Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Consensus-Based Distributed Filtering

    Thumbnail
    View/Open
    distributed filtering.pdf (354.2Kb)
    No. of downloads: 1105

    Date
    2010-03
    Author
    Matei, Ion
    Baras, John
    Advisor
    Baras, John
    Metadata
    Show full item record
    Abstract
    We address the consensus-based distributed linear filtering problem, where a discrete time, linear stochastic process is observed by a network of sensors. We assume that the consensus weights are known and we first provide sufficient conditions under which the stochastic process is detectable, i.e. for a specific choice of consensus weights there exists a set of filtering gains such that the dynamics of the estimation errors (without noise) is asymptotically stable. Next, we provide a distributed sub-optimal filtering scheme based on optimizing an upper bound on a quadratic filtering cost. In the stationary case, we provide sufficient conditions under which this scheme converges; conditions expressed in terms of the convergence properties of a set of coupled Riccati equations. We continue with presenting a connection between the consensus-based distributed linear filter and the optimal linear filter of a Markovian jump linear system, appropriately defined. More specifically, we show that if the Markovian jump linear system is (mean square) detectable, then the stochastic process is detectable under the consensus-based distributed linear filtering scheme. We also show that the state estimate given by the optimal linear filter of a Markovian jump linear system appropriately defined can be seen as an approximation of the optimal average state estimate obtained using the consensus-based linear filtering scheme.
    URI
    http://hdl.handle.net/1903/10047
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility