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Consensus-Based Linear Distributed Filtering

Ion Matei and John S. Baras

Abstract

We address the consensus-based distributed linear filtering problem, where a discrete time, linear

stochastic process is observed by a network of sensors. We assume that the consensus weights are

known and we first provide sufficient conditions under which the stochastic process is detectable, i.e.

for a specific choice of consensus weights there exists a set of filtering gains such that the dynamics of

the estimation errors (without noise) is asymptotically stable. Next, we provide a distributed, sub-optimal

filtering scheme based on minimizing an upper bound on a quadratic filtering cost. In the stationary case,

we provide sufficient conditions under which this scheme converges; conditions expressed in terms of the

convergence properties of a set of coupled Riccati equations. We continue with presenting a connection

between the consensus-based distributed linear filter and the optimal linear filter of a Markovian jump

linear system, appropriately defined. More specifically, we show that if the Markovian jump linear

system is (mean square) detectable, then the stochastic process is detectable under the consensus-based

distributed linear filtering scheme. We also show that the optimal gains of a linear filter for estimating

the state of a Markovian jump linear system appropriately defined can be seen as an approximation of

the optimal gains of the consensus-based linear filter.

I. Introduction

Sensor networks have broad applications in surveillance and monitoring of an environment,

collaborative processing of information, and gathering scientific data from spatially distributed

sources for environmental modeling and protection. A fundamental problem in sensor networks

is developing distributed algorithms for the state estimation of a process of interest. Generically,

a process is observed by a group of (mobile) sensors organized in a network. The goal of each

sensor is to computed accurate state estimates. The distributed filtering (estimation) problem

has received a lot of attention during the past thirty years. An important contribution was

brought by Borkar and Varaiya [2], who address the distributed estimation problem of a random

variable by a group of sensors. The particularity of their formulation is that both estimates

and measurements are shared among neighboring sensors. The authors show that if the sensors
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form a communication ring, through which information is exchanged infinitely often, then the

estimates converge asymptotically to the same value, i.e. they asymptotically agree. An extension

of the results in reference [2] is given in [7]. The recent technological advances in mobile

sensor networks have re-ignited the interest for the distributed estimation problem. Most papers

focusing on distributed estimation propose different mechanisms for combining the Kalman

filter with a consensus filter in order to ensure that the estimates asymptotically converge to

the same value, schemes which will be henceforth called consensus based distributed filtering

(estimation) algorithms. In [8] and [9], several algorithms based on the idea mentioned above are

introduced. In [3], the authors study the interaction between the consensus matrix, the number of

messages exchanged per sampling time, and the Kalman gain for scalar systems. It is shown that

optimizing the consensus matrix for fastest convergence and using the centralized optimal gain

is not necessarily the optimal strategy if the number of exchanged messages per sampling time

is small. In [11], the weights are adaptively updated to minimize the variance of the estimation

error. Both the estimation and the parameter optimization are performed in a distributed manner.

The authors derive an upper bound of the error variance in each node which decreases with the

number of neighboring nodes.

In this note we address the consensus-based distributed linear filtering problem as well. We

assume that each agent updates its (local) estimate in two steps. In the first step, an update is

produced using a Luenberger observer type of filter. In the second step, called consensus step,

every sensor computes a convex combination between its local update and the updates received

from the neighboring sensors. Our focus is not on designing the consensus weights, but on

designing the filter gains. For given consensus weights, we will first give sufficient conditions

for the existence of filter gains such that the dynamics of the estimation errors (without noise) is

asymptotically stable. These sufficient conditions are also expressible in terms of the feasibility

of a set of linear matrix inequalities. Next, we present a distributed (in the sense that each sensor

uses only information available within its neighborhood), sub-optimal filtering algorithm, valid

for time varying topologies as well, resulted from minimizing an upper bound on a quadratic

cost expressed in terms of the covariances matrices of the estimation errors. In the case where

the matrices defining the stochastic process and the consensus weights are time invariant, we

present sufficient conditions such that the aforementioned distributed algorithm produces filter

gains which converge and ensure the stability of the dynamics of the covariances matrices of the
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estimation errors. We will also present a connection between the consensus-based linear filter

and the linear filtering of a Markovian jump linear system appropriately defined. More precisely,

we show that if the aforementioned Markovian jump linear system is (mean square) detectable

then the stochastic process is detectable as well under the consensus-based distributed linear

filtering scheme. Finally we show that the optimal gains of a linear filter for the state estimation

of the Markovian jump linear system can be viewed as an approximation of the optimal gains

of the consensus-based distributed linear filtering strategy.

Paper structure: In Section II we describe the problems addressed in this note. Section III

introduces the sufficient conditions for detectability under the consensus-based linear filtering

scheme together with a test expressed in terms of the feasibility of a set of linear matrix

inequalities. In Section IV we present a sub-optimal distributed consensus based linear filtering

scheme with quantifiable performances. Section V makes a connection between the consensus-

based distributed linear filtering algorithm and the linear filtering scheme for a Markovian jump

linear system.

Notations and Abbreviations: We represent the property of positive (semi-positive) definite-

ness of a symmetric matrix A, by A � 0 (A � 0). By convention, we say that a symmetric matrix

A is negative definite (semi-definite) if −A � 0 (−A � 0) and we denote this by A ≺ 0 (A � 0).

By A � B we understand that A−B is positive definite. Given a set of square matrices {Ai}
N
i=1,

by diag(Ai, i = 1 . . .n) we understand the block diagonal matrix which contains the matrices Ai’s

on the main diagonal. We use the abbreviations CBDLF, MJLS and LMI for consensus-based

linear filter(ing), Markovian jump linear system and linear matrix inequality, respectively.

Remark 1.1: Given a positive integer N, a set of vectors {xi}
N
i=1, a set of non-negative scalars

{pi}
N
i=1 summing up to one and a positive definite matrix Q, the following inequality holds N∑

i=1

pixi


′

Q

 N∑
i=1

pixi

 ≤ N∑
i=1

pix′i Qxi.

Remark 1.2: Given a positive integer N, a set of vectors {xi}
N
i=1, a set of matrices {Ai}

N
i=1 and

a set of non-negative scalars {pi}
N
i=1 summing up to one, the following holds N∑

i=1

piAixi


 N∑

i=1

piAixi


′

�

N∑
i=1

piAixix′i A
′
i . (1)
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II. Problem formulation

We consider a stochastic process modeled by a discrete-time linear dynamic equation

x(k + 1) = A(k)x(k) + w(k), x(0) = x0, (2)

where x(k) ∈Rn is the state vector and w(k) ∈Rn is a driving noise, assumed Gaussian with zero

mean and (possibly time varying) covariance matrix Σw(k). The initial condition x0 is assumed

to be Gaussian with mean µ0 and covariance matrix Σ0. The state of the process is observed by

a network of N sensors indexed by i, whose sensing models are given by

yi(k) = Ci(k)x(k) + vi(k), i = 1 . . .N, (3)

where yi(k) ∈Rri is the observation made by sensor i and vi(k) ∈Rri is the measurement noise,

assumed Gaussian with zero mean and (possibly time varying) covariance matrix Σvi(k). We

assume that the matrices {Σvi(k)}Ni=1 and Σw(k) are positive definite for k ≥ 0 and that the initial

state x0, the noises vi(k) and w(k) are independent for all k ≥ 0. For later reference we also define

Σ
1/2
vi (k), Σ

1/2
w (k), where Σvi(k) , Σ

1/2
vi (k)Σ1/2

vi (k)′ and Σw(k) , Σ
1/2
w (k)Σ1/2

w (k)′.

The set of sensors form a communication network whose topology is modeled by a directed

graph that describes the information exchanged among agents. The goal of the agents is to

(locally) compute estimates of the state of the process (2).

Let x̂i(k) denote the state estimate computed by sensor i and let εi(k) denote the estimation

error, i.e. εi(k) , x(k)− x̂i(k). The covariance matrix of the estimation error of sensor i is denoted

by Σi(k) , E[εi(k)εi(k)′], with Σi(0) = Σ0.

The sensors update their estimates in two steps. In the first step, an intermediate estimate,

denoted by ϕi(k), is produced using a Luenberger observer filter

ϕi(k) = A(k)x̂i(k) + Li(k)(yi(k)−Ci(k)x̂i(k)), i = 1 . . .N, (4)

where Li(k) is the filter gain.

In the second step, the new state estimate of sensor i is generated by a convex combination

between ϕi(k) and all other intermediate estimates within its communication neighborhood, i.e.

x̂i(k + 1) =

N∑
j=1

pi j(k)ϕ j(k), i = 1 . . .N, (5)
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where pi j(k) are non-negative scalars summing up to one (
∑N

j=1 pi j(k) = 1), and pi j(k) = 0 if no

link from j to i exists at time k. Having pi j(k) dependent on time accounts for a possibly time

varying communication topology.

Combining (4) and (5) we obtain the dynamic equations for the consensus based distributed

filter:

x̂i(k + 1) =

N∑
j=1

pi j(k)
[
A(k)x̂ j(k) + L j(k)

(
y j(k)−C j(k)x̂ j(k)

)]
, i = 1 . . .N. (6)

From (6) the estimation errors evolve according to

εi(k + 1) =

N∑
j=1

pi j(k)
[(

A(k)−L j(k)C j(k)
)
ε j(k) + w(k)−L j(k)v j(k)

]
, i = 1 . . .N. (7)

We define the aggregate vectors of estimates, measurements, estimation errors, driving noise

and measurements noise, respectively

x̂(k)′ , (x̂1(k)′, . . . , x̂N(k)′),

y(k)′ , (y1(k)′, . . . ,yN(k)′),

ε(k)′ , (ε1(k)′, . . . , εN(k)′),

w(k)′ , (w(k)′, . . . ,w(k)′),

v(k)′ , (v1(k)′, . . . ,vN(k)′),

and the following block matrices

A(k) ,



A(k) On×n · · · On×n

On×n A(k) · · · On×n
...

...
. . .

...

On×n On×n · · · A(k)


∈RnN×nN ,

C(k) ,



C1(k) Or2×n · · · OrN×n

Or1×n C2(k) · · · OrN×n
...

...
. . .

...

Or1×n Or2×n · · · CN(k)


∈Rr×nN , L(k) ,



L1(k) On×r1 · · · On×rN

On×r1 L2(k) · · · On×rN
...

...
. . .

...

On×r1 On×r2 · · · LN(k)


∈RnN×r,

where r =
∑N

i=1 ri. The dynamics (6) and (7) can be compactly written as

x̂(k + 1) = P(k)A(k)x̂(k) +P(k)L(k)[y(k)−C(k)x̂(k)], (8)
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ε(k + 1) = P(k)[A(k)−L(k)C(k)]ε(k) + w(k)−P(k)L(k)v((k), (9)

where P(k) = P(k)⊗ I and P(k) = (pi j(k)) is a stochastic matrix, with rows summing up to one.

Definition 2.1: (distributed detectability) Assuming that A(k), C(k) , {Ci(k)}Ni=1 and p(k) ,

{pi j(k)}Ni, j=1 are time invariant, we say that the linear system (2) is detectable using the CBDLF

scheme (6), if there exist a set of matrices L , {Li}
N
i=1 such that the system (7), without the noise,

is asymptotically stable.

We introduce the following finite horizon quadratic filtering cost function

JK(L(·)) =

K∑
k=0

N∑
i=1

E[‖εi(k)‖2], (10)

where by L(·) we understand the set of matrices L(·) , {Li(k),k = 0 . . .K − 1}Ni=1. The optimal

filtering gains represent the solution of the following optimization problem

L∗(·) = argmin
L(·)

JK(L(·)). (11)

Assuming that A(k), C(k) , {Ci(k)}Ni=1, Σw(k), Σv(k) , {Σvi(k)} and p(k) , {pi j(k)}Ni, j=1 are time

invariant, we can also define the infinite horizon filtering cost function

J∞(L) = lim
K→∞

1
K

JK(L) = lim
k→∞

N∑
i=1

E[‖εi(k)‖2], (12)

where L , {Li}
N
i=1 is the set of steady state filtering gains. By solving the optimization problem

L∗ = argmin
L

J∞(L), (13)

we obtain the optimal steady-state filter gains.

In the next sections we will address the following problems:

Problem 2.1: (Detectability conditions) Under the above setup, we want to find conditions

under which the system (2) is detectable in the sense of Definition 2.1.

Problem 2.2: (Sub-optimal scheme for consensus based distributed filtering) Ideally, we would

like to obtain the optimal filter gains by solving the optimization problems (11) and (13),

respectively. Due to the complexity of these problems, we will not provide the optimal filtering

gains but rather focus on providing a sub-optimal scheme with quantifiable performances.

Problem 2.3: (Connection with the linear filtering of a Markovian jump linear system) We

make a parallel between the consensus-based distributed linear filtering scheme and the linear

filtering of a particular Markovian jump linear system.
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III. Distributed detectability

We start with a toy example motivating our interest in the distributed detectability problem

under the CBDLF scheme. Let us assume that no single pair (A,Ci) is detectable in the classical

sense, but the pair (A,C) is detectable, where C′ = (C′1, . . . ,C
′
N). In this case, we can design a

stable (centralized) Luenberger observer filter. The question is, can we obtain a stable consensus-

based distributed filter? As the following example will show, in general this is not true. That is

why is important to find conditions under which the CBDLF can produce stable estimates.

Example 3.1: (Centralized detectable but not distributed detectable) Consider a linear dynam-

ics as in (2-3), with two sensors, where

A =

 10 0

0 10

 , C1 = ( 1 0 ) and C2 = ( 0 1 ).

Obviously, the pairs (A,C1) and (A,C2) are not detectable while the pair (A,C) it is, where

C′ = (C′1 C′2) is. Let L′1 = (l1 l2) and L′2 = (l3 l4). For this example, the matrix that dictates the

stability property of (9) is given by

A =



p11(10− l1) 0 10p12 −p12l3

−p11l2 10p11 0 p12(10− l4)

p21(10− l1) 0 10p22 −p22l3

−p21l2 10p21 0 p22(10− l4)


For p11 = 0.9, p12 = 0.1, p21 = 0.7 and p22 = 0.3, the characteristic polynomial of the above

matrix is given by

q(s) = s4 + q3(l1, l3)s3 + q2(l1, l4, l2l3)s2 + q1(l1, l4) + q0(l1, l4),

where

q3(l1, l3) = −24 + 0.9l1 + 0.3l4,

q2(l1, l4, l2l3) = −0.07l2l3−5.6l4 + 184−12.8l1 + 0.27l1l4,

q1(l1, l4) = 30l4−480−2.4l1l4 + 42l1,

q0(l1, l4) = −40l1−40l4 + 4l1l4 + 400,

and let λi(l1, l4, l2l3) denote the eigenvalues of A. We define λmax(l1, l4, l2l3) = maxi |λi(l1, l4, l2l3)|.

The system (2-3) is not detectable in the sense of Definition 2.1 if λmax(l1, l4, l2l3)> 1 for all values
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of l1, l2 and of the product l2l3. We introduce also the quantity λ23
max(l2l3) = minl1,l4 λmax(l1, l4, l2l3).

Fig. 1. The evolution of λ23
max(l2l3)

From Figure 1, we note that minl2l3λ
23
max(l2l3) = 4.498, which shows that, for the given

consensus weights, and matrices A, C1 and C2, there are no values for l1, l2, l3 and l4, such that

(9) can be made asymptotically stable.

The CBDLF (8) uses only one consensus step and we have seen, through Example 3.1, that

in general this does not guarantee stable estimates, even in the case where the pair (A,C) is

detectable. However, as the next proposition suggests, stable estimates might be achieved if a

large enough number of consensus steps is used, i.e. we set P(k) = P(k)η⊗ I, for some positive

integer value η, large enough.

Proposition 3.1: Consider the linear dynamics (2)-(3). Assume that in the CBDLF scheme

(6), we have pi j = 1
N and that x̂i(0) = x0, for all i, j = 1 . . .N. If the pair (A,C) is detectable, then

the system (2) is detectable as well, in the sense of Definition 2.1.

Proof: Rewrite the matrix C as

C =

N∑
i=1

C̄i,

where C̄′i = (On×r1 . . .On×ri−1 C′i On×ri+1 . . .On×rN ). Ignoring the noise, we define the measurements

ȳi(k) = C̄ix(k),
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which are equivalent to the ones in (3). Under the assumption that pi j = 1
N and x̂i = x0 for all

i, j = 1 . . .N, it follows that the estimation errors respect the dynamics

ε(k + 1) =
1
N

N∑
i=1

(A−LiC̄i)ε(k). (14)

Setting Li = NL for i = 1 . . .N, it follows that

ε(k + 1) = (A−LC)ε(k).

Since the pair (A,C) is detectable, there exists a matrix L such that A− LC has all eigenvalues

within the unit circle and therefore the dynamics (14) is asymptotically stable, which implies

that (2) is detectable in the sense of Definition 2.1.

The previous proposition tells us that if we achieve (average) consensus between the state

estimates at each time instant, and if the pair (A,C) is detectable (in the classical sense), then

the system (2) is detectable in the sense of Definition 2.1. However, achieving consensus at each

time instant can be time and numerically costly and that is why is important to find (testable)

conditions under which the CBDLF produces stable estimates.

Lemma 3.1: (sufficient conditions for distributed detectability) If there exists a set of sym-

metric, positive definite matrices {Qi}
N
i=1 and a set of matrices {Li}

N
i=1 such that

Qi =

N∑
j=1

p ji(A−L jC j)′Q j(A−L jC j) + S i, i = 1 . . .N, (15)

for some positive definite matrices {S i}
N
i=1, then the system (2) is detectable in the sense of

Definition 2.1.

Proof: The dynamics of the estimation error without noise is given by

εi(k + 1) =

N∑
j=1

pi j(A−L jC j)ε j(k), i = 1 . . .N. (16)

In order to prove the stated result we have to show that (16) is asymptotically stable. We

define the Lyapunov function

V(k) =

N∑
i

xi(k)′Qixi(k),

and our goal is to show that V(k + 1)−V(k) < 0 for all k ≥ 0. The Lyapunov difference is given

by

V(k + 1)−V(k) =

N∑
i=1

 N∑
j=1

pi j(A−L jC j)ε j(k)


′

Qi

 N∑
j=1

pi j(A−L jC j)ε j(k)

− εi(k)′T Qiεi(k) ≤
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≤

N∑
i=1

 N∑
j=1

pi jε j(k)′(A−L jC j)′Qi(A−L jC j)ε j(k)

− εi(k)′Qiεi(k), (17)

where the inequality followed from Remark 1.1. By changing the summation order we can farther

write

V(k + 1)−V(k) ≤
N∑

i=1

εi(k)′
 N∑

j=1

p ji(A−L jC j)′Q j(A−L jC j)−Qi

εi(k).

Using (15) yields

V(k + 1)−V(k) ≤ −
N∑

i=1

εi(k)′S iεi(k)

From the fact that {S j}
N
j=1 are positive definite matrices, we get

V(k + 1)−V(k) < 0,

which implies that (16) is asymptotically stable.

The following result relates the existence of the sets of matrices {Qi}
N
i=1 and {Li}

N
i=1 such that

(15) is satisfied, with the feasibility of a set of linear matrix inequalities (LMI).
Proposition 3.2: (distributed detectability test) The linear system (2) is detectable in the sense

of Definition 2.1 if the following linear matrix inequalities, in the variables {Xi}
N
i=1 and {Yi}

N
i=1,

are feasible

Xi
√

p1i(A′X1−C′1Y′1)
√

p2i(A′X2−C′2Y′2) · · ·
√

pNi(A′XN −C′NY ′N)
√

p1i(X1A−Y1C1) X1 0 · · · 0
√

p2i(X2A−Y2C2) 0 X2 · · · 0
...

...
...

. . .
...

√
pNi(XN A−YNCN) 0 0 · · · XN


> 0, (18)

for i = 1 . . .N and where {Xi}
N
i=1 are symmetric. Moreover, a stable CBDLF is obtained by

choosing the filter gains as Li = X−1
i Yi for i = 1 . . .N.

Proof: First we note that, by the Schur complements Lemma, the linear matrix inequalities

(18) are feasible if and only if there exist a set a symmetric matrices {Xi}
N
i=1 and a set of matrices

{Yi}
N
i=1, such that

Xi−

N∑
j=1

(X jA−Y jC j)′X−1
j (X jA−Y jC j) > 0, Xi > 0

for all i = 1 . . .N. We further have that,

Xi−

N∑
j=1

(A−X−1
j Y jC j)′X j(X jA−X−1

j Y jC j) > 0, Xi > 0
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By defining Li , X−1
i Yi, it follows that

Xi−

N∑
j=1

(A−L jC j)′X j(A−L jC j) > 0, Xi > 0.

Therefore, if thr matrix inequalities (18) are feasible, there exists a set of positive definite matrices

{Xi}
N
i=1 and a set of positive matrices {S i}

N
i=1, such that

Xi =

N∑
j=1

(A−L jC j)′X j(A−L jC j) + S i.

By Lemma 3.1, it follows that the linear dynamics (7), without noise, is asymptotically stable,

and therefore the system (2 is detectable in the sense of Definition 2.1.

IV. Sub-Optimal Consensus-Based Distributed linear Filtering

Obtaining the closed form solution of the optimization problem (11) is a challenging problem,

which is in the same spirit as the decentralized optimal control problem. In this section we

provide a sub-optimal algorithm for computing the filter gains of the CBDLF, with quantifiable

performance in the sense that we compute a set of filtering gains which guarantee a certain level

of performance with respect the quadratic cost (10).

A. Finite Horizon Sub-Optimal Consensus-Based Distributed Linear Filtering

The sub-optimal scheme for computing the CBDLF gains results from minimizing an upper

bound of the quadratic filtering cost (10). The following proposition gives upper-bounds for the

covariance matrices of the estimation errors.

Proposition 4.1: Consider the following coupled difference equations

Qi(k + 1) =

N∑
i=1

pi j(k)
[(

A(k)−L j(k)C j(k)
)
Q j(k)

(
A(k)−L j(k)C j(k)

)′
+ L j(k)Σv j(k)L j(k)

]
+Σw(k),

(19)

with Qi(0) = Σi(0), for i = 1 . . .N. The following inequality holds

Σi(k) � Qi(k), (20)

for i = 1 . . .N and for all k ≥ 0.

Proof: The matrix Σi(k + 1) can be explicitly written as

Σi(k + 1) = E[εi(k + 1)′εi(k + 1)] =
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= E


 N∑

j=1

pi j(k)
(
A(k)−L j(k)C j(k)

)
ε j(k) + w(k)−

N∑
j=1

pi j(k)L j(k)v j(k)


′

 N∑
j=1

pi j(k)
(
A(k)−L j(k)C j(k)

)
ε j(k) + w(k)−

N∑
j=1

pi j(k)L j(k)v j(k)


 .

Using the fact that the noises w(k) and vi(k) have zero mean, and they are independent with

respect to themselves and the initial state, for every time instant, we can further write

Σi(k + 1) = E


 N∑

j=1

pi j(k)
(
A(k)−L j(k)C j(k)

)
ε j(k)


′  N∑

j=1

pi j(k)
(
A(k)−L j(k)C j(k)

)
ε j(k)


+

+E


 N∑

j=1

pi j(k)L j(k)v j(k)


′  N∑

j=1

pi j(k)L j(k)v j(k)


+Σw(k).

By Remark 1.2, it follows that

E


 N∑

j=1

pi j(k)
(
A(k)−L j(k)C j(k)

)
ε j(k)


′  N∑

j=1

pi j(k)
(
A(k)−L j(k)C j(k)

)
ε j(k)


 �

�

N∑
j=1

pi j(k)
(
A(k)−L j(k)C j(k)

)
Σ j(k)

(
A(k)−L j(k)C j(k)

)′
and

E


 N∑

j=1

pi j(k)L j(k)v j(k)


′  N∑

j=1

pi j(k)L j(k)v j(k)


 � N∑

j=1

pi j(k)L j(k)Σv j(k)L j(k)′, i = 1 . . .N.

From the previous two expressions, we obtain that

Σi(k + 1) �
N∑

j=1

pi j(k)
(
A(k)−L j(k)C j(k)

)
Σ j(k)

(
A(k)−L j(k)C j(k)

)′
+

+

N∑
j=1

pi j(k)L j(k)Σv j(k)L j(k) +Σw(k)

We prove (20) by induction. Assume that Σi(k) � Qi(k) for all i = 1 . . .N. Then

(A(k)−Li(k)Ci(k))Σi(k) (A(k)−Li(k)Ci(k))′ � (A(k)−Li(k)Ci(k)) Qi(k) (A(k)−Li(k)Ci(k))′ ,

and

Li(k)Σi(k)Li(k)′ � Li(k)Qi(k)Li(k)′, i = 1 . . .N.
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and therefore

Σi(k + 1) � Qi(k + 1), i = 1 . . .N.

Defining the finite horizon quadratic cost function

J̄K(L(·)) =
∑K

k=1
∑N

i=1 tr(Qi(k)), (21)

the next Corollary follows immediately.

Corollary 4.1: The following inequalities hold

JK(L(·)) ≤ J̄K(L(·)), (22)

and

limsup
K→∞

1
K

JK(L) ≤ limsup
K→∞

1
K

J̄K(L) (23)

Proof: Follows immediately from Proposition 4.1.

In the previous corollary we obtained an upper bound on the filtering cost function. Our

sub-optimal consensus based distributed filtering scheme will result from minimizing this upper

bound in terms of the filtering gains {Li(k)}Ni=1:

min
L(·)

J̄K(L(·)). (24)

Proposition 4.2: The optimal solution for the optimization problem (24) is

L∗i (k) = A(k)Q∗i (k)Ci(k)′
[
Σvi(k) +Ci(k)Q∗i (k)Ci(k)′

]−1
, (25)

and the optimal value is given by

J̄∗K(L∗(·)) =

K∑
k=1

N∑
i=1

tr(Q∗i (k)),

where Q∗i (k) is computed using

Q∗i (k + 1) =
∑N

j=1 pi j(k)
[
A(k)Q∗j(k)A(k)′+Σw(k)−A(k)Q∗j(k)C j(k)′·

·
(
Σv j(k) +C j(k)Q∗j(k)C j(k)′

)−1
C j(k)Q∗j(k)A(k)′

]
,

(26)

with Q∗i (0) = Σi(0) and for i = 1 . . .N.

Proof:

Let J̄K(L(·)) be the cost function when an arbitrary set of filtering gains L(·) , {Li(k),k =

0 . . .K −1}Ni=1 is used in (19). We will show that J̄∗K(L∗(·)) ≤ J̄K(L(·)), which in turn will show
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that L∗(·) , {Li(k)∗,k = 0 . . .K − 1}Ni=1 is the optimal solution of the optimization problem (24).

Let {Q∗i (k)}Ni=1 and {Qi(k)}Ni=1 be the matrices obtained when L∗(·) and L(·), respectively are

substituted in (19). In what follows we will show by induction that Q∗i (k) � Qi(k) for k ≥ 0

and i = 1 . . .N, which basically prove that J̄∗K(L∗(·)) ≤ J̄K(L(·)), for any L(·). For simplifying the

proof, we will omit in what follows the time index for some matrices and for the consensus

weights.

Substituting {L∗i (k),k ≥ 0}Ni=1 in (19), after some matrix manipulations we get

Q∗i (k + 1) =

N∑
j=1

pi j
[
AQ∗j(k)A′+Σw−AQ∗j(k)C′j(Σv j+

+C jQ∗j(k)C′j)
−1C jQ∗j(k)A′

]
, Q∗i (0) = Σi(0), i = 1 . . .N.

We can derive the following matrix identity (for simplicity we will give up the time index):

(A + LiCi)Qi(Ai + LiCi)′+ LiΣvi L
′
i = (A + L∗i Ci)Qi(Ai + L∗i Ci)′+ L∗i Σvi L

∗
i
′
+

+(Li−L∗i )(Σvi +CiQiC′i )(Li−L∗i ). (27)

Assume that Q∗i (k) � Qi(k) for i = 1 . . .N. Using identity (27), the dynamics of Qi(k)∗ becomes

Q∗i (k + 1) =

N∑
j=1

pi j
(
(A + L j(k)C j)Q j(k)(A + L j(k)C j)′+ L j(k)Σv j L j(k)′−

−(L j(k)−L∗j(k))(Σv j +C jQ j(k)C′j)(L j(k)−L∗j(k))′+Σw
)
.

The difference Q∗i (k + 1)−Qi(k + 1) can be written as

Qi(k + 1)∗−Qi(k + 1) =

N∑
j=1

pi j
(
(A + L j(k)C j)(Q∗j(k)−Q j(k))(A + L j(k)C j)′−

−(L j(k)−L∗j(k))(Σv j +C jQ j(k)C′j)(L j(k)−L∗j(k))′
)
.

Since Σvi +CiQi(k)C′i is positive definite for all k ≥ 0 and i = 1 . . .N and since we assumed that

Q∗i (k) � Qi(k), it follows that Q∗i (k + 1) � Qi(k + 1). Hence we obtain that

J̄∗K(L∗(·)) ≤ J̄K(L(·)),

for any set of filtering gains L(·) = {Li(k),k = 0 . . .K −1}Ni=1, which concludes the proof.

We summarize in the following algorithm the sub-optimal CBDLF scheme resulted from

Proposition 4.2.
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Algorithm 1: Consensus Based Distributed Linear Filtering Algorithm
Input: µ0, P0

Initialization: x̂i(0) = µ0, Yi(0) = Σ01

while new data exists2

Compute the filter gains:3

Li← AYiC′i (Σvi +CiYiC′i )
−1

Update the state estimates:4

ϕi← Ax̂i + Li(yi−C− ix̂i)

x̂i←
∑

j

pi jϕ j

Update the matrices Yi:5

Yi←

N∑
j=1

pi j
(
(A−L jC j)Y j(A−L jC j)′+ L jΣv j L

′
j

)
+Σw

B. Infinite Horizon Consensus Based Distributed Filtering

We now assume that the matrices A(k), {Ci(k)}Ni=1, {Σvi(k)}Ni=1 and Σw(k) and the weights

{pi j(k)N
i, j=1} are time invariant. We are interested in finding out under what conditions Algorithm

1 converges and if the filtering gains produce stable estimates. From the previous section we

note that the optimal infinite horizon cost can be written

J̄∗∞ = lim
k→∞

N∑
i=1

tr(Q∗i (k)),

where the dynamics of Qi(k)∗ is given by

Q∗i (k + 1) =

N∑
j=1

pi j

[
AQ∗j(k)A′+Σw−AQ∗j(k)C′j

(
Σv j +C jQ∗j(k)C′j

)−1
C jQ∗j(k)A′

]
, (28)

and the optimal filtering gains are given by

L∗i (k) = AQ∗i (k)C′i
[
Σvi +CiQ∗i (k)C′i

]−1
,

for i = 1 . . .N. Assuming that (28), converges, the optimal value of the cost J̄∗∞ is given by

J̄∗∞ =

N∑
i=1

tr(Q̄i),
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where {Q̄i}
N
i=1 satisfy

Q̄i =

N∑
j=1

pi j
[
AQ̄ jA′+Σw−AQ̄ jC′j(Σv j +C jQ̄ jC′j)

−1C jQ̄ jA′
]
. (29)

Sufficient conditions under which there exists a unique solution of (29) are provided by Proposi-

tion A.7, which says that if (p,L,A) is detectable and (A,Σ1/2
v ,p) is stabilizable in the sens of Def-

initions A.1 and A.2, respectively, then there is a unique solution of (29) and limk→∞Q∗i (k) = Q̄i.

Mimicking Theorem A.12 of [6], it can be shown that a numerical approach to solve (29) (if

it has a solution) consists in solving the following convex programming optimization problem

max tr
(∑N

i=1 Qi
)

(30)

−Qi +
∑N

j=1 pi jAQ jA′+Σw
√

pi1C1Q1A′ . . .
√

pi1CN QN A′
√

pi1AQ1C′1 Σv1 +C1Q1C′1 . . . 0
...

...
. . .

...
√

piN AQNC′N 0 . . . ΣvN +CN QNC′N


� 0

Qi � 0, i = 1 . . .N.

V. Connection with theMarkovian Jump Linear Systems state estimation

In this section we present a connection between the detectability of (2) in the sense of
Definition 2.1 and the detectability property of a MJLS, which is going to be defined in what
follows. We also show that the optimal gains of a linear filter for the state estimation of the
aforementioned MJLS can be used to approximate the solution of the optimization problem (11),
which gives the optimal CBDLF. We assume that the matrix P(k) describing the communication
topology of the sensors is irreducible and doubly stochastic and we assume, without loss of
generality, that the matrices {Ci(k),k ≥ 0}Ni=1 in the sensing model (3), have the same dimension.
We define the following Markovian jump linear system

ξ(k + 1) = Ãθ(k)(k)ξ(k) + B̃θ(k)(k)w̃(k)

z(k) = C̃θ(k)(k)ξ(k) + D̃θ(k)(k)ṽ(k), ξ(0) = ξ0,
(31)

where ξ(k) is the state, z(k) is the output, θ(k) ∈ {1, . . . ,N} is a Markov chain with probability
transition matrix P(k)′, w̃(k) and ṽ(k) are independent Gaussian noises with zero mean and
identity covariance matrices. Also, ξ0 is a Gaussian noise with mean µ0 and covariance matrix
Σ0. We denote by πi(k) the probability distribution of θ(k) (Pr(θ(k) = i) = πi(k)) and we assume
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that πi(0) > 0. We have that Ãθ(k)(k) ∈ {Ãi(k)}Ni=1, B̃θ(k)(k) ∈ {B̃i(k)}Ni=1, C̃θ(k)(k) ∈ {C̃i(k)}Ni=1 and
D̃θ(k)(k) ∈ {D̃i(k)}Ni=1, where the index i refers to the state i of θ(k). We set

Ãi(k) = A(k), B̃i(k) =
√
πi(0)
√
πi(k)

Σ
1/2
w (k),

C̃i(k) = 1√
πi(0)

Ci(k), D̃i(k) = 1√
πi(k)

Σ
1/2
vi (k),

(32)

for all i,k ≥ 0 (note that since P(k) is assumed doubly stochastic and irreducible and πi(0) > 0,
we have that πi(k)> 0 for all i,k ≥ 0). In addition, ξ0, θ(k), w̃(k) and ṽ(k) are assumed independent
for all k ≥ 0. The random process θ(k) is also called mode. Assuming that the mode is directly
observed, a linear filter for the state estimation is given by

ξ̂(k + 1) = Ãθ(k)(k)ξ̂(k) + Mθ(k)(k)(z(k)− C̃θ(k)(k)ξ̂(k)), (33)

where we assume that the filter gain Mθ(k) depends only on the current mode. The dynamics

of the estimation error e(k) , ξ(k)− ξ̂(k) is given by

e(k + 1) =
(
Ãθk(k)−Mθ(k)(k)C̃θ(k)(k)

)
e(k)+

+B̃θ(k)(k)w(k)−Mθ(k)(k)D̃θ(k)(k)v(k).
(34)

Let µ(k) and Y(k) denote the mean and the covariance matrix of e(k), i.e. µ(k) , E[e(k)] and

Y(k), E[e(k)e(k)′], respectively. We define also the mean and the covariance matrix of e(k), when

the system is in mode i, i.e. µi(k), E[e(k)1{θ(k)=i}] and Yi(k), E[e(k)e(k)′1{θ(k)=i}], where 1{θ(k)=i}

is the indicator function. It follows immediately that µ(k) =
∑N

i=1µi(k) and Y(k) =
∑N

i=1 Yi(k).
Definition 5.1: The optimal linear filter (33) is obtain by minimizing the following quadratic

finite horizon cost function

J̃K(M(·)) =

K∑
k=1

tr(Y(k)) =

K∑
k=1

N∑
i=1

tr(Yi(k)), (35)

where M(·), {Mi(k),k = 0 . . .K−1}Ni=1 are the filter gains and where Mi(k) corresponds to Mθ(k)(k)

when θ(k) is in mode i. We can give a similar definition for an optimal steady state filter using

the infinite horizon quadratic cost function.

Definition 5.2: Assume that the matrices Ãi(k), C̃i(k) and P(k) are constant for all k ≥ 0. We

say that the Markovian jump linear system (31) is mean square detectable if there exits {Mi}
N
i=1

such that limk→∞E[‖e(k)‖2] = 0, when the noises w̃(k) and ṽ(k) are set to zero.

The next result makes the connection between the detectability of the MJLS defined above the

distributed detectability of the process (2).

Proposition 5.1: If the Markovian jump linear system (31) is mean square detectable, then

the linear stochastic system (2) is detectable in the sense of Definition 2.1.
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Proof: In the context of this proposition, the dynamics of the estimation error for the MJLS

(31) becomes

e(k + 1) = (A−Mθ(k)C̃θ(k))e(k), e(0) = e0,

where C̃i = Ci. It is not difficult to check that the dynamic equations for the covariance matrices

{Yi(k)}Ni=1 and the mean vectors {µi(k)}Ni=1 are given by

Yi(k + 1) =

N∑
j=1

pi j(A−M j
1

√
πi(0)

C j)Y j(k)(A−M j
1

√
πi(0)

C j)′, (36)

with Yi(0) = Y0
i and

µi(k + 1) =

N∑
j=1

pi j(A−M j
1

√
πi(0)

C j)µ j(k),µi(0) = µ0
i , (37)

for i = 1 . . .N. Since the MJLS is assumed mean square detectable it follows that there exists

a set of matrices {Mi}
N
i=1 such that (36) is asymptotically stable. But this also implies (see for

instance Proposition 3.6 of [6]) that (37) is asymptotically stable as well. Setting Li = πi(0)Mi,

we see that (37) is identical to equation (7) and therefore (7) is asymptotically stable (when

ignoring the noise). Hence, (2) is detectable in the sense of Definition 2.1.

The next result establishes that the optimal gains of the filter (33) can be used to approximate

the solution of the optimzation problem (11).

Proposition 5.2: Let M∗(·), {M∗i (k),k = 0, . . . ,K−1}Ni=1 be the optimal gains of the linear filter

(33). If we set Li(k) = 1√
πi(0)

M∗i (k) as filtering gains in the CBDLF scheme, then the filter cost

function (10) is guaranteed to be upper bounded by

JK(L(·)) ≤
K∑

k=0

N∑
i=1

1
πi(0)

tr(Y∗i (k)), (38)

where Y∗i (k) are the covariance matrices resulting from minimizing (35).

Proof:

By Theorem 5.5 of [6], the filtering gains that minimize (35) are given by

M∗i (k) = Ãi(k)Y∗i (k)C̃i(k)′
[
πi(k)D̃ j(k)D̃ j(k)′+ C̃i(k)Y∗i (k)C̃i(k)′

]−1
, (39)

for i = 1 . . .N, where Y∗i (k) satisfies

Y∗i (k + 1) =
∑N

j=1 pi j(k)
[
Ã j(k)Y∗j (k)Ã j(k)′+π j(k)B̃ j(k)B̃ j(k)′−

−Ã j(k)Y∗j (k)C̃ j(k)′
(
π j(k)D̃ j(k)D̃ j(k)′+ C̃ j(k)Y∗j (k)C̃ j(k)′

)−1
C̃ j(k)Y∗j (k)Ã j(k)′

]
.

(40)
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In what follows we will show by induction that Y∗i (k) = πi(0)Q∗i (k) for all i,k ≥ 0, where Q∗i (k)

satisfies (26). For k = 0 we have Y∗i (0) = πi(0)Y∗(0) = πi(0)Σ0 = πi(0)Q∗i (0). Let us assume that

Y∗i (k) = πi(0)Q∗i (k). Then, from (32) we have

π j(k)B̃ j(k)B̃ j(k)′ = πi(0)Σw(k), π j(k)D̃ j(k)D̃ j(k)′ = Σvi(k),

π j(k)D̃ j(k)D̃ j(k)′+ C̃ j(k)Y∗j (k)C̃ j(k)′ = Σv j(k) +C j(k)Q∗j(k)C j(k)′. (41)

Also,

M∗i (k) = πi(0)A(k)Q∗i (k)Ci(k)′
[
Σv j(k) +C j(k)Q∗j(k)C j(k)′

]−1
, (42)

and from (25) we get that M∗i (k) =
√
πi(0)L∗i (k). From (40) and (41) it can be easily argued that

Y∗i (k + 1) = πi(0)Q∗i (k + 1). By Corollary 4.1 we have that

JK(L(·)) ≤ J̄K(L(·)),

for any set of filtering gains L(·) and in particular for Li(k) = 1
πi(0) M∗i (k) = L∗i (k), for all i and

k. But since

J̄K(L∗(·)) =

K∑
k=0

N∑
i=1

1
πi(0)

Y∗i (k),

the result follows.

VI. Conclusions

In this note we addressed three problems. First we provided (testable) sufficient conditions

under which stable consensus-based distributed linear filters can be obtained. Second, we gave

a sub-optimal, linear filtering scheme, which can be implemented in a distributed manner and is

valid for time varying communication topologies as well, and which guarantees a certain level of

performance. Third, under the assumption that the stochastic matrix used in the consensus step

is doubly stochastic we showed that if an appropriately defined Markovian jump linear system is

detectable, then the stochastic process of our interest is detectable as well. We also showed that

the optimal gains of the consensus-based distributed linear filter scheme can be approximated

by using the optimal linear filter for the state estimation of a particular Markovian jump linear

system.
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Appendix

A. Properties of a special class of difference matrix equations

Given two positive integers N and n, a sequence of positive numbers p = {pi j}
N
i, j=1 and a set

of matrices F = {Fi}
N
i=1, we consider the following matrix difference equations

Wi(k + 1) =

N∑
j=1

pi jF jW j(k)F′j, Wi(0) = W0
i , i = 1 . . .N. (43)

Additionally, consider a similar set of matrix difference equations

Wi(k + 1) =

N∑
j=1

p jiF′jW j(k)F j, Wi(0) = W0
i , i = 1 . . .N. (44)
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Proposition A.1 ([4]): The dynamics (43) is asymptotically stable if and anly if the dynamics

(44) is asymptotically stable.

Related to the above dynamic equations, we introduce the following stabilizability and de-

tectability definitions.

Definition A.1 ([5]): Given a set of matrices C = {Ci}
N
i=1, we say that (p,L,A) is detectable

if there exists a set of matrices L = {Li}
N
i=1 such that the dynamics (43) is asymptotically stable,

where Fi = Ai−LiCi, for i = 1 . . .N.

Definition A.2 ([5]): Given a set of matrices C = {Ci}
N
i=1, we say that (A,L,p) is stabilizable,

if there exists a set of matrices L = {Li}
N
i=1 such that the dynamics (43) is asymptotically stable,

where Fi = Ai−CiLi, for i = 1 . . .N.

Remark A.1: Given a semipositive definite matrix X and a positive definite matrix Y , the

following holds:

min
i=1...n

λi(Y)tr(X) ≤ tr(YX) ≤ max
i=1...n

λi(Y)tr(X)

Proposition A.2: If there exists a set of symmetric positive definite matrices {Vi}
N
i=1 such that

Vi =

N∑
j=1

p jiF′i V jFi + S i, (45)

for some set of symmetric positive set of matrices {S i}
N
i=1, then the dynamics (43) is asymptoti-

cally stable.

Proof: We use the same idea as in the proof of Theorem 3.19 of [6] and define the following

Lyapunov function

Φ(k) =

N∑
i=1

tr(Wi(k)Vi).

In the following we show that the difference Φ(k +1)−Φ(k) is negative for all k ≥ 0, from which

we infer the asymptotic stability of (43). We get that

Φ(k + 1)−Φ(k) = tr

 N∑
i=1

 N∑
j=1

pi jF jW j(k)F′j

Vi−Wi(k)Vi

 =

= tr

 N∑
i=1

Wi(k)

 N∑
j=1

p jiFiV j(k)F′i −Vi


 =

N∑
i=1

tr(Wi(k)S i).

Since {Wi(k)}Ni=1 are positive semi-definite matrices for k ≥ 0 and {S i}
N
i=1 are positive definite, by

Remark A.1, it follows that

Φ(k + 1)−Φ(k) < 0, k ≥ 0.
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Proposition A.3: If there exists a set of symmetric positive definite matrices {Vi}
N
i=1 such that

Vi =

N∑
j=1

pi jF′i V jFi + S i, (46)

for some set of symmetric positive set of matrices {S i}
N
i=1, then the dynamics (43) is asymptoti-

cally stable.

Proof: Using the same approach as in the previous proposition, we prove the asymptotic

stability of dynamics (44). Using Proposition A.1, the result follows.

Proposition A.4: If the following linear matrix inequalities are feasible

Xi
√

p1iXiFi
√

p2iF′i Xi · · ·
√

pNiF′i Xi
√

p1iXiFi X1 0 · · · 0
√

p2iXiFi 0 X2 · · · 0
...

...
...

. . .
...

√
pNiXiFi 0 0 · · · XN


� 0, i = 1 . . .N, (47)

where {Xi}
N
i=1 are the unknown variable, then the dynamics (43) is asymptotically stable.

Proof: By the Schur complement lemma, (47) are feasible if and only if

Xi−

N∑
j=1

p jiXiFiX−1
j F′i Xi � 0, Xi � 0, i = 1 . . .N. (48)

By defining Vi , X−1
i , i = 1 . . .N, (48), becomes

Vi−

N∑
j=1

p jiFiV jF′i � 0, Vi � 0, i = 1 . . .N.

By Proposition A.2, (43) is asymptotically stable.

Inspired by Proposition A.4, detectability and stabilizability tests, in the sense of Definitions

A.1 and A.2, respectively, can be formulated in terms of the feasibility of a set of linear matrix

inequalities.
Proposition A.5 (detectability test): If the following matrix inequalitie are feasible

Xi
√

pi1(XiAi−YiCi)
√

pi2(XiAi−YiCi) · · ·
√

piN(XiAi−YiCi)
√

pi1(XiAi−YiCi)′ X1 0 · · · 0
√

pi2(XiAi−YiCi)′ 0 X2 · · · 0
...

...
...

. . .
...

√
piN(XiAi−YiCi)′ 0 0 · · · XN


� 0, i = 1 . . .N, (49)
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where {Xi}
N
i=1 and {Yi}

N
i=1 are the unknown variable, then (p,L,A) is detectable in the sense of

Definition A.1. Moreover chosing Li = X−1
i Yi, for i = 1 . . .N, the dynamics (43) is asymptotically

stable.

Proof: By the Schur complement lemma, (49) are feasible if and only if

Xi−

N∑
j=1

pi j(XiAi−YiCi)X−1
j (XiAi−YiCi)′ � 0, Xi � 0, i = 1 . . .N. (50)

By defining Li , X−1
i Yi and Vi , X−1

i , i = 1 . . .N, (48), becomes

Vi−

N∑
j=1

pi jFiV jF′i � 0, Vi � 0, i = 1 . . .N.

By Proposition A.3, (p,L,A) is detectable in the sense of Definition A.1.
Proposition A.6 (stabilizability test): If the following matrix inequalities are feasible

Xi
√

p1i(XiAi−CiYi)′
√

p2i(XiAi−CiYi)′ · · ·
√

pNi((XiAi−CiYi)′

√
p1i(XiAi−CiYi) X1 0 · · · 0
√

p2i(XiAi−CiYi) 0 X2 · · · 0
...

...
...

. . .
...

√
pNi(XiAi−CiYi) 0 0 · · · XN


� 0, i = 1 . . .N, (51)

where {Xi}
N
i=1 and {Yi}

N
i=1 are the unknown variable, then (A,L,p) is stabilizable in the sense of

Definition A.2. Moreover chosing Li = YiX−1
i , for i = 1 . . .N, the dynamics (43) is asymptotically

stable.

Proof: By the Schur complement lemma, (51) are feasible if and only if

Xi−

N∑
j=1

p ji(XiAi−YiCi)′X−1
j (XiAi−YiCi) � 0, Xi � 0, i = 1 . . .N. (52)

By defining Li , X−1
i Yi and Vi , X−1

i , i = 1 . . .N, (48), becomes

Vi−

N∑
j=1

p jiF′i V jFi � 0, Vi � 0, i = 1 . . .N.

By Proposition A.2, (p,L,A) is stabilizable in the sense of Definition A.2.
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B. Discrete-time coupled Riccati equations

Consider the following coupled Riccati difference equations

Qi(k + 1) =

N∑
i=1

pi j
(
A jQ j(k)A′j−A jQ j(k)C′j(C jQ j(k)C′j +Σv j)

−1C jQ j(k)A′j +Σw
)
, (53)

Qi(0) = Q0
i � 0, i = 1 . . .N, where {Σvi}

N
i=1 and Σw are symmetric positive definite matrices.

Proposition A.7: Let Σ
1/2
v = {Σ

1/2
vi }

N
i=1, where Σvi = Σ

1/2
vi

′
Σ

1/2
vi . Suppose that (p,C,A) is de-

tectable and that (A,Σ1/2
v ,p) is stabilizable in the sense of Definitions A.1 and A.2, respectively.

Then there exists a unique set of symmetric positive definite matrices Q̄ = {Q̄i}
N
i=1 satisfying

Q̄i =

N∑
i=1

pi j
(
A jQ̄ jA′j−A jQ̄ jC′j(C jQ̄ jC′j +Σv j)

−1C jQ̄ jA′j +Σw
)
, i = 1 . . .N. (54)

Moreover, for any initial conditions Q0
i � 0, we have that limk→∞Qi(k) = Q̄i.

Proof: The proof can be mimicked after the proof of Theorem 1 of [5]. Compared to our

case, in Theorem 1 of [5] a scalar term, taking values between zero and one, multiplies the

matrix Σv j in (54). However it is not difficult to note that the result holds even in the case where

this scalar term takes value one, which corresponds to out setup.




