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Abstract—This paper studies almost sure convergence of a
dynamic average consensus algorithm which allows distributed
computation of the product of n time-varying conditional prob-
ability density functions. These conditional probability density
functions (often called as “belief functions”) correspond to the
conditional probability of observations given the state of an
underlying Markov chain, which is observed by n different nodes
within a sensor network. The network topology is modeled as
an undirected graph. The average consensus algorithm is used
to obtain a distributed state estimation scheme for a hidden
Markov model (HMM), where each sensor node computes a
conditional probability estimate of the state of the Markov chain
based on its own observations and the messages received from its
immediate neighbors. We use the ordinary differential equation
(ODE) technique to analyze the convergence of a stochastic
approximation type algorithm for achieving average consensus
with a constant step size. This allows each node to track the
time varying average of the logarithm of conditional observation
probabilities available at the individual nodes in the network. It
is shown that, for a connected graph, under mild assumptions
on the first and second moments of the observation probability
densities and a geometric ergodicity condition on an extended
Markov chain, the consensus filter state of each individual sensor
converges P–a.s. to the true average of the logarithm of the
conditional observation probability density functions of all the
sensors. Convergence is proved by using a perturbed stochastic
Lyapunov function technique. Numerical results suggest that
the distributed Markov chain state estimates obtained at the
individual sensor nodes based on this consensus algorithm track
the centralized state estimate (computed on the basis of having
access to observations of all the nodes) quite well, while formal
results on convergence of the distributed HMM filter to the
centralized one are currently under investigation.

I. INTRODUCTION

The study of distributed estimation algorithms in a network
of spatially distributed sensor nodes has been the subject
of extensive research. A fundamental problem in distributed
estimation is to design scalable estimation algorithms for
multi-sensor networked systems where the data of a sensor
node is communicated only to its immediate neighbor nodes.
This is in contrast to the centralized estimation where the
data from all the sensors are transmitted to a central unit,
known as the fusion center, where the task of data fusion
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is performed. The centralized scheme, clearly, is not energy-
efficient in terms of message exchange. Also, this approach
makes the estimation algorithms susceptible to single point
failure. Moreover, for a large scale network, performing a
centralized estimation algorithm at the fusion center may not
be computationally feasible. As such, the centralized approach
is not robust and also not efficient in terms of both computation
and communication.

Recently, designing distributed estimation algorithms using
consensus schemes has attracted significant surge of interest.
For this, consensus filters are used to combine the individ-
ual node data in a way that every node can compute an
approximation to a quantity, which is based on data from
all the nodes, by using input data only from its nearest
neighbors. Then, by decomposing the centralized algorithm
into some subalgorithms where each subalgorithm can be
implemented using a consensus algorithm, each node can run
a distributed algorithm which relies only on the data from
its neighboring nodes. The problem, then, is to study how
close the distributed estimate is to the estimate obtained by
the centralized algorithm.

Some pioneering works in distributed estimation were done
by [1] and [2]. Recently, there has been many studies on the
use of consensus algorithms in distributed estimation, see, e.g.,
distributed Kalman filtering in [3], [4], [5], [6], approximate
Kalman filter in [7], linear least square estimator in [8], and
distributed information filtering in [9].

This paper will focus on analyzing asymptotic properties of
a stochastic approximation type algorithm for dynamic average
consensus introduced in [4]. Using the dynamic average con-
sensus algorithm, we compute the product of n time-varying
conditional probability density functions, known as beliefs,
corresponding to n different nodes within a sensor network.
The stochastic approximation algorithm uses a constant step
size to track the time-varying average of the logarithm of
the belief functions. We use the ordinary differential equation
(ODE) technique1 in stochastic approximation to study almost
sure convergence of the consensus algorithm. In order to prove
convergence, we use a stochastic stability method where we
introduce a perturbed stochastic Lyapunov function to show
that the error between the consensus filter state at each node
and the true average enters some compact set infinitely often
P–w.p.1. Then, using this result and stability of the mean ODE
it is shown that the error process is bounded P–w.p.1. This
is then used towards proving almost sure convergence of the
consensus algorithm.

1see [10] and [11].



The outline of the paper is as follows. In Section II, we
present the model for distributed HMM filtering and introduce
the stochastic approximation algorithm for average consensus.
Section III introduces required assumptions for convergence
and provides convergence analysis of the consensus algorithm.
Numerical results are presented in Section IV. Details of the
proofs are given in the Appendix.

II. PROBLEM STATEMENT

Notations: In this paper, R denotes the set of real numbers
and N and Z+ represent the sets of positive and nonneg-
ative integers, respectively. We denote by Cn the class of
n-times continuously differentiable functions. Let (Ω,F) be
a measurable space consisting of a sample space Ω and the
corresponding σ-algebra F of subsets of Ω. The symbol ω
denotes the canonical point in Ω. Let P represent probability
distribution with respect to some σ-finite measure and E
denote the expectation with respect to the probability measure
P. By 1n, and 0n we denote n-dimensional2 vectors with all
elements equal to one, and zero respectively. Let I denote
the identity matrix of proper dimension. For readability of the
manuscript, matrix/vector symbols are in bold face with their
elements presented within brackets [ ], uppercase letters denote
random variables and lowercase is used for a realization of a
random variable. Let ‖.‖p denote the p-norm on a Euclidean
space. In this paper, vector means a column vector, and ′

denotes the transpose notation.

A. Distributed Filtering Model: Preliminaries & Notations

Let a stochastic process {Xk, k ∈ Z+}, defined on the
probability space (Ω,F ,P), represent a discrete time ho-
mogeneous Markov chain with transition probability matrix
X = [xij ] and finite state space S = {1, · · · , s}, s ∈ N,
where xij = P(Xk = j | Xk−1 = i) for i, j ∈ S . Assume
that s > 1 is fixed and known. Note that X is a stochastic
matrix, that is, xij ≥ 0,

∑
j xij = 1, ∀i ∈ S . The initial

probability distribution of {Xk} is denoted by π = [πi]i∈S ,
where πi = P(X0 = i).

The Markov process {Xk} is assumed to be hidden and
observed indirectly through noisy measurements obtained by a
set of sensor nodes. Consider a network of spatially distributed
sensor nodes, observing the Markov process {Xk}, where the
network topology is represented by a graph G = (N , E),
with N = {1, · · · , n}, n ∈ N denoting the set of vertices
(nodes) and E ⊂ N ×N representing the set of edges. An
edge between node i and j is denoted by an unordered pair
(i, j) ∈ E . In this paper, all graphs are assumed undirected
and simple (with no self-loop), i.e., for every edge (i, j) ∈ E ,
i 6= j. The set of neighbors of node j is denoted by
Nj = {i ∈ N | (i, j) ∈ E}. A k-regular graph is defined
as a graph in which every vertex has k neighbors. A k-regular
graph on m = k + 1 vertices is called a complete graph and is
denoted by Km. For convenience, in the following, the names,
sensor and node will be used interchangeably. For brevity, an
undirected graph will be simply referred to as a graph.

2for convenience, the dimension subscript n may be omitted when it is
clear from the context.

For each node m ∈ N , the sequence of observations is
denoted by {Y m

k , k ∈ Z+}, which is a sequence of con-
ditionally independent random variables given a realiza-
tion {xk} of {Xk}. The conditional probability distribu-
tion of the observed data Y m

k , taking values in Rq , given
the Markov chain state Xk = `, ` ∈ S is assumed to be
absolutely continuous with respect to a nonnegative and
σ-finite measure % on Rq , with the density function fm

` (.),
where P(Y m

k ∈ dy | Xk = `) = fm
` (y)%(dy), ` ∈ S . Let Ym

k ,
adapted to Ym

k , denote the sequence of observed data at node
m ∈ N up to time instant k, where Ym

k = σ(Y m
l , 0 ≤ l ≤ k)

is the σ-algebra generated by the corresponding random ob-
servations. Define also Yk, measurable on Yk, as the random
vector of the observations obtained by all n number of sensors
at time k, where Yk = σ(Y m

k , 1 ≤ m ≤ n) is the correspond-
ing σ-algebra. We introduce the following assumption:

A-1: The observations Yk = [Y m
k ]m∈N are mutually con-

ditionally independent with respect to the node index m given
the Markov chain state Xk = `, ` ∈ S .

We specify an HMM corresponding to the observation se-
quence {Yk, k ∈ Z+} by H 4

= (X,S, π,Ψ), where we define
the matrix Ψ(y) = diag[ψi(y)]i∈S , with i-th diagonal element
ψi(y) called state-to-observation probability density function
for the Markov chain state Xk = i.

B. Distributed Information State Equations

For k ∈ Z+, define the centralized information state vector
or normalized filter v̄k = [v̄k(j)]j∈S , as the conditional prob-
ability mass function of the Markov chain state Xk given the
observed data from all n number of nodes up to time k, that
is, v̄k(j)

4
= P(Xk = j | Y1

k , · · · ,Yn
k ) for each j ∈ S .

Clearly, in the centralized estimation scenario, where each
node transmits its observations to a (remote) fusion center,
v̄k can be computed at the fusion center using the received
measurements from all the sensors. However, in the distributed
scenario, in order to compute the centralized filter v̄k at
each node, G must be a Kn graph which may not be a
practical assumption for most (large scale) sensor networks.
A practical approach is to express the filter equation in terms
of summations of the individual node observations or some
function of the observations, as shown in the following lemma.
Each node, then, can approximate those summations using
dynamic average consensus filters by exchanging appropriate
messages only with its immediate neighbors. In this way,
the communication costs for each sensor are largely reduced
which leads to a longer life time of the overall network. It is
clear, however, that without the knowledge of all the sensors’
measurements and distribution models, each node may only
be able to find an approximation to the centralized filter v̄k.
The following lemma presents the equivalent distributed form
of the centralized filter equations.

Lemma 2.1: Assume A-1. For a given sequence of the
sensors’ observations {yk}, where yk = [y1

k, · · · , yn
k ]′ ∈ Yk

and for any ` ∈ S , the centralized filter v̄k(`) satisfies the
following recursion:
w̄`

k(yk) = n−1〈1n, z`
k(yk)〉, k ∈ Z+,

v0(`) = e−nw̄`
0π` ,



vk(`) = e−nw̄`
k
∑s

i=1 xi`vk−1(i), k ∈ N,
v̄k(`) = 〈1s,vk〉−1vk(`), k ∈ Z+,
where vk = [vk(`)]`∈S is the unnormalized centralized fil-
ter, z`

k = [z`
k(j)]j∈N

4
= [−logf1

` (y1
k), · · · ,−logfn

` (yn
k )]′ is the

vector of sensors’ contributions.
For any ` ∈ S , the random sequence {w̄`

k, k ∈ Z+} is, in
fact, the arithmetic mean of the individual sensor contribu-
tions. From Lemma 2.1, assuming the knowledge of HMM
parameters (X,S, π) at each node, the centralized filter v̄k(`)
may be computed exactly with no error if the average quantity
w̄`

k is known exactly at each node. It is clear, however, that in
a distributed scenario, this average could be calculated with no
error only for a complete graph with all-to-all communication
topology. In practice, for other network topologies, each node
may only be able to compute an approximation to w̄`

k by
exchanging appropriate messages only with its neighboring
nodes. A possible approach to approximate w̄`

k at each node
is to run a dynamic average consensus filter for every ` ∈ S . In
the following section, we introduce a stochastic approximation
type algorithm for achieving consensus with respect to the
average of time-varying (dynamical) inputs z`

k. Next, we focus
on studying the asymptotic properties of the dynamic average
consensus algorithm which is used in computing a distributed
HMM filter as an approximation to the centralized filter. In
particular, we study almost sure convergence of the average
computed by using the consensus algorithm to the true average
w̄`

k.

C. Stochastic Approximation Algorithm for Consensus Filter

In the following, we present a stochastic approximation
algorithm for estimating centralized quantity w̄`

k ∈ R+ as
the average of the vector elements z`

k(j), j ∈ N defined in
Lemma 2.1. Since the same algorithm is performed for every
Markov chain state ` ∈ S , to simplify the notation, hence-
forth we omit the superscript dependence on the Markov
chain state, e.g., w̄`

k, z`
k = [z`

k(j)] will be simply denoted by
w̄k, zk = [zk(j)] respectively.

Let the consensus filter state for node i ∈ N at time k ∈ Z+

be denoted by ŵi
k which is, in fact, the node’s estimate of the

centralized (or true) average w̄k. Let ŵk = [ŵi
k]i∈N denote

the vector of all the nodes’ estimates. Each node i employs a
stochastic approximation algorithm to estimate w̄k using the
input messages zk(j) and consensus filter states ŵj

k only from
its immediate neighbors, that is, j ∈ Ni ∪ {i}. The state of
each node i ∈ N is updated using the following algorithm
(see [4]):

ŵi
k = (1 + ρqii)ŵi

k−1 + ρ(Aiŵk−1 + Aizk + zk(i)), k ∈ Z+

(1)

where ρ is a fixed small scalar gain called step size, Ai is
i-th row of the matrix A = [aij ]i,j∈N which specifies the
interconnection topology3 of the network, and the parameter
qii is defined by qii

4
= −(1 + 2Ai1). Precise conditions on

the step size ρ will be introduced later. For further details on
the consensus algorithm (1) the reader is referred to [4].

3in this paper, it is assumed that aij > 0 for j ∈ Ni and is zero otherwise.

Definition 1: Strong Average Consensus : Consider a
stochastic process {Zk, k ∈ Z+} with a given realization
{zk = Zk(ω), ω ∈ Ω}, where zk = [zk(i)]i∈N is the vec-
tor of random data assigned to the set N of nodes at
time k. It is said that all the nodes have reached strong
consensus with respect to the average of the input vector
zk if for random variable w̄∗k

4
= n−1〈1, zk〉, the condition

limk→∞ (ŵi
k − w̄∗k) = 0 P–a.s. is satisfied uniformly in

i ∈ N .
We may write (1) in the form

ŵk = ΠH [ŵk−1 + ρ(Λŵk−1 + Γzk)], k ∈ Z+ (2)

where ΠH is the projection onto a constraint setH, the matrices
Λ,Γ are defined by Λ

4
= diag[qii]i∈N + A and Γ

4
= I + A,

and the initial condition ŵ−1 may be chosen as an arbitrary
vector ŵ−1

4
= c1, for some c ∈ R+. It is noted that the iterates

ŵk are confined to a proper subset H of the Euclidean space
Rn, such that if an iterate ever escapes the constraint set, it is
projected back to the closest point in the constraint set. The
constraint set H is assumed to be compact and its elements
are admissible vectors satisfying the required constraints.

III. CONVERGENCE ANALYSIS OF THE CONSENSUS
ALGORITHM

In this section, we study the convergence of the average
consensus algorithm (2) introduced in the previous section. In
what follows, we use the ordinary differential equation (ODE4)
approach to prove P w.p.1 convergence of the consensus filter
state ŵk to the centralized average quantity w̄∗

k

4
= n−111′zk.

In the ODE method, the asymptotic behavior of the discrete
time iterates ŵk is studied by analyzing asymptotic stability
of a continuous time mean ODE, see [10] for further detail.

A. Preliminary Assumptions

We introduce the following assumptions:
A-2: For any ` ∈ S , and k ∈ Z+, the conditional probabil-

ity distribution of the observed data Yk given the Markov
chain state Xk = ` is absolutely continuous with respect
to a nonnegative and σ-finite measure %̄ on appropriate
Euclidean space, with %̄-a.e. positive density ψ`(.), where
P(Yk ∈ dy | Xk = `) = ψ`(y)%̄(dy).

A-3: The transition probability matrix X = [xij ] of the
Markov chain {Xk, k ∈ Z+} is primitive5 with index of prim-
itivity r.

Remark 1: Under A-2, A-3, the extended Markov chain
{(Xk,Yk), k ∈ Z+} is geometrically ergodic (see [12])
with a unique invariant measure ν◦ = [ν`

◦]`∈S on S × Rnq ,
ν`
◦(dy) = γ`

◦ψ`(y)%̄(dy) for any ` ∈ S , where γ◦ = [γ`
◦]`∈S

defined on S is the unique stationary probability distribution
of the Markov chain6 {Xk, k ∈ Z+}.

Define the stochastic process {ηk, k ∈ Z+}, where the
error ηk = [ηi

k]i∈N , defined as ηk
4
= ŵk − w̄∗

k, is the error

4for relevant literature on ODE approach, the reader is referred to [11], [10],
and references therein.

5equivalently, the Markov chain is irreducible and aperiodic.
6note that under A-3, the Markov chain {Xk} is also geometrically ergodic.



between the consensus filter state and average of the nodes’
data w̄∗

k

4
= w̄∗k1 at time k. For notational convenience, let

ξk
4
= (zk, zk−1) adapted to Ok denote the extended data at

time k, where Ok is the σ-algebra generated by (Yk,Yk−1)
for k ∈ Z+.

Lemma 3.1: For a given sequence {zk(yk)}, where
yk ∈ Yk, the error vector ηk evolves according to the fol-
lowing stochastic approximation algorithm

ηk+1 = ηk + ρQ(ηk, ξk+1), k ∈ Z+ (3)

where Q(.) is a measurable function7, which determines how
the error is updated as a function of new input zk+1, defined
by

Q(ηk, ξk+1)
4
=Ληk + Γ(zk+1 − n−111′zk)

− (nρ)−111′(zk+1 − zk) (4)

Remark 2: The argument may be verified by using the
algorithm (2) and the equality8 Λ1 = −Γ1 for the undirected
graph G.

B. Mean ODE

In the following, we define, for t ∈ R, a continuous time
interpolation η•(t) of the sequence {ηk} in terms of the step
size ρ. Let t0 = 0 and tk = kρ. Define the map α(t) = k,
for t ≥ 0, tk ≤ t < tk+1, and α(t) = 0 for t < 0. Define
the piecewise constant interpolation η•(t) on t ∈ (−∞,∞)
with interpolation interval ρ as follows: η•(t) = ηk, for
t ≥ 0, tk ≤ t < tk+1 and η•(t) = η0 for t ≤ 0. Define also
the sequence of shifted processes ηk

•(t) = η•(tk + t) for
t ∈ (−∞,∞).

Define mean vector field Q̄(η) as the limit average of the
function Q(.) by

Q̄(η)
4
= lim

k→∞
Eη Q(η, ξk) (5)

where Eη denotes the expectation with respect to the distri-
bution of ξk for a fixed η. In order to analyze the asymptotic
properties of the error iterates ηk in (3), we define the ODE
determined by the mean dynamics as

η̇• = Q̄(η•), η•(0) = η0 (6)

where η0 is the initial condition. Here, we present a strong
law of large numbers to specify the mean vector field Q̄(.).

Define χ(ι)
4
= [χι(i)]i∈N , where

χι(i)
4
= max

j∈S

∫ [
max
`∈S

| log f i
`(y

i) | ]ι
f i

j(y
i)%(dyi)

∆(ι)
4
= max

j∈S

∫ [
max
`∈S

| log ψ`(y) | ]ι
ψj(y)%̄(dy)

and the average

Q̄k(η)
4
= (k + 1)−1

k∑

l=0

Q(η, ξl) (7)

7note that for each (z, z̃), Q(., z, z̃) is a C0-function in η on Rn.
8note that for the undirected graph G, the matrix −(Λ + Γ) is positive-

semidefinite with 1 as an eigenvector corresponding to the trivial eigenvalue
λ0 = 0.

Proposition 3.2: Assume conditions A-2 and A-3. If ∆(1)

is finite, then there exists a finite Q̄(η) such that

lim
k→∞

Q̄k(η) = Q̄(η) P–a.s.

is satisfied uniformly in η, where

Q̄(η) = Λη + Γ(z̄ − n−111′z̄) (8)

and z̄ = [z̄(i)]i∈N , in which we have

z̄(i) =
∫

| log f i
`(y

i) |µi
◦(dyi), ` ∈ S (9)

with µi
◦ denoting the marginal density of the invariant measure

ν◦ for node i ∈ N defined on Rq .
In the following, we establish the global asymptotic

ε-stability of the mean ODE (6) in sense of the following
definition.

Definition 2: A set E∗ is said to be asymptotically ε-stable
for the ODE (6) if for each ε1 > 0 there exists an ε2 > 0
such that all trajectories η(t) of the ODE (6) with initial
condition η•(0) in an ε2-neighborhood of E∗ will remain
in an ε1-neighborhood of E∗ and ultimately converge to an
ε-neighborhood of E∗. If this holds for the set of all initial
conditions, then E∗ is globally asymptotically ε-stable.
We introduce the assumptions.

A-4: There exists a real-valued C1-function V (.) : Rn 7→ R
of η• such that V (0) = 0, V (η•) > 0 for η• 6= 0 and
V (η•) →∞ as ‖η•‖ → ∞.

A-5: For any trajectory η•(.) solving the ODE (6) for
which the initial condition η•(0) lies in Rn \Ωc, where Ωc is
a compact level set defined by Ωc

4
= {η• : V (η•(t)) ≤ c}, for

some 0 < c < ∞, the derivative V̇ (η•(t)) is strictly negative.

Proposition 3.3: Consider the ODE (6). Assume A-4. In
particular, consider the Lyapunov function V (η•) = 1

2η′•η•.
Also, assume A-5 holds for some compact set Ωc◦ , where
c◦ = 1

2ε2 for some ε > 0. Then, the origin is globally asymp-
totically ε-stable for the mean ODE (6), with ε given by

ε = 2ν̄
√

n(1 + dmax)| λmax(Λ) |−1 (10)

where ν̄
4
= maxi∈N z̄(i).

Proof: See Appendix A.

C. Stochastic Stability of the Consensus Error Iterates

Since the error iterates ηk in (3) are not known to
be bounded a priori and not confined to a compact con-
straint set, in this section, we use a stochastic stability
method to prove that the sequence {ηk} is recurrent, which
means that the error process {ηk} visits some compact set
Ωc̄

4
= {η : V (η(t)) ≤ c̄}, 0 < c̄ < ∞ infinitely often P–w.p.1.

Then, in the next section, using this result and the ODE
method it is shown that {ηk} is bounded P–w.p.1 and
converges P–w.p.1 to the largest bounded invariant set of
the mean ODE (6) contained in Ωc̄. In order to prove that
some compact set Ωc̄ is recurrent, we introduce a perturbed
stochastic Lyapunov function in which the Lyapunov function
of the mean ODE is slightly perturbed in a way that the



resulting stochastic Lyapunov function has the supermartingale
property. The Doob’s martingale convergence theorem is then
used to show that the compact set Ωc̄ is reached again P–w.p.1
after each time the error process {ηk} exits Ωc̄. As the next
step, using this result and the stability hypothesis on the mean
ODE, it is shown that the error sequence {ηk} is bounded
P–w.p.1.

Define the filtration {Fk, k ∈ Z+} as a sequence of nonde-
creasing sub-σ-algebras of F defined as Fk

4
= [F i

k]i∈N such
that for each i ∈ N , F i

k ⊂ F i
k+1 is satisfied for all k ∈ Z+,

and F i
k measures at least σ(ηi

0,Y
j
k, j ∈ Ni ∪ {i}). Let Ek

denote the conditional expectation given Fk. For i ≥ k, define
the discount factor βi

k by βi
k

4
= (1− ρ)i−k+1 and the empty

product βi
k

4
= 1 for i < k.

Define the discounted perturbation δϑk(η) : Rn 7→ Rn as
follows:

δϑk(η) =
∞∑

i=k

ρβi
k+1Ek[Q(η, ξi+1)− Q̄(η)] (11)

In view of the fact that supk

∑∞
i=k ρβi

k+1 < ∞, the sum in
the discounted perturbation (11) is well defined and we have9

Ekδϑk+1(η) =
∞∑

i=k+1

ρβi
k+2Ek[Q(η, ξi+1)− Q̄(η)] P–w.p.1

(12)

Define the perturbed stochastic Lyapunov function

Vk(ηk)
4
= V (ηk) +∇ηk

V (η) δϑk(ηk) (13)

where ∇ηk
V (η) = ∇V (η) |η=ηk

, with ∇V (η) denoting the
gradient of V (.). Note that Vk(ηk) is Fk-measurable.

We introduce the assumptions.
A-6: Let there be positive numbers {bi, i ∈ N} and define

b
4
= [b−2

i ]i∈N such that bn →∞ for large n. In particular, let
bn = n. Let the following series

〈b, χ(2)〉 − 〈b,χ2
(1)〉 (14)

converge for sufficiently large n.
A-7: The step size ρ is strictly positive10 satisfying the

condition ρ < 2(1 + 3dmax)−1.
The following theorem establishes a sufficient condition for
recurrence of the error iterates ηk.

Theorem 3.4: Consider the unconstrained stochastic ap-
proximation algorithm (3). Assume conditions A-1, A-2, A-3,
and A-6 hold. Let the real-valued Lyapunov function V (.)
of the mean ODE (6) have bounded second mixed partial
derivatives and satisfy condition A-4. Also, assume ∆(1) and
∆(2) are finite and let the step size ρ satisfy condition A-
7. Then, the perturbed stochastic Lyapunov function Vk(ηk)
is an Fk–supermartingale for the stopped process ηk when
ηk first visits some compact set Ωc̄

4
= {η : V (η(t)) ≤ c̄}, for

c̄ ∈ (0,∞).
Proof: See Appendix B.

9cf. [11, Chapter 6, Section 6.3.2]
10note that ρ must be kept strictly away from zero in order to allow ŵi

k to
track the time varying true average w̄k , see [11] for further detail.

The following theorem establishes the recurrence of the error
iterates ηk.

Theorem 3.5: Consider the perturbed stochastic Lyapunov
function Vk(ηk) defined in (13). Let Vk(ηk) be a real-valued
supermartingale with respect to the filtration Fk. Assume
that EV (η0) is bounded. Then, for any δ ∈ (0, 1], there is
a compact set Lδ such that the iterates ηk enter Lδ infinitely
often with probability at least δ.

Proof: See Appendix C.

D. Almost Sure Convergence of the Consensus Algorithm

Recall the main result of the previous section, where a
stochastic stability method based on a perturbed stochastic
Lyapunov function is used to show that the error iterates ηk

return to some compact set Ωc̄ infinitely often P–w.p.1. In
this section, we use this recurrence result in combination with
an ODE-type method to prove almost sure convergence of the
error sequence {ηk} under rather weak conditions11. The ODE
method shows that asymptotically the stochastic process {ηk},
starting at the recurrence times when ηk enters the compact
recurrence set Ωc̄, converges to the largest bounded invariant
set of the mean ODE (6) contained in Ωc̄. Therefore, if the
origin is globally asymptotically ε-stable for the mean ODE (6)
with some invariant level set Ωc◦ , where c◦ < c̄, then {ηk}
converges to an ε-neighborhood of the origin P–w.p.1.

The following lemma establishes a nonuniform regularity
condition on the function Q(., ξ) in η required for the proof
of convergence.

Lemma 3.6: There exist nonnegative measurable functions
h1(.) and hk2(.) of η and ξ, respectively, such that h1(.) is
bounded on each bounded η-set and

‖Q(η, ξ)−Q(η̃, ξ)‖ ≤ h1(η − η̃)hk2(ξ) (15)

where h1(η) → 0 as η → 0 and hk2 satisfies

P
[
lim sup

l

α(tl+τ̄)∑

k=l

ρhk2(ξk) < ∞]
= 1, (16)

for some τ̄ > 0.
Proof: By applying Geršgorin theorem to the neg-

ative definite matrix Λ, it is shown that its mini-
mum eigenvalue satisfies λmin(Λ) ≥ −(1 + 3dmax), where
dmax

4
= max

i∈N
∑

j∈Ni
aij . Thus, from (4) we have

‖Λ(η − η̃)‖ ≤ (1 + 3dmax)‖η − η̃‖
where choosing hk2 as hk2(ξ) = (1 + 3dmax) satisfies con-
dition (16) for any finite τ̄ > 0. Moreover, the function
h1(η) = ‖η‖p is bounded on each bounded η-set and tends
to 0 as η → 0. This completes the proof of the lemma.

We introduce the assumption.
A-8: For each η, let the rate of change of

Q◦η(t)
4
=

α(t)−1∑

i=0

ρ[Q(η, ξi+1)− Q̄(η)]

11for example, the square summability condition on the step size ρ is not
needed.
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go to zero P–w.p.1 as t →∞. This means the asymptotic rate
of change condition12

lim
k

sup
j≥k

max
0≤t≤T

| Q◦η(jT + t)−Q◦η(jT ) | = 0 P–w.p.1

(17)

is satisfied uniformly in η for every T > 0.
In the main theorem of this section, by assuming that some

compact set Ωc̄ is recurrent and the mean ODE (6) is stable,
it is stated that the error process {ηk} is bounded P–w.p.1
and converges to a bounded invariant set in Ωc̄.

Theorem 3.7: Consider the unconstrained stochastic ap-
proximation algorithm (3). For any δ ∈ (0, 1], let there be a
compact set Lδ such that the iterates ηk return to Lδ infinitely
often with probability at least δ. Assume conditions A-4
and A-5. Then, {ηk} is bounded P–w.p.1 , that is,

lim sup
k

‖ηk‖ < ∞ P–w.p.1

Assume condition A-8. Also, assume that the function Q(., ξ)
satisfies the nonuniform regularity condition in η established
in Lemma 3.6. Then, there exists a null set f such that for
ω 6∈ f, the set of functions {ηk

•(ω, .), k < ∞} is equicon-
tinuous. Let η(ω, .) denote the limit of some convergent
subsequence {ηk′

• (ω, .)}. Then, for P–almost all ω ∈ Ω, the
limits η(ω, .) are trajectories of the mean ODE (6) in some
bounded invariant set and the error iterates {ηk} converge to
this invariant set. Moreover, let the origin be globally13 asymp-
totically ε-stable14 for the mean ODE (6) with some invariant
level set Ωc◦ , where Ωc◦ ⊂ L1. Then, {ηk} converges to the
ε-neighborhood of the origin P–w.p.1 as k →∞.

Proof: The proof follows from [11, Theorem 7.1 and
Theorem 1.1, Chapter 6] and for brevity the details are omitted
here.

IV. NUMERICAL RESULTS

In this section, we numerically evaluate the performance
of the distributed HMM filter computed using the average

12see Section 5.3 and 6.1, [11] for further detail.
13note that in case of local asymptotic stability, convergence result holds if

Lδ is in the domain of attraction of the ODE equilibrium.
14this is shown in Proposition 3.3.
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Fig. 2. Distributed and centralized state estimates

consensus algorithm (1), and study its average behavior rel-
ative to the centralized filter. To this end, we present some
numerical results for distributed estimation over a sensor
network with the irregular topology G depicted in Fig. 1. We
consider a dynamical system whose state evolves according
to a four-state Markov chain {Xk, k ∈ Z+} with state space
S = {−7.3,−1.2, 2.1, 4.9} and transition kernel

X =




0.80 0.10 0 0.10
0.05 0.90 0.05 0
0 0.10 0.85 0.05

0.05 0 0.10 0.85




The initial distribution of {Xk} is chosen as an arbitrary
vector π = [0.20, 0.15, 0.30, 0.35]. The Markov process {Xk}
is observed by every node j according to Y j

k = Xk + uj
k,

where the measurement noises {uk = [uj
k]j∈N , k ∈ Z+} are

assumed to be zero-mean white Gaussian noise processes
with the noise variance vector [0.29 + 0.01j]j∈N . The initial
condition ŵ−1 is chosen ŵ−1 = c1, with c = 3.

Fig. 2 shows the distributed (or local) estimate
X̂j

k

4
= Ej [Xk | Fk] of the Markov chain state {Xk} at

each node j ∈ N , where the expectation Ej is with respect to
distributed filter v̂j

k = [v̂j
k(`)]

`∈S computed using the average
consensus filter (1). Although node 5 and 2 have direct access
to only one and two nodes’ observations respectively, they
maintain an estimate of {Xk} but with some time delay. The
reason is because these two nodes receive the observations of
other nodes in the network indirectly through the consensus
algorithm which incur some delay. Nevertheless, every node
follows the state transition of the Markov process {Xk} at
each time k.

Fig. 3 shows the convergence in mean of the local state
estimate X̂j

k for each node j to the centralized state estimate
X̂k obtained by using the observations of all the nodes.
The mean state estimate error is computed as the time av-
erage ḡj

k

4
= (k + 1)−1

∑k
i=0 | X̂j

i − X̂i |. This is done based
on the fact that ḡj

k converges P–a.s. to the expectation15

E | X̂j
k − X̂k |. This is due to the geometric ergodicity of

the extended Markov chain {(Xk,Yk), k ∈ Z+}. As it can

15here we have used the standard notion of convergence in mean.
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Fig. 3. Convergence in mean of the distributed state estimate at each node
to the centralized one.

be seen for each node j, the average ḡj
k converges to a

δ̄j-ball around the origin as k → ∞. The radius ‖δ̄‖, where
δ̄ = [δ̄j ]j∈N and the rate of convergence, though, depends on
how well connected the network is. Precise results on the
exact nature of convergence of the distributed HMM filter to
the centralized HMM filter and the corresponding proof of
convergence are currently under investigation.
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APPENDIX A
PROOF OF PROPOSITION 3.3

Proof: Consider the positive definite and radially un-
bounded Lyapunov function V (.) : Rn 7→ R , where V (.) is
defined by V (η•) = 1

2η′•η•. The time derivative of V (.) is
computed as

V̇ (η•) = η′•Λη• + η′•Γ(z̄ − n−111′z̄)

(?) ≤ λmax(Λ)‖η•‖2 + ‖ν̄Λ1‖‖η•‖+ ‖ν̄n−1Λ11′1‖‖η•‖
≤ λmax(Λ)‖η•‖2 + 2ν̄

√
n(1 + dmax)‖η•‖

=
(
ν̄
√

n(1 + dmax)| λmax(Λ) |− 1
2
)2−

(| λmax(Λ) | 12 ‖η•‖ − ν̄
√

n(1 + dmax)| λmax(Λ) |− 1
2
)2

(18)

where in (?), the Cauchy-Schwarz inequality and the equality
Λ1 = −Γ1 are used. Note that the matrix Λ is negative
definite and Λ1 = [−(1 + di)]i∈N with di

4
= Ai1 being the

degree of the node i.
Consider a closed ε-ball with radius ε = 2ν̄

√
n(1 +

dmax)| λmax(Λ) |−1 centered at the origin. The compact level
set Ωc◦ with c◦ = 1

2ε2 contains this ε-ball. From (18), any
solution η•(.) of the ODE (6), for which the initial condition
η•(0) lies in Rn \ Ωc◦ , satisfies V̇ (η•) ≤ −v, v > 0. As such
Ωc◦ is an invariant level set in that the trajectory η•(.) reaches
the level set Ωc◦ in some finite time and stays in Ωc◦ afterward.
Therefore, for the mean ODE (6), the origin is globally
asymptotically ε-stable and the proof is concluded.

APPENDIX B
PROOF OF THEOREM 3.4

Proof: For the proof of this theorem, we first present
the following lemma which establishes a strong law of large
numbers to compute the average of the likelihood of the beliefs
over conditionally independent but not identically distributed
nodes.

Lemma B.1: Assume A-1 and A-6. If ∆(2) is finite, then
for sufficiently large n, the following

n−111′(zk − z̄) → 0 P–a.s. (19)

is satisfied uniformly in k ∈ Z+.



Remark 3: For the proof see [13, Theorem 2, §3, Chapter
IV].

Proof of Theorem 3.4: From the definition (13) we have

Ek

[
Vk+1(ηk+1)− Vk(ηk)

]
= Ek

[
V (ηk+1)− V (ηk)

]

+ Ek

[
η′k+1δϑk+1(ηk+1)− η′kδϑk(ηk)

]
(20)

Taylor series expansion of the Lyapunov function V (η) =
1
2‖η‖2 in a neighborhood of ηk yields

EkV (ηk+1)− V (ηk) =

ρη′kΛηk + ρη′kEkG(zk+1, zk) +
1
2
ρ2‖Ληk‖2 +

ρ2η′kΛEkG(zk+1, zk) +
1
2
ρ2Ek‖G(zk+1, zk)‖2 (21)

where we define

G(zk+1, zk)
4
= Γ(zk+1 − n−111′zk)− (nρ)−111′(zk+1 − zk)

Define also

Ḡ
4
= Γ(z̄ − n−111′z̄)

From (11), we write

Ekη′kδϑk(ηk) = η′kEk

∞∑

i=k

ρβi
k+1Ek[Q(ηk, ξi+1)− Q̄(ηk)]

= ρη′kEk[Q(ηk, ξk+1)− Q̄(ηk)] +

(1− ρ)η′k
∞∑

i=k+1

ρβi
k+2Ek[Q(ηk, ξi+1)− Q̄(ηk)]

= ρη′kEkG(zk+1, zk)− ρη′kḠ+

(1− ρ)η′k
∞∑

i=k+1

ρβi
k+2EkG(zi+1, zi)− (1− ρ)η′kḠ

= ρη′kEkG(zk+1, zk)− η′kḠ +

(1− ρ)η′k
∞∑

i=k+1

ρβi
k+2EkG(zi+1, zi) (22)

Also, from (11) and (12), we write

Ekη′k+1δϑk+1(ηk+1)

= Ekη′k+1

∞∑

i=k+1

ρβi
k+2Ek+1[Q(ηk+1, ξi+1)− Q̄(ηk+1)]

= −Ekη′k+1Ḡ+ Ekη′k+1

∞∑

i=k+1

ρβi
k+2Ek+1G(zi+1, zi)

= −Ek

[
η′k + ρη′kΛ + ρG′(zk+1, zk)

]
Ḡ

+ Ek

[[
η′k + ρη′kΛ + ρG′(zk+1, zk)

]

∞∑

i=k+1

ρβi
k+2Ek+1G(zi+1, zi)

]

= −η′kḠ− ρη′kΛḠ− ρEkG
′(zk+1, zk)Ḡ +

η′k

∞∑

i=k+1

ρβi
k+2EkG(zi+1, zi) +

ρη′kΛ
∞∑

i=k+1

ρβi
k+2EkG(zi+1, zi) +

ρEk

[
G′(zk+1, zk)

∞∑

i=k+1

ρβi
k+2Ek+1G(zi+1, zi)

]
(23)

For k ∈ Z+, define the distributed prediction filter at node
j ∈ N by p̄j

k = [p̄j
k(`)]

`∈S , where

p̄j
k(`)

4
= P(Xk = ` | F j

k−1)

for each ` ∈ S . The conditional expected value Ekzi for each
i ≥ k + 1 may be written as

Ekzi = [f̄ j ′
Xi

k+1

′
p̄j

k+1]j∈N (24)

where we define for ` ∈ S
f̄

j =
[
f̄ j

x

]
x∈S

4
=

[ ∫
| log f j

` (yj) |f j
x(yj)%(dyj)

]
x∈S

and Xi
k

′ 4
=

i−k∏
κ=1

X′, where for i = k the empty product is

defined by Xk
k

′ 4= I. Define also

f̄ (ι)
max

4
= max

j∈N
max
x∈S

∫
| log f j

` (yj) |ιf j
x(yj)%(dyj) (25)

Since ∆(1) and ∆(2) are finite, f̄
(ι)
max for both ι = 1, 2 are

finite. Substituting (21), (22), and (23) in (20) gives

Ek

[
Vk+1(ηk+1)− Vk(ηk)

]
=

ρη′k(I +
1
2
ρΛ)Ληk + ρ2η′kΛEkG(zk+1, zk) +

1
2
ρ2Ek‖G(zk+1, zk)‖22 + ρη′k

∞∑

i=k+1

ρβi
k+2EkG(zi+1, zi)

+ ρη′kΛ
( ∞∑

i=k+1

ρβi
k+2EkG(zi+1, zi)− Ḡ

)

+ ρEk

[
G′(zk+1, zk) (

∞∑

i=k+1

ρβi
k+2Ek+1G(zi+1, zi)− Ḡ)

]

(26)



Using Lemma B.1 and (24), we write

ρ2η′kΛEkG(zk+1, zk)

= ρ2η′kΛΓ(Ekzk+1 − n−111′z̄)

≤ ( ‖ρ2ΛΓ[f̄ j ′
p̄j

k+1]j∈N ‖+ ‖n−1ρ2ΛΓ11′z̄‖ ) ‖ηk‖
≤ ρ2λmax(Λ)

( ‖f̄ (1)
maxΛ1‖+ ‖n−1f̄ (1)

maxΛ11
′1‖ ) ‖ηk‖

≤ 2
√

nρ2f̄ (1)
maxλmax(Λ)(1 + dmax) ‖ηk‖ (27)

Also, we have

‖G(zk+1, zk)‖2
≤ ‖Γzk+1‖2 + ‖n−1Γ11′z̄‖2
≤ ‖Γzk+1‖1 + ‖n−1f̄ (1)

maxΓ11
′1‖2

= (Γ1)′zk+1 + f̄ (1)
max‖Λ1‖2

≤ ‖Λ1‖2‖zk+1‖2 +
√

nf̄ (1)
max(1 + dmax)

≤ √
n(1 + dmax)(‖zk+1‖2 + f̄ (1)

max)

and then under A-1 we may write
1
2
ρ2Ek‖G(zk+1, zk)‖22
≤ 1

2
nρ2(1 + dmax)2

(
Ek‖zk+1‖22 + 2f̄ (1)

maxEk‖zk+1‖2
+ (f̄ (1)

max)2
)

=
1
2
nρ2(1 + dmax)2

( ∥∥[
EFj

k
z2
k+1(j)

]
j∈N

∥∥
1

+ 2f̄ (1)
maxEk‖zk+1‖2 + (f̄ (1)

max)2
)

≤ 1
2
nρ2(1 + dmax)2

(∥∥f̄ (2)
max1

∥∥
1

+ 2f̄ (1)
maxEk‖zk+1‖1

+ (f̄ (1)
max)2

)

=
1
2
nρ2(1 + dmax)2

(
nf̄ (2)

max + 2f̄ (1)
max‖Ekzk+1‖1

+ (f̄ (1)
max)2

)

≤ 1
2
nρ2(1 + dmax)2

(
nf̄ (2)

max + 2f̄ (1)
max‖f̄ (1)

max1‖1
+ (f̄ (1)

max)2
)

=
1
2
nρ2(1 + dmax)2

(
nf̄ (2)

max + (2n + 1)(f̄ (1)
max)2

) 4
= ρϕ2

2

(28)

As
∑∞

i=k+1 ρβi
k+2 = 1, using Lemma B.1 and (24) we write

ρη′k

∞∑

i=k+1

ρβi
k+2EkG(zi+1, zi)

= ρη′kΓ
( ∞∑

i=k+1

ρβi
k+2Ekzi+1 − n−111′z̄

)

≤ ρ
(∥∥Γ[f̄ j ′

X̃′
k,i p̄j

k+1]j∈N
∥∥ + ‖n−1Γ11′z̄‖) ‖ηk‖

where we define X̃′
k,i

4
=

∑∞
i=k+1 ρβi

k+2X
i
k
′. It is clear that

X̃k,i is a stochastic matrix and, thus, we have

ρη′k

∞∑

i=k+1

ρβi
k+2EkG(zi+1, zi)

≤ ρ
(‖f̄ (1)

maxΛ1‖+ ‖n−1f̄ (1)
maxΛ11

′1‖) ‖ηk‖
≤ 2

√
nρf̄ (1)

max(1 + dmax)‖ηk‖ (29)

Similarly, we have

ρη′kΛ
( ∞∑

i=k+1

ρβi
k+2EkG(zi+1, zi)− Ḡ

)

= ρη′kΛΓ

( ∞∑

i=k+1

ρβi
k+2Ekzi+1 − n−111′z̄ − z̄ + n−111′z̄

)

≤ ρ
(∥∥ΛΓ[f̄ j ′

X̃′
k,i p̄j

k+1]j∈N
∥∥ + ‖ΛΓz̄‖) ‖ηk‖

≤ ρ
(‖f̄ (1)

maxΛΓ1‖+ ‖f̄ (1)
maxΛΓ1‖) ‖ηk‖

≤ 2ρf̄ (1)
maxλmax(Λ)‖Λ1‖ ‖ηk‖

≤ 2
√

nρf̄ (1)
maxλmax(Λ)(1 + dmax)‖ηk‖ (30)

Using Lemma B.1, we write
∞∑

i=k+1

ρβi
k+2Ek+1G(zi+1, zi)− Ḡ

= Γ(
∞∑

i=k+1

ρβi
k+2Ek+1zi+1 − z̄)

and thus we have

G′(zk+1, zk) (
∞∑

i=k+1

ρβi
k+2Ek+1G(zi+1, zi)− Ḡ)

≤ ‖Γ(zk+1 − n−111′z̄)‖2

‖Γ(
∞∑

i=k+1

ρβi
k+2Ek+1zi+1 − z̄)‖2

≤ (‖Γzk+1‖2 + ‖n−1Γ11′z̄‖2
)

.
(‖Γ[f̄ j ′

X̃′
k+1,i p̄j

k+1]j∈N ‖2 + ‖Γz̄‖2
)

As before, the matrix X̃′
k+1,i =

∑∞
i=k+1 ρβi

k+2X
i
k+1

′ is left
stochastic and we write

G′(zk+1, zk) (
∞∑

i=k+1

ρβi
k+2Ek+1G(zi+1, zi)− Ḡ)

≤ (‖Γzk+1‖1 + ‖n−1f̄ (1)
maxΓ11

′1‖2
)

.(‖f̄ (1)
maxΓ1‖2 + ‖f̄ (1)

maxΓ1‖2
)

= 2f̄ (1)
max‖Λ1‖2

(
(Γ1)′zk+1 + f̄ (1)

max‖Λ1‖2
)

≤ 2f̄ (1)
max‖Λ1‖2

(‖Λ1‖2‖zk+1‖2 + f̄ (1)
max‖Λ1‖2

)

≤ 2f̄ (1)
max‖Λ1‖22

(‖zk+1‖1 + f̄ (1)
max

)
(31)

thus we have

ρEk

[
G′(zk+1, zk) (

∞∑

i=k+1

ρβi
k+2Ek+1G(zi+1, zi)− Ḡ)

]

≤ 2nρf̄ (1)
max(1 + dmax)2

(
Ek‖zk+1‖1 + f̄ (1)

max

)

≤ 2nρf̄ (1)
max(1 + dmax)2

(‖Ekzk+1‖1 + f̄ (1)
max

)

= 2nρf̄ (1)
max(1 + dmax)2

(‖[f̄ j ′
p̄j

k+1]j∈N ‖1 + f̄ (1)
max

)

≤ 2nρf̄ (1)
max(1 + dmax)2

(‖f̄ (1)
max1‖1 + f̄ (1)

max

)

= 2n(n + 1)ρ(1 + dmax)2(f̄ (1)
max)2

(32)



By applying Geršgorin theorem to the matrix I + 1
2ρΛ, it

is shown that under Assumption A-7 all the eigenvalues are
strictly positive and as such the matrix Q

4
= (I + 1

2ρΛ)Λ is
negative definite. Substituting (27)- (32) in (26) yields

Ek

[
Vk+1(ηk+1)− Vk(ηk)

]

≤ ρλmax(Q)‖ηk‖2 + ϕ̃‖ηk‖+ ϕ2

= ϕ2 +
1
4
ϕ̃2 | ρλmax(Q) |−1

− ( | ρλmax(Q) | 12 ‖ηk‖ −
1
2
ϕ̃ | ρλmax(Q) |− 1

2
)2

where ϕ̃
4
= | 2√nρf̄

(1)
max(1 + dmax)(1 + (1 + ρ)λmax(Λ)) |

and ϕ2 4
= nρ(1 + dmax)2

(
1
2nρf̄

(2)
max + ( 1

2ρ(2n + 1) + 2(n +
1))(f̄ (1)

max)2
)
.

Now if the iterate ηk lies outside the interior Ω◦c̄
of a compact level set Ωc̄, where Ωc̄ is defined as
Ωc̄

4
= {η : V (η) ≤ c̄}, with c̄ = 1

2 ć2, where ć > 0 is given
by ć = | ρλmax(Q) |− 1

2 | ϕ | + ϕ̃| ρλmax(Q) |−1, then there
exists an ᾱ > 0 such that

‖ηk‖ ≥ ć : ηk ∈Rn \ Ω◦c ⇒
Ek

[
Vk+1(ηk+1)−Vk(ηk)

]

≤ −ϕ̃| ρλmax(Q) |− 1
2 | ϕ | 4= −ᾱ < 0

Thus, EkVk+1(ηk+1) < Vk(ηk) P–w.p.1 for V (ηk) ≥ c̄.
Define a random variable τ with values in [0,∞] as an
Fk–stopping time with respect to the error process {ηk}
when ηk first enters Ωc̄, that is, τ is finite P–a.s. and the
event {τ < k} is measurable with respect to Fk for each
finite k ∈ Z+. Define τ ∧ k

4
= min{τ, k}. Hence, Vτ∧k(ητ∧k)

is an Fk–supermartingale for the stopped process ηk with
the Fk–stopping time τ . This completes the proof of the
theorem.

APPENDIX C
PROOF OF THEOREM 3.5

Proof: In order to show that some compact set Lδ

is recurrent for the error process ηk with probability at
least δ ∈ (0, 1], we use the Doob’s martingale conver-
gence theorem. The sufficient condition for the Doob’s
theorem is for the Fk–supermartingale Vk(ηk) to satisfy
supk EV −

k (ηk) < ∞ , where V −
k

4
= max(−Vk, 0) is defined

as the negative part of the random variable Vk(.). From (13),
since Vk(ηk) is a summation of two terms (possibly with dif-
ferent signs), we need to show that E | Vk(ηk) | is bounded
above16 for every k ∈ Z+. A sufficient condition for this is to
show that

sup
k

E V (ηk) < ∞
sup

k
E | η′kδϑk(ηk) | < ∞

For the proof, we use induction on k. Assume EV (η0)
is bounded. For the induction hypothesis, suppose that
EV (ηk) < ∞ for some k ∈ N. Then, we show that

16note that | Vk(ηk) |= V +
k

(ηk) + V −
k

(ηk), where V +
k

4
= max(Vk, 0)

is defined as the positive part of Vk(.).

EV (ηk+1) < ∞.
Using Lemma B.1 and (24), we write

ρ | η′kEkG(zk+1, zk) |
= ρ | η′kΓ(Ekzk+1 − n−111′z̄) |
≤ ρ

( ‖Γ[f̄ j ′
p̄j

k+1]j∈N ‖+ ‖n−1Γ11′z̄‖ ) ‖ηk‖
≤ ρ

( ‖f̄ (1)
maxΛ1‖+ ‖n−1f̄ (1)

maxΛ11
′1‖ ) ‖ηk‖

≤ 2
√

nρf̄ (1)
max(1 + dmax) ‖ηk‖ (33)

By writing the Taylor series expansion of the Lyapunov
function V (η) in a neighborhood of ηk, we have

EkV (ηk+1)− V (ηk)

≤ ρλmax(Q)‖ηk‖2 + ρ | η′kEkG(zk+1, zk) |
+ ρ2 | η′kΛEkG(zk+1, zk) | +1

2
ρ2Ek‖G(zk+1, zk)‖2

(34)

Substituting (27), (28), and (33) in (34) yields

EkV (ηk+1)− V (ηk)

≤ ρλmax(Q)‖ηk‖2 + ρϕ1‖ηk‖+ ρϕ2
2

where ϕ1
4
= 2

√
nf̄

(1)
max(1 + dmax)(1 + ρλmax(Λ)). If the er-

ror iterate ηk lies outside the unit sphere17, then there exists
a real ϕ3

4
= 2(ϕ1 + λmax(Q)) such that

EkV (ηk+1) ≤ (ρϕ3 + 1)V (ηk) + ρϕ2
2 P–w.p.1 (35)

where the marginal density of (η0,Y
j
k, j ∈ Ni ∪ {i}) and

the above inequality together with the induction hypothesis
implies that E V (ηk+1) < ∞.

Next, we show that under the induction hypothesis
EV (ηk) < ∞, we have E | η′kδϑk(ηk) | < ∞ for some
k ∈ Z+ and then it is shown that the following

E | η′k+1δϑk+1(ηk+1) | < ∞
also holds.

Since
∑∞

i=k ρβi
k+1 = 1, from Lemma B.1, (11), and (24)

we write

| η′kδϑk(ηk) |

≤
∥∥
∞∑

i=k

ρβi
k+1Ek[Q(ηk, ξi+1)− Q̄(ηk)]

∥∥ ∥∥ηk

∥∥

≤ (‖Γ
∞∑

i=k

ρβi
k+1Ekzi+1‖+ ‖Γz̄‖)‖ηk‖

≤ (‖Γ[f̄ j ′
X̆′

k,i p̄j
k+1]j∈N ‖+ ‖f̄ (1)

maxΓ1‖
)‖ηk‖

where the matrix X̆′
k,i

4
=

∑∞
i=k ρβi

k+1X
i
k
′ is left stochastic

and we have

| η′kδϑk(ηk) | ≤ 2f̄ (1)
max‖Λ1‖‖ηk‖

≤ 2
√

n(1 + dmax)f̄ (1)
max‖ηk‖

17note that in opposite case when ‖ηk‖ ≤ 1, we get a uniform bound
in (35) and the proof follows in a straightforward way.



and for ηk outside the unit sphere, there is a real ϕ4
4
=

4
√

n(1 + dmax)f̄ (1)
max such that by the induction hypothesis

we have

E | η′kδϑk(ηk) | ≤ ϕ4EV (ηk) < ∞
Now, we show that E | η′k+1δϑk+1(ηk+1) | < ∞.

From (11), we write

| η′k+1δϑk+1(ηk+1) |

=
∣∣η′k+1

∞∑

i=k+1

ρβi
k+2Ek+1[Q(ηk+1, ξi+1)− Q̄(ηk+1)]

∣∣

≤
∣∣η′k

∞∑

i=k+1

ρβi
k+2Ek+1[G(zi+1, zi)− Ḡ]

∣∣

(?) + ρ
∣∣η′kΛ

∞∑

i=k+1

ρβi
k+2Ek+1[G(zi+1, zi)− Ḡ]

∣∣

+ ρ
∣∣G′(zk+1, zk)

∞∑

i=k+1

ρβi
k+2Ek+1[G(zi+1, zi)− Ḡ]

∣∣

(36)

We may compute
∞∑

i=k+1

ρβi
k+2Ek+1zi+1 = [f̄ j ′

X̃′
k+1,i p̄j

k+1]j∈N

where X̃′
k+1,i

4
=

∑∞
i=k+1 ρβi

k+2X
i
k+1

′ is also a left stochastic
matrix. As such, for the term (?) in (36) by replacing Ek with
Ek+1 in (30), the final upper bound will remain unchanged.
Similar to (30), using Lemma B.1 we write

∣∣η′k
∞∑

i=k+1

ρβi
k+2Ek+1[G(zi+1, zi)− Ḡ]

∣∣

=
∣∣η′kΓ

( ∞∑

i=k+1

ρβi
k+2Ek+1zi+1 − z̄

)∣∣

≤ (∥∥Γ[f̄ j ′
X̃′

k+1,i p̄j
k+1]j∈N

∥∥ + ‖Γz̄‖) ‖ηk‖
≤ (‖f̄ (1)

maxΓ1‖+ ‖f̄ (1)
maxΓ1‖

) ‖ηk‖
≤ 2f̄ (1)

max‖Λ1‖ ‖ηk‖
≤ 2

√
nf̄ (1)

max(1 + dmax)‖ηk‖ (37)

Substituting (37), (30), and (31) in (36) we write for
ϕ5

4
= 4

√
nf̄

(1)
max(1 + dmax)(1 + ρλmax(Λ))

| η′k+1δϑk+1(ηk+1) |
≤ 1

2
ϕ5‖ηk‖+ 2ρf̄ (1)

max‖Λ1‖22
(‖zk+1‖1 + f̄ (1)

max

)

where again for ηk outside the unit sphere we have

E | η′k+1δϑk+1(ηk+1) |
≤ ϕ5EV (ηk) + 2ρf̄ (1)

max‖Λ1‖22
(
E‖zk+1‖1 + f̄ (1)

max

)

≤ ϕ5EV (ηk) + 2nρf̄ (1)
max(1 + dmax)2

(‖Ezk+1‖1 + f̄ (1)
max

)

The expected value Ezk+1 can be computed as

Ezk+1 = [f̄ j ′
Xk+1

0

′
π]j∈N (38)

Note that for every k ∈ Z+, Xk
0
′ 4=

∏k
κ=1 X′ is a left stochas-

tic matrix. Thus, by the induction hypothesis we have

E | η′k+1δϑk+1(ηk+1) |
≤ ϕ5EV (ηk) + 2nρf̄ (1)

max(1 + dmax)2
(‖[f̄ j ′

Xk+1
0

′
π]j∈N ‖1 + f̄ (1)

max

)

≤ ϕ5EV (ηk) + 2nρf̄ (1)
max(1 + dmax)2

(‖f̄ (1)
max1‖1 + f̄ (1)

max

)

= ϕ5EV (ηk) + 2n(n + 1)ρ(1 + dmax)2(f̄ (1)
max)2 < ∞

Therefore by induction, we have shown that
E | Vk(ηk) | < ∞ for all k ∈ Z+ and thus
supk EV −

k (ηk) ≤ M < ∞.
Now, from the martingale convergence theorem18, due

to Doob, there exists a random variable U satisfying
E | U | ≤ M such that the pointwise limit

lim
k→∞

Vk(ηk(ω)) = U(ω) (39)

exists for P–almost all ω ∈ Ω. Hence, Vk(ηk) → U P–a.s.
as k →∞. From this and Theorem 7.3 [11, Chapter 6], the
compact set Ωc̄ is again reached P–w.p.1 after each time it
is exited. This means that ηk returns to Ωc̄ infinitely often
P–w.p.1. Also, from Theorem 7.3 [11, Chapter 6] we have
that the sequence {ηk} is bounded in probability, that is,

lim
E→∞

sup
k
P[‖ηk‖ ≥ E ] = 0

and thus using Theorem 7.2 [11, Chapter 6] given any
δ ∈ (0, 1], there is a compact set Lδ such that the iterates
ηk enter Lδ infinitely often with probability at least δ. In
particular, we may choose Lδ = Ωc̄ for all δ ∈ (0, 1]. The
proof of the theorem is concluded.

18the proof of the Doob’s theorem can be found in most classic books on
probability theory, see, e.g., [14, Theorem 35.5.].


