.2.
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Figure 4.19: Axial displacement distribution (not normalized) for the strong gradi-

ent, Ln/Rc = 0.5, showing all trajectories in black, flights in blue and non-flights in

red. The split between flights and non-flights is 16/84.

4.4.2 Statistics of axial gyrocenter displacements

Figure 4.19, 4.20 and 4.21 show the distribution of axial displacements for all

three gradients. Notable is the trend for increasing number of flight trajectories with

decreasing gradient strength. The flight trajectories have an asymmetric bimodal

distribution for all values of the gradient. Non-flight trajectories have a single,

slightly asymmetric peak for all values of the gradient.

From the displacement PDFs, moments can be computed numerically, giv-
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Figure 4.20: Axial displacement distribution (not normalized) for the intermediate

gradient, Ln/Rc = 0.625, showing all trajectories in black, flights in blue and non-

flights in red. The split between flights and non-flights is 47/53.
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Figure 4.21: Axial displacement distribution (not normalized) for the weakest gra-

dient, Ln/Rc = 0.75, showing all trajectories in black, flights in blue and non-flights

in red. The split between flights and non-flights is 53/47.
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ing (for the axial direction: ŷ) the mean: My(t) =< δy(t) >, variance: σ2
y(t) =

〈(δy(t) − 〈δy(t)〉)2〉, skewness: γ1,y(t) =
〈

(δy(t)−〈δy(t)〉)3

σ(t)3

〉
and kurtosis: β1,y(t) =

〈
(δy(t)−<δy(t)>)4

σ(t)4

〉
.

A running diffusion coefficient may be defined asDy(t) = σ(t)2(t)
2t

, and a ballistic

coefficient may be defined as Fy(t) = σ(t)2(t)
t2

. With the brackets, 〈Dy〉 (or 〈Fy〉), is

a mean value of the running diffusion (or ballistic) coefficient. The mean value

is always taken after the transient period, which is easily identified for the radial

diffusion in Section 4.5.1.

Figures 4.22, 4.23 and 4.24 show the ballistic coefficient of the axial displace-

ment for three values of Ln/Rc, alongside the same data for both flights and non-

flights. Ballistic behavior (σ2
y(t) ∼ t2) is observed by the end of the simulation for

each density gradient when considering all trajectories. An oscillation is seen for

the strongest value of the gradient, including a period of σ2
y(t) ∼ t3 dispersion. The

non-flights have a period of superdiffusion before settling into a ballistic mode. As

in Chapter 3, we compute the superdiffusion coefficients γy for each value of the

gradient, placing the results into Table 4.1.

4.4.3 Statistics of axial velocity increments

Another measure of the Lagrangian statistics in a turbulent flow comes from

the velocity increments. For each trajectory, the value of the radial and axial veloc-

ity is recorded at the same frequency as the position data. A histogram or normal-

ized distribution function of these instantaneous trajectory velocities is easily con-
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Figure 4.22: Variance of axial displacement for Ln/Rc = 0.5 scaled by t2 to empha-

size the ballistic nature of the motion. Flights are shown in blue, the full ensemble

is shown in black and non-flights are shown in red.
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Figure 4.23: Variance of axial displacement for Ln/Rc = 0.6255 scaled by t2 to

emphasize the ballistic nature of the motion. Flights are shown in blue, the full

ensemble is shown in black and non-flights are shown in red.
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Figure 4.24: Variance of axial displacement for Ln/Rc = 0.75 scaled by t2 to empha-
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Table 4.1: Superdiffusion coefficient γy for non-flight axial tracer displacements in

the self-consistent zonal flows for three values of the density gradient. This coefficient

is computed with a curve-fitting routine using only the non-flight trajectories. After

the specified regime of superdiffusion, during the time frame specified in the table,

the dispersion becomes ballistic, as confirmed by comparison with a t2 curve.

Ln/Rc γy ∆t

0.5 1.64 500 < t < 800

0.625 1.25 600 < t < 900

0.75 1.64 440 < t < 920

structed. In isotropic three-dimensional Navier-Stokes turbulence, the distribution

of velocity increments is believed to undergo a transition from long tail power-law

type PDFs to Gaussian-shaped PDFs [141].

Here we show the distribution of axial velocities in Figures 4.25, 4.26 and 4.27.

The distributions reach a steady state by t = 500R/vth. We note that it is possible

to rescale the axial velocity PDFs for different values of the gradients so that the

PDFs are self-similar, as shown in Figure 4.28. Most notable is the distinction

between flights and non-flights for the weaker gradients. The flights have a bimodal

distribution, showing the populations of particles moving up and down in the shear

flow. The asymmetry in the heights of the peaks indicates a greater likelihood for

downward flights The non-flights have a single peak with approximately zero mean
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Figure 4.25: Axial velocity increment distributions for several times during the

simulation for Ln/Rc = 0.5 showing saturation.

and long, non-Gaussian tails that cause the superdiffusion.

4.4.4 Axial velocity Lagrangian correlation function

The Lagrangian velocity correlation function is computed for the strongest

and weakest gradients and compared in Figure 4.29. For the stronger gradient, the

correlation drops to zero with essentially an exponential decay, CL(vy) ∼ exp(−t/τC)

with τC ∼ 200L/vth. The weaker gradient decays to a nonzero value, indicating

that there are long-lived correlations in the axial motion. This can be explained
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Figure 4.26: Axial velocity increment distributions for several times during the

simulation for Ln/Rc = 0.625 showing saturation.
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Figure 4.27: Axial velocity increment distributions for several times during the

simulation for Ln/Rc = 0.75 showing saturation.
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Figure 4.28: Axial velocity increment PDFs in the saturated state for Ln/Rc =

[0.5, 0.75] showing a mapping of the PDF for one gradient onto the other by a

rescaling of both axes by a factor of 6.
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Figure 4.29: Axial Lagrangian velocity correlation for (top to bottom) Ln/Rc =

[0.5, 0.625, 0.75].

by noting that the zonal flows for stronger gradients have a shearing rate nearer a

tertiary shear instability [66, 1]. The approach of the shearing rate to the instability

boundary causes the turbulence to have higher amplitude ky structure relative to

the amplitude of the kx structure, as seen in Figure 4.14. These relatively stronger

ky structures allow more radial dispersion, and are also the source of the larger box

averaged particle flux.
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4.5 Self-consistent δf marker particle radial tracer dispersion

Axial transport, as described in the previous section, can be compared with

results from the Hamiltonian flow model (see Chapter 3). The vy = tanh(x) shear

flow in that model is qualitatively similar to the zonal flows in self-consistent tur-

bulence. However, radial transport is more relevant to plasma confinement, and the

aperiodicity of the tanh(x) function prohibits the study of radial transport in the

stochastic Hamiltonian. Therefore, radial displacement and velocity statistics will

be considered in this section without much comparison to Chapter 3. As mentioned

previously, several recent studies of radial tracer transport in gyrokinetic turbulence

simulations should be compared instead, from Sánchez et al [14], Hauff et al [50] and

Zhang et al [142]. In particular, non-Gaussian statistics of radial tracer gyrocenter

dispersion across a shear flow may have an effect on confinement times. This may

not be true for the bulk plasma, since the tracers are not inclusive of the weights.

Test-particle statistics are therefore most immediately useful to describe the motion

of impurities, a species of fast ions or perhaps an ablating pellet [39]. However, as

discussed by [143] and [25], there can be an equivalence between the test-particle

diffusion coefficient and the diffusion coefficient derived from the Fick’s Law rela-

tionship between the steady-state flux and the local gradient (see Appendix C). We

will see that this equivalence is followed, up to a scaling factor of order unity, for

this two-dimensional gyrokinetic simulation.

156



4.5.1 Statistics of radial gyrocenter displacements

In this section the various moments of the radial displacement distribution are

examined and compared to a Gaussian distribution. Each of the mean, variance,

skewness and kurtosis (defined in Section 4.4.2) are either plotted or described. Dis-

tributions of radial displacements for all three gradients appear in Figures 4.30, 4.31

and 4.32.

The mean (Figure 4.33, 4.34 and 4.35) and skewness fluctuate about zero for

all values of Ln/Rc. This means that the direction of radial dispersion of tracers is

insensitive to the direction of the density gradient. Of course, the outward 〈Γ〉∞p > 0

is due to the cross-phase between the velocity and perturbed density. This can be

seen in a scatter plot of final positions colored according to the marker weight,

Figure 4.36. The marker weights are large and positive in the positive radial

direction, but large and negative in the negative radial direction. This implies that

the positive flux information is contained in the weights, which are not considered

when computing the dispersion of a subset of probe markers.

For all gradients the distributions have longer tails than a Gaussian. This

leads to a large kurtosis, as shown in Figures 4.37, 4.38 and 4.39. The only kurtosis

which is nearly Gaussian is the flight kurtosis for the strongest gradient (Figure

4.37). This means that the flights in the strongest gradient did not experience as

many large steps in the radial direction. The long tails of the other PDFs also

have few particles, compared to the peak, but these rare radial displacements are

sufficient to cause a large kurtosis relative to Gaussian.
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Figure 4.30: Radial displacement distribution for the strong gradient, Ln/Rc = 0.5,

showing all trajectories in black, flights in blue and non-flights in red. The non-

Gaussian tails in the non-flight PDF contrast with the Gaussian shape of the flight

PDF.
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Figure 4.31: Radial displacement distribution for the intermediate gradient,

Ln/Rc = 0.625, showing all trajectories in black, flights in blue and non-flights

in red.
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Figure 4.32: Radial displacement distribution for the weakest gradient, Ln/Rc =

0.75, showing all trajectories in black, flights in blue and non-flights in red.
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Figure 4.33: Mean of radial displacement for Ln/Rc = 0.5 showing the lack of

advection in this flow. Flights are shown in blue, the full ensemble is shown in black

and non-flights are shown in red.
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Figure 4.34: Mean of radial displacement for Ln/Rc = 0.625 showing the lack of

advection in this flow. Flights are shown in blue, the full ensemble is shown in black

and non-flights are shown in red.
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Figure 4.35: Mean of radial displacement for Ln/Rc = 0.75 showing the lack of

advection in this flow. Flights are shown in blue, the full ensemble is shown in black

and non-flights are shown in red.
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Figure 4.36: Positions of gyrocenters at the end of the simulation for the strongest

gradient, Ln/Rc = 0.5. Colored according to wi = δf1/F0, where −215.08 < wi <

212.78.
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Figure 4.37: Kurtosis of radial displacement for Ln/Rc = 0.5 showing non-Gaussian

values for non-flights and the overall distribution of trajectories. Flights are shown

in blue, the full ensemble is shown in black and non-flights are shown in red.
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Figure 4.38: Kurtosis of radial displacement for Ln/Rc = 0.625 showing non-

Gaussian values. Flights are shown in blue, the full ensemble is shown in black

and non-flights are shown in red.
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values. Flights are shown in blue, the full ensemble is shown in black and non-flights

are shown in red.

167



Running diffusion coefficients for all three gradients appear in Figures 4.40, 4.41

and 4.42. All three gradients show asymptotically diffusive variance after a period

of superdiffusive spreading. The variance for the largest gradient is shown in Fig-

ure 4.43 with a log-log plot and the running diffusion coefficient inset. It is useful

to compare both of these measurements to confirm the type of dispersion. The vari-

ance for the weakest gradient is shown in Figure 4.44 with a log-log plot and the

running diffusion coefficient inset. It is very important to exclude from the variance

diagnostic the fast radial spreading during the linear phase of the instability. When

this transient is included, the dispersion can appear to be subdiffusive, even if only

a small portion of the transient is kept (see Figures 4.40 and 4.42). If the simulation

were run long enough to make the transient time negligible compared to the entire

runtime, the dispersion should be asymptotically diffusive even if the transient were

included. It is simply easier and less expensive to exclude the transient in order to

find the asymptotic behavior. For the measurements of the variance (and therefore

the test-particle diffusion coefficient) in this thesis, the starting point for the dis-

placement is taken at t = 100L/vth. As shown in Figure 4.6, this time is after the

peak in flux caused by the linear growth phase.

We can compare the diffusivity Dpart obtained from test-particle tracking with

the ion gyrocenter diffusivity Dflux obtained from the flux-gradient relationship.

One finds

Dpart =
σ2

x(t)

2t
(4.8)
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and

Dflux = Γ∞
p Ln (4.9)

for the normalization used in the code, where D is in units of ρ2
i /(L/vth). The dif-

fusivities found using these formulae are shown Table 4.2. The proper trend for the

diffusivity is found, but the magnitudes are wrong by order unity, with Dflux > Dpart

for each gradient studied. A recent study of tracer particles by Basu et al [25] in

the Hasegawa-Wakatani equation found that the test-particle and flux-gradient dif-

fusivities closely agree, as expected from conservation of potential vorticity in that

equation. Some thoughts on calculating the diffusivity in the gyrokinetic equation

were given by Krommes [143], and these are summarized in Appendix C. The dis-

agreement in scaling for the two methods in our study is currently unresolved.

Table 4.2: Comparison of two methods for finding the gyrocenter diffusivity. The

test-particle variance data gives Dpart and the steady state flux gives Dflux.

Ln/Rc Dpart Dflux

0.5 0.55 0.95

0.625 0.045 0.12

0.75 0.0075 0.03
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Figure 4.40: Variance of radial displacements for Ln/Rc = 0.5 scaled by t to empha-

size the dispersion relative to diffusion. Flights are shown in blue, the full ensemble

is shown in black and non-flights are shown in red, according to the velocity reversal

filter. Each subplot has two data traces, showing the difference between taking the

initial position of the trajectory before the end of the transient phase (upper traces,

at t = 30L/vth) or after the transient phase (lower traces, at t = 100L/vth).

170



0 200 400 600 800 1000
0

0.05

0.1
1105c3

 

 

0 200 400 600 800 1000
0

0.005

0.01

σ x2 (t
)/

t

 

 

0 200 400 600 800 1000
0

0.1

0.2

t/(L/v
th

)

 

 

no flight 

all 

flight 

Figure 4.41: Variance of radial displacements for Ln/Rc = 0.625 scaled by t to em-

phasize dispersion relative to diffusion. Flights are shown in blue, the full ensemble

is shown in black and non-flights are shown in red.
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phasize dispersion relative to diffusion. Flights are shown in blue, the full ensemble
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0.5 gradient, showing diffusive dispersion after a superdiffusive interval.
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0.75 gradient, showing diffusive dispersion after a superdiffusive interval.
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4.5.2 Statistics of radial velocity increments

The radial velocity increment distribution function is shown for Ln/Rc = 0.5

in Figure 4.45 and for Ln/Rc = 0.75 in Figure 4.46. These PDFs approach a steady

state by t = 300L/vth. For the stronger density gradient, the steady state seems

to have fatter tails than a Gaussian. The weaker gradient has a Gaussian shape

in steady state. Also, it is possible to map the radial velocity PDFs for different

gradients onto each other with a simple rescaling of the axes, as shown in Figure 4.47.

The radial velocity increment distribution, separated with the velocity reversal filter,

is shown for all three gradients in Figure 4.48, 4.49 and 4.50. The shapes of the PDFs

appear invariant to the application of the velocity reversal filter. Recall that the

radial displacement PDFs have a strong dependence on the filter. This implies that

the longer tails for radial displacements are not due to especially large velocities,

but rather an accumulated displacement.

4.5.3 Radial velocity Lagrangian correlation function

The radial Lagrangian velocity correlation function gives a correlation time

much smaller than the axial correlation time, as shown in Figure 4.51. The corre-

lation time falls within the linear transient phase, τvx < 50L/vth. The correlation

time is not well-resolved because of the velocity sampling time.
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Figure 4.45: Distribution of radial velocity increments for Ln/Rc = 0.5 at several

time points throughout the run, compared to Gaussian distributions with equivalent
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eral times throughout the run compared to Gaussian distributions with equivalent
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Figure 4.48: Radial velocity increment distributions at the end of the simulation for

Ln/Rc = 0.5, separated according to the velocity reversal filter.
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Figure 4.49: Radial velocity increment distributions at the end of the simulation for

Ln/Rc = 0.625, separated according to the velocity reversal filter.
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Figure 4.50: Radial velocity increment distributions at the end of the simulation for

Ln/Rc = 0.75, separated according to the velocity reversal filter.
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[0.5, 0.625, 0.75].
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4.5.4 Velocity space dependence of dispersion: fast ions

In the following section, the mean value of the running radial diffusion coef-

ficient 〈Dx〉 (where the 〈·〉 average is taken over the last half of the time series)

is computed while varying three separate parameters. These parameters are v⊥,

energy: E = v2
⊥ + v2

‖ , and W = v⊥/2 + v2
‖. In these simulations, the values of v⊥

range from 0.125vth,ref < v⊥ < 4.0vth,ref at equally spaced intervals. The values of

v‖ are chosen randomly within a range such that v2
⊥ + v2

‖ < Ev⊥ = constant.

First, we can quantify the relationship between flight and non-flight trajec-

tories and the mean value of v⊥, v̄⊥, for flight and non-flight trajectories. This

value will be biased downwards because there are fewer particles at higher values of

v⊥. For Ln/Rc = 0.5, v̄⊥,flight = 2.3, while v̄⊥,non−flight = 1.8. We also note that

the maximum and minimum values of v⊥ for flights and non-flights are the same.

Therefore, there is no sharp cutoff for the Larmor radius of a flight, just a better

chance of being stuck in an eddy (non-flight) when the Larmor radius is small. For

Ln/Rc = 0.75, v̄⊥,flight = 1.97 and v̄⊥,non−flight = 1.73, indicating a weaker depen-

dence on ρi for the weaker gradient. For the intermediate case, Ln/Rc = 0.625,

v̄⊥,flight = 2.16 and v̄⊥,non−flight = 1.62.

Now we examine the dependence of the running diffusion coefficient on ρi,

combining the flight and non-flight trajectories. A clear trend in 〈Dx(ρi)〉 is found

for all values of Ln/Rc tested. Note that k⊥,Nv⊥,N = k⊥,Nρi,N for normalized units.

Figure 4.52 shows this dependence for the strongest gradient, while Figure 4.53 and

Figure 4.54 show the behavior for the other gradients. There are two important

183



features on this plot. First, in the log-log scale, there is a clear change in the trend

at k⊥ρ ∼ 1, from a weak, or nearly constant, downward slope to a much steeper

power law, at least for some subset of gyroradii. The power law has a well-defined

value in the center of this parameter range. For Ln/Rc = [0.5, 0.625, 0.75], the

exponent is [−1.75,−2.18,−2.47].

There is no trend for the mean value of the running diffusion coefficient for

either E or W . This indicates that the trend detected in 〈D(v⊥)〉 is due only to

v⊥, since both of the quadratic variables mix the v⊥ ladder with random values

of v‖. Since there are no trapped or passing particles in the Z-pinch geometry

used here, the only orbit averaging is the gyroaveraging, which reveals itself in

the diffusivity dependence. We note the similarity of this result to the functional

dependence of A(k⊥ρ) in Equation A.6, for the running diffusion coefficient of a

Maxwellian distribution of gyrocenters in a monochromatic wave. Several authors

propose scaling laws for the diffusion coefficient with energy [144, 145, 142, 146, 147].

These scaling laws all predict that the transport coefficient should decrease with

gyroradius, but there is disagreement over the functional form. Further analysis is

needed to compare our results with the literature.
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Figure 4.52: Dependence of the mean value of the running diffusion coefficient,

averaged for 250 < t < 1000L/vth, on v⊥ for Ln/Rc = 0.5. The inset shows the data

on a linear plot, while the main plot uses a log-log scale, which highlights the knee

in the trend at v⊥,N ∼ 0.7. The approximate power law in the central portion of

the trend has an exponent of ∼ 1.75 (power law fit using method provided by [2]).
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Figure 4.53: Dependence of the mean value of the running diffusion coefficient,

averaged for 250 < t < 1000L/vth, on v⊥ for Ln/Rc = 0.625. The inset shows the

data on a linear plot, while the main plot uses a log-log scale, which highlights the

knee in the trend at k⊥ρ ∼ 0.7. The approximate power law in the central portion

of the trend has an exponent of ∼ 2.18 (power law fit using method provided by

[2]). The power law is only valid for about half of the data, after the knee.
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Figure 4.54: Dependence of the mean value of the running diffusion coefficient,

averaged for 250 < t < 1000L/vth, on v⊥ for Ln/Rc = 0.75. The inset shows the

data on a linear plot, while the main plot uses a log-log scale, which shows that

there is not a region of near-constant 〈D(t)〉. The power law in the central portion

of the trend has an exponent of ∼ 2.47 (power law fit using method provided by

[2]). This trend is only valid for a small range, indicating the data is not described

well by a power law.
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Chapter 5

Conclusion and discussion

In this numerical study of ion gyrocenter dispersion in zonal flows, we have ex-

amined the statistics of dispersion in a stochastic Hamiltonian model and a density-

gradient-driven turbulence model. The ion species used for this study can be con-

sidered a tracer, or low-density probe of the flow. We varied the gyroradii of the

ions in both models, finding that the behavior of the dispersion changes predictably

with gyroradius. In the stochastic Hamiltonian model, we found that fractional dif-

fusion can describe the superdiffusive dispersion of a subclass of tracers parallel to

a zonal flow. In the simulations of gyrokinetic turbulence, we found that the axial

dispersion is superdiffusive for a similar subclass of tracers. The radial dispersion

for the tracers is found to be diffusive for a wide range of turbulence amplitudes.

A subset of the gyrocenters in the stochastic Hamiltonian model, those that

experience a trapping event (called sticky-flights), undergo superdiffusive dispersion

(σ2
y(t) = tγ , γ > 1), parallel to the shear flow. When ρth = 0 there is a change

in the exponent of this dispersion (γ = 1.6 → γ = 1.9) between early and late

time windows during the simulation. Larger ρth decreases the probability of sticking

events and erases the temporal distinction between these two exponents, with their

mean value being the value only value of γ observed at larger ρth. Applying the

formalism of the fractional diffusion equation as a description of the dispersion, we

188



found it was possible to find a solution of the fractional diffusion equation matching

the distribution of displacements. The parameters for this matching solution were

taken from the power law tails of the distribution, cross-checked against the value

of γ and the power-law tails of the trapping and flight distributions.

In self-consistent gyrokinetic turbulence modeled by a δf particle-in-cell sim-

ulation of a Z pinch entropy mode, we also find superdiffusive axial (parallel to

velocity shear) dispersion for a subset of particles. This subset is selected using

a velocity reversal filter, which separates trajectories that do not get trapped in

eddies. The particles that do experience a trapping event follow superdiffusive

dispersion before settling into ballistic dispersion. Steeper local gradients lead to

faster radial dispersion of gyrocenter tracers, as the turbulence level and radial flux

also increase with steeper gradient. At three values of the gradient scale length,

Ln/Rc = {0.5, 0.625, 0.75} the radial dispersion is diffusive as measured by the

variance of displacements. The test-particle diffusion coefficient, Dpart, decreases

with the strength of the gradient, taking values consistently smaller than the dif-

fusivity, Dflux, computed using Fick’s Law and the steady-state turbulent particle

flux. These two measures of the diffusivity follow the same downward trend with

weakening gradient.

The kurtosis of the radial dispersion is larger than Gaussian for each case stud-

ied. This indicates a small population of tracers which experience large excursions.

These non-Gaussian tails are apparently not large enough to cause non-diffusive

dispersion. Note that the determination of the qualitative behavior of the disper-

sion is very sensitive to the exclusion of the transient radial dispersion due to the
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linear instability. If the transient burst of radial motion is included in the trajectory

displacement, the average dispersion appears subdiffusive. This confusion would dis-

appear if the observation time were much larger than the duration of the transient.

It is less expensive to simply exclude the transient.

There is a definite dependence of the test-particle diffusivity Dpart(t) upon

gyroradius for a spectrum of gyroradii larger and smaller than the thermal gyro-

radius of the system. The functional form appears to have a critical value when

the gyroradius approaches the thermal value, at least for stronger density gradients.

The dependence of 〈D(t)〉 is not a power law across the whole range of ρi, but it is

possible to fit a power law to the region where ρi & ρth,i. The slope of this power

law is steeper for weaker value of the density gradient, when the zonal flows are

more stable. Further investigation is required to compare these observations with

results from fast ion diffusivity studies.

A similar study by Sánchez et al [14], found subdiffusive transport of marker

particles in three dimensional ion temperature- gradient turbulence. This result was

reported using a global PIC simulation, rather than the local gradient approximation

used in this thesis. They used artificial suppression and generation of zonal flows to

compare with the self-consistent zonal flows generated by the temperature gradient.

Subdiffusion was observed for external and self-consistent zonal flows, with non-

Gaussian displacement distributions observed for the self-consistent zonal flows. The

explanation offered by Sánchez et al for the subdiffusive dispersion is not dependent

on a toroidal geometry. The qualitative disagreement with our results could be due

to differences in the turbulence induced by a temperature versus a density gradient

190



or differences between global and local simulations.

Other studies found diffusive transport of marker particles for a particular

value of the ion temperature gradient. Zhang et al used a ”full-torus” PIC simu-

lation [142] to examine test-particle dispersion in the radial direction. They found

it to be diffusive for a wide range of particle energies. Another study by Hauff et

al used a local gradient model of ion temperature-gradient driven zonal flows in a

continuum simulation with external tracer particles [50]. These simulations used

two-dimensional cross-sections of a toroidal geometry for the Cyclone parameters

[65]. Their findings show diffusive transport in both the poloidal and radial di-

rections, after intermediate superdiffusive and subdiffusive behavior, respectively.

Further investigation of our results and comparison with the details of the other

simulations is needed to resolve the differences in the results of these studies.
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Appendix A

Propagator equation for gyroaveraged parallel zonal flow

The gyroaverage equations of motion for test particles in the parallel zonal

flow of Eq. 3.11 are

dx

dt
= 0 ,

dy

dt
= −φ0k⊥ 〈sin(k⊥x)〉θ = −φ0k⊥J0(k⊥ρ) sin(k⊥x) . (A.1)

A straightforward integration assuming an intial condition (x0, y0) gives

x = x0 , y = y0 − U0J0(k⊥ρ) t , (A.2)

where U0 = φ0k⊥ sin(k⊥x0). From here it follows that the two-dimensional propa-

gator is

P(r, t|r′, t′; ρ) = δ(x− x′) δ [y − y′ + J0(k⊥ρ)U0t] . (A.3)

Integrating over x and assuming a Maxwellian distribution of gyro-radii gives the

one-dimensional propagator in y,

P (y, t|y′, t′; ρ) =
2

ρ2
th

∫ ∞

0

δ [y − y′ + J0(k⊥ρ)U0t] ρ e
−ρ2/ρ2

th dρ . (A.4)

Integrating over ρ using basic properties of the delta function gives Eq. 3.12. From

Eq. (A.4) it follows that the n-th moment of the gyrocenter displacement δy = y−y′

scales like tn according to

〈(δy)n〉 = (U0t)
n

∫ ∞

0

Jn
0 (k⊥ρ)H(ρ)dρ . (A.5)
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where H(ρ) is the gyro-radii distribution function. For n = 1 and n = 2 we recover

the moments in Sec. 3.5(A) with

Veff = U0e
−k2

⊥ρ2
th

/4 , A = U2
0 e

−k2
⊥ρ2

th
/2
[
I0
(
k2
⊥ρ

2
th/2

)
− 1
]

(A.6)

in the case when H is Maxwellian, where I0 is the modified Bessel function of zero-

order. It is interesting to note that A has a maximum for k⊥ρth ≈ 2.5.
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Appendix B

Magnetic drifts in the Z-pinch

B.1 ∇B drift

Assume that a magnetic field in the circumferential direction ϕ̂ with some

radial r̂ dependence is present in the torus. This is the field that creates some

confinement in the Z-pinch, and it can be expressed as B = B0(r)ϕ̂. Now expand

the field around the gyrocenter position coordinate to get B = B0 + (r · ∇)B0.

Also separate the drift velocity into a background v⊥ and a perturbed vD, so that

v = v⊥ +vD. One can write an equation of motion now for vD, using this ordering,

such that when ∇B0 = B0

Rc
r̂:

dvD

dt
=

q

mc
(vD ×B0 + v⊥ × (r · ∇)B0) (B.1)
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This equation can then be gyroaveraged to eliminate the left hand side, and manip-

ulated as follows,

< vD × B0 >R = − < v⊥ × (r · ∇)B0 >R

< vD × B0 >R ×B0 = − < v⊥ × (r · ∇)B0 × B0 >R

(B0 · vD)B0 − (B0 · B0)vD = − < v⊥ × (r · ∇)B0 × B0 >R

−vDB
2
0 = − < v⊥ × (r · ∇)B0 × B0 >

vD =
1

B0
v2
⊥ < sin2(Ωt) >R (B0 ×∇B0)

vD =
1

B0

v2
⊥

2Ω
(B0 ×∇B0)

vD =
v2
⊥

2ΩRc
(ϕ̂) × (−r̂)

vD =
v2
⊥

2ΩRc
ẑ

B.2 Curvature drift

Finding the drift velocity associated with the curvature of the magnetic field

requires writing the gyration averaged force-balance equation, where the acceleration

is removed by averaging. Manipulations reveal an expression for the drift velocity,
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as follows.

0 =< F⊥ +
q

c
vD × B0 >R

< F⊥ >R ×B0 = −q
c
< (vD × B0) × B0 >R

< F⊥ >R ×B0 = −q
c
< −vD >R B2

0

c

qB2
0

< F⊥ >R ×B0 = vD

Now if we take the centripetal force on particles moving on curved field lines, F⊥ =

−mv2
‖

Rc
r̂, we can find vD due to that force, now called the curvature drift.

v
c
D = (−r̂) × (φ̂)

cB0mv
2
‖

qB2
0Rc

v
c
D = ẑ

v2
‖

ΩRc

Now the curvature and ∇B drifts can be combined into a total vertical drift:

vB =
v2
‖ + 1

2
v

2
⊥

ΩRc
(B.2)

These drifts will enter into the dwi

dt
weight evolution equation on the right-hand

side as:

dwi

dt
= · · · − 1

F0
(vB · ∇(

q < φ >R

T
)F0 − vB

q < φ >R

T
∇F0)

dwi

dt
= · · · + vB · q

T
< E >R

dwi

dt
= · · · + vB

q

T
< Ez >R

where the F0 background only has gradients in the radial direction.
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Appendix C

Two ways to calculate diffusivity

One must consider that the diffusivity of a transport process, driven by a

fixed density gradient n′(x) = − 1
Ln
n(x) can be characterized either by (1) track-

ing the displacements, δx(t) = x(t) − x(0), of an ensemble of particles drifting in

the turbulent structures created by the gradient, or (2) by computing the average

flux, Γn(t) =
∫
n(t)v(t)dz, of particles and assuming Γn = −Dflux(x, t)n

′(x). The

particle-tracking technique (1) requires a computation of the variance of displace-

ments, σ2(t) =< δx(t)2 >i= Dpartt. For the gyrokinetic equation in a slab geometry,

these two diffusion coefficients, Dpart and Dflux are defined and are equivalent if

several assumptions are met. The following describes how these quantities may be

found and compared, using an outline from [143].

Starting from the collisionless gyrokinetic equation for a slab, where < · >R is

a gyroaverage,

∂

∂t
< δf >R +v‖

∂

∂z
< δf >R + < vE×B >R ·∇ < δf >R =

− < vE×B >R ·∇F0 − v‖
q

T
F0b0 · ∇ < φ >R (C.1)

multiply by δf/F0, letting κ = 1/Ln with this density gradient in the x direc-

tion

197



1

2

∂

∂t
< δf >2

R /F0 +
1

2
v‖
∂

∂z
< δf >2

R /F0 + ∇ · (< vE×B >R< δf >2
R /F0) =

(< vx
E×B

>R κ + v‖
q

T
< E‖ >R) < δf >R (C.2)

integrate over phase space (
∫

(·)dxdydz) with periodic boundary conditions,

letting F = V −1
∫

1
2
δf 2/F0dxdydz, and neglecting the Landau damping term to

arrive at

∂

∂t
F = κδvx

E×B
(δn/n̄) (C.3)

where the overline indicates a spatial average over the parallel and perpendic-

ular directions. Now, if we hold to Fick’s Law: Γx
n ≡ δvx

E×B
(δn/n̄) ∼ −Dflux

∂n
∂x

and

remember that κ = −∂xn
n̄

,

∂

∂t
F = κ2Dflux. (C.4)

Note the assumptions in the previous calculation include neglect of both col-

lisions and Landau damping, periodic boundary conditions and, especially, Fick’s

Law, which neglects any nonlocal contribution of density perturbations to the flux.

Now, in a different direction, consider a calculation of the particle diffusion

coefficient from the δf gyrokinetic equation using the characteristic equation for the

marker weights, wi ≡ <δf1,i>R

F0
. Note first the proportionality F ∝ 1

2

∑
i w

2
i (t) up to

a factor of the background distribution, and if the sum over all marker particles can

be considered an ensemble average, it may be written as F ∝ 1
2
< w2

i (t) >. The

< · > brackets here refer to a ensemble average, in the sense of an integration over
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microstates in phase space, but in the computer simulation, it may as well be an

average over all particles. Using the method of characteristics, the weight evolution

equation for slab gyrokinetics can be written as

∂wi

∂t
=< vx

E×B,i >R κ+
q

T
v‖,i < E‖(xi, yi) >R (C.5)

If the parallel term is negligible, one may write wi(t) =
∫ t

0
< vx

E×B,i >R (t)κdt′

when the initial weight is small. Now,

< wi(t)
2 >=

〈∫ t

0

∫ t′

0

dt′dt′′κ2(< vx
E×B,i >R (t′))(< vx

E×B,i >R (t′′))

〉
. (C.6)

If t ≫ τautocorr then the correlation product inside this integral will decay

when the correlation goes as e−βt, and the integral can be computed as equal to

the diffusion coefficient of test particles, Dpart multiplied by time, t, according to

Taylor’s theorem: dx2

dt
= 2ū2

∫ t

0
R(τ)dτ = Dpartt. Then F = Dpartκ

2t. This shows

the equivalence of the two diffusion coefficients.

If a curvature+∇B term is added to the GKE, as in a Z-pinch with a cylin-

drically symmetric vacuum magnetic field B = −B0r
Rc
r̂, there will be a new drift

v
tot
D,i =

2v2
‖
+v2

⊥

2ΩRc
(r̂ × b̂0) =

2v2
‖
+v2

⊥

2ΩRc
ẑ. This drift introduces two terms into the δf GKE,

v
tot
D,i · ∇ < δf >R on the LHS, and −v

tot
D,i · ∇( q<Φ>R

T
F0) on the RHS. The LHS

term will disappear when integrating over the GKE to find F , assuming periodic

boundary conditions again. The RHS term will become −v
tot
D,i · ∇( q<Φ>R

T
)δf when

the equation is multiplied by δf/FM . Note that the Maxwellian here has no depen-

dence on the vertical direction, since density and (possibly) temperature gradients

are in the radial direction. This term will be proportional to ∂<Φ>R

∂z
. Interestingly,
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< vx
E×B

>R ∝ ∂<Φ>R

∂z
, so it seems possible to combine the radial E × B drift and

vertical curvature/∇B drifts in the weight growth equation, so that:

∂wi

∂t
=< vx

E×B,i >R κ+
q

T
vtot

D,iẑ· < E(xi, yi) >R= (κ+
q

T
vtot

D,i)
∂ < Φ >R

∂z
(C.7)

However, it doesn’t make sense to combine the terms to make a new represen-

tation of the flux, since the terms are in orthogonal directions. The previous term

for δvx
E×B

and a new term for the Z-pinch drift should be separately considered. The

vertical Z-pinch drift term could be combined with the E × B drift in the vertical

direction to compute the vertical flux, such that

Γz
n =

N∑

i=1

(δvz
E×B,i + vtot

D,i)δn. (C.8)

Interestingly, the vertical vz
E×B

drift doesn’t appear in the weight equation. So, as

a driver for the weight growth, the curvature/∇B drifts can be combined with the

radial E×B drift. However, when making the argument to connect Dflux withDpart,

the vertical drift term must be kept separate since the radial flux is orthogonal to

the vertical flux.

The weight equation will end up with a new term q
T
vtot

D,iẑ· < E >R, where ẑ is

the vertical direction in the Z-pinch. As noted above, this term becomes proportional

to ∂Φ
∂z

, which is the same derivative that comes from the E × B. This will give a

new term in the autocorrelation integral when finding < w2
i (t) >, such that:

< wi(t)
2 >=

〈∫ t

0

∫ t

0

dt′dt′′(κ +
qvtot

D,i

T
)2 < vx

E×B,i >R (t′) < vx
E×B,i >R (t′′)

〉
(C.9)

This integral can no longer be identified with the correlation function for the radial
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E ×B drift, except through a redefining of κ→ κ+
qvtot

D,i

T
.

One way to look a this is to see the vertical drift term as an enhancement to

the weight growth when comparing the Z-pinch to a slab. The vtot
D,i is always positive,

so the weights will always grow more quickly with this term added. However, the

weight growth still requires a radial (perturbed) electric field.
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