Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stochastic Average Consensus Filter for Distributed HMM Filtering: Almost Sure Convergence

    Thumbnail
    View/Open
    HMMconsensus_techreport4_edited.pdf (494.7Kb)
    No. of downloads: 1091

    Date
    2010-05-03
    Author
    Ghasemi, Nader
    Dey, Subhrakanti
    Baras, John S.
    Advisor
    Baras, John S.
    Metadata
    Show full item record
    Abstract
    This paper studies almost sure convergence of a dynamic average consensus algorithm which allows distributed computation of the product of $n$ time-varying conditional probability density functions, known as beliefs, corresponding to $n$ different nodes within a sensor network. The network topology is modeled as an undirected graph. The average consensus algorithm is used in a distributed hidden Markov model (HMM) filter. We use the ordinary differential equation (ODE) technique to analyze the convergence of the stochastic approximation type algorithm for average consensus with constant step size which allows each node to track the time varying average of the likelihood of the beliefs belong to different nodes in the network. It is shown that, for a connected graph, under mild assumptions on the first and second moments of the observation probability distributions and a geometric ergodicity condition on an extended Markov chain, the consensus filter state of each individual sensor converges ${\mathbb{P}\mbox{--a.s. }}$ to the true average of the likelihood of the beliefs of all the sensors. In order to prove convergence, we introduce a perturbed stochastic Lyapunov function to show that the error between the consensus filter state at each node and the true average visits some compact set infinitely often ${\mathbb{P}\mbox{--w.p.}1}$ and from that it is shown that the error process is bounded ${\mathbb{P}\mbox{--w.p.}1}$.
    Notes
    This work was performed while N. Ghasemi was a visiting scholar at the University of Maryland, College Park.
    URI
    http://hdl.handle.net/1903/10069
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility